1 /**********************************************************************
2
3 numeric.c -
4
5 $Author: usa $
6 created at: Fri Aug 13 18:33:09 JST 1993
7
8 Copyright (C) 1993-2007 Yukihiro Matsumoto
9
10 **********************************************************************/
11
12 #include "ruby/encoding.h"
13 #include "ruby/util.h"
14 #include "internal.h"
15 #include "id.h"
16 #include <assert.h>
17 #include <ctype.h>
18 #include <math.h>
19 #include <stdio.h>
20
21 #ifdef HAVE_FLOAT_H
22 #include <float.h>
23 #endif
24
25 #ifdef HAVE_IEEEFP_H
26 #include <ieeefp.h>
27 #endif
28
29 /* use IEEE 64bit values if not defined */
30 #ifndef FLT_RADIX
31 #define FLT_RADIX 2
32 #endif
33 #ifndef FLT_ROUNDS
34 #define FLT_ROUNDS 1
35 #endif
36 #ifndef DBL_MIN
37 #define DBL_MIN 2.2250738585072014e-308
38 #endif
39 #ifndef DBL_MAX
40 #define DBL_MAX 1.7976931348623157e+308
41 #endif
42 #ifndef DBL_MIN_EXP
43 #define DBL_MIN_EXP (-1021)
44 #endif
45 #ifndef DBL_MAX_EXP
46 #define DBL_MAX_EXP 1024
47 #endif
48 #ifndef DBL_MIN_10_EXP
49 #define DBL_MIN_10_EXP (-307)
50 #endif
51 #ifndef DBL_MAX_10_EXP
52 #define DBL_MAX_10_EXP 308
53 #endif
54 #ifndef DBL_DIG
55 #define DBL_DIG 15
56 #endif
57 #ifndef DBL_MANT_DIG
58 #define DBL_MANT_DIG 53
59 #endif
60 #ifndef DBL_EPSILON
61 #define DBL_EPSILON 2.2204460492503131e-16
62 #endif
63
64 #ifndef USE_RB_INFINITY
65 #elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
66 const union bytesequence4_or_float rb_infinity = {{0x00, 0x00, 0x80, 0x7f}};
67 #else
68 const union bytesequence4_or_float rb_infinity = {{0x7f, 0x80, 0x00, 0x00}};
69 #endif
70
71 #ifndef USE_RB_NAN
72 #elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
73 const union bytesequence4_or_float rb_nan = {{0x00, 0x00, 0xc0, 0x7f}};
74 #else
75 const union bytesequence4_or_float rb_nan = {{0x7f, 0xc0, 0x00, 0x00}};
76 #endif
77
78 #ifndef HAVE_ROUND
79 double
round(double x)80 round(double x)
81 {
82 double f;
83
84 if (x > 0.0) {
85 f = floor(x);
86 x = f + (x - f >= 0.5);
87 }
88 else if (x < 0.0) {
89 f = ceil(x);
90 x = f - (f - x >= 0.5);
91 }
92 return x;
93 }
94 #endif
95
96 static double
round_half_up(double x,double s)97 round_half_up(double x, double s)
98 {
99 double f, xs = x * s;
100
101 f = round(xs);
102 if (s == 1.0) return f;
103 if (x > 0) {
104 if ((double)((f + 0.5) / s) <= x) f += 1;
105 x = f;
106 }
107 else {
108 if ((double)((f - 0.5) / s) >= x) f -= 1;
109 x = f;
110 }
111 return x;
112 }
113
114 static double
round_half_down(double x,double s)115 round_half_down(double x, double s)
116 {
117 double f, xs = x * s;
118
119 f = round(xs);
120 if (x > 0) {
121 if ((double)((f - 0.5) / s) >= x) f -= 1;
122 x = f;
123 }
124 else {
125 if ((double)((f + 0.5) / s) <= x) f += 1;
126 x = f;
127 }
128 return x;
129 }
130
131 static double
round_half_even(double x,double s)132 round_half_even(double x, double s)
133 {
134 double f, d, xs = x * s;
135
136 if (x > 0.0) {
137 f = floor(xs);
138 d = xs - f;
139 if (d > 0.5)
140 d = 1.0;
141 else if (d == 0.5 || ((double)((f + 0.5) / s) <= x))
142 d = fmod(f, 2.0);
143 else
144 d = 0.0;
145 x = f + d;
146 }
147 else if (x < 0.0) {
148 f = ceil(xs);
149 d = f - xs;
150 if (d > 0.5)
151 d = 1.0;
152 else if (d == 0.5 || ((double)((f - 0.5) / s) >= x))
153 d = fmod(-f, 2.0);
154 else
155 d = 0.0;
156 x = f - d;
157 }
158 return x;
159 }
160
161 static VALUE fix_uminus(VALUE num);
162 static VALUE fix_mul(VALUE x, VALUE y);
163 static VALUE fix_lshift(long, unsigned long);
164 static VALUE fix_rshift(long, unsigned long);
165 static VALUE int_pow(long x, unsigned long y);
166 static VALUE int_even_p(VALUE x);
167 static int int_round_zero_p(VALUE num, int ndigits);
168 VALUE rb_int_floor(VALUE num, int ndigits);
169 VALUE rb_int_ceil(VALUE num, int ndigits);
170 static VALUE flo_to_i(VALUE num);
171 static int float_round_overflow(int ndigits, int binexp);
172 static int float_round_underflow(int ndigits, int binexp);
173
174 static ID id_coerce, id_div, id_divmod;
175 #define id_to_i idTo_i
176 #define id_eq idEq
177 #define id_cmp idCmp
178
179 VALUE rb_cNumeric;
180 VALUE rb_cFloat;
181 VALUE rb_cInteger;
182 #ifndef RUBY_INTEGER_UNIFICATION
183 VALUE rb_cFixnum;
184 #endif
185
186 VALUE rb_eZeroDivError;
187 VALUE rb_eFloatDomainError;
188
189 static ID id_to, id_by;
190
191 void
rb_num_zerodiv(void)192 rb_num_zerodiv(void)
193 {
194 rb_raise(rb_eZeroDivError, "divided by 0");
195 }
196
197 enum ruby_num_rounding_mode
rb_num_get_rounding_option(VALUE opts)198 rb_num_get_rounding_option(VALUE opts)
199 {
200 static ID round_kwds[1];
201 VALUE rounding;
202 VALUE str;
203 const char *s;
204
205 if (!NIL_P(opts)) {
206 if (!round_kwds[0]) {
207 round_kwds[0] = rb_intern_const("half");
208 }
209 if (!rb_get_kwargs(opts, round_kwds, 0, 1, &rounding)) goto noopt;
210 if (SYMBOL_P(rounding)) {
211 str = rb_sym2str(rounding);
212 }
213 else if (NIL_P(rounding)) {
214 goto noopt;
215 }
216 else if (!RB_TYPE_P(str = rounding, T_STRING)) {
217 str = rb_check_string_type(rounding);
218 if (NIL_P(str)) goto invalid;
219 }
220 s = RSTRING_PTR(str);
221 switch (RSTRING_LEN(str)) {
222 case 2:
223 if (rb_memcicmp(s, "up", 2) == 0)
224 return RUBY_NUM_ROUND_HALF_UP;
225 break;
226 case 4:
227 if (rb_memcicmp(s, "even", 4) == 0)
228 return RUBY_NUM_ROUND_HALF_EVEN;
229 if (strncasecmp(s, "down", 4) == 0)
230 return RUBY_NUM_ROUND_HALF_DOWN;
231 break;
232 }
233 invalid:
234 rb_raise(rb_eArgError, "invalid rounding mode: % "PRIsVALUE, rounding);
235 }
236 noopt:
237 return RUBY_NUM_ROUND_DEFAULT;
238 }
239
240 /* experimental API */
241 int
rb_num_to_uint(VALUE val,unsigned int * ret)242 rb_num_to_uint(VALUE val, unsigned int *ret)
243 {
244 #define NUMERR_TYPE 1
245 #define NUMERR_NEGATIVE 2
246 #define NUMERR_TOOLARGE 3
247 if (FIXNUM_P(val)) {
248 long v = FIX2LONG(val);
249 #if SIZEOF_INT < SIZEOF_LONG
250 if (v > (long)UINT_MAX) return NUMERR_TOOLARGE;
251 #endif
252 if (v < 0) return NUMERR_NEGATIVE;
253 *ret = (unsigned int)v;
254 return 0;
255 }
256
257 if (RB_TYPE_P(val, T_BIGNUM)) {
258 if (BIGNUM_NEGATIVE_P(val)) return NUMERR_NEGATIVE;
259 #if SIZEOF_INT < SIZEOF_LONG
260 /* long is 64bit */
261 return NUMERR_TOOLARGE;
262 #else
263 /* long is 32bit */
264 if (rb_absint_size(val, NULL) > sizeof(int)) return NUMERR_TOOLARGE;
265 *ret = (unsigned int)rb_big2ulong((VALUE)val);
266 return 0;
267 #endif
268 }
269 return NUMERR_TYPE;
270 }
271
272 #define method_basic_p(klass) rb_method_basic_definition_p(klass, mid)
273
274 static inline int
int_pos_p(VALUE num)275 int_pos_p(VALUE num)
276 {
277 if (FIXNUM_P(num)) {
278 return FIXNUM_POSITIVE_P(num);
279 }
280 else if (RB_TYPE_P(num, T_BIGNUM)) {
281 return BIGNUM_POSITIVE_P(num);
282 }
283 rb_raise(rb_eTypeError, "not an Integer");
284 }
285
286 static inline int
int_neg_p(VALUE num)287 int_neg_p(VALUE num)
288 {
289 if (FIXNUM_P(num)) {
290 return FIXNUM_NEGATIVE_P(num);
291 }
292 else if (RB_TYPE_P(num, T_BIGNUM)) {
293 return BIGNUM_NEGATIVE_P(num);
294 }
295 rb_raise(rb_eTypeError, "not an Integer");
296 }
297
298 int
rb_int_positive_p(VALUE num)299 rb_int_positive_p(VALUE num)
300 {
301 return int_pos_p(num);
302 }
303
304 int
rb_int_negative_p(VALUE num)305 rb_int_negative_p(VALUE num)
306 {
307 return int_neg_p(num);
308 }
309
310 int
rb_num_negative_p(VALUE num)311 rb_num_negative_p(VALUE num)
312 {
313 return rb_num_negative_int_p(num);
314 }
315
316 static VALUE
num_funcall_op_0(VALUE x,VALUE arg,int recursive)317 num_funcall_op_0(VALUE x, VALUE arg, int recursive)
318 {
319 ID func = (ID)arg;
320 if (recursive) {
321 const char *name = rb_id2name(func);
322 if (ISALNUM(name[0])) {
323 rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE,
324 x, ID2SYM(func));
325 }
326 else if (name[0] && name[1] == '@' && !name[2]) {
327 rb_name_error(func, "%c%"PRIsVALUE,
328 name[0], x);
329 }
330 else {
331 rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE,
332 ID2SYM(func), x);
333 }
334 }
335 return rb_funcallv(x, func, 0, 0);
336 }
337
338 static VALUE
num_funcall0(VALUE x,ID func)339 num_funcall0(VALUE x, ID func)
340 {
341 return rb_exec_recursive(num_funcall_op_0, x, (VALUE)func);
342 }
343
344 NORETURN(static void num_funcall_op_1_recursion(VALUE x, ID func, VALUE y));
345
346 static void
num_funcall_op_1_recursion(VALUE x,ID func,VALUE y)347 num_funcall_op_1_recursion(VALUE x, ID func, VALUE y)
348 {
349 const char *name = rb_id2name(func);
350 if (ISALNUM(name[0])) {
351 rb_name_error(func, "%"PRIsVALUE".%"PRIsVALUE"(%"PRIsVALUE")",
352 x, ID2SYM(func), y);
353 }
354 else {
355 rb_name_error(func, "%"PRIsVALUE"%"PRIsVALUE"%"PRIsVALUE,
356 x, ID2SYM(func), y);
357 }
358 }
359
360 static VALUE
num_funcall_op_1(VALUE y,VALUE arg,int recursive)361 num_funcall_op_1(VALUE y, VALUE arg, int recursive)
362 {
363 ID func = (ID)((VALUE *)arg)[0];
364 VALUE x = ((VALUE *)arg)[1];
365 if (recursive) {
366 num_funcall_op_1_recursion(x, func, y);
367 }
368 return rb_funcall(x, func, 1, y);
369 }
370
371 static VALUE
num_funcall1(VALUE x,ID func,VALUE y)372 num_funcall1(VALUE x, ID func, VALUE y)
373 {
374 VALUE args[2];
375 args[0] = (VALUE)func;
376 args[1] = x;
377 return rb_exec_recursive_paired(num_funcall_op_1, y, x, (VALUE)args);
378 }
379
380 /*
381 * call-seq:
382 * num.coerce(numeric) -> array
383 *
384 * If +numeric+ is the same type as +num+, returns an array
385 * <code>[numeric, num]</code>. Otherwise, returns an array with both
386 * +numeric+ and +num+ represented as Float objects.
387 *
388 * This coercion mechanism is used by Ruby to handle mixed-type numeric
389 * operations: it is intended to find a compatible common type between the two
390 * operands of the operator.
391 *
392 * 1.coerce(2.5) #=> [2.5, 1.0]
393 * 1.2.coerce(3) #=> [3.0, 1.2]
394 * 1.coerce(2) #=> [2, 1]
395 */
396
397 static VALUE
num_coerce(VALUE x,VALUE y)398 num_coerce(VALUE x, VALUE y)
399 {
400 if (CLASS_OF(x) == CLASS_OF(y))
401 return rb_assoc_new(y, x);
402 x = rb_Float(x);
403 y = rb_Float(y);
404 return rb_assoc_new(y, x);
405 }
406
407 NORETURN(static void coerce_failed(VALUE x, VALUE y));
408 static void
coerce_failed(VALUE x,VALUE y)409 coerce_failed(VALUE x, VALUE y)
410 {
411 if (SPECIAL_CONST_P(y) || BUILTIN_TYPE(y) == T_FLOAT) {
412 y = rb_inspect(y);
413 }
414 else {
415 y = rb_obj_class(y);
416 }
417 rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
418 y, rb_obj_class(x));
419 }
420
421 static int
do_coerce(VALUE * x,VALUE * y,int err)422 do_coerce(VALUE *x, VALUE *y, int err)
423 {
424 VALUE ary = rb_check_funcall(*y, id_coerce, 1, x);
425 if (ary == Qundef) {
426 if (err) {
427 coerce_failed(*x, *y);
428 }
429 return FALSE;
430 }
431 if (!err && NIL_P(ary)) {
432 return FALSE;
433 }
434 if (!RB_TYPE_P(ary, T_ARRAY) || RARRAY_LEN(ary) != 2) {
435 rb_raise(rb_eTypeError, "coerce must return [x, y]");
436 }
437
438 *x = RARRAY_AREF(ary, 0);
439 *y = RARRAY_AREF(ary, 1);
440 return TRUE;
441 }
442
443 VALUE
rb_num_coerce_bin(VALUE x,VALUE y,ID func)444 rb_num_coerce_bin(VALUE x, VALUE y, ID func)
445 {
446 do_coerce(&x, &y, TRUE);
447 return rb_funcall(x, func, 1, y);
448 }
449
450 VALUE
rb_num_coerce_cmp(VALUE x,VALUE y,ID func)451 rb_num_coerce_cmp(VALUE x, VALUE y, ID func)
452 {
453 if (do_coerce(&x, &y, FALSE))
454 return rb_funcall(x, func, 1, y);
455 return Qnil;
456 }
457
458 VALUE
rb_num_coerce_relop(VALUE x,VALUE y,ID func)459 rb_num_coerce_relop(VALUE x, VALUE y, ID func)
460 {
461 VALUE c, x0 = x, y0 = y;
462
463 if (!do_coerce(&x, &y, FALSE) ||
464 NIL_P(c = rb_funcall(x, func, 1, y))) {
465 rb_cmperr(x0, y0);
466 return Qnil; /* not reached */
467 }
468 return c;
469 }
470
471 /*
472 * :nodoc:
473 *
474 * Trap attempts to add methods to Numeric objects. Always raises a TypeError.
475 *
476 * Numerics should be values; singleton_methods should not be added to them.
477 */
478
479 static VALUE
num_sadded(VALUE x,VALUE name)480 num_sadded(VALUE x, VALUE name)
481 {
482 ID mid = rb_to_id(name);
483 /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
484 rb_remove_method_id(rb_singleton_class(x), mid);
485 rb_raise(rb_eTypeError,
486 "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
487 rb_id2str(mid),
488 rb_obj_class(x));
489
490 UNREACHABLE_RETURN(Qnil);
491 }
492
493 #if 0
494 /*
495 * call-seq:
496 * num.clone(freeze: true) -> num
497 *
498 * Returns the receiver. +freeze+ cannot be +false+.
499 */
500 static VALUE
501 num_clone(int argc, VALUE *argv, VALUE x)
502 {
503 return rb_immutable_obj_clone(argc, argv, x);
504 }
505 #else
506 # define num_clone rb_immutable_obj_clone
507 #endif
508
509 #if 0
510 /*
511 * call-seq:
512 * num.dup -> num
513 *
514 * Returns the receiver.
515 */
516 static VALUE
517 num_dup(VALUE x)
518 {
519 return x;
520 }
521 #else
522 # define num_dup num_uplus
523 #endif
524
525 /*
526 * call-seq:
527 * +num -> num
528 *
529 * Unary Plus---Returns the receiver.
530 */
531
532 static VALUE
num_uplus(VALUE num)533 num_uplus(VALUE num)
534 {
535 return num;
536 }
537
538 /*
539 * call-seq:
540 * num.i -> Complex(0, num)
541 *
542 * Returns the corresponding imaginary number.
543 * Not available for complex numbers.
544 *
545 * -42.i #=> (0-42i)
546 * 2.0.i #=> (0+2.0i)
547 */
548
549 static VALUE
num_imaginary(VALUE num)550 num_imaginary(VALUE num)
551 {
552 return rb_complex_new(INT2FIX(0), num);
553 }
554
555 /*
556 * call-seq:
557 * -num -> numeric
558 *
559 * Unary Minus---Returns the receiver, negated.
560 */
561
562 static VALUE
num_uminus(VALUE num)563 num_uminus(VALUE num)
564 {
565 VALUE zero;
566
567 zero = INT2FIX(0);
568 do_coerce(&zero, &num, TRUE);
569
570 return num_funcall1(zero, '-', num);
571 }
572
573 /*
574 * call-seq:
575 * num.fdiv(numeric) -> float
576 *
577 * Returns float division.
578 */
579
580 static VALUE
num_fdiv(VALUE x,VALUE y)581 num_fdiv(VALUE x, VALUE y)
582 {
583 return rb_funcall(rb_Float(x), '/', 1, y);
584 }
585
586 /*
587 * call-seq:
588 * num.div(numeric) -> integer
589 *
590 * Uses +/+ to perform division, then converts the result to an integer.
591 * Numeric does not define the +/+ operator; this is left to subclasses.
592 *
593 * Equivalent to <code>num.divmod(numeric)[0]</code>.
594 *
595 * See Numeric#divmod.
596 */
597
598 static VALUE
num_div(VALUE x,VALUE y)599 num_div(VALUE x, VALUE y)
600 {
601 if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
602 return rb_funcall(num_funcall1(x, '/', y), rb_intern("floor"), 0);
603 }
604
605 /*
606 * call-seq:
607 * num.modulo(numeric) -> real
608 *
609 * <code>x.modulo(y)</code> means <code>x-y*(x/y).floor</code>.
610 *
611 * Equivalent to <code>num.divmod(numeric)[1]</code>.
612 *
613 * See Numeric#divmod.
614 */
615
616 static VALUE
num_modulo(VALUE x,VALUE y)617 num_modulo(VALUE x, VALUE y)
618 {
619 VALUE q = num_funcall1(x, id_div, y);
620 return rb_funcall(x, '-', 1,
621 rb_funcall(y, '*', 1, q));
622 }
623
624 /*
625 * call-seq:
626 * num.remainder(numeric) -> real
627 *
628 * <code>x.remainder(y)</code> means <code>x-y*(x/y).truncate</code>.
629 *
630 * See Numeric#divmod.
631 */
632
633 static VALUE
num_remainder(VALUE x,VALUE y)634 num_remainder(VALUE x, VALUE y)
635 {
636 VALUE z = num_funcall1(x, '%', y);
637
638 if ((!rb_equal(z, INT2FIX(0))) &&
639 ((rb_num_negative_int_p(x) &&
640 rb_num_positive_int_p(y)) ||
641 (rb_num_positive_int_p(x) &&
642 rb_num_negative_int_p(y)))) {
643 return rb_funcall(z, '-', 1, y);
644 }
645 return z;
646 }
647
648 /*
649 * call-seq:
650 * num.divmod(numeric) -> array
651 *
652 * Returns an array containing the quotient and modulus obtained by dividing
653 * +num+ by +numeric+.
654 *
655 * If <code>q, r = x.divmod(y)</code>, then
656 *
657 * q = floor(x/y)
658 * x = q*y + r
659 *
660 * The quotient is rounded toward negative infinity, as shown in the
661 * following table:
662 *
663 * a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
664 * ------+-----+---------------+---------+-------------+---------------
665 * 13 | 4 | 3, 1 | 3 | 1 | 1
666 * ------+-----+---------------+---------+-------------+---------------
667 * 13 | -4 | -4, -3 | -4 | -3 | 1
668 * ------+-----+---------------+---------+-------------+---------------
669 * -13 | 4 | -4, 3 | -4 | 3 | -1
670 * ------+-----+---------------+---------+-------------+---------------
671 * -13 | -4 | 3, -1 | 3 | -1 | -1
672 * ------+-----+---------------+---------+-------------+---------------
673 * 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
674 * ------+-----+---------------+---------+-------------+---------------
675 * 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
676 * ------+-----+---------------+---------+-------------+---------------
677 * -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
678 * ------+-----+---------------+---------+-------------+---------------
679 * -11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
680 *
681 *
682 * Examples
683 *
684 * 11.divmod(3) #=> [3, 2]
685 * 11.divmod(-3) #=> [-4, -1]
686 * 11.divmod(3.5) #=> [3, 0.5]
687 * (-11).divmod(3.5) #=> [-4, 3.0]
688 * 11.5.divmod(3.5) #=> [3, 1.0]
689 */
690
691 static VALUE
num_divmod(VALUE x,VALUE y)692 num_divmod(VALUE x, VALUE y)
693 {
694 return rb_assoc_new(num_div(x, y), num_modulo(x, y));
695 }
696
697 /*
698 * call-seq:
699 * num.real? -> true or false
700 *
701 * Returns +true+ if +num+ is a real number (i.e. not Complex).
702 */
703
704 static VALUE
num_real_p(VALUE num)705 num_real_p(VALUE num)
706 {
707 return Qtrue;
708 }
709
710 /*
711 * call-seq:
712 * num.integer? -> true or false
713 *
714 * Returns +true+ if +num+ is an Integer.
715 *
716 * 1.0.integer? #=> false
717 * 1.integer? #=> true
718 */
719
720 static VALUE
num_int_p(VALUE num)721 num_int_p(VALUE num)
722 {
723 return Qfalse;
724 }
725
726 /*
727 * call-seq:
728 * num.abs -> numeric
729 * num.magnitude -> numeric
730 *
731 * Returns the absolute value of +num+.
732 *
733 * 12.abs #=> 12
734 * (-34.56).abs #=> 34.56
735 * -34.56.abs #=> 34.56
736 *
737 * Numeric#magnitude is an alias for Numeric#abs.
738 */
739
740 static VALUE
num_abs(VALUE num)741 num_abs(VALUE num)
742 {
743 if (rb_num_negative_int_p(num)) {
744 return num_funcall0(num, idUMinus);
745 }
746 return num;
747 }
748
749 /*
750 * call-seq:
751 * num.zero? -> true or false
752 *
753 * Returns +true+ if +num+ has a zero value.
754 */
755
756 static VALUE
num_zero_p(VALUE num)757 num_zero_p(VALUE num)
758 {
759 if (FIXNUM_P(num)) {
760 if (FIXNUM_ZERO_P(num)) {
761 return Qtrue;
762 }
763 }
764 else if (RB_TYPE_P(num, T_BIGNUM)) {
765 if (rb_bigzero_p(num)) {
766 /* this should not happen usually */
767 return Qtrue;
768 }
769 }
770 else if (rb_equal(num, INT2FIX(0))) {
771 return Qtrue;
772 }
773 return Qfalse;
774 }
775
776 /*
777 * call-seq:
778 * num.nonzero? -> self or nil
779 *
780 * Returns +self+ if +num+ is not zero, +nil+ otherwise.
781 *
782 * This behavior is useful when chaining comparisons:
783 *
784 * a = %w( z Bb bB bb BB a aA Aa AA A )
785 * b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
786 * b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
787 */
788
789 static VALUE
num_nonzero_p(VALUE num)790 num_nonzero_p(VALUE num)
791 {
792 if (RTEST(num_funcall0(num, rb_intern("zero?")))) {
793 return Qnil;
794 }
795 return num;
796 }
797
798 /*
799 * call-seq:
800 * num.finite? -> true or false
801 *
802 * Returns +true+ if +num+ is a finite number, otherwise returns +false+.
803 */
804 static VALUE
num_finite_p(VALUE num)805 num_finite_p(VALUE num)
806 {
807 return Qtrue;
808 }
809
810 /*
811 * call-seq:
812 * num.infinite? -> -1, 1, or nil
813 *
814 * Returns +nil+, -1, or 1 depending on whether the value is
815 * finite, <code>-Infinity</code>, or <code>+Infinity</code>.
816 */
817 static VALUE
num_infinite_p(VALUE num)818 num_infinite_p(VALUE num)
819 {
820 return Qnil;
821 }
822
823 /*
824 * call-seq:
825 * num.to_int -> integer
826 *
827 * Invokes the child class's +to_i+ method to convert +num+ to an integer.
828 *
829 * 1.0.class #=> Float
830 * 1.0.to_int.class #=> Integer
831 * 1.0.to_i.class #=> Integer
832 */
833
834 static VALUE
num_to_int(VALUE num)835 num_to_int(VALUE num)
836 {
837 return num_funcall0(num, id_to_i);
838 }
839
840 /*
841 * call-seq:
842 * num.positive? -> true or false
843 *
844 * Returns +true+ if +num+ is greater than 0.
845 */
846
847 static VALUE
num_positive_p(VALUE num)848 num_positive_p(VALUE num)
849 {
850 const ID mid = '>';
851
852 if (FIXNUM_P(num)) {
853 if (method_basic_p(rb_cInteger))
854 return (SIGNED_VALUE)num > (SIGNED_VALUE)INT2FIX(0) ? Qtrue : Qfalse;
855 }
856 else if (RB_TYPE_P(num, T_BIGNUM)) {
857 if (method_basic_p(rb_cInteger))
858 return BIGNUM_POSITIVE_P(num) && !rb_bigzero_p(num) ? Qtrue : Qfalse;
859 }
860 return rb_num_compare_with_zero(num, mid);
861 }
862
863 /*
864 * call-seq:
865 * num.negative? -> true or false
866 *
867 * Returns +true+ if +num+ is less than 0.
868 */
869
870 static VALUE
num_negative_p(VALUE num)871 num_negative_p(VALUE num)
872 {
873 return rb_num_negative_int_p(num) ? Qtrue : Qfalse;
874 }
875
876
877 /********************************************************************
878 *
879 * Document-class: Float
880 *
881 * Float objects represent inexact real numbers using the native
882 * architecture's double-precision floating point representation.
883 *
884 * Floating point has a different arithmetic and is an inexact number.
885 * So you should know its esoteric system. See following:
886 *
887 * - http://docs.sun.com/source/806-3568/ncg_goldberg.html
888 * - https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise
889 * - http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
890 */
891
892 VALUE
rb_float_new_in_heap(double d)893 rb_float_new_in_heap(double d)
894 {
895 NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0));
896
897 flt->float_value = d;
898 OBJ_FREEZE(flt);
899 return (VALUE)flt;
900 }
901
902 /*
903 * call-seq:
904 * float.to_s -> string
905 *
906 * Returns a string containing a representation of +self+.
907 * As well as a fixed or exponential form of the +float+,
908 * the call may return +NaN+, +Infinity+, and +-Infinity+.
909 */
910
911 static VALUE
flo_to_s(VALUE flt)912 flo_to_s(VALUE flt)
913 {
914 enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
915 enum {float_dig = DBL_DIG+1};
916 char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
917 double value = RFLOAT_VALUE(flt);
918 VALUE s;
919 char *p, *e;
920 int sign, decpt, digs;
921
922 if (isinf(value)) {
923 static const char minf[] = "-Infinity";
924 const int pos = (value > 0); /* skip "-" */
925 return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
926 }
927 else if (isnan(value))
928 return rb_usascii_str_new2("NaN");
929
930 p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
931 s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
932 if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
933 memcpy(buf, p, digs);
934 xfree(p);
935 if (decpt > 0) {
936 if (decpt < digs) {
937 memmove(buf + decpt + 1, buf + decpt, digs - decpt);
938 buf[decpt] = '.';
939 rb_str_cat(s, buf, digs + 1);
940 }
941 else if (decpt <= DBL_DIG) {
942 long len;
943 char *ptr;
944 rb_str_cat(s, buf, digs);
945 rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
946 ptr = RSTRING_PTR(s) + len;
947 if (decpt > digs) {
948 memset(ptr, '0', decpt - digs);
949 ptr += decpt - digs;
950 }
951 memcpy(ptr, ".0", 2);
952 }
953 else {
954 goto exp;
955 }
956 }
957 else if (decpt > -4) {
958 long len;
959 char *ptr;
960 rb_str_cat(s, "0.", 2);
961 rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
962 ptr = RSTRING_PTR(s);
963 memset(ptr += len, '0', -decpt);
964 memcpy(ptr -= decpt, buf, digs);
965 }
966 else {
967 exp:
968 if (digs > 1) {
969 memmove(buf + 2, buf + 1, digs - 1);
970 }
971 else {
972 buf[2] = '0';
973 digs++;
974 }
975 buf[1] = '.';
976 rb_str_cat(s, buf, digs + 1);
977 rb_str_catf(s, "e%+03d", decpt - 1);
978 }
979 return s;
980 }
981
982 /*
983 * call-seq:
984 * float.coerce(numeric) -> array
985 *
986 * Returns an array with both +numeric+ and +float+ represented as Float
987 * objects.
988 *
989 * This is achieved by converting +numeric+ to a Float.
990 *
991 * 1.2.coerce(3) #=> [3.0, 1.2]
992 * 2.5.coerce(1.1) #=> [1.1, 2.5]
993 */
994
995 static VALUE
flo_coerce(VALUE x,VALUE y)996 flo_coerce(VALUE x, VALUE y)
997 {
998 return rb_assoc_new(rb_Float(y), x);
999 }
1000
1001 /*
1002 * call-seq:
1003 * -float -> float
1004 *
1005 * Returns +float+, negated.
1006 */
1007
1008 VALUE
rb_float_uminus(VALUE flt)1009 rb_float_uminus(VALUE flt)
1010 {
1011 return DBL2NUM(-RFLOAT_VALUE(flt));
1012 }
1013
1014 /*
1015 * call-seq:
1016 * float + other -> float
1017 *
1018 * Returns a new Float which is the sum of +float+ and +other+.
1019 */
1020
1021 VALUE
rb_float_plus(VALUE x,VALUE y)1022 rb_float_plus(VALUE x, VALUE y)
1023 {
1024 if (RB_TYPE_P(y, T_FIXNUM)) {
1025 return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
1026 }
1027 else if (RB_TYPE_P(y, T_BIGNUM)) {
1028 return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
1029 }
1030 else if (RB_TYPE_P(y, T_FLOAT)) {
1031 return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
1032 }
1033 else {
1034 return rb_num_coerce_bin(x, y, '+');
1035 }
1036 }
1037
1038 /*
1039 * call-seq:
1040 * float - other -> float
1041 *
1042 * Returns a new Float which is the difference of +float+ and +other+.
1043 */
1044
1045 VALUE
rb_float_minus(VALUE x,VALUE y)1046 rb_float_minus(VALUE x, VALUE y)
1047 {
1048 if (RB_TYPE_P(y, T_FIXNUM)) {
1049 return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
1050 }
1051 else if (RB_TYPE_P(y, T_BIGNUM)) {
1052 return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
1053 }
1054 else if (RB_TYPE_P(y, T_FLOAT)) {
1055 return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
1056 }
1057 else {
1058 return rb_num_coerce_bin(x, y, '-');
1059 }
1060 }
1061
1062 /*
1063 * call-seq:
1064 * float * other -> float
1065 *
1066 * Returns a new Float which is the product of +float+ and +other+.
1067 */
1068
1069 VALUE
rb_float_mul(VALUE x,VALUE y)1070 rb_float_mul(VALUE x, VALUE y)
1071 {
1072 if (RB_TYPE_P(y, T_FIXNUM)) {
1073 return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
1074 }
1075 else if (RB_TYPE_P(y, T_BIGNUM)) {
1076 return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
1077 }
1078 else if (RB_TYPE_P(y, T_FLOAT)) {
1079 return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
1080 }
1081 else {
1082 return rb_num_coerce_bin(x, y, '*');
1083 }
1084 }
1085
1086 static bool
flo_iszero(VALUE f)1087 flo_iszero(VALUE f)
1088 {
1089 return RFLOAT_VALUE(f) == 0.0;
1090 }
1091
1092 static double
double_div_double(double x,double y)1093 double_div_double(double x, double y)
1094 {
1095 if (LIKELY(y != 0.0)) {
1096 return x / y;
1097 }
1098 else if (x == 0.0) {
1099 return nan("");
1100 }
1101 else {
1102 double z = signbit(y) ? -1.0 : 1.0;
1103 return x * z * HUGE_VAL;
1104 }
1105 }
1106
1107 MJIT_FUNC_EXPORTED VALUE
rb_flo_div_flo(VALUE x,VALUE y)1108 rb_flo_div_flo(VALUE x, VALUE y)
1109 {
1110 double num = RFLOAT_VALUE(x);
1111 double den = RFLOAT_VALUE(y);
1112 double ret = double_div_double(num, den);
1113 return DBL2NUM(ret);
1114 }
1115
1116 /*
1117 * call-seq:
1118 * float / other -> float
1119 *
1120 * Returns a new Float which is the result of dividing +float+ by +other+.
1121 */
1122
1123 VALUE
rb_float_div(VALUE x,VALUE y)1124 rb_float_div(VALUE x, VALUE y)
1125 {
1126 double num = RFLOAT_VALUE(x);
1127 double den;
1128 double ret;
1129
1130 if (RB_TYPE_P(y, T_FIXNUM)) {
1131 den = FIX2LONG(y);
1132 }
1133 else if (RB_TYPE_P(y, T_BIGNUM)) {
1134 den = rb_big2dbl(y);
1135 }
1136 else if (RB_TYPE_P(y, T_FLOAT)) {
1137 den = RFLOAT_VALUE(y);
1138 }
1139 else {
1140 return rb_num_coerce_bin(x, y, '/');
1141 }
1142
1143 ret = double_div_double(num, den);
1144 return DBL2NUM(ret);
1145 }
1146
1147 /*
1148 * call-seq:
1149 * float.fdiv(numeric) -> float
1150 * float.quo(numeric) -> float
1151 *
1152 * Returns <code>float / numeric</code>, same as Float#/.
1153 */
1154
1155 static VALUE
flo_quo(VALUE x,VALUE y)1156 flo_quo(VALUE x, VALUE y)
1157 {
1158 return num_funcall1(x, '/', y);
1159 }
1160
1161 static void
flodivmod(double x,double y,double * divp,double * modp)1162 flodivmod(double x, double y, double *divp, double *modp)
1163 {
1164 double div, mod;
1165
1166 if (isnan(y)) {
1167 /* y is NaN so all results are NaN */
1168 if (modp) *modp = y;
1169 if (divp) *divp = y;
1170 return;
1171 }
1172 if (y == 0.0) rb_num_zerodiv();
1173 if ((x == 0.0) || (isinf(y) && !isinf(x)))
1174 mod = x;
1175 else {
1176 #ifdef HAVE_FMOD
1177 mod = fmod(x, y);
1178 #else
1179 double z;
1180
1181 modf(x/y, &z);
1182 mod = x - z * y;
1183 #endif
1184 }
1185 if (isinf(x) && !isinf(y))
1186 div = x;
1187 else {
1188 div = (x - mod) / y;
1189 if (modp && divp) div = round(div);
1190 }
1191 if (y*mod < 0) {
1192 mod += y;
1193 div -= 1.0;
1194 }
1195 if (modp) *modp = mod;
1196 if (divp) *divp = div;
1197 }
1198
1199 /*
1200 * Returns the modulo of division of x by y.
1201 * An error will be raised if y == 0.
1202 */
1203
1204 MJIT_FUNC_EXPORTED double
ruby_float_mod(double x,double y)1205 ruby_float_mod(double x, double y)
1206 {
1207 double mod;
1208 flodivmod(x, y, 0, &mod);
1209 return mod;
1210 }
1211
1212 /*
1213 * call-seq:
1214 * float % other -> float
1215 * float.modulo(other) -> float
1216 *
1217 * Returns the modulo after division of +float+ by +other+.
1218 *
1219 * 6543.21.modulo(137) #=> 104.21000000000004
1220 * 6543.21.modulo(137.24) #=> 92.92999999999961
1221 */
1222
1223 static VALUE
flo_mod(VALUE x,VALUE y)1224 flo_mod(VALUE x, VALUE y)
1225 {
1226 double fy;
1227
1228 if (RB_TYPE_P(y, T_FIXNUM)) {
1229 fy = (double)FIX2LONG(y);
1230 }
1231 else if (RB_TYPE_P(y, T_BIGNUM)) {
1232 fy = rb_big2dbl(y);
1233 }
1234 else if (RB_TYPE_P(y, T_FLOAT)) {
1235 fy = RFLOAT_VALUE(y);
1236 }
1237 else {
1238 return rb_num_coerce_bin(x, y, '%');
1239 }
1240 return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
1241 }
1242
1243 static VALUE
dbl2ival(double d)1244 dbl2ival(double d)
1245 {
1246 if (FIXABLE(d)) {
1247 return LONG2FIX((long)d);
1248 }
1249 return rb_dbl2big(d);
1250 }
1251
1252 /*
1253 * call-seq:
1254 * float.divmod(numeric) -> array
1255 *
1256 * See Numeric#divmod.
1257 *
1258 * 42.0.divmod(6) #=> [7, 0.0]
1259 * 42.0.divmod(5) #=> [8, 2.0]
1260 */
1261
1262 static VALUE
flo_divmod(VALUE x,VALUE y)1263 flo_divmod(VALUE x, VALUE y)
1264 {
1265 double fy, div, mod;
1266 volatile VALUE a, b;
1267
1268 if (RB_TYPE_P(y, T_FIXNUM)) {
1269 fy = (double)FIX2LONG(y);
1270 }
1271 else if (RB_TYPE_P(y, T_BIGNUM)) {
1272 fy = rb_big2dbl(y);
1273 }
1274 else if (RB_TYPE_P(y, T_FLOAT)) {
1275 fy = RFLOAT_VALUE(y);
1276 }
1277 else {
1278 return rb_num_coerce_bin(x, y, id_divmod);
1279 }
1280 flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
1281 a = dbl2ival(div);
1282 b = DBL2NUM(mod);
1283 return rb_assoc_new(a, b);
1284 }
1285
1286 /*
1287 * call-seq:
1288 * float ** other -> float
1289 *
1290 * Raises +float+ to the power of +other+.
1291 *
1292 * 2.0**3 #=> 8.0
1293 */
1294
1295 VALUE
rb_float_pow(VALUE x,VALUE y)1296 rb_float_pow(VALUE x, VALUE y)
1297 {
1298 double dx, dy;
1299 if (RB_TYPE_P(y, T_FIXNUM)) {
1300 dx = RFLOAT_VALUE(x);
1301 dy = (double)FIX2LONG(y);
1302 }
1303 else if (RB_TYPE_P(y, T_BIGNUM)) {
1304 dx = RFLOAT_VALUE(x);
1305 dy = rb_big2dbl(y);
1306 }
1307 else if (RB_TYPE_P(y, T_FLOAT)) {
1308 dx = RFLOAT_VALUE(x);
1309 dy = RFLOAT_VALUE(y);
1310 if (dx < 0 && dy != round(dy))
1311 return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);
1312 }
1313 else {
1314 return rb_num_coerce_bin(x, y, idPow);
1315 }
1316 return DBL2NUM(pow(dx, dy));
1317 }
1318
1319 /*
1320 * call-seq:
1321 * num.eql?(numeric) -> true or false
1322 *
1323 * Returns +true+ if +num+ and +numeric+ are the same type and have equal
1324 * values. Contrast this with Numeric#==, which performs type conversions.
1325 *
1326 * 1 == 1.0 #=> true
1327 * 1.eql?(1.0) #=> false
1328 * 1.0.eql?(1.0) #=> true
1329 */
1330
1331 static VALUE
num_eql(VALUE x,VALUE y)1332 num_eql(VALUE x, VALUE y)
1333 {
1334 if (TYPE(x) != TYPE(y)) return Qfalse;
1335
1336 if (RB_TYPE_P(x, T_BIGNUM)) {
1337 return rb_big_eql(x, y);
1338 }
1339
1340 return rb_equal(x, y);
1341 }
1342
1343 /*
1344 * call-seq:
1345 * number <=> other -> 0 or nil
1346 *
1347 * Returns zero if +number+ equals +other+, otherwise returns +nil+.
1348 */
1349
1350 static VALUE
num_cmp(VALUE x,VALUE y)1351 num_cmp(VALUE x, VALUE y)
1352 {
1353 if (x == y) return INT2FIX(0);
1354 return Qnil;
1355 }
1356
1357 static VALUE
num_equal(VALUE x,VALUE y)1358 num_equal(VALUE x, VALUE y)
1359 {
1360 VALUE result;
1361 if (x == y) return Qtrue;
1362 result = num_funcall1(y, id_eq, x);
1363 if (RTEST(result)) return Qtrue;
1364 return Qfalse;
1365 }
1366
1367 /*
1368 * call-seq:
1369 * float == obj -> true or false
1370 *
1371 * Returns +true+ only if +obj+ has the same value as +float+.
1372 * Contrast this with Float#eql?, which requires +obj+ to be a Float.
1373 *
1374 * 1.0 == 1 #=> true
1375 *
1376 * The result of <code>NaN == NaN</code> is undefined,
1377 * so an implementation-dependent value is returned.
1378 */
1379
1380 MJIT_FUNC_EXPORTED VALUE
rb_float_equal(VALUE x,VALUE y)1381 rb_float_equal(VALUE x, VALUE y)
1382 {
1383 volatile double a, b;
1384
1385 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
1386 return rb_integer_float_eq(y, x);
1387 }
1388 else if (RB_TYPE_P(y, T_FLOAT)) {
1389 b = RFLOAT_VALUE(y);
1390 #if defined(_MSC_VER) && _MSC_VER < 1300
1391 if (isnan(b)) return Qfalse;
1392 #endif
1393 }
1394 else {
1395 return num_equal(x, y);
1396 }
1397 a = RFLOAT_VALUE(x);
1398 #if defined(_MSC_VER) && _MSC_VER < 1300
1399 if (isnan(a)) return Qfalse;
1400 #endif
1401 return (a == b)?Qtrue:Qfalse;
1402 }
1403
1404 #define flo_eq rb_float_equal
1405
1406 /*
1407 * call-seq:
1408 * float.hash -> integer
1409 *
1410 * Returns a hash code for this float.
1411 *
1412 * See also Object#hash.
1413 */
1414
1415 static VALUE
flo_hash(VALUE num)1416 flo_hash(VALUE num)
1417 {
1418 return rb_dbl_hash(RFLOAT_VALUE(num));
1419 }
1420
1421 VALUE
rb_dbl_hash(double d)1422 rb_dbl_hash(double d)
1423 {
1424 return LONG2FIX(rb_dbl_long_hash(d));
1425 }
1426
1427 VALUE
rb_dbl_cmp(double a,double b)1428 rb_dbl_cmp(double a, double b)
1429 {
1430 if (isnan(a) || isnan(b)) return Qnil;
1431 if (a == b) return INT2FIX(0);
1432 if (a > b) return INT2FIX(1);
1433 if (a < b) return INT2FIX(-1);
1434 return Qnil;
1435 }
1436
1437 /*
1438 * call-seq:
1439 * float <=> real -> -1, 0, +1, or nil
1440 *
1441 * Returns -1, 0, or +1 depending on whether +float+ is
1442 * less than, equal to, or greater than +real+.
1443 * This is the basis for the tests in the Comparable module.
1444 *
1445 * The result of <code>NaN <=> NaN</code> is undefined,
1446 * so an implementation-dependent value is returned.
1447 *
1448 * +nil+ is returned if the two values are incomparable.
1449 */
1450
1451 static VALUE
flo_cmp(VALUE x,VALUE y)1452 flo_cmp(VALUE x, VALUE y)
1453 {
1454 double a, b;
1455 VALUE i;
1456
1457 a = RFLOAT_VALUE(x);
1458 if (isnan(a)) return Qnil;
1459 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
1460 VALUE rel = rb_integer_float_cmp(y, x);
1461 if (FIXNUM_P(rel))
1462 return INT2FIX(-FIX2INT(rel));
1463 return rel;
1464 }
1465 else if (RB_TYPE_P(y, T_FLOAT)) {
1466 b = RFLOAT_VALUE(y);
1467 }
1468 else {
1469 if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
1470 if (RTEST(i)) {
1471 int j = rb_cmpint(i, x, y);
1472 j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
1473 return INT2FIX(j);
1474 }
1475 if (a > 0.0) return INT2FIX(1);
1476 return INT2FIX(-1);
1477 }
1478 return rb_num_coerce_cmp(x, y, id_cmp);
1479 }
1480 return rb_dbl_cmp(a, b);
1481 }
1482
1483 MJIT_FUNC_EXPORTED int
rb_float_cmp(VALUE x,VALUE y)1484 rb_float_cmp(VALUE x, VALUE y)
1485 {
1486 return NUM2INT(flo_cmp(x, y));
1487 }
1488
1489 /*
1490 * call-seq:
1491 * float > real -> true or false
1492 *
1493 * Returns +true+ if +float+ is greater than +real+.
1494 *
1495 * The result of <code>NaN > NaN</code> is undefined,
1496 * so an implementation-dependent value is returned.
1497 */
1498
1499 VALUE
rb_float_gt(VALUE x,VALUE y)1500 rb_float_gt(VALUE x, VALUE y)
1501 {
1502 double a, b;
1503
1504 a = RFLOAT_VALUE(x);
1505 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
1506 VALUE rel = rb_integer_float_cmp(y, x);
1507 if (FIXNUM_P(rel))
1508 return -FIX2INT(rel) > 0 ? Qtrue : Qfalse;
1509 return Qfalse;
1510 }
1511 else if (RB_TYPE_P(y, T_FLOAT)) {
1512 b = RFLOAT_VALUE(y);
1513 #if defined(_MSC_VER) && _MSC_VER < 1300
1514 if (isnan(b)) return Qfalse;
1515 #endif
1516 }
1517 else {
1518 return rb_num_coerce_relop(x, y, '>');
1519 }
1520 #if defined(_MSC_VER) && _MSC_VER < 1300
1521 if (isnan(a)) return Qfalse;
1522 #endif
1523 return (a > b)?Qtrue:Qfalse;
1524 }
1525
1526 /*
1527 * call-seq:
1528 * float >= real -> true or false
1529 *
1530 * Returns +true+ if +float+ is greater than or equal to +real+.
1531 *
1532 * The result of <code>NaN >= NaN</code> is undefined,
1533 * so an implementation-dependent value is returned.
1534 */
1535
1536 static VALUE
flo_ge(VALUE x,VALUE y)1537 flo_ge(VALUE x, VALUE y)
1538 {
1539 double a, b;
1540
1541 a = RFLOAT_VALUE(x);
1542 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
1543 VALUE rel = rb_integer_float_cmp(y, x);
1544 if (FIXNUM_P(rel))
1545 return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse;
1546 return Qfalse;
1547 }
1548 else if (RB_TYPE_P(y, T_FLOAT)) {
1549 b = RFLOAT_VALUE(y);
1550 #if defined(_MSC_VER) && _MSC_VER < 1300
1551 if (isnan(b)) return Qfalse;
1552 #endif
1553 }
1554 else {
1555 return rb_num_coerce_relop(x, y, idGE);
1556 }
1557 #if defined(_MSC_VER) && _MSC_VER < 1300
1558 if (isnan(a)) return Qfalse;
1559 #endif
1560 return (a >= b)?Qtrue:Qfalse;
1561 }
1562
1563 /*
1564 * call-seq:
1565 * float < real -> true or false
1566 *
1567 * Returns +true+ if +float+ is less than +real+.
1568 *
1569 * The result of <code>NaN < NaN</code> is undefined,
1570 * so an implementation-dependent value is returned.
1571 */
1572
1573 static VALUE
flo_lt(VALUE x,VALUE y)1574 flo_lt(VALUE x, VALUE y)
1575 {
1576 double a, b;
1577
1578 a = RFLOAT_VALUE(x);
1579 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
1580 VALUE rel = rb_integer_float_cmp(y, x);
1581 if (FIXNUM_P(rel))
1582 return -FIX2INT(rel) < 0 ? Qtrue : Qfalse;
1583 return Qfalse;
1584 }
1585 else if (RB_TYPE_P(y, T_FLOAT)) {
1586 b = RFLOAT_VALUE(y);
1587 #if defined(_MSC_VER) && _MSC_VER < 1300
1588 if (isnan(b)) return Qfalse;
1589 #endif
1590 }
1591 else {
1592 return rb_num_coerce_relop(x, y, '<');
1593 }
1594 #if defined(_MSC_VER) && _MSC_VER < 1300
1595 if (isnan(a)) return Qfalse;
1596 #endif
1597 return (a < b)?Qtrue:Qfalse;
1598 }
1599
1600 /*
1601 * call-seq:
1602 * float <= real -> true or false
1603 *
1604 * Returns +true+ if +float+ is less than or equal to +real+.
1605 *
1606 * The result of <code>NaN <= NaN</code> is undefined,
1607 * so an implementation-dependent value is returned.
1608 */
1609
1610 static VALUE
flo_le(VALUE x,VALUE y)1611 flo_le(VALUE x, VALUE y)
1612 {
1613 double a, b;
1614
1615 a = RFLOAT_VALUE(x);
1616 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
1617 VALUE rel = rb_integer_float_cmp(y, x);
1618 if (FIXNUM_P(rel))
1619 return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse;
1620 return Qfalse;
1621 }
1622 else if (RB_TYPE_P(y, T_FLOAT)) {
1623 b = RFLOAT_VALUE(y);
1624 #if defined(_MSC_VER) && _MSC_VER < 1300
1625 if (isnan(b)) return Qfalse;
1626 #endif
1627 }
1628 else {
1629 return rb_num_coerce_relop(x, y, idLE);
1630 }
1631 #if defined(_MSC_VER) && _MSC_VER < 1300
1632 if (isnan(a)) return Qfalse;
1633 #endif
1634 return (a <= b)?Qtrue:Qfalse;
1635 }
1636
1637 /*
1638 * call-seq:
1639 * float.eql?(obj) -> true or false
1640 *
1641 * Returns +true+ only if +obj+ is a Float with the same value as +float+.
1642 * Contrast this with Float#==, which performs type conversions.
1643 *
1644 * 1.0.eql?(1) #=> false
1645 *
1646 * The result of <code>NaN.eql?(NaN)</code> is undefined,
1647 * so an implementation-dependent value is returned.
1648 */
1649
1650 MJIT_FUNC_EXPORTED VALUE
rb_float_eql(VALUE x,VALUE y)1651 rb_float_eql(VALUE x, VALUE y)
1652 {
1653 if (RB_TYPE_P(y, T_FLOAT)) {
1654 double a = RFLOAT_VALUE(x);
1655 double b = RFLOAT_VALUE(y);
1656 #if defined(_MSC_VER) && _MSC_VER < 1300
1657 if (isnan(a) || isnan(b)) return Qfalse;
1658 #endif
1659 if (a == b)
1660 return Qtrue;
1661 }
1662 return Qfalse;
1663 }
1664
1665 #define flo_eql rb_float_eql
1666
1667 /*
1668 * call-seq:
1669 * float.to_f -> self
1670 *
1671 * Since +float+ is already a Float, returns +self+.
1672 */
1673
1674 static VALUE
flo_to_f(VALUE num)1675 flo_to_f(VALUE num)
1676 {
1677 return num;
1678 }
1679
1680 /*
1681 * call-seq:
1682 * float.abs -> float
1683 * float.magnitude -> float
1684 *
1685 * Returns the absolute value of +float+.
1686 *
1687 * (-34.56).abs #=> 34.56
1688 * -34.56.abs #=> 34.56
1689 * 34.56.abs #=> 34.56
1690 *
1691 * Float#magnitude is an alias for Float#abs.
1692 */
1693
1694 VALUE
rb_float_abs(VALUE flt)1695 rb_float_abs(VALUE flt)
1696 {
1697 double val = fabs(RFLOAT_VALUE(flt));
1698 return DBL2NUM(val);
1699 }
1700
1701 /*
1702 * call-seq:
1703 * float.zero? -> true or false
1704 *
1705 * Returns +true+ if +float+ is 0.0.
1706 */
1707
1708 static VALUE
flo_zero_p(VALUE num)1709 flo_zero_p(VALUE num)
1710 {
1711 return flo_iszero(num) ? Qtrue : Qfalse;
1712 }
1713
1714 /*
1715 * call-seq:
1716 * float.nan? -> true or false
1717 *
1718 * Returns +true+ if +float+ is an invalid IEEE floating point number.
1719 *
1720 * a = -1.0 #=> -1.0
1721 * a.nan? #=> false
1722 * a = 0.0/0.0 #=> NaN
1723 * a.nan? #=> true
1724 */
1725
1726 static VALUE
flo_is_nan_p(VALUE num)1727 flo_is_nan_p(VALUE num)
1728 {
1729 double value = RFLOAT_VALUE(num);
1730
1731 return isnan(value) ? Qtrue : Qfalse;
1732 }
1733
1734 /*
1735 * call-seq:
1736 * float.infinite? -> -1, 1, or nil
1737 *
1738 * Returns +nil+, -1, or 1 depending on whether the value is
1739 * finite, <code>-Infinity</code>, or <code>+Infinity</code>.
1740 *
1741 * (0.0).infinite? #=> nil
1742 * (-1.0/0.0).infinite? #=> -1
1743 * (+1.0/0.0).infinite? #=> 1
1744 */
1745
1746 VALUE
rb_flo_is_infinite_p(VALUE num)1747 rb_flo_is_infinite_p(VALUE num)
1748 {
1749 double value = RFLOAT_VALUE(num);
1750
1751 if (isinf(value)) {
1752 return INT2FIX( value < 0 ? -1 : 1 );
1753 }
1754
1755 return Qnil;
1756 }
1757
1758 /*
1759 * call-seq:
1760 * float.finite? -> true or false
1761 *
1762 * Returns +true+ if +float+ is a valid IEEE floating point number,
1763 * i.e. it is not infinite and Float#nan? is +false+.
1764 */
1765
1766 VALUE
rb_flo_is_finite_p(VALUE num)1767 rb_flo_is_finite_p(VALUE num)
1768 {
1769 double value = RFLOAT_VALUE(num);
1770
1771 #ifdef HAVE_ISFINITE
1772 if (!isfinite(value))
1773 return Qfalse;
1774 #else
1775 if (isinf(value) || isnan(value))
1776 return Qfalse;
1777 #endif
1778
1779 return Qtrue;
1780 }
1781
1782 /*
1783 * call-seq:
1784 * float.next_float -> float
1785 *
1786 * Returns the next representable floating point number.
1787 *
1788 * Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.
1789 *
1790 * Float::NAN.next_float is Float::NAN.
1791 *
1792 * For example:
1793 *
1794 * 0.01.next_float #=> 0.010000000000000002
1795 * 1.0.next_float #=> 1.0000000000000002
1796 * 100.0.next_float #=> 100.00000000000001
1797 *
1798 * 0.01.next_float - 0.01 #=> 1.734723475976807e-18
1799 * 1.0.next_float - 1.0 #=> 2.220446049250313e-16
1800 * 100.0.next_float - 100.0 #=> 1.4210854715202004e-14
1801 *
1802 * f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
1803 * #=> 0x1.47ae147ae147bp-7 0.01
1804 * # 0x1.47ae147ae147cp-7 0.010000000000000002
1805 * # 0x1.47ae147ae147dp-7 0.010000000000000004
1806 * # 0x1.47ae147ae147ep-7 0.010000000000000005
1807 * # 0x1.47ae147ae147fp-7 0.010000000000000007
1808 * # 0x1.47ae147ae148p-7 0.010000000000000009
1809 * # 0x1.47ae147ae1481p-7 0.01000000000000001
1810 * # 0x1.47ae147ae1482p-7 0.010000000000000012
1811 * # 0x1.47ae147ae1483p-7 0.010000000000000014
1812 * # 0x1.47ae147ae1484p-7 0.010000000000000016
1813 * # 0x1.47ae147ae1485p-7 0.010000000000000018
1814 * # 0x1.47ae147ae1486p-7 0.01000000000000002
1815 * # 0x1.47ae147ae1487p-7 0.010000000000000021
1816 * # 0x1.47ae147ae1488p-7 0.010000000000000023
1817 * # 0x1.47ae147ae1489p-7 0.010000000000000024
1818 * # 0x1.47ae147ae148ap-7 0.010000000000000026
1819 * # 0x1.47ae147ae148bp-7 0.010000000000000028
1820 * # 0x1.47ae147ae148cp-7 0.01000000000000003
1821 * # 0x1.47ae147ae148dp-7 0.010000000000000031
1822 * # 0x1.47ae147ae148ep-7 0.010000000000000033
1823 *
1824 * f = 0.0
1825 * 100.times { f += 0.1 }
1826 * f #=> 9.99999999999998 # should be 10.0 in the ideal world.
1827 * 10-f #=> 1.9539925233402755e-14 # the floating point error.
1828 * 10.0.next_float-10 #=> 1.7763568394002505e-15 # 1 ulp (unit in the last place).
1829 * (10-f)/(10.0.next_float-10) #=> 11.0 # the error is 11 ulp.
1830 * (10-f)/(10*Float::EPSILON) #=> 8.8 # approximation of the above.
1831 * "%a" % 10 #=> "0x1.4p+3"
1832 * "%a" % f #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
1833 */
1834 static VALUE
flo_next_float(VALUE vx)1835 flo_next_float(VALUE vx)
1836 {
1837 double x, y;
1838 x = NUM2DBL(vx);
1839 y = nextafter(x, HUGE_VAL);
1840 return DBL2NUM(y);
1841 }
1842
1843 /*
1844 * call-seq:
1845 * float.prev_float -> float
1846 *
1847 * Returns the previous representable floating point number.
1848 *
1849 * (-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.
1850 *
1851 * Float::NAN.prev_float is Float::NAN.
1852 *
1853 * For example:
1854 *
1855 * 0.01.prev_float #=> 0.009999999999999998
1856 * 1.0.prev_float #=> 0.9999999999999999
1857 * 100.0.prev_float #=> 99.99999999999999
1858 *
1859 * 0.01 - 0.01.prev_float #=> 1.734723475976807e-18
1860 * 1.0 - 1.0.prev_float #=> 1.1102230246251565e-16
1861 * 100.0 - 100.0.prev_float #=> 1.4210854715202004e-14
1862 *
1863 * f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
1864 * #=> 0x1.47ae147ae147bp-7 0.01
1865 * # 0x1.47ae147ae147ap-7 0.009999999999999998
1866 * # 0x1.47ae147ae1479p-7 0.009999999999999997
1867 * # 0x1.47ae147ae1478p-7 0.009999999999999995
1868 * # 0x1.47ae147ae1477p-7 0.009999999999999993
1869 * # 0x1.47ae147ae1476p-7 0.009999999999999992
1870 * # 0x1.47ae147ae1475p-7 0.00999999999999999
1871 * # 0x1.47ae147ae1474p-7 0.009999999999999988
1872 * # 0x1.47ae147ae1473p-7 0.009999999999999986
1873 * # 0x1.47ae147ae1472p-7 0.009999999999999985
1874 * # 0x1.47ae147ae1471p-7 0.009999999999999983
1875 * # 0x1.47ae147ae147p-7 0.009999999999999981
1876 * # 0x1.47ae147ae146fp-7 0.00999999999999998
1877 * # 0x1.47ae147ae146ep-7 0.009999999999999978
1878 * # 0x1.47ae147ae146dp-7 0.009999999999999976
1879 * # 0x1.47ae147ae146cp-7 0.009999999999999974
1880 * # 0x1.47ae147ae146bp-7 0.009999999999999972
1881 * # 0x1.47ae147ae146ap-7 0.00999999999999997
1882 * # 0x1.47ae147ae1469p-7 0.009999999999999969
1883 * # 0x1.47ae147ae1468p-7 0.009999999999999967
1884 */
1885 static VALUE
flo_prev_float(VALUE vx)1886 flo_prev_float(VALUE vx)
1887 {
1888 double x, y;
1889 x = NUM2DBL(vx);
1890 y = nextafter(x, -HUGE_VAL);
1891 return DBL2NUM(y);
1892 }
1893
1894 VALUE
rb_float_floor(VALUE num,int ndigits)1895 rb_float_floor(VALUE num, int ndigits)
1896 {
1897 double number, f;
1898 number = RFLOAT_VALUE(num);
1899 if (number == 0.0) {
1900 return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
1901 }
1902 if (ndigits > 0) {
1903 int binexp;
1904 frexp(number, &binexp);
1905 if (float_round_overflow(ndigits, binexp)) return num;
1906 if (number > 0.0 && float_round_underflow(ndigits, binexp))
1907 return DBL2NUM(0.0);
1908 f = pow(10, ndigits);
1909 f = floor(number * f) / f;
1910 return DBL2NUM(f);
1911 }
1912 else {
1913 num = dbl2ival(floor(number));
1914 if (ndigits < 0) num = rb_int_floor(num, ndigits);
1915 return num;
1916 }
1917 }
1918
1919 /*
1920 * call-seq:
1921 * float.floor([ndigits]) -> integer or float
1922 *
1923 * Returns the largest number less than or equal to +float+ with
1924 * a precision of +ndigits+ decimal digits (default: 0).
1925 *
1926 * When the precision is negative, the returned value is an integer
1927 * with at least <code>ndigits.abs</code> trailing zeros.
1928 *
1929 * Returns a floating point number when +ndigits+ is positive,
1930 * otherwise returns an integer.
1931 *
1932 * 1.2.floor #=> 1
1933 * 2.0.floor #=> 2
1934 * (-1.2).floor #=> -2
1935 * (-2.0).floor #=> -2
1936 *
1937 * 1.234567.floor(2) #=> 1.23
1938 * 1.234567.floor(3) #=> 1.234
1939 * 1.234567.floor(4) #=> 1.2345
1940 * 1.234567.floor(5) #=> 1.23456
1941 *
1942 * 34567.89.floor(-5) #=> 0
1943 * 34567.89.floor(-4) #=> 30000
1944 * 34567.89.floor(-3) #=> 34000
1945 * 34567.89.floor(-2) #=> 34500
1946 * 34567.89.floor(-1) #=> 34560
1947 * 34567.89.floor(0) #=> 34567
1948 * 34567.89.floor(1) #=> 34567.8
1949 * 34567.89.floor(2) #=> 34567.89
1950 * 34567.89.floor(3) #=> 34567.89
1951 *
1952 * Note that the limited precision of floating point arithmetic
1953 * might lead to surprising results:
1954 *
1955 * (0.3 / 0.1).floor #=> 2 (!)
1956 */
1957
1958 static VALUE
flo_floor(int argc,VALUE * argv,VALUE num)1959 flo_floor(int argc, VALUE *argv, VALUE num)
1960 {
1961 int ndigits = 0;
1962 if (rb_check_arity(argc, 0, 1)) {
1963 ndigits = NUM2INT(argv[0]);
1964 }
1965 return rb_float_floor(num, ndigits);
1966 }
1967
1968 /*
1969 * call-seq:
1970 * float.ceil([ndigits]) -> integer or float
1971 *
1972 * Returns the smallest number greater than or equal to +float+ with
1973 * a precision of +ndigits+ decimal digits (default: 0).
1974 *
1975 * When the precision is negative, the returned value is an integer
1976 * with at least <code>ndigits.abs</code> trailing zeros.
1977 *
1978 * Returns a floating point number when +ndigits+ is positive,
1979 * otherwise returns an integer.
1980 *
1981 * 1.2.ceil #=> 2
1982 * 2.0.ceil #=> 2
1983 * (-1.2).ceil #=> -1
1984 * (-2.0).ceil #=> -2
1985 *
1986 * 1.234567.ceil(2) #=> 1.24
1987 * 1.234567.ceil(3) #=> 1.235
1988 * 1.234567.ceil(4) #=> 1.2346
1989 * 1.234567.ceil(5) #=> 1.23457
1990 *
1991 * 34567.89.ceil(-5) #=> 100000
1992 * 34567.89.ceil(-4) #=> 40000
1993 * 34567.89.ceil(-3) #=> 35000
1994 * 34567.89.ceil(-2) #=> 34600
1995 * 34567.89.ceil(-1) #=> 34570
1996 * 34567.89.ceil(0) #=> 34568
1997 * 34567.89.ceil(1) #=> 34567.9
1998 * 34567.89.ceil(2) #=> 34567.89
1999 * 34567.89.ceil(3) #=> 34567.89
2000 *
2001 * Note that the limited precision of floating point arithmetic
2002 * might lead to surprising results:
2003 *
2004 * (2.1 / 0.7).ceil #=> 4 (!)
2005 */
2006
2007 static VALUE
flo_ceil(int argc,VALUE * argv,VALUE num)2008 flo_ceil(int argc, VALUE *argv, VALUE num)
2009 {
2010 double number, f;
2011 int ndigits = 0;
2012
2013 if (rb_check_arity(argc, 0, 1)) {
2014 ndigits = NUM2INT(argv[0]);
2015 }
2016 number = RFLOAT_VALUE(num);
2017 if (number == 0.0) {
2018 return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
2019 }
2020 if (ndigits > 0) {
2021 int binexp;
2022 frexp(number, &binexp);
2023 if (float_round_overflow(ndigits, binexp)) return num;
2024 if (number < 0.0 && float_round_underflow(ndigits, binexp))
2025 return DBL2NUM(0.0);
2026 f = pow(10, ndigits);
2027 f = ceil(number * f) / f;
2028 return DBL2NUM(f);
2029 }
2030 else {
2031 num = dbl2ival(ceil(number));
2032 if (ndigits < 0) num = rb_int_ceil(num, ndigits);
2033 return num;
2034 }
2035 }
2036
2037 static int
int_round_zero_p(VALUE num,int ndigits)2038 int_round_zero_p(VALUE num, int ndigits)
2039 {
2040 long bytes;
2041 /* If 10**N / 2 > num, then return 0 */
2042 /* We have log_256(10) > 0.415241 and log_256(1/2) = -0.125, so */
2043 if (FIXNUM_P(num)) {
2044 bytes = sizeof(long);
2045 }
2046 else if (RB_TYPE_P(num, T_BIGNUM)) {
2047 bytes = rb_big_size(num);
2048 }
2049 else {
2050 bytes = NUM2LONG(rb_funcall(num, idSize, 0));
2051 }
2052 return (-0.415241 * ndigits - 0.125 > bytes);
2053 }
2054
2055 static SIGNED_VALUE
int_round_half_even(SIGNED_VALUE x,SIGNED_VALUE y)2056 int_round_half_even(SIGNED_VALUE x, SIGNED_VALUE y)
2057 {
2058 SIGNED_VALUE z = +(x + y / 2) / y;
2059 if ((z * y - x) * 2 == y) {
2060 z &= ~1;
2061 }
2062 return z * y;
2063 }
2064
2065 static SIGNED_VALUE
int_round_half_up(SIGNED_VALUE x,SIGNED_VALUE y)2066 int_round_half_up(SIGNED_VALUE x, SIGNED_VALUE y)
2067 {
2068 return (x + y / 2) / y * y;
2069 }
2070
2071 static SIGNED_VALUE
int_round_half_down(SIGNED_VALUE x,SIGNED_VALUE y)2072 int_round_half_down(SIGNED_VALUE x, SIGNED_VALUE y)
2073 {
2074 return (x + y / 2 - 1) / y * y;
2075 }
2076
2077 static int
int_half_p_half_even(VALUE num,VALUE n,VALUE f)2078 int_half_p_half_even(VALUE num, VALUE n, VALUE f)
2079 {
2080 return (int)rb_int_odd_p(rb_int_idiv(n, f));
2081 }
2082
2083 static int
int_half_p_half_up(VALUE num,VALUE n,VALUE f)2084 int_half_p_half_up(VALUE num, VALUE n, VALUE f)
2085 {
2086 return int_pos_p(num);
2087 }
2088
2089 static int
int_half_p_half_down(VALUE num,VALUE n,VALUE f)2090 int_half_p_half_down(VALUE num, VALUE n, VALUE f)
2091 {
2092 return int_neg_p(num);
2093 }
2094
2095 /*
2096 * Assumes num is an Integer, ndigits <= 0
2097 */
2098 VALUE
rb_int_round(VALUE num,int ndigits,enum ruby_num_rounding_mode mode)2099 rb_int_round(VALUE num, int ndigits, enum ruby_num_rounding_mode mode)
2100 {
2101 VALUE n, f, h, r;
2102
2103 if (int_round_zero_p(num, ndigits)) {
2104 return INT2FIX(0);
2105 }
2106
2107 f = int_pow(10, -ndigits);
2108 if (FIXNUM_P(num) && FIXNUM_P(f)) {
2109 SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
2110 int neg = x < 0;
2111 if (neg) x = -x;
2112 x = ROUND_CALL(mode, int_round, (x, y));
2113 if (neg) x = -x;
2114 return LONG2NUM(x);
2115 }
2116 if (RB_TYPE_P(f, T_FLOAT)) {
2117 /* then int_pow overflow */
2118 return INT2FIX(0);
2119 }
2120 h = rb_int_idiv(f, INT2FIX(2));
2121 r = rb_int_modulo(num, f);
2122 n = rb_int_minus(num, r);
2123 r = rb_int_cmp(r, h);
2124 if (FIXNUM_POSITIVE_P(r) ||
2125 (FIXNUM_ZERO_P(r) && ROUND_CALL(mode, int_half_p, (num, n, f)))) {
2126 n = rb_int_plus(n, f);
2127 }
2128 return n;
2129 }
2130
2131 VALUE
rb_int_floor(VALUE num,int ndigits)2132 rb_int_floor(VALUE num, int ndigits)
2133 {
2134 VALUE f;
2135
2136 if (int_round_zero_p(num, ndigits))
2137 return INT2FIX(0);
2138 f = int_pow(10, -ndigits);
2139 if (FIXNUM_P(num) && FIXNUM_P(f)) {
2140 SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
2141 int neg = x < 0;
2142 if (neg) x = -x + y - 1;
2143 x = x / y * y;
2144 if (neg) x = -x;
2145 return LONG2NUM(x);
2146 }
2147 if (RB_TYPE_P(f, T_FLOAT)) {
2148 /* then int_pow overflow */
2149 return INT2FIX(0);
2150 }
2151 return rb_int_minus(num, rb_int_modulo(num, f));
2152 }
2153
2154 VALUE
rb_int_ceil(VALUE num,int ndigits)2155 rb_int_ceil(VALUE num, int ndigits)
2156 {
2157 VALUE f;
2158
2159 if (int_round_zero_p(num, ndigits))
2160 return INT2FIX(0);
2161 f = int_pow(10, -ndigits);
2162 if (FIXNUM_P(num) && FIXNUM_P(f)) {
2163 SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
2164 int neg = x < 0;
2165 if (neg) x = -x;
2166 else x += y - 1;
2167 x = (x / y) * y;
2168 if (neg) x = -x;
2169 return LONG2NUM(x);
2170 }
2171 if (RB_TYPE_P(f, T_FLOAT)) {
2172 /* then int_pow overflow */
2173 return INT2FIX(0);
2174 }
2175 return rb_int_plus(num, rb_int_minus(f, rb_int_modulo(num, f)));
2176 }
2177
2178 VALUE
rb_int_truncate(VALUE num,int ndigits)2179 rb_int_truncate(VALUE num, int ndigits)
2180 {
2181 VALUE f;
2182 VALUE m;
2183
2184 if (int_round_zero_p(num, ndigits))
2185 return INT2FIX(0);
2186 f = int_pow(10, -ndigits);
2187 if (FIXNUM_P(num) && FIXNUM_P(f)) {
2188 SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
2189 int neg = x < 0;
2190 if (neg) x = -x;
2191 x = x / y * y;
2192 if (neg) x = -x;
2193 return LONG2NUM(x);
2194 }
2195 if (RB_TYPE_P(f, T_FLOAT)) {
2196 /* then int_pow overflow */
2197 return INT2FIX(0);
2198 }
2199 m = rb_int_modulo(num, f);
2200 if (int_neg_p(num)) {
2201 return rb_int_plus(num, rb_int_minus(f, m));
2202 }
2203 else {
2204 return rb_int_minus(num, m);
2205 }
2206 }
2207
2208 /*
2209 * call-seq:
2210 * float.round([ndigits] [, half: mode]) -> integer or float
2211 *
2212 * Returns +float+ rounded to the nearest value with
2213 * a precision of +ndigits+ decimal digits (default: 0).
2214 *
2215 * When the precision is negative, the returned value is an integer
2216 * with at least <code>ndigits.abs</code> trailing zeros.
2217 *
2218 * Returns a floating point number when +ndigits+ is positive,
2219 * otherwise returns an integer.
2220 *
2221 * 1.4.round #=> 1
2222 * 1.5.round #=> 2
2223 * 1.6.round #=> 2
2224 * (-1.5).round #=> -2
2225 *
2226 * 1.234567.round(2) #=> 1.23
2227 * 1.234567.round(3) #=> 1.235
2228 * 1.234567.round(4) #=> 1.2346
2229 * 1.234567.round(5) #=> 1.23457
2230 *
2231 * 34567.89.round(-5) #=> 0
2232 * 34567.89.round(-4) #=> 30000
2233 * 34567.89.round(-3) #=> 35000
2234 * 34567.89.round(-2) #=> 34600
2235 * 34567.89.round(-1) #=> 34570
2236 * 34567.89.round(0) #=> 34568
2237 * 34567.89.round(1) #=> 34567.9
2238 * 34567.89.round(2) #=> 34567.89
2239 * 34567.89.round(3) #=> 34567.89
2240 *
2241 * If the optional +half+ keyword argument is given,
2242 * numbers that are half-way between two possible rounded values
2243 * will be rounded according to the specified tie-breaking +mode+:
2244 *
2245 * * <code>:up</code> or +nil+: round half away from zero (default)
2246 * * <code>:down</code>: round half toward zero
2247 * * <code>:even</code>: round half toward the nearest even number
2248 *
2249 * 2.5.round(half: :up) #=> 3
2250 * 2.5.round(half: :down) #=> 2
2251 * 2.5.round(half: :even) #=> 2
2252 * 3.5.round(half: :up) #=> 4
2253 * 3.5.round(half: :down) #=> 3
2254 * 3.5.round(half: :even) #=> 4
2255 * (-2.5).round(half: :up) #=> -3
2256 * (-2.5).round(half: :down) #=> -2
2257 * (-2.5).round(half: :even) #=> -2
2258 */
2259
2260 static VALUE
flo_round(int argc,VALUE * argv,VALUE num)2261 flo_round(int argc, VALUE *argv, VALUE num)
2262 {
2263 double number, f, x;
2264 VALUE nd, opt;
2265 int ndigits = 0;
2266 enum ruby_num_rounding_mode mode;
2267
2268 if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
2269 ndigits = NUM2INT(nd);
2270 }
2271 mode = rb_num_get_rounding_option(opt);
2272 number = RFLOAT_VALUE(num);
2273 if (number == 0.0) {
2274 return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
2275 }
2276 if (ndigits < 0) {
2277 return rb_int_round(flo_to_i(num), ndigits, mode);
2278 }
2279 if (ndigits == 0) {
2280 x = ROUND_CALL(mode, round, (number, 1.0));
2281 return dbl2ival(x);
2282 }
2283 if (isfinite(number)) {
2284 int binexp;
2285 frexp(number, &binexp);
2286 if (float_round_overflow(ndigits, binexp)) return num;
2287 if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
2288 f = pow(10, ndigits);
2289 x = ROUND_CALL(mode, round, (number, f));
2290 return DBL2NUM(x / f);
2291 }
2292 return num;
2293 }
2294
2295 static int
float_round_overflow(int ndigits,int binexp)2296 float_round_overflow(int ndigits, int binexp)
2297 {
2298 enum {float_dig = DBL_DIG+2};
2299
2300 /* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
2301 i.e. such that 10 ** (exp - 1) <= |number| < 10 ** exp
2302 Recall that up to float_dig digits can be needed to represent a double,
2303 so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
2304 will be an integer and thus the result is the original number.
2305 If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
2306 if ndigits + exp < 0, the result is 0.
2307 We have:
2308 2 ** (binexp-1) <= |number| < 2 ** binexp
2309 10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
2310 If binexp >= 0, and since log_2(10) = 3.322259:
2311 10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
2312 floor(binexp/4) <= exp <= ceil(binexp/3)
2313 If binexp <= 0, swap the /4 and the /3
2314 So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
2315 If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
2316 */
2317 if (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1)) {
2318 return TRUE;
2319 }
2320 return FALSE;
2321 }
2322
2323 static int
float_round_underflow(int ndigits,int binexp)2324 float_round_underflow(int ndigits, int binexp)
2325 {
2326 if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
2327 return TRUE;
2328 }
2329 return FALSE;
2330 }
2331
2332 /*
2333 * call-seq:
2334 * float.to_i -> integer
2335 * float.to_int -> integer
2336 *
2337 * Returns the +float+ truncated to an Integer.
2338 *
2339 * 1.2.to_i #=> 1
2340 * (-1.2).to_i #=> -1
2341 *
2342 * Note that the limited precision of floating point arithmetic
2343 * might lead to surprising results:
2344 *
2345 * (0.3 / 0.1).to_i #=> 2 (!)
2346 *
2347 * #to_int is an alias for #to_i.
2348 */
2349
2350 static VALUE
flo_to_i(VALUE num)2351 flo_to_i(VALUE num)
2352 {
2353 double f = RFLOAT_VALUE(num);
2354
2355 if (f > 0.0) f = floor(f);
2356 if (f < 0.0) f = ceil(f);
2357
2358 return dbl2ival(f);
2359 }
2360
2361 /*
2362 * call-seq:
2363 * float.truncate([ndigits]) -> integer or float
2364 *
2365 * Returns +float+ truncated (toward zero) to
2366 * a precision of +ndigits+ decimal digits (default: 0).
2367 *
2368 * When the precision is negative, the returned value is an integer
2369 * with at least <code>ndigits.abs</code> trailing zeros.
2370 *
2371 * Returns a floating point number when +ndigits+ is positive,
2372 * otherwise returns an integer.
2373 *
2374 * 2.8.truncate #=> 2
2375 * (-2.8).truncate #=> -2
2376 * 1.234567.truncate(2) #=> 1.23
2377 * 34567.89.truncate(-2) #=> 34500
2378 *
2379 * Note that the limited precision of floating point arithmetic
2380 * might lead to surprising results:
2381 *
2382 * (0.3 / 0.1).truncate #=> 2 (!)
2383 */
2384 static VALUE
flo_truncate(int argc,VALUE * argv,VALUE num)2385 flo_truncate(int argc, VALUE *argv, VALUE num)
2386 {
2387 if (signbit(RFLOAT_VALUE(num)))
2388 return flo_ceil(argc, argv, num);
2389 else
2390 return flo_floor(argc, argv, num);
2391 }
2392
2393 /*
2394 * call-seq:
2395 * float.positive? -> true or false
2396 *
2397 * Returns +true+ if +float+ is greater than 0.
2398 */
2399
2400 static VALUE
flo_positive_p(VALUE num)2401 flo_positive_p(VALUE num)
2402 {
2403 double f = RFLOAT_VALUE(num);
2404 return f > 0.0 ? Qtrue : Qfalse;
2405 }
2406
2407 /*
2408 * call-seq:
2409 * float.negative? -> true or false
2410 *
2411 * Returns +true+ if +float+ is less than 0.
2412 */
2413
2414 static VALUE
flo_negative_p(VALUE num)2415 flo_negative_p(VALUE num)
2416 {
2417 double f = RFLOAT_VALUE(num);
2418 return f < 0.0 ? Qtrue : Qfalse;
2419 }
2420
2421 /*
2422 * call-seq:
2423 * num.floor([ndigits]) -> integer or float
2424 *
2425 * Returns the largest number less than or equal to +num+ with
2426 * a precision of +ndigits+ decimal digits (default: 0).
2427 *
2428 * Numeric implements this by converting its value to a Float and
2429 * invoking Float#floor.
2430 */
2431
2432 static VALUE
num_floor(int argc,VALUE * argv,VALUE num)2433 num_floor(int argc, VALUE *argv, VALUE num)
2434 {
2435 return flo_floor(argc, argv, rb_Float(num));
2436 }
2437
2438 /*
2439 * call-seq:
2440 * num.ceil([ndigits]) -> integer or float
2441 *
2442 * Returns the smallest number greater than or equal to +num+ with
2443 * a precision of +ndigits+ decimal digits (default: 0).
2444 *
2445 * Numeric implements this by converting its value to a Float and
2446 * invoking Float#ceil.
2447 */
2448
2449 static VALUE
num_ceil(int argc,VALUE * argv,VALUE num)2450 num_ceil(int argc, VALUE *argv, VALUE num)
2451 {
2452 return flo_ceil(argc, argv, rb_Float(num));
2453 }
2454
2455 /*
2456 * call-seq:
2457 * num.round([ndigits]) -> integer or float
2458 *
2459 * Returns +num+ rounded to the nearest value with
2460 * a precision of +ndigits+ decimal digits (default: 0).
2461 *
2462 * Numeric implements this by converting its value to a Float and
2463 * invoking Float#round.
2464 */
2465
2466 static VALUE
num_round(int argc,VALUE * argv,VALUE num)2467 num_round(int argc, VALUE* argv, VALUE num)
2468 {
2469 return flo_round(argc, argv, rb_Float(num));
2470 }
2471
2472 /*
2473 * call-seq:
2474 * num.truncate([ndigits]) -> integer or float
2475 *
2476 * Returns +num+ truncated (toward zero) to
2477 * a precision of +ndigits+ decimal digits (default: 0).
2478 *
2479 * Numeric implements this by converting its value to a Float and
2480 * invoking Float#truncate.
2481 */
2482
2483 static VALUE
num_truncate(int argc,VALUE * argv,VALUE num)2484 num_truncate(int argc, VALUE *argv, VALUE num)
2485 {
2486 return flo_truncate(argc, argv, rb_Float(num));
2487 }
2488
2489 double
ruby_float_step_size(double beg,double end,double unit,int excl)2490 ruby_float_step_size(double beg, double end, double unit, int excl)
2491 {
2492 const double epsilon = DBL_EPSILON;
2493 double n, err;
2494
2495 if (unit == 0) {
2496 return HUGE_VAL;
2497 }
2498 n= (end - beg)/unit;
2499 err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon;
2500 if (isinf(unit)) {
2501 return unit > 0 ? beg <= end : beg >= end;
2502 }
2503 if (err>0.5) err=0.5;
2504 if (excl) {
2505 if (n<=0) return 0;
2506 if (n<1)
2507 n = 0;
2508 else
2509 n = floor(n - err);
2510 }
2511 else {
2512 if (n<0) return 0;
2513 n = floor(n + err);
2514 }
2515 return n+1;
2516 }
2517
2518 int
ruby_float_step(VALUE from,VALUE to,VALUE step,int excl,int allow_endless)2519 ruby_float_step(VALUE from, VALUE to, VALUE step, int excl, int allow_endless)
2520 {
2521 if (RB_TYPE_P(from, T_FLOAT) || RB_TYPE_P(to, T_FLOAT) || RB_TYPE_P(step, T_FLOAT)) {
2522 double beg = NUM2DBL(from);
2523 double end = (allow_endless && NIL_P(to)) ? HUGE_VAL : NUM2DBL(to);
2524 double unit = NUM2DBL(step);
2525 double n = ruby_float_step_size(beg, end, unit, excl);
2526 long i;
2527
2528 if (isinf(unit)) {
2529 /* if unit is infinity, i*unit+beg is NaN */
2530 if (n) rb_yield(DBL2NUM(beg));
2531 }
2532 else if (unit == 0) {
2533 VALUE val = DBL2NUM(beg);
2534 for (;;)
2535 rb_yield(val);
2536 }
2537 else {
2538 for (i=0; i<n; i++) {
2539 double d = i*unit+beg;
2540 if (unit >= 0 ? end < d : d < end) d = end;
2541 rb_yield(DBL2NUM(d));
2542 }
2543 }
2544 return TRUE;
2545 }
2546 return FALSE;
2547 }
2548
2549 VALUE
ruby_num_interval_step_size(VALUE from,VALUE to,VALUE step,int excl)2550 ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl)
2551 {
2552 if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
2553 long delta, diff;
2554
2555 diff = FIX2LONG(step);
2556 if (diff == 0) {
2557 return DBL2NUM(HUGE_VAL);
2558 }
2559 delta = FIX2LONG(to) - FIX2LONG(from);
2560 if (diff < 0) {
2561 diff = -diff;
2562 delta = -delta;
2563 }
2564 if (excl) {
2565 delta--;
2566 }
2567 if (delta < 0) {
2568 return INT2FIX(0);
2569 }
2570 return ULONG2NUM(delta / diff + 1UL);
2571 }
2572 else if (RB_TYPE_P(from, T_FLOAT) || RB_TYPE_P(to, T_FLOAT) || RB_TYPE_P(step, T_FLOAT)) {
2573 double n = ruby_float_step_size(NUM2DBL(from), NUM2DBL(to), NUM2DBL(step), excl);
2574
2575 if (isinf(n)) return DBL2NUM(n);
2576 if (POSFIXABLE(n)) return LONG2FIX(n);
2577 return rb_dbl2big(n);
2578 }
2579 else {
2580 VALUE result;
2581 ID cmp = '>';
2582 switch (rb_cmpint(rb_num_coerce_cmp(step, INT2FIX(0), id_cmp), step, INT2FIX(0))) {
2583 case 0: return DBL2NUM(HUGE_VAL);
2584 case -1: cmp = '<'; break;
2585 }
2586 if (RTEST(rb_funcall(from, cmp, 1, to))) return INT2FIX(0);
2587 result = rb_funcall(rb_funcall(to, '-', 1, from), id_div, 1, step);
2588 if (!excl || RTEST(rb_funcall(rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step)), cmp, 1, to))) {
2589 result = rb_funcall(result, '+', 1, INT2FIX(1));
2590 }
2591 return result;
2592 }
2593 }
2594
2595 static int
num_step_negative_p(VALUE num)2596 num_step_negative_p(VALUE num)
2597 {
2598 const ID mid = '<';
2599 VALUE zero = INT2FIX(0);
2600 VALUE r;
2601
2602 if (FIXNUM_P(num)) {
2603 if (method_basic_p(rb_cInteger))
2604 return (SIGNED_VALUE)num < 0;
2605 }
2606 else if (RB_TYPE_P(num, T_BIGNUM)) {
2607 if (method_basic_p(rb_cInteger))
2608 return BIGNUM_NEGATIVE_P(num);
2609 }
2610
2611 r = rb_check_funcall(num, '>', 1, &zero);
2612 if (r == Qundef) {
2613 coerce_failed(num, INT2FIX(0));
2614 }
2615 return !RTEST(r);
2616 }
2617
2618 static int
num_step_extract_args(int argc,const VALUE * argv,VALUE * to,VALUE * step,VALUE * by)2619 num_step_extract_args(int argc, const VALUE *argv, VALUE *to, VALUE *step, VALUE *by)
2620 {
2621 VALUE hash;
2622
2623 argc = rb_scan_args(argc, argv, "02:", to, step, &hash);
2624 if (!NIL_P(hash)) {
2625 ID keys[2];
2626 VALUE values[2];
2627 keys[0] = id_to;
2628 keys[1] = id_by;
2629 rb_get_kwargs(hash, keys, 0, 2, values);
2630 if (values[0] != Qundef) {
2631 if (argc > 0) rb_raise(rb_eArgError, "to is given twice");
2632 *to = values[0];
2633 }
2634 if (values[1] != Qundef) {
2635 if (argc > 1) rb_raise(rb_eArgError, "step is given twice");
2636 *by = values[1];
2637 }
2638 }
2639
2640 return argc;
2641 }
2642
2643 static int
num_step_check_fix_args(int argc,VALUE * to,VALUE * step,VALUE by,int fix_nil,int allow_zero_step)2644 num_step_check_fix_args(int argc, VALUE *to, VALUE *step, VALUE by, int fix_nil, int allow_zero_step)
2645 {
2646 int desc;
2647 if (by != Qundef) {
2648 *step = by;
2649 }
2650 else {
2651 /* compatibility */
2652 if (argc > 1 && NIL_P(*step)) {
2653 rb_raise(rb_eTypeError, "step must be numeric");
2654 }
2655 if (!allow_zero_step && rb_equal(*step, INT2FIX(0))) {
2656 rb_raise(rb_eArgError, "step can't be 0");
2657 }
2658 }
2659 if (NIL_P(*step)) {
2660 *step = INT2FIX(1);
2661 }
2662 desc = num_step_negative_p(*step);
2663 if (fix_nil && NIL_P(*to)) {
2664 *to = desc ? DBL2NUM(-HUGE_VAL) : DBL2NUM(HUGE_VAL);
2665 }
2666 return desc;
2667 }
2668
2669 static int
num_step_scan_args(int argc,const VALUE * argv,VALUE * to,VALUE * step,int fix_nil,int allow_zero_step)2670 num_step_scan_args(int argc, const VALUE *argv, VALUE *to, VALUE *step, int fix_nil, int allow_zero_step)
2671 {
2672 VALUE by = Qundef;
2673 argc = num_step_extract_args(argc, argv, to, step, &by);
2674 return num_step_check_fix_args(argc, to, step, by, fix_nil, allow_zero_step);
2675 }
2676
2677 static VALUE
num_step_size(VALUE from,VALUE args,VALUE eobj)2678 num_step_size(VALUE from, VALUE args, VALUE eobj)
2679 {
2680 VALUE to, step;
2681 int argc = args ? RARRAY_LENINT(args) : 0;
2682 const VALUE *argv = args ? RARRAY_CONST_PTR(args) : 0;
2683
2684 num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
2685
2686 return ruby_num_interval_step_size(from, to, step, FALSE);
2687 }
2688
2689 /*
2690 * call-seq:
2691 * num.step(by: step, to: limit) {|i| block } -> self
2692 * num.step(by: step, to: limit) -> an_enumerator
2693 * num.step(by: step, to: limit) -> an_arithmetic_sequence
2694 * num.step(limit=nil, step=1) {|i| block } -> self
2695 * num.step(limit=nil, step=1) -> an_enumerator
2696 * num.step(limit=nil, step=1) -> an_arithmetic_sequence
2697 *
2698 * Invokes the given block with the sequence of numbers starting at +num+,
2699 * incremented by +step+ (defaulted to +1+) on each call.
2700 *
2701 * The loop finishes when the value to be passed to the block is greater than
2702 * +limit+ (if +step+ is positive) or less than +limit+ (if +step+ is
2703 * negative), where +limit+ is defaulted to infinity.
2704 *
2705 * In the recommended keyword argument style, either or both of
2706 * +step+ and +limit+ (default infinity) can be omitted. In the
2707 * fixed position argument style, zero as a step
2708 * (i.e. <code>num.step(limit, 0)</code>) is not allowed for historical
2709 * compatibility reasons.
2710 *
2711 * If all the arguments are integers, the loop operates using an integer
2712 * counter.
2713 *
2714 * If any of the arguments are floating point numbers, all are converted
2715 * to floats, and the loop is executed
2716 * <i>floor(n + n*Float::EPSILON) + 1</i> times,
2717 * where <i>n = (limit - num)/step</i>.
2718 *
2719 * Otherwise, the loop starts at +num+, uses either the
2720 * less-than (<code><</code>) or greater-than (<code>></code>) operator
2721 * to compare the counter against +limit+,
2722 * and increments itself using the <code>+</code> operator.
2723 *
2724 * If no block is given, an Enumerator is returned instead.
2725 * Especially, the enumerator is an Enumerator::ArithmeticSequence
2726 * if both +limit+ and +step+ are kind of Numeric or <code>nil</code>.
2727 *
2728 * For example:
2729 *
2730 * p 1.step.take(4)
2731 * p 10.step(by: -1).take(4)
2732 * 3.step(to: 5) {|i| print i, " " }
2733 * 1.step(10, 2) {|i| print i, " " }
2734 * Math::E.step(to: Math::PI, by: 0.2) {|f| print f, " " }
2735 *
2736 * Will produce:
2737 *
2738 * [1, 2, 3, 4]
2739 * [10, 9, 8, 7]
2740 * 3 4 5
2741 * 1 3 5 7 9
2742 * 2.718281828459045 2.9182818284590453 3.118281828459045
2743 */
2744
2745 static VALUE
num_step(int argc,VALUE * argv,VALUE from)2746 num_step(int argc, VALUE *argv, VALUE from)
2747 {
2748 VALUE to, step;
2749 int desc, inf;
2750
2751 if (!rb_block_given_p()) {
2752 VALUE by = Qundef;
2753
2754 num_step_extract_args(argc, argv, &to, &step, &by);
2755 if (by != Qundef) {
2756 step = by;
2757 }
2758 if (NIL_P(step)) {
2759 step = INT2FIX(1);
2760 }
2761 if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
2762 rb_obj_is_kind_of(step, rb_cNumeric)) {
2763 return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
2764 num_step_size, from, to, step, FALSE);
2765 }
2766
2767 RETURN_SIZED_ENUMERATOR(from, argc, argv, num_step_size);
2768 }
2769
2770 desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
2771 if (rb_equal(step, INT2FIX(0))) {
2772 inf = 1;
2773 }
2774 else if (RB_TYPE_P(to, T_FLOAT)) {
2775 double f = RFLOAT_VALUE(to);
2776 inf = isinf(f) && (signbit(f) ? desc : !desc);
2777 }
2778 else inf = 0;
2779
2780 if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
2781 long i = FIX2LONG(from);
2782 long diff = FIX2LONG(step);
2783
2784 if (inf) {
2785 for (;; i += diff)
2786 rb_yield(LONG2FIX(i));
2787 }
2788 else {
2789 long end = FIX2LONG(to);
2790
2791 if (desc) {
2792 for (; i >= end; i += diff)
2793 rb_yield(LONG2FIX(i));
2794 }
2795 else {
2796 for (; i <= end; i += diff)
2797 rb_yield(LONG2FIX(i));
2798 }
2799 }
2800 }
2801 else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
2802 VALUE i = from;
2803
2804 if (inf) {
2805 for (;; i = rb_funcall(i, '+', 1, step))
2806 rb_yield(i);
2807 }
2808 else {
2809 ID cmp = desc ? '<' : '>';
2810
2811 for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
2812 rb_yield(i);
2813 }
2814 }
2815 return from;
2816 }
2817
2818 static char *
out_of_range_float(char (* pbuf)[24],VALUE val)2819 out_of_range_float(char (*pbuf)[24], VALUE val)
2820 {
2821 char *const buf = *pbuf;
2822 char *s;
2823
2824 snprintf(buf, sizeof(*pbuf), "%-.10g", RFLOAT_VALUE(val));
2825 if ((s = strchr(buf, ' ')) != 0) *s = '\0';
2826 return buf;
2827 }
2828
2829 #define FLOAT_OUT_OF_RANGE(val, type) do { \
2830 char buf[24]; \
2831 rb_raise(rb_eRangeError, "float %s out of range of "type, \
2832 out_of_range_float(&buf, (val))); \
2833 } while (0)
2834
2835 #define LONG_MIN_MINUS_ONE ((double)LONG_MIN-1)
2836 #define LONG_MAX_PLUS_ONE (2*(double)(LONG_MAX/2+1))
2837 #define ULONG_MAX_PLUS_ONE (2*(double)(ULONG_MAX/2+1))
2838 #define LONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \
2839 (LONG_MIN_MINUS_ONE == (double)LONG_MIN ? \
2840 LONG_MIN <= (n): \
2841 LONG_MIN_MINUS_ONE < (n))
2842
2843 long
rb_num2long(VALUE val)2844 rb_num2long(VALUE val)
2845 {
2846 again:
2847 if (NIL_P(val)) {
2848 rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
2849 }
2850
2851 if (FIXNUM_P(val)) return FIX2LONG(val);
2852
2853 else if (RB_TYPE_P(val, T_FLOAT)) {
2854 if (RFLOAT_VALUE(val) < LONG_MAX_PLUS_ONE
2855 && LONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) {
2856 return (long)RFLOAT_VALUE(val);
2857 }
2858 else {
2859 FLOAT_OUT_OF_RANGE(val, "integer");
2860 }
2861 }
2862 else if (RB_TYPE_P(val, T_BIGNUM)) {
2863 return rb_big2long(val);
2864 }
2865 else {
2866 val = rb_to_int(val);
2867 goto again;
2868 }
2869 }
2870
2871 static unsigned long
rb_num2ulong_internal(VALUE val,int * wrap_p)2872 rb_num2ulong_internal(VALUE val, int *wrap_p)
2873 {
2874 again:
2875 if (NIL_P(val)) {
2876 rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
2877 }
2878
2879 if (FIXNUM_P(val)) {
2880 long l = FIX2LONG(val); /* this is FIX2LONG, intended */
2881 if (wrap_p)
2882 *wrap_p = l < 0;
2883 return (unsigned long)l;
2884 }
2885 else if (RB_TYPE_P(val, T_FLOAT)) {
2886 double d = RFLOAT_VALUE(val);
2887 if (d < ULONG_MAX_PLUS_ONE && LONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
2888 if (wrap_p)
2889 *wrap_p = d <= -1.0; /* NUM2ULONG(v) uses v.to_int conceptually. */
2890 if (0 <= d)
2891 return (unsigned long)d;
2892 return (unsigned long)(long)d;
2893 }
2894 else {
2895 FLOAT_OUT_OF_RANGE(val, "integer");
2896 }
2897 }
2898 else if (RB_TYPE_P(val, T_BIGNUM)) {
2899 {
2900 unsigned long ul = rb_big2ulong(val);
2901 if (wrap_p)
2902 *wrap_p = BIGNUM_NEGATIVE_P(val);
2903 return ul;
2904 }
2905 }
2906 else {
2907 val = rb_to_int(val);
2908 goto again;
2909 }
2910 }
2911
2912 unsigned long
rb_num2ulong(VALUE val)2913 rb_num2ulong(VALUE val)
2914 {
2915 return rb_num2ulong_internal(val, NULL);
2916 }
2917
2918 #if SIZEOF_INT < SIZEOF_LONG
2919 void
rb_out_of_int(SIGNED_VALUE num)2920 rb_out_of_int(SIGNED_VALUE num)
2921 {
2922 rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'",
2923 num, num < 0 ? "small" : "big");
2924 }
2925
2926 static void
check_int(long num)2927 check_int(long num)
2928 {
2929 if ((long)(int)num != num) {
2930 rb_out_of_int(num);
2931 }
2932 }
2933
2934 static void
check_uint(unsigned long num,int sign)2935 check_uint(unsigned long num, int sign)
2936 {
2937 if (sign) {
2938 /* minus */
2939 if (num < (unsigned long)INT_MIN)
2940 rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned int'", (long)num);
2941 }
2942 else {
2943 /* plus */
2944 if (UINT_MAX < num)
2945 rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned int'", num);
2946 }
2947 }
2948
2949 long
rb_num2int(VALUE val)2950 rb_num2int(VALUE val)
2951 {
2952 long num = rb_num2long(val);
2953
2954 check_int(num);
2955 return num;
2956 }
2957
2958 long
rb_fix2int(VALUE val)2959 rb_fix2int(VALUE val)
2960 {
2961 long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
2962
2963 check_int(num);
2964 return num;
2965 }
2966
2967 unsigned long
rb_num2uint(VALUE val)2968 rb_num2uint(VALUE val)
2969 {
2970 int wrap;
2971 unsigned long num = rb_num2ulong_internal(val, &wrap);
2972
2973 check_uint(num, wrap);
2974 return num;
2975 }
2976
2977 unsigned long
rb_fix2uint(VALUE val)2978 rb_fix2uint(VALUE val)
2979 {
2980 unsigned long num;
2981
2982 if (!FIXNUM_P(val)) {
2983 return rb_num2uint(val);
2984 }
2985 num = FIX2ULONG(val);
2986
2987 check_uint(num, rb_num_negative_int_p(val));
2988 return num;
2989 }
2990 #else
2991 long
rb_num2int(VALUE val)2992 rb_num2int(VALUE val)
2993 {
2994 return rb_num2long(val);
2995 }
2996
2997 long
rb_fix2int(VALUE val)2998 rb_fix2int(VALUE val)
2999 {
3000 return FIX2INT(val);
3001 }
3002 #endif
3003
3004 NORETURN(static void rb_out_of_short(SIGNED_VALUE num));
3005 static void
rb_out_of_short(SIGNED_VALUE num)3006 rb_out_of_short(SIGNED_VALUE num)
3007 {
3008 rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `short'",
3009 num, num < 0 ? "small" : "big");
3010 }
3011
3012 static void
check_short(long num)3013 check_short(long num)
3014 {
3015 if ((long)(short)num != num) {
3016 rb_out_of_short(num);
3017 }
3018 }
3019
3020 static void
check_ushort(unsigned long num,int sign)3021 check_ushort(unsigned long num, int sign)
3022 {
3023 if (sign) {
3024 /* minus */
3025 if (num < (unsigned long)SHRT_MIN)
3026 rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned short'", (long)num);
3027 }
3028 else {
3029 /* plus */
3030 if (USHRT_MAX < num)
3031 rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned short'", num);
3032 }
3033 }
3034
3035 short
rb_num2short(VALUE val)3036 rb_num2short(VALUE val)
3037 {
3038 long num = rb_num2long(val);
3039
3040 check_short(num);
3041 return num;
3042 }
3043
3044 short
rb_fix2short(VALUE val)3045 rb_fix2short(VALUE val)
3046 {
3047 long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
3048
3049 check_short(num);
3050 return num;
3051 }
3052
3053 unsigned short
rb_num2ushort(VALUE val)3054 rb_num2ushort(VALUE val)
3055 {
3056 int wrap;
3057 unsigned long num = rb_num2ulong_internal(val, &wrap);
3058
3059 check_ushort(num, wrap);
3060 return num;
3061 }
3062
3063 unsigned short
rb_fix2ushort(VALUE val)3064 rb_fix2ushort(VALUE val)
3065 {
3066 unsigned long num;
3067
3068 if (!FIXNUM_P(val)) {
3069 return rb_num2ushort(val);
3070 }
3071 num = FIX2ULONG(val);
3072
3073 check_ushort(num, rb_num_negative_int_p(val));
3074 return num;
3075 }
3076
3077 VALUE
rb_num2fix(VALUE val)3078 rb_num2fix(VALUE val)
3079 {
3080 long v;
3081
3082 if (FIXNUM_P(val)) return val;
3083
3084 v = rb_num2long(val);
3085 if (!FIXABLE(v))
3086 rb_raise(rb_eRangeError, "integer %ld out of range of fixnum", v);
3087 return LONG2FIX(v);
3088 }
3089
3090 #if HAVE_LONG_LONG
3091
3092 #define LLONG_MIN_MINUS_ONE ((double)LLONG_MIN-1)
3093 #define LLONG_MAX_PLUS_ONE (2*(double)(LLONG_MAX/2+1))
3094 #define ULLONG_MAX_PLUS_ONE (2*(double)(ULLONG_MAX/2+1))
3095 #ifndef ULLONG_MAX
3096 #define ULLONG_MAX ((unsigned LONG_LONG)LLONG_MAX*2+1)
3097 #endif
3098 #define LLONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \
3099 (LLONG_MIN_MINUS_ONE == (double)LLONG_MIN ? \
3100 LLONG_MIN <= (n): \
3101 LLONG_MIN_MINUS_ONE < (n))
3102
3103 LONG_LONG
rb_num2ll(VALUE val)3104 rb_num2ll(VALUE val)
3105 {
3106 if (NIL_P(val)) {
3107 rb_raise(rb_eTypeError, "no implicit conversion from nil");
3108 }
3109
3110 if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val);
3111
3112 else if (RB_TYPE_P(val, T_FLOAT)) {
3113 double d = RFLOAT_VALUE(val);
3114 if (d < LLONG_MAX_PLUS_ONE && (LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d))) {
3115 return (LONG_LONG)d;
3116 }
3117 else {
3118 FLOAT_OUT_OF_RANGE(val, "long long");
3119 }
3120 }
3121 else if (RB_TYPE_P(val, T_BIGNUM)) {
3122 return rb_big2ll(val);
3123 }
3124 else if (RB_TYPE_P(val, T_STRING)) {
3125 rb_raise(rb_eTypeError, "no implicit conversion from string");
3126 }
3127 else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
3128 rb_raise(rb_eTypeError, "no implicit conversion from boolean");
3129 }
3130
3131 val = rb_to_int(val);
3132 return NUM2LL(val);
3133 }
3134
3135 unsigned LONG_LONG
rb_num2ull(VALUE val)3136 rb_num2ull(VALUE val)
3137 {
3138 if (RB_TYPE_P(val, T_NIL)) {
3139 rb_raise(rb_eTypeError, "no implicit conversion from nil");
3140 }
3141 else if (RB_TYPE_P(val, T_FIXNUM)) {
3142 return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, intended */
3143 }
3144 else if (RB_TYPE_P(val, T_FLOAT)) {
3145 double d = RFLOAT_VALUE(val);
3146 if (d < ULLONG_MAX_PLUS_ONE && LLONG_MIN_MINUS_ONE_IS_LESS_THAN(d)) {
3147 if (0 <= d)
3148 return (unsigned LONG_LONG)d;
3149 return (unsigned LONG_LONG)(LONG_LONG)d;
3150 }
3151 else {
3152 FLOAT_OUT_OF_RANGE(val, "unsigned long long");
3153 }
3154 }
3155 else if (RB_TYPE_P(val, T_BIGNUM)) {
3156 return rb_big2ull(val);
3157 }
3158 else if (RB_TYPE_P(val, T_STRING)) {
3159 rb_raise(rb_eTypeError, "no implicit conversion from string");
3160 }
3161 else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
3162 rb_raise(rb_eTypeError, "no implicit conversion from boolean");
3163 }
3164
3165 val = rb_to_int(val);
3166 return NUM2ULL(val);
3167 }
3168
3169 #endif /* HAVE_LONG_LONG */
3170
3171 /********************************************************************
3172 *
3173 * Document-class: Integer
3174 *
3175 * Holds Integer values. You cannot add a singleton method to an
3176 * Integer object, any attempt to do so will raise a TypeError.
3177 *
3178 */
3179
3180 /*
3181 * call-seq:
3182 * int.to_i -> integer
3183 * int.to_int -> integer
3184 *
3185 * Since +int+ is already an Integer, returns +self+.
3186 *
3187 * #to_int is an alias for #to_i.
3188 */
3189
3190 static VALUE
int_to_i(VALUE num)3191 int_to_i(VALUE num)
3192 {
3193 return num;
3194 }
3195
3196 /*
3197 * call-seq:
3198 * int.integer? -> true
3199 *
3200 * Since +int+ is already an Integer, this always returns +true+.
3201 */
3202
3203 static VALUE
int_int_p(VALUE num)3204 int_int_p(VALUE num)
3205 {
3206 return Qtrue;
3207 }
3208
3209 /*
3210 * call-seq:
3211 * int.odd? -> true or false
3212 *
3213 * Returns +true+ if +int+ is an odd number.
3214 */
3215
3216 VALUE
rb_int_odd_p(VALUE num)3217 rb_int_odd_p(VALUE num)
3218 {
3219 if (FIXNUM_P(num)) {
3220 if (num & 2) {
3221 return Qtrue;
3222 }
3223 }
3224 else if (RB_TYPE_P(num, T_BIGNUM)) {
3225 return rb_big_odd_p(num);
3226 }
3227 else if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
3228 return Qtrue;
3229 }
3230 return Qfalse;
3231 }
3232
3233 /*
3234 * call-seq:
3235 * int.even? -> true or false
3236 *
3237 * Returns +true+ if +int+ is an even number.
3238 */
3239
3240 static VALUE
int_even_p(VALUE num)3241 int_even_p(VALUE num)
3242 {
3243 if (FIXNUM_P(num)) {
3244 if ((num & 2) == 0) {
3245 return Qtrue;
3246 }
3247 }
3248 else if (RB_TYPE_P(num, T_BIGNUM)) {
3249 return rb_big_even_p(num);
3250 }
3251 else if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
3252 return Qtrue;
3253 }
3254 return Qfalse;
3255 }
3256
3257 /*
3258 * call-seq:
3259 * int.allbits?(mask) -> true or false
3260 *
3261 * Returns +true+ if all bits of <code>+int+ & +mask+</code> are 1.
3262 */
3263
3264 static VALUE
int_allbits_p(VALUE num,VALUE mask)3265 int_allbits_p(VALUE num, VALUE mask)
3266 {
3267 mask = rb_to_int(mask);
3268 return rb_int_equal(rb_int_and(num, mask), mask);
3269 }
3270
3271 /*
3272 * call-seq:
3273 * int.anybits?(mask) -> true or false
3274 *
3275 * Returns +true+ if any bits of <code>+int+ & +mask+</code> are 1.
3276 */
3277
3278 static VALUE
int_anybits_p(VALUE num,VALUE mask)3279 int_anybits_p(VALUE num, VALUE mask)
3280 {
3281 mask = rb_to_int(mask);
3282 return num_zero_p(rb_int_and(num, mask)) ? Qfalse : Qtrue;
3283 }
3284
3285 /*
3286 * call-seq:
3287 * int.nobits?(mask) -> true or false
3288 *
3289 * Returns +true+ if no bits of <code>+int+ & +mask+</code> are 1.
3290 */
3291
3292 static VALUE
int_nobits_p(VALUE num,VALUE mask)3293 int_nobits_p(VALUE num, VALUE mask)
3294 {
3295 mask = rb_to_int(mask);
3296 return num_zero_p(rb_int_and(num, mask));
3297 }
3298
3299 /*
3300 * Document-method: Integer#succ
3301 * Document-method: Integer#next
3302 * call-seq:
3303 * int.next -> integer
3304 * int.succ -> integer
3305 *
3306 * Returns the successor of +int+,
3307 * i.e. the Integer equal to <code>int+1</code>.
3308 *
3309 * 1.next #=> 2
3310 * (-1).next #=> 0
3311 * 1.succ #=> 2
3312 * (-1).succ #=> 0
3313 */
3314
3315 VALUE
rb_int_succ(VALUE num)3316 rb_int_succ(VALUE num)
3317 {
3318 if (FIXNUM_P(num)) {
3319 long i = FIX2LONG(num) + 1;
3320 return LONG2NUM(i);
3321 }
3322 if (RB_TYPE_P(num, T_BIGNUM)) {
3323 return rb_big_plus(num, INT2FIX(1));
3324 }
3325 return num_funcall1(num, '+', INT2FIX(1));
3326 }
3327
3328 #define int_succ rb_int_succ
3329
3330 /*
3331 * call-seq:
3332 * int.pred -> integer
3333 *
3334 * Returns the predecessor of +int+,
3335 * i.e. the Integer equal to <code>int-1</code>.
3336 *
3337 * 1.pred #=> 0
3338 * (-1).pred #=> -2
3339 */
3340
3341 VALUE
rb_int_pred(VALUE num)3342 rb_int_pred(VALUE num)
3343 {
3344 if (FIXNUM_P(num)) {
3345 long i = FIX2LONG(num) - 1;
3346 return LONG2NUM(i);
3347 }
3348 if (RB_TYPE_P(num, T_BIGNUM)) {
3349 return rb_big_minus(num, INT2FIX(1));
3350 }
3351 return num_funcall1(num, '-', INT2FIX(1));
3352 }
3353
3354 #define int_pred rb_int_pred
3355
3356 /*
3357 * Document-method: Integer#chr
3358 * call-seq:
3359 * int.chr([encoding]) -> string
3360 *
3361 * Returns a string containing the character represented by the +int+'s value
3362 * according to +encoding+.
3363 *
3364 * 65.chr #=> "A"
3365 * 230.chr #=> "\xE6"
3366 * 255.chr(Encoding::UTF_8) #=> "\u00FF"
3367 */
3368
3369 VALUE
rb_enc_uint_chr(unsigned int code,rb_encoding * enc)3370 rb_enc_uint_chr(unsigned int code, rb_encoding *enc)
3371 {
3372 int n;
3373 VALUE str;
3374 switch (n = rb_enc_codelen(code, enc)) {
3375 case ONIGERR_INVALID_CODE_POINT_VALUE:
3376 rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
3377 break;
3378 case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE:
3379 case 0:
3380 rb_raise(rb_eRangeError, "%u out of char range", code);
3381 break;
3382 }
3383 str = rb_enc_str_new(0, n, enc);
3384 rb_enc_mbcput(code, RSTRING_PTR(str), enc);
3385 if (rb_enc_precise_mbclen(RSTRING_PTR(str), RSTRING_END(str), enc) != n) {
3386 rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
3387 }
3388 return str;
3389 }
3390
3391 static VALUE
int_chr(int argc,VALUE * argv,VALUE num)3392 int_chr(int argc, VALUE *argv, VALUE num)
3393 {
3394 char c;
3395 unsigned int i;
3396 rb_encoding *enc;
3397
3398 if (rb_num_to_uint(num, &i) == 0) {
3399 }
3400 else if (FIXNUM_P(num)) {
3401 rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
3402 }
3403 else {
3404 rb_raise(rb_eRangeError, "bignum out of char range");
3405 }
3406
3407 switch (argc) {
3408 case 0:
3409 if (0xff < i) {
3410 enc = rb_default_internal_encoding();
3411 if (!enc) {
3412 rb_raise(rb_eRangeError, "%d out of char range", i);
3413 }
3414 goto decode;
3415 }
3416 c = (char)i;
3417 if (i < 0x80) {
3418 return rb_usascii_str_new(&c, 1);
3419 }
3420 else {
3421 return rb_str_new(&c, 1);
3422 }
3423 case 1:
3424 break;
3425 default:
3426 rb_check_arity(argc, 0, 1);
3427 break;
3428 }
3429 enc = rb_to_encoding(argv[0]);
3430 if (!enc) enc = rb_ascii8bit_encoding();
3431 decode:
3432 return rb_enc_uint_chr(i, enc);
3433 }
3434
3435 /*
3436 * call-seq:
3437 * int.ord -> self
3438 *
3439 * Returns the +int+ itself.
3440 *
3441 * 97.ord #=> 97
3442 *
3443 * This method is intended for compatibility to character literals
3444 * in Ruby 1.9.
3445 *
3446 * For example, <code>?a.ord</code> returns 97 both in 1.8 and 1.9.
3447 */
3448
3449 static VALUE
int_ord(VALUE num)3450 int_ord(VALUE num)
3451 {
3452 return num;
3453 }
3454
3455 /*
3456 * Fixnum
3457 */
3458
3459
3460 /*
3461 * Document-method: Integer#-@
3462 * call-seq:
3463 * -int -> integer
3464 *
3465 * Returns +int+, negated.
3466 */
3467
3468 static VALUE
fix_uminus(VALUE num)3469 fix_uminus(VALUE num)
3470 {
3471 return LONG2NUM(-FIX2LONG(num));
3472 }
3473
3474 VALUE
rb_int_uminus(VALUE num)3475 rb_int_uminus(VALUE num)
3476 {
3477 if (FIXNUM_P(num)) {
3478 return fix_uminus(num);
3479 }
3480 else if (RB_TYPE_P(num, T_BIGNUM)) {
3481 return rb_big_uminus(num);
3482 }
3483 return num_funcall0(num, idUMinus);
3484 }
3485
3486 /*
3487 * Document-method: Integer#to_s
3488 * call-seq:
3489 * int.to_s(base=10) -> string
3490 *
3491 * Returns a string containing the place-value representation of +int+
3492 * with radix +base+ (between 2 and 36).
3493 *
3494 * 12345.to_s #=> "12345"
3495 * 12345.to_s(2) #=> "11000000111001"
3496 * 12345.to_s(8) #=> "30071"
3497 * 12345.to_s(10) #=> "12345"
3498 * 12345.to_s(16) #=> "3039"
3499 * 12345.to_s(36) #=> "9ix"
3500 * 78546939656932.to_s(36) #=> "rubyrules"
3501 */
3502
3503 VALUE
rb_fix2str(VALUE x,int base)3504 rb_fix2str(VALUE x, int base)
3505 {
3506 char buf[SIZEOF_VALUE*CHAR_BIT + 1], *const e = buf + sizeof buf, *b = e;
3507 long val = FIX2LONG(x);
3508 unsigned long u;
3509 int neg = 0;
3510
3511 if (base < 2 || 36 < base) {
3512 rb_raise(rb_eArgError, "invalid radix %d", base);
3513 }
3514 #if SIZEOF_LONG < SIZEOF_VOIDP
3515 # if SIZEOF_VOIDP == SIZEOF_LONG_LONG
3516 if ((val >= 0 && (x & 0xFFFFFFFF00000000ull)) ||
3517 (val < 0 && (x & 0xFFFFFFFF00000000ull) != 0xFFFFFFFF00000000ull)) {
3518 rb_bug("Unnormalized Fixnum value %p", (void *)x);
3519 }
3520 # else
3521 /* should do something like above code, but currently ruby does not know */
3522 /* such platforms */
3523 # endif
3524 #endif
3525 if (val == 0) {
3526 return rb_usascii_str_new2("0");
3527 }
3528 if (val < 0) {
3529 u = 1 + (unsigned long)(-(val + 1)); /* u = -val avoiding overflow */
3530 neg = 1;
3531 }
3532 else {
3533 u = val;
3534 }
3535 do {
3536 *--b = ruby_digitmap[(int)(u % base)];
3537 } while (u /= base);
3538 if (neg) {
3539 *--b = '-';
3540 }
3541
3542 return rb_usascii_str_new(b, e - b);
3543 }
3544
3545 static VALUE
int_to_s(int argc,VALUE * argv,VALUE x)3546 int_to_s(int argc, VALUE *argv, VALUE x)
3547 {
3548 int base;
3549
3550 if (rb_check_arity(argc, 0, 1))
3551 base = NUM2INT(argv[0]);
3552 else
3553 base = 10;
3554 return rb_int2str(x, base);
3555 }
3556
3557 VALUE
rb_int2str(VALUE x,int base)3558 rb_int2str(VALUE x, int base)
3559 {
3560 if (FIXNUM_P(x)) {
3561 return rb_fix2str(x, base);
3562 }
3563 else if (RB_TYPE_P(x, T_BIGNUM)) {
3564 return rb_big2str(x, base);
3565 }
3566
3567 return rb_any_to_s(x);
3568 }
3569
3570 /*
3571 * Document-method: Integer#+
3572 * call-seq:
3573 * int + numeric -> numeric_result
3574 *
3575 * Performs addition: the class of the resulting object depends on
3576 * the class of +numeric+.
3577 */
3578
3579 static VALUE
fix_plus(VALUE x,VALUE y)3580 fix_plus(VALUE x, VALUE y)
3581 {
3582 if (FIXNUM_P(y)) {
3583 return rb_fix_plus_fix(x, y);
3584 }
3585 else if (RB_TYPE_P(y, T_BIGNUM)) {
3586 return rb_big_plus(y, x);
3587 }
3588 else if (RB_TYPE_P(y, T_FLOAT)) {
3589 return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y));
3590 }
3591 else if (RB_TYPE_P(y, T_COMPLEX)) {
3592 return rb_complex_plus(y, x);
3593 }
3594 else {
3595 return rb_num_coerce_bin(x, y, '+');
3596 }
3597 }
3598
3599 VALUE
rb_fix_plus(VALUE x,VALUE y)3600 rb_fix_plus(VALUE x, VALUE y)
3601 {
3602 return fix_plus(x, y);
3603 }
3604
3605 VALUE
rb_int_plus(VALUE x,VALUE y)3606 rb_int_plus(VALUE x, VALUE y)
3607 {
3608 if (FIXNUM_P(x)) {
3609 return fix_plus(x, y);
3610 }
3611 else if (RB_TYPE_P(x, T_BIGNUM)) {
3612 return rb_big_plus(x, y);
3613 }
3614 return rb_num_coerce_bin(x, y, '+');
3615 }
3616
3617 /*
3618 * Document-method: Integer#-
3619 * call-seq:
3620 * int - numeric -> numeric_result
3621 *
3622 * Performs subtraction: the class of the resulting object depends on
3623 * the class of +numeric+.
3624 */
3625
3626 static VALUE
fix_minus(VALUE x,VALUE y)3627 fix_minus(VALUE x, VALUE y)
3628 {
3629 if (FIXNUM_P(y)) {
3630 return rb_fix_minus_fix(x, y);
3631 }
3632 else if (RB_TYPE_P(y, T_BIGNUM)) {
3633 x = rb_int2big(FIX2LONG(x));
3634 return rb_big_minus(x, y);
3635 }
3636 else if (RB_TYPE_P(y, T_FLOAT)) {
3637 return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y));
3638 }
3639 else {
3640 return rb_num_coerce_bin(x, y, '-');
3641 }
3642 }
3643
3644 VALUE
rb_int_minus(VALUE x,VALUE y)3645 rb_int_minus(VALUE x, VALUE y)
3646 {
3647 if (FIXNUM_P(x)) {
3648 return fix_minus(x, y);
3649 }
3650 else if (RB_TYPE_P(x, T_BIGNUM)) {
3651 return rb_big_minus(x, y);
3652 }
3653 return rb_num_coerce_bin(x, y, '-');
3654 }
3655
3656
3657 #define SQRT_LONG_MAX HALF_LONG_MSB
3658 /*tests if N*N would overflow*/
3659 #define FIT_SQRT_LONG(n) (((n)<SQRT_LONG_MAX)&&((n)>=-SQRT_LONG_MAX))
3660
3661 /*
3662 * Document-method: Integer#*
3663 * call-seq:
3664 * int * numeric -> numeric_result
3665 *
3666 * Performs multiplication: the class of the resulting object depends on
3667 * the class of +numeric+.
3668 */
3669
3670 static VALUE
fix_mul(VALUE x,VALUE y)3671 fix_mul(VALUE x, VALUE y)
3672 {
3673 if (FIXNUM_P(y)) {
3674 return rb_fix_mul_fix(x, y);
3675 }
3676 else if (RB_TYPE_P(y, T_BIGNUM)) {
3677 switch (x) {
3678 case INT2FIX(0): return x;
3679 case INT2FIX(1): return y;
3680 }
3681 return rb_big_mul(y, x);
3682 }
3683 else if (RB_TYPE_P(y, T_FLOAT)) {
3684 return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y));
3685 }
3686 else if (RB_TYPE_P(y, T_COMPLEX)) {
3687 return rb_complex_mul(y, x);
3688 }
3689 else {
3690 return rb_num_coerce_bin(x, y, '*');
3691 }
3692 }
3693
3694 VALUE
rb_int_mul(VALUE x,VALUE y)3695 rb_int_mul(VALUE x, VALUE y)
3696 {
3697 if (FIXNUM_P(x)) {
3698 return fix_mul(x, y);
3699 }
3700 else if (RB_TYPE_P(x, T_BIGNUM)) {
3701 return rb_big_mul(x, y);
3702 }
3703 return rb_num_coerce_bin(x, y, '*');
3704 }
3705
3706 static double
fix_fdiv_double(VALUE x,VALUE y)3707 fix_fdiv_double(VALUE x, VALUE y)
3708 {
3709 if (FIXNUM_P(y)) {
3710 return double_div_double(FIX2LONG(x), FIX2LONG(y));
3711 }
3712 else if (RB_TYPE_P(y, T_BIGNUM)) {
3713 return rb_big_fdiv_double(rb_int2big(FIX2LONG(x)), y);
3714 }
3715 else if (RB_TYPE_P(y, T_FLOAT)) {
3716 return double_div_double(FIX2LONG(x), RFLOAT_VALUE(y));
3717 }
3718 else {
3719 return NUM2DBL(rb_num_coerce_bin(x, y, rb_intern("fdiv")));
3720 }
3721 }
3722
3723 double
rb_int_fdiv_double(VALUE x,VALUE y)3724 rb_int_fdiv_double(VALUE x, VALUE y)
3725 {
3726 if (RB_INTEGER_TYPE_P(y) && !FIXNUM_ZERO_P(y)) {
3727 VALUE gcd = rb_gcd(x, y);
3728 if (!FIXNUM_ZERO_P(gcd)) {
3729 x = rb_int_idiv(x, gcd);
3730 y = rb_int_idiv(y, gcd);
3731 }
3732 }
3733 if (FIXNUM_P(x)) {
3734 return fix_fdiv_double(x, y);
3735 }
3736 else if (RB_TYPE_P(x, T_BIGNUM)) {
3737 return rb_big_fdiv_double(x, y);
3738 }
3739 else {
3740 return nan("");
3741 }
3742 }
3743
3744 /*
3745 * Document-method: Integer#fdiv
3746 * call-seq:
3747 * int.fdiv(numeric) -> float
3748 *
3749 * Returns the floating point result of dividing +int+ by +numeric+.
3750 *
3751 * 654321.fdiv(13731) #=> 47.652829364212366
3752 * 654321.fdiv(13731.24) #=> 47.65199646936475
3753 * -654321.fdiv(13731) #=> -47.652829364212366
3754 */
3755
3756 VALUE
rb_int_fdiv(VALUE x,VALUE y)3757 rb_int_fdiv(VALUE x, VALUE y)
3758 {
3759 if (RB_INTEGER_TYPE_P(x)) {
3760 return DBL2NUM(rb_int_fdiv_double(x, y));
3761 }
3762 return Qnil;
3763 }
3764
3765 /*
3766 * Document-method: Integer#/
3767 * call-seq:
3768 * int / numeric -> numeric_result
3769 *
3770 * Performs division: the class of the resulting object depends on
3771 * the class of +numeric+.
3772 */
3773
3774 static VALUE
fix_divide(VALUE x,VALUE y,ID op)3775 fix_divide(VALUE x, VALUE y, ID op)
3776 {
3777 if (FIXNUM_P(y)) {
3778 if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
3779 return rb_fix_div_fix(x, y);
3780 }
3781 else if (RB_TYPE_P(y, T_BIGNUM)) {
3782 x = rb_int2big(FIX2LONG(x));
3783 return rb_big_div(x, y);
3784 }
3785 else if (RB_TYPE_P(y, T_FLOAT)) {
3786 if (op == '/') {
3787 double d = FIX2LONG(x);
3788 return rb_flo_div_flo(DBL2NUM(d), y);
3789 }
3790 else {
3791 VALUE v;
3792 if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv();
3793 v = fix_divide(x, y, '/');
3794 return flo_floor(0, 0, v);
3795 }
3796 }
3797 else {
3798 if (RB_TYPE_P(y, T_RATIONAL) &&
3799 op == '/' && FIX2LONG(x) == 1)
3800 return rb_rational_reciprocal(y);
3801 return rb_num_coerce_bin(x, y, op);
3802 }
3803 }
3804
3805 static VALUE
fix_div(VALUE x,VALUE y)3806 fix_div(VALUE x, VALUE y)
3807 {
3808 return fix_divide(x, y, '/');
3809 }
3810
3811 VALUE
rb_int_div(VALUE x,VALUE y)3812 rb_int_div(VALUE x, VALUE y)
3813 {
3814 if (FIXNUM_P(x)) {
3815 return fix_div(x, y);
3816 }
3817 else if (RB_TYPE_P(x, T_BIGNUM)) {
3818 return rb_big_div(x, y);
3819 }
3820 return Qnil;
3821 }
3822
3823 /*
3824 * Document-method: Integer#div
3825 * call-seq:
3826 * int.div(numeric) -> integer
3827 *
3828 * Performs integer division: returns the integer result of dividing +int+
3829 * by +numeric+.
3830 */
3831
3832 static VALUE
fix_idiv(VALUE x,VALUE y)3833 fix_idiv(VALUE x, VALUE y)
3834 {
3835 return fix_divide(x, y, id_div);
3836 }
3837
3838 VALUE
rb_int_idiv(VALUE x,VALUE y)3839 rb_int_idiv(VALUE x, VALUE y)
3840 {
3841 if (FIXNUM_P(x)) {
3842 return fix_idiv(x, y);
3843 }
3844 else if (RB_TYPE_P(x, T_BIGNUM)) {
3845 return rb_big_idiv(x, y);
3846 }
3847 return num_div(x, y);
3848 }
3849
3850 /*
3851 * Document-method: Integer#%
3852 * Document-method: Integer#modulo
3853 * call-seq:
3854 * int % other -> real
3855 * int.modulo(other) -> real
3856 *
3857 * Returns +int+ modulo +other+.
3858 *
3859 * See Numeric#divmod for more information.
3860 */
3861
3862 static VALUE
fix_mod(VALUE x,VALUE y)3863 fix_mod(VALUE x, VALUE y)
3864 {
3865 if (FIXNUM_P(y)) {
3866 if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
3867 return rb_fix_mod_fix(x, y);
3868 }
3869 else if (RB_TYPE_P(y, T_BIGNUM)) {
3870 x = rb_int2big(FIX2LONG(x));
3871 return rb_big_modulo(x, y);
3872 }
3873 else if (RB_TYPE_P(y, T_FLOAT)) {
3874 return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y)));
3875 }
3876 else {
3877 return rb_num_coerce_bin(x, y, '%');
3878 }
3879 }
3880
3881 VALUE
rb_int_modulo(VALUE x,VALUE y)3882 rb_int_modulo(VALUE x, VALUE y)
3883 {
3884 if (FIXNUM_P(x)) {
3885 return fix_mod(x, y);
3886 }
3887 else if (RB_TYPE_P(x, T_BIGNUM)) {
3888 return rb_big_modulo(x, y);
3889 }
3890 return num_modulo(x, y);
3891 }
3892
3893 /*
3894 * call-seq:
3895 * int.remainder(numeric) -> real
3896 *
3897 * Returns the remainder after dividing +int+ by +numeric+.
3898 *
3899 * <code>x.remainder(y)</code> means <code>x-y*(x/y).truncate</code>.
3900 *
3901 * 5.remainder(3) #=> 2
3902 * -5.remainder(3) #=> -2
3903 * 5.remainder(-3) #=> 2
3904 * -5.remainder(-3) #=> -2
3905 * 5.remainder(1.5) #=> 0.5
3906 *
3907 * See Numeric#divmod.
3908 */
3909
3910 static VALUE
int_remainder(VALUE x,VALUE y)3911 int_remainder(VALUE x, VALUE y)
3912 {
3913 if (FIXNUM_P(x)) {
3914 return num_remainder(x, y);
3915 }
3916 else if (RB_TYPE_P(x, T_BIGNUM)) {
3917 return rb_big_remainder(x, y);
3918 }
3919 return Qnil;
3920 }
3921
3922 /*
3923 * Document-method: Integer#divmod
3924 * call-seq:
3925 * int.divmod(numeric) -> array
3926 *
3927 * See Numeric#divmod.
3928 */
3929 static VALUE
fix_divmod(VALUE x,VALUE y)3930 fix_divmod(VALUE x, VALUE y)
3931 {
3932 if (FIXNUM_P(y)) {
3933 VALUE div, mod;
3934 if (FIXNUM_ZERO_P(y)) rb_num_zerodiv();
3935 rb_fix_divmod_fix(x, y, &div, &mod);
3936 return rb_assoc_new(div, mod);
3937 }
3938 else if (RB_TYPE_P(y, T_BIGNUM)) {
3939 x = rb_int2big(FIX2LONG(x));
3940 return rb_big_divmod(x, y);
3941 }
3942 else if (RB_TYPE_P(y, T_FLOAT)) {
3943 {
3944 double div, mod;
3945 volatile VALUE a, b;
3946
3947 flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod);
3948 a = dbl2ival(div);
3949 b = DBL2NUM(mod);
3950 return rb_assoc_new(a, b);
3951 }
3952 }
3953 else {
3954 return rb_num_coerce_bin(x, y, id_divmod);
3955 }
3956 }
3957
3958 VALUE
rb_int_divmod(VALUE x,VALUE y)3959 rb_int_divmod(VALUE x, VALUE y)
3960 {
3961 if (FIXNUM_P(x)) {
3962 return fix_divmod(x, y);
3963 }
3964 else if (RB_TYPE_P(x, T_BIGNUM)) {
3965 return rb_big_divmod(x, y);
3966 }
3967 return Qnil;
3968 }
3969
3970 /*
3971 * Document-method: Integer#**
3972 * call-seq:
3973 * int ** numeric -> numeric_result
3974 *
3975 * Raises +int+ to the power of +numeric+, which may be negative or
3976 * fractional.
3977 * The result may be an Integer, a Float, a Rational, or a complex number.
3978 *
3979 * 2 ** 3 #=> 8
3980 * 2 ** -1 #=> (1/2)
3981 * 2 ** 0.5 #=> 1.4142135623730951
3982 * (-1) ** 0.5 #=> (0.0+1.0i)
3983 *
3984 * 123456789 ** 2 #=> 15241578750190521
3985 * 123456789 ** 1.2 #=> 5126464716.0993185
3986 * 123456789 ** -2 #=> (1/15241578750190521)
3987 */
3988
3989 static VALUE
int_pow(long x,unsigned long y)3990 int_pow(long x, unsigned long y)
3991 {
3992 int neg = x < 0;
3993 long z = 1;
3994
3995 if (y == 0) return INT2FIX(1);
3996 if (y == 1) return LONG2NUM(x);
3997 if (neg) x = -x;
3998 if (y & 1)
3999 z = x;
4000 else
4001 neg = 0;
4002 y &= ~1;
4003 do {
4004 while (y % 2 == 0) {
4005 if (!FIT_SQRT_LONG(x)) {
4006 VALUE v;
4007 bignum:
4008 v = rb_big_pow(rb_int2big(x), LONG2NUM(y));
4009 if (RB_FLOAT_TYPE_P(v)) /* infinity due to overflow */
4010 return v;
4011 if (z != 1) v = rb_big_mul(rb_int2big(neg ? -z : z), v);
4012 return v;
4013 }
4014 x = x * x;
4015 y >>= 1;
4016 }
4017 {
4018 if (MUL_OVERFLOW_FIXNUM_P(x, z)) {
4019 goto bignum;
4020 }
4021 z = x * z;
4022 }
4023 } while (--y);
4024 if (neg) z = -z;
4025 return LONG2NUM(z);
4026 }
4027
4028 VALUE
rb_int_positive_pow(long x,unsigned long y)4029 rb_int_positive_pow(long x, unsigned long y)
4030 {
4031 return int_pow(x, y);
4032 }
4033
4034 static VALUE
fix_pow(VALUE x,VALUE y)4035 fix_pow(VALUE x, VALUE y)
4036 {
4037 long a = FIX2LONG(x);
4038
4039 if (FIXNUM_P(y)) {
4040 long b = FIX2LONG(y);
4041
4042 if (a == 1) return INT2FIX(1);
4043 if (a == -1) {
4044 if (b % 2 == 0)
4045 return INT2FIX(1);
4046 else
4047 return INT2FIX(-1);
4048 }
4049 if (b < 0) {
4050 if (a == 0) rb_num_zerodiv();
4051 y = rb_int_pow(x, LONG2NUM(-b));
4052 goto inverted;
4053 }
4054
4055 if (b == 0) return INT2FIX(1);
4056 if (b == 1) return x;
4057 if (a == 0) {
4058 if (b > 0) return INT2FIX(0);
4059 return DBL2NUM(HUGE_VAL);
4060 }
4061 return int_pow(a, b);
4062 }
4063 else if (RB_TYPE_P(y, T_BIGNUM)) {
4064 if (a == 1) return INT2FIX(1);
4065 if (a == -1) {
4066 if (int_even_p(y)) return INT2FIX(1);
4067 else return INT2FIX(-1);
4068 }
4069 if (BIGNUM_NEGATIVE_P(y)) {
4070 if (a == 0) rb_num_zerodiv();
4071 y = rb_int_pow(x, rb_big_uminus(y));
4072 inverted:
4073 if (RB_FLOAT_TYPE_P(y)) {
4074 double d = pow((double)a, RFLOAT_VALUE(y));
4075 return DBL2NUM(1.0 / d);
4076 }
4077 return rb_rational_raw(INT2FIX(1), y);
4078 }
4079 if (a == 0) return INT2FIX(0);
4080 x = rb_int2big(FIX2LONG(x));
4081 return rb_big_pow(x, y);
4082 }
4083 else if (RB_TYPE_P(y, T_FLOAT)) {
4084 double dy = RFLOAT_VALUE(y);
4085 if (dy == 0.0) return DBL2NUM(1.0);
4086 if (a == 0) {
4087 return DBL2NUM(dy < 0 ? HUGE_VAL : 0.0);
4088 }
4089 if (a == 1) return DBL2NUM(1.0);
4090 {
4091 if (a < 0 && dy != round(dy))
4092 return rb_dbl_complex_new_polar_pi(pow(-(double)a, dy), dy);
4093 return DBL2NUM(pow((double)a, dy));
4094 }
4095 }
4096 else {
4097 return rb_num_coerce_bin(x, y, idPow);
4098 }
4099 }
4100
4101 VALUE
rb_int_pow(VALUE x,VALUE y)4102 rb_int_pow(VALUE x, VALUE y)
4103 {
4104 if (FIXNUM_P(x)) {
4105 return fix_pow(x, y);
4106 }
4107 else if (RB_TYPE_P(x, T_BIGNUM)) {
4108 return rb_big_pow(x, y);
4109 }
4110 return Qnil;
4111 }
4112
4113 VALUE
rb_num_pow(VALUE x,VALUE y)4114 rb_num_pow(VALUE x, VALUE y)
4115 {
4116 VALUE z = rb_int_pow(x, y);
4117 if (!NIL_P(z)) return z;
4118 if (RB_FLOAT_TYPE_P(x)) return rb_float_pow(x, y);
4119 if (SPECIAL_CONST_P(x)) return Qnil;
4120 switch (BUILTIN_TYPE(x)) {
4121 case T_COMPLEX:
4122 return rb_complex_pow(x, y);
4123 case T_RATIONAL:
4124 return rb_rational_pow(x, y);
4125 }
4126 return Qnil;
4127 }
4128
4129 /*
4130 * Document-method: Integer#==
4131 * Document-method: Integer#===
4132 * call-seq:
4133 * int == other -> true or false
4134 *
4135 * Returns +true+ if +int+ equals +other+ numerically.
4136 * Contrast this with Integer#eql?, which requires +other+ to be an Integer.
4137 *
4138 * 1 == 2 #=> false
4139 * 1 == 1.0 #=> true
4140 */
4141
4142 static VALUE
fix_equal(VALUE x,VALUE y)4143 fix_equal(VALUE x, VALUE y)
4144 {
4145 if (x == y) return Qtrue;
4146 if (FIXNUM_P(y)) return Qfalse;
4147 else if (RB_TYPE_P(y, T_BIGNUM)) {
4148 return rb_big_eq(y, x);
4149 }
4150 else if (RB_TYPE_P(y, T_FLOAT)) {
4151 return rb_integer_float_eq(x, y);
4152 }
4153 else {
4154 return num_equal(x, y);
4155 }
4156 }
4157
4158 VALUE
rb_int_equal(VALUE x,VALUE y)4159 rb_int_equal(VALUE x, VALUE y)
4160 {
4161 if (FIXNUM_P(x)) {
4162 return fix_equal(x, y);
4163 }
4164 else if (RB_TYPE_P(x, T_BIGNUM)) {
4165 return rb_big_eq(x, y);
4166 }
4167 return Qnil;
4168 }
4169
4170 /*
4171 * Document-method: Integer#<=>
4172 * call-seq:
4173 * int <=> numeric -> -1, 0, +1, or nil
4174 *
4175 * Comparison---Returns -1, 0, or +1 depending on whether +int+ is
4176 * less than, equal to, or greater than +numeric+.
4177 *
4178 * This is the basis for the tests in the Comparable module.
4179 *
4180 * +nil+ is returned if the two values are incomparable.
4181 */
4182
4183 static VALUE
fix_cmp(VALUE x,VALUE y)4184 fix_cmp(VALUE x, VALUE y)
4185 {
4186 if (x == y) return INT2FIX(0);
4187 if (FIXNUM_P(y)) {
4188 if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
4189 return INT2FIX(-1);
4190 }
4191 else if (RB_TYPE_P(y, T_BIGNUM)) {
4192 VALUE cmp = rb_big_cmp(y, x);
4193 switch (cmp) {
4194 case INT2FIX(+1): return INT2FIX(-1);
4195 case INT2FIX(-1): return INT2FIX(+1);
4196 }
4197 return cmp;
4198 }
4199 else if (RB_TYPE_P(y, T_FLOAT)) {
4200 return rb_integer_float_cmp(x, y);
4201 }
4202 else {
4203 return rb_num_coerce_cmp(x, y, id_cmp);
4204 }
4205 return rb_num_coerce_cmp(x, y, id_cmp);
4206 }
4207
4208 VALUE
rb_int_cmp(VALUE x,VALUE y)4209 rb_int_cmp(VALUE x, VALUE y)
4210 {
4211 if (FIXNUM_P(x)) {
4212 return fix_cmp(x, y);
4213 }
4214 else if (RB_TYPE_P(x, T_BIGNUM)) {
4215 return rb_big_cmp(x, y);
4216 }
4217 else {
4218 rb_raise(rb_eNotImpError, "need to define `<=>' in %s", rb_obj_classname(x));
4219 }
4220 }
4221
4222 /*
4223 * Document-method: Integer#>
4224 * call-seq:
4225 * int > real -> true or false
4226 *
4227 * Returns +true+ if the value of +int+ is greater than that of +real+.
4228 */
4229
4230 static VALUE
fix_gt(VALUE x,VALUE y)4231 fix_gt(VALUE x, VALUE y)
4232 {
4233 if (FIXNUM_P(y)) {
4234 if (FIX2LONG(x) > FIX2LONG(y)) return Qtrue;
4235 return Qfalse;
4236 }
4237 else if (RB_TYPE_P(y, T_BIGNUM)) {
4238 return rb_big_cmp(y, x) == INT2FIX(-1) ? Qtrue : Qfalse;
4239 }
4240 else if (RB_TYPE_P(y, T_FLOAT)) {
4241 return rb_integer_float_cmp(x, y) == INT2FIX(1) ? Qtrue : Qfalse;
4242 }
4243 else {
4244 return rb_num_coerce_relop(x, y, '>');
4245 }
4246 }
4247
4248 VALUE
rb_int_gt(VALUE x,VALUE y)4249 rb_int_gt(VALUE x, VALUE y)
4250 {
4251 if (FIXNUM_P(x)) {
4252 return fix_gt(x, y);
4253 }
4254 else if (RB_TYPE_P(x, T_BIGNUM)) {
4255 return rb_big_gt(x, y);
4256 }
4257 return Qnil;
4258 }
4259
4260 /*
4261 * Document-method: Integer#>=
4262 * call-seq:
4263 * int >= real -> true or false
4264 *
4265 * Returns +true+ if the value of +int+ is greater than or equal to that of
4266 * +real+.
4267 */
4268
4269 static VALUE
fix_ge(VALUE x,VALUE y)4270 fix_ge(VALUE x, VALUE y)
4271 {
4272 if (FIXNUM_P(y)) {
4273 if (FIX2LONG(x) >= FIX2LONG(y)) return Qtrue;
4274 return Qfalse;
4275 }
4276 else if (RB_TYPE_P(y, T_BIGNUM)) {
4277 return rb_big_cmp(y, x) != INT2FIX(+1) ? Qtrue : Qfalse;
4278 }
4279 else if (RB_TYPE_P(y, T_FLOAT)) {
4280 VALUE rel = rb_integer_float_cmp(x, y);
4281 return rel == INT2FIX(1) || rel == INT2FIX(0) ? Qtrue : Qfalse;
4282 }
4283 else {
4284 return rb_num_coerce_relop(x, y, idGE);
4285 }
4286 }
4287
4288 VALUE
rb_int_ge(VALUE x,VALUE y)4289 rb_int_ge(VALUE x, VALUE y)
4290 {
4291 if (FIXNUM_P(x)) {
4292 return fix_ge(x, y);
4293 }
4294 else if (RB_TYPE_P(x, T_BIGNUM)) {
4295 return rb_big_ge(x, y);
4296 }
4297 return Qnil;
4298 }
4299
4300 /*
4301 * Document-method: Integer#<
4302 * call-seq:
4303 * int < real -> true or false
4304 *
4305 * Returns +true+ if the value of +int+ is less than that of +real+.
4306 */
4307
4308 static VALUE
fix_lt(VALUE x,VALUE y)4309 fix_lt(VALUE x, VALUE y)
4310 {
4311 if (FIXNUM_P(y)) {
4312 if (FIX2LONG(x) < FIX2LONG(y)) return Qtrue;
4313 return Qfalse;
4314 }
4315 else if (RB_TYPE_P(y, T_BIGNUM)) {
4316 return rb_big_cmp(y, x) == INT2FIX(+1) ? Qtrue : Qfalse;
4317 }
4318 else if (RB_TYPE_P(y, T_FLOAT)) {
4319 return rb_integer_float_cmp(x, y) == INT2FIX(-1) ? Qtrue : Qfalse;
4320 }
4321 else {
4322 return rb_num_coerce_relop(x, y, '<');
4323 }
4324 }
4325
4326 static VALUE
int_lt(VALUE x,VALUE y)4327 int_lt(VALUE x, VALUE y)
4328 {
4329 if (FIXNUM_P(x)) {
4330 return fix_lt(x, y);
4331 }
4332 else if (RB_TYPE_P(x, T_BIGNUM)) {
4333 return rb_big_lt(x, y);
4334 }
4335 return Qnil;
4336 }
4337
4338 /*
4339 * Document-method: Integer#<=
4340 * call-seq:
4341 * int <= real -> true or false
4342 *
4343 * Returns +true+ if the value of +int+ is less than or equal to that of
4344 * +real+.
4345 */
4346
4347 static VALUE
fix_le(VALUE x,VALUE y)4348 fix_le(VALUE x, VALUE y)
4349 {
4350 if (FIXNUM_P(y)) {
4351 if (FIX2LONG(x) <= FIX2LONG(y)) return Qtrue;
4352 return Qfalse;
4353 }
4354 else if (RB_TYPE_P(y, T_BIGNUM)) {
4355 return rb_big_cmp(y, x) != INT2FIX(-1) ? Qtrue : Qfalse;
4356 }
4357 else if (RB_TYPE_P(y, T_FLOAT)) {
4358 VALUE rel = rb_integer_float_cmp(x, y);
4359 return rel == INT2FIX(-1) || rel == INT2FIX(0) ? Qtrue : Qfalse;
4360 }
4361 else {
4362 return rb_num_coerce_relop(x, y, idLE);
4363 }
4364 }
4365
4366 static VALUE
int_le(VALUE x,VALUE y)4367 int_le(VALUE x, VALUE y)
4368 {
4369 if (FIXNUM_P(x)) {
4370 return fix_le(x, y);
4371 }
4372 else if (RB_TYPE_P(x, T_BIGNUM)) {
4373 return rb_big_le(x, y);
4374 }
4375 return Qnil;
4376 }
4377
4378 /*
4379 * Document-method: Integer#~
4380 * call-seq:
4381 * ~int -> integer
4382 *
4383 * One's complement: returns a number where each bit is flipped.
4384 *
4385 * Inverts the bits in an Integer. As integers are conceptually of
4386 * infinite length, the result acts as if it had an infinite number of
4387 * one bits to the left. In hex representations, this is displayed
4388 * as two periods to the left of the digits.
4389 *
4390 * sprintf("%X", ~0x1122334455) #=> "..FEEDDCCBBAA"
4391 */
4392
4393 static VALUE
fix_comp(VALUE num)4394 fix_comp(VALUE num)
4395 {
4396 return ~num | FIXNUM_FLAG;
4397 }
4398
4399 static VALUE
int_comp(VALUE num)4400 int_comp(VALUE num)
4401 {
4402 if (FIXNUM_P(num)) {
4403 return fix_comp(num);
4404 }
4405 else if (RB_TYPE_P(num, T_BIGNUM)) {
4406 return rb_big_comp(num);
4407 }
4408 return Qnil;
4409 }
4410
4411 static VALUE
num_funcall_bit_1(VALUE y,VALUE arg,int recursive)4412 num_funcall_bit_1(VALUE y, VALUE arg, int recursive)
4413 {
4414 ID func = (ID)((VALUE *)arg)[0];
4415 VALUE x = ((VALUE *)arg)[1];
4416 if (recursive) {
4417 num_funcall_op_1_recursion(x, func, y);
4418 }
4419 return rb_check_funcall(x, func, 1, &y);
4420 }
4421
4422 VALUE
rb_num_coerce_bit(VALUE x,VALUE y,ID func)4423 rb_num_coerce_bit(VALUE x, VALUE y, ID func)
4424 {
4425 VALUE ret, args[3];
4426
4427 args[0] = (VALUE)func;
4428 args[1] = x;
4429 args[2] = y;
4430 do_coerce(&args[1], &args[2], TRUE);
4431 ret = rb_exec_recursive_paired(num_funcall_bit_1,
4432 args[2], args[1], (VALUE)args);
4433 if (ret == Qundef) {
4434 /* show the original object, not coerced object */
4435 coerce_failed(x, y);
4436 }
4437 return ret;
4438 }
4439
4440 /*
4441 * Document-method: Integer#&
4442 * call-seq:
4443 * int & other_int -> integer
4444 *
4445 * Bitwise AND.
4446 */
4447
4448 static VALUE
fix_and(VALUE x,VALUE y)4449 fix_and(VALUE x, VALUE y)
4450 {
4451 if (FIXNUM_P(y)) {
4452 long val = FIX2LONG(x) & FIX2LONG(y);
4453 return LONG2NUM(val);
4454 }
4455
4456 if (RB_TYPE_P(y, T_BIGNUM)) {
4457 return rb_big_and(y, x);
4458 }
4459
4460 return rb_num_coerce_bit(x, y, '&');
4461 }
4462
4463 VALUE
rb_int_and(VALUE x,VALUE y)4464 rb_int_and(VALUE x, VALUE y)
4465 {
4466 if (FIXNUM_P(x)) {
4467 return fix_and(x, y);
4468 }
4469 else if (RB_TYPE_P(x, T_BIGNUM)) {
4470 return rb_big_and(x, y);
4471 }
4472 return Qnil;
4473 }
4474
4475 /*
4476 * Document-method: Integer#|
4477 * call-seq:
4478 * int | other_int -> integer
4479 *
4480 * Bitwise OR.
4481 */
4482
4483 static VALUE
fix_or(VALUE x,VALUE y)4484 fix_or(VALUE x, VALUE y)
4485 {
4486 if (FIXNUM_P(y)) {
4487 long val = FIX2LONG(x) | FIX2LONG(y);
4488 return LONG2NUM(val);
4489 }
4490
4491 if (RB_TYPE_P(y, T_BIGNUM)) {
4492 return rb_big_or(y, x);
4493 }
4494
4495 return rb_num_coerce_bit(x, y, '|');
4496 }
4497
4498 static VALUE
int_or(VALUE x,VALUE y)4499 int_or(VALUE x, VALUE y)
4500 {
4501 if (FIXNUM_P(x)) {
4502 return fix_or(x, y);
4503 }
4504 else if (RB_TYPE_P(x, T_BIGNUM)) {
4505 return rb_big_or(x, y);
4506 }
4507 return Qnil;
4508 }
4509
4510 /*
4511 * Document-method: Integer#^
4512 * call-seq:
4513 * int ^ other_int -> integer
4514 *
4515 * Bitwise EXCLUSIVE OR.
4516 */
4517
4518 static VALUE
fix_xor(VALUE x,VALUE y)4519 fix_xor(VALUE x, VALUE y)
4520 {
4521 if (FIXNUM_P(y)) {
4522 long val = FIX2LONG(x) ^ FIX2LONG(y);
4523 return LONG2NUM(val);
4524 }
4525
4526 if (RB_TYPE_P(y, T_BIGNUM)) {
4527 return rb_big_xor(y, x);
4528 }
4529
4530 return rb_num_coerce_bit(x, y, '^');
4531 }
4532
4533 static VALUE
int_xor(VALUE x,VALUE y)4534 int_xor(VALUE x, VALUE y)
4535 {
4536 if (FIXNUM_P(x)) {
4537 return fix_xor(x, y);
4538 }
4539 else if (RB_TYPE_P(x, T_BIGNUM)) {
4540 return rb_big_xor(x, y);
4541 }
4542 return Qnil;
4543 }
4544
4545 /*
4546 * Document-method: Integer#<<
4547 * call-seq:
4548 * int << count -> integer
4549 *
4550 * Returns +int+ shifted left +count+ positions, or right if +count+
4551 * is negative.
4552 */
4553
4554 static VALUE
rb_fix_lshift(VALUE x,VALUE y)4555 rb_fix_lshift(VALUE x, VALUE y)
4556 {
4557 long val, width;
4558
4559 val = NUM2LONG(x);
4560 if (!FIXNUM_P(y))
4561 return rb_big_lshift(rb_int2big(val), y);
4562 width = FIX2LONG(y);
4563 if (width < 0)
4564 return fix_rshift(val, (unsigned long)-width);
4565 return fix_lshift(val, width);
4566 }
4567
4568 static VALUE
fix_lshift(long val,unsigned long width)4569 fix_lshift(long val, unsigned long width)
4570 {
4571 if (width > (SIZEOF_LONG*CHAR_BIT-1)
4572 || ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) {
4573 return rb_big_lshift(rb_int2big(val), ULONG2NUM(width));
4574 }
4575 val = val << width;
4576 return LONG2NUM(val);
4577 }
4578
4579 VALUE
rb_int_lshift(VALUE x,VALUE y)4580 rb_int_lshift(VALUE x, VALUE y)
4581 {
4582 if (FIXNUM_P(x)) {
4583 return rb_fix_lshift(x, y);
4584 }
4585 else if (RB_TYPE_P(x, T_BIGNUM)) {
4586 return rb_big_lshift(x, y);
4587 }
4588 return Qnil;
4589 }
4590
4591 /*
4592 * Document-method: Integer#>>
4593 * call-seq:
4594 * int >> count -> integer
4595 *
4596 * Returns +int+ shifted right +count+ positions, or left if +count+
4597 * is negative.
4598 */
4599
4600 static VALUE
rb_fix_rshift(VALUE x,VALUE y)4601 rb_fix_rshift(VALUE x, VALUE y)
4602 {
4603 long i, val;
4604
4605 val = FIX2LONG(x);
4606 if (!FIXNUM_P(y))
4607 return rb_big_rshift(rb_int2big(val), y);
4608 i = FIX2LONG(y);
4609 if (i == 0) return x;
4610 if (i < 0)
4611 return fix_lshift(val, (unsigned long)-i);
4612 return fix_rshift(val, i);
4613 }
4614
4615 static VALUE
fix_rshift(long val,unsigned long i)4616 fix_rshift(long val, unsigned long i)
4617 {
4618 if (i >= sizeof(long)*CHAR_BIT-1) {
4619 if (val < 0) return INT2FIX(-1);
4620 return INT2FIX(0);
4621 }
4622 val = RSHIFT(val, i);
4623 return LONG2FIX(val);
4624 }
4625
4626 static VALUE
rb_int_rshift(VALUE x,VALUE y)4627 rb_int_rshift(VALUE x, VALUE y)
4628 {
4629 if (FIXNUM_P(x)) {
4630 return rb_fix_rshift(x, y);
4631 }
4632 else if (RB_TYPE_P(x, T_BIGNUM)) {
4633 return rb_big_rshift(x, y);
4634 }
4635 return Qnil;
4636 }
4637
4638 /*
4639 * Document-method: Integer#[]
4640 * call-seq:
4641 * int[n] -> 0, 1
4642 *
4643 * Bit Reference---Returns the <code>n</code>th bit in the
4644 * binary representation of +int+, where <code>int[0]</code>
4645 * is the least significant bit.
4646 *
4647 * a = 0b11001100101010
4648 * 30.downto(0) {|n| print a[n] }
4649 * #=> 0000000000000000011001100101010
4650 *
4651 * a = 9**15
4652 * 50.downto(0) {|n| print a[n] }
4653 * #=> 000101110110100000111000011110010100111100010111001
4654 */
4655
4656 static VALUE
fix_aref(VALUE fix,VALUE idx)4657 fix_aref(VALUE fix, VALUE idx)
4658 {
4659 long val = FIX2LONG(fix);
4660 long i;
4661
4662 idx = rb_to_int(idx);
4663 if (!FIXNUM_P(idx)) {
4664 idx = rb_big_norm(idx);
4665 if (!FIXNUM_P(idx)) {
4666 if (!BIGNUM_SIGN(idx) || val >= 0)
4667 return INT2FIX(0);
4668 return INT2FIX(1);
4669 }
4670 }
4671 i = FIX2LONG(idx);
4672
4673 if (i < 0) return INT2FIX(0);
4674 if (SIZEOF_LONG*CHAR_BIT-1 <= i) {
4675 if (val < 0) return INT2FIX(1);
4676 return INT2FIX(0);
4677 }
4678 if (val & (1L<<i))
4679 return INT2FIX(1);
4680 return INT2FIX(0);
4681 }
4682
4683 static VALUE
int_aref(VALUE num,VALUE idx)4684 int_aref(VALUE num, VALUE idx)
4685 {
4686 if (FIXNUM_P(num)) {
4687 return fix_aref(num, idx);
4688 }
4689 else if (RB_TYPE_P(num, T_BIGNUM)) {
4690 return rb_big_aref(num, idx);
4691 }
4692 return Qnil;
4693 }
4694
4695 /*
4696 * Document-method: Integer#to_f
4697 * call-seq:
4698 * int.to_f -> float
4699 *
4700 * Converts +int+ to a Float. If +int+ doesn't fit in a Float,
4701 * the result is infinity.
4702 */
4703
4704 static VALUE
int_to_f(VALUE num)4705 int_to_f(VALUE num)
4706 {
4707 double val;
4708
4709 if (FIXNUM_P(num)) {
4710 val = (double)FIX2LONG(num);
4711 }
4712 else if (RB_TYPE_P(num, T_BIGNUM)) {
4713 val = rb_big2dbl(num);
4714 }
4715 else {
4716 rb_raise(rb_eNotImpError, "Unknown subclass for to_f: %s", rb_obj_classname(num));
4717 }
4718
4719 return DBL2NUM(val);
4720 }
4721
4722 /*
4723 * Document-method: Integer#abs
4724 * Document-method: Integer#magnitude
4725 * call-seq:
4726 * int.abs -> integer
4727 * int.magnitude -> integer
4728 *
4729 * Returns the absolute value of +int+.
4730 *
4731 * (-12345).abs #=> 12345
4732 * -12345.abs #=> 12345
4733 * 12345.abs #=> 12345
4734 *
4735 * Integer#magnitude is an alias for Integer#abs.
4736 */
4737
4738 static VALUE
fix_abs(VALUE fix)4739 fix_abs(VALUE fix)
4740 {
4741 long i = FIX2LONG(fix);
4742
4743 if (i < 0) i = -i;
4744
4745 return LONG2NUM(i);
4746 }
4747
4748 VALUE
rb_int_abs(VALUE num)4749 rb_int_abs(VALUE num)
4750 {
4751 if (FIXNUM_P(num)) {
4752 return fix_abs(num);
4753 }
4754 else if (RB_TYPE_P(num, T_BIGNUM)) {
4755 return rb_big_abs(num);
4756 }
4757 return Qnil;
4758 }
4759
4760 /*
4761 * Document-method: Integer#size
4762 * call-seq:
4763 * int.size -> int
4764 *
4765 * Returns the number of bytes in the machine representation of +int+
4766 * (machine dependent).
4767 *
4768 * 1.size #=> 8
4769 * -1.size #=> 8
4770 * 2147483647.size #=> 8
4771 * (256**10 - 1).size #=> 10
4772 * (256**20 - 1).size #=> 20
4773 * (256**40 - 1).size #=> 40
4774 */
4775
4776 static VALUE
fix_size(VALUE fix)4777 fix_size(VALUE fix)
4778 {
4779 return INT2FIX(sizeof(long));
4780 }
4781
4782 static VALUE
int_size(VALUE num)4783 int_size(VALUE num)
4784 {
4785 if (FIXNUM_P(num)) {
4786 return fix_size(num);
4787 }
4788 else if (RB_TYPE_P(num, T_BIGNUM)) {
4789 return rb_big_size_m(num);
4790 }
4791 return Qnil;
4792 }
4793
4794 /*
4795 * Document-method: Integer#bit_length
4796 * call-seq:
4797 * int.bit_length -> integer
4798 *
4799 * Returns the number of bits of the value of +int+.
4800 *
4801 * "Number of bits" means the bit position of the highest bit
4802 * which is different from the sign bit
4803 * (where the least significant bit has bit position 1).
4804 * If there is no such bit (zero or minus one), zero is returned.
4805 *
4806 * I.e. this method returns <i>ceil(log2(int < 0 ? -int : int+1))</i>.
4807 *
4808 * (-2**1000-1).bit_length #=> 1001
4809 * (-2**1000).bit_length #=> 1000
4810 * (-2**1000+1).bit_length #=> 1000
4811 * (-2**12-1).bit_length #=> 13
4812 * (-2**12).bit_length #=> 12
4813 * (-2**12+1).bit_length #=> 12
4814 * -0x101.bit_length #=> 9
4815 * -0x100.bit_length #=> 8
4816 * -0xff.bit_length #=> 8
4817 * -2.bit_length #=> 1
4818 * -1.bit_length #=> 0
4819 * 0.bit_length #=> 0
4820 * 1.bit_length #=> 1
4821 * 0xff.bit_length #=> 8
4822 * 0x100.bit_length #=> 9
4823 * (2**12-1).bit_length #=> 12
4824 * (2**12).bit_length #=> 13
4825 * (2**12+1).bit_length #=> 13
4826 * (2**1000-1).bit_length #=> 1000
4827 * (2**1000).bit_length #=> 1001
4828 * (2**1000+1).bit_length #=> 1001
4829 *
4830 * This method can be used to detect overflow in Array#pack as follows:
4831 *
4832 * if n.bit_length < 32
4833 * [n].pack("l") # no overflow
4834 * else
4835 * raise "overflow"
4836 * end
4837 */
4838
4839 static VALUE
rb_fix_bit_length(VALUE fix)4840 rb_fix_bit_length(VALUE fix)
4841 {
4842 long v = FIX2LONG(fix);
4843 if (v < 0)
4844 v = ~v;
4845 return LONG2FIX(bit_length(v));
4846 }
4847
4848 static VALUE
rb_int_bit_length(VALUE num)4849 rb_int_bit_length(VALUE num)
4850 {
4851 if (FIXNUM_P(num)) {
4852 return rb_fix_bit_length(num);
4853 }
4854 else if (RB_TYPE_P(num, T_BIGNUM)) {
4855 return rb_big_bit_length(num);
4856 }
4857 return Qnil;
4858 }
4859
4860 /*
4861 * Document-method: Integer#digits
4862 * call-seq:
4863 * int.digits -> array
4864 * int.digits(base) -> array
4865 *
4866 * Returns the digits of +int+'s place-value representation
4867 * with radix +base+ (default: 10).
4868 * The digits are returned as an array with the least significant digit
4869 * as the first array element.
4870 *
4871 * +base+ must be greater than or equal to 2.
4872 *
4873 * 12345.digits #=> [5, 4, 3, 2, 1]
4874 * 12345.digits(7) #=> [4, 6, 6, 0, 5]
4875 * 12345.digits(100) #=> [45, 23, 1]
4876 *
4877 * -12345.digits(7) #=> Math::DomainError
4878 */
4879
4880 static VALUE
rb_fix_digits(VALUE fix,long base)4881 rb_fix_digits(VALUE fix, long base)
4882 {
4883 VALUE digits;
4884 long x = FIX2LONG(fix);
4885
4886 assert(x >= 0);
4887
4888 if (base < 2)
4889 rb_raise(rb_eArgError, "invalid radix %ld", base);
4890
4891 if (x == 0)
4892 return rb_ary_new_from_args(1, INT2FIX(0));
4893
4894 digits = rb_ary_new();
4895 while (x > 0) {
4896 long q = x % base;
4897 rb_ary_push(digits, LONG2NUM(q));
4898 x /= base;
4899 }
4900
4901 return digits;
4902 }
4903
4904 static VALUE
rb_int_digits_bigbase(VALUE num,VALUE base)4905 rb_int_digits_bigbase(VALUE num, VALUE base)
4906 {
4907 VALUE digits;
4908
4909 assert(!rb_num_negative_p(num));
4910
4911 if (RB_TYPE_P(base, T_BIGNUM))
4912 base = rb_big_norm(base);
4913
4914 if (FIXNUM_P(base) && FIX2LONG(base) < 2)
4915 rb_raise(rb_eArgError, "invalid radix %ld", FIX2LONG(base));
4916 else if (RB_TYPE_P(base, T_BIGNUM) && BIGNUM_NEGATIVE_P(base))
4917 rb_raise(rb_eArgError, "negative radix");
4918
4919 if (FIXNUM_P(base) && FIXNUM_P(num))
4920 return rb_fix_digits(num, FIX2LONG(base));
4921
4922 if (FIXNUM_P(num))
4923 return rb_ary_new_from_args(1, num);
4924
4925 digits = rb_ary_new();
4926 while (!FIXNUM_P(num) || FIX2LONG(num) > 0) {
4927 VALUE qr = rb_int_divmod(num, base);
4928 rb_ary_push(digits, RARRAY_AREF(qr, 1));
4929 num = RARRAY_AREF(qr, 0);
4930 }
4931
4932 return digits;
4933 }
4934
4935 static VALUE
rb_int_digits(int argc,VALUE * argv,VALUE num)4936 rb_int_digits(int argc, VALUE *argv, VALUE num)
4937 {
4938 VALUE base_value;
4939 long base;
4940
4941 if (rb_num_negative_p(num))
4942 rb_raise(rb_eMathDomainError, "out of domain");
4943
4944 if (rb_check_arity(argc, 0, 1)) {
4945 base_value = rb_to_int(argv[0]);
4946 if (!RB_INTEGER_TYPE_P(base_value))
4947 rb_raise(rb_eTypeError, "wrong argument type %s (expected Integer)",
4948 rb_obj_classname(argv[0]));
4949 if (RB_TYPE_P(base_value, T_BIGNUM))
4950 return rb_int_digits_bigbase(num, base_value);
4951
4952 base = FIX2LONG(base_value);
4953 if (base < 0)
4954 rb_raise(rb_eArgError, "negative radix");
4955 else if (base < 2)
4956 rb_raise(rb_eArgError, "invalid radix %ld", base);
4957 }
4958 else
4959 base = 10;
4960
4961 if (FIXNUM_P(num))
4962 return rb_fix_digits(num, base);
4963 else if (RB_TYPE_P(num, T_BIGNUM))
4964 return rb_int_digits_bigbase(num, LONG2FIX(base));
4965
4966 return Qnil;
4967 }
4968
4969 /*
4970 * Document-method: Integer#upto
4971 * call-seq:
4972 * int.upto(limit) {|i| block } -> self
4973 * int.upto(limit) -> an_enumerator
4974 *
4975 * Iterates the given block, passing in integer values from +int+ up to and
4976 * including +limit+.
4977 *
4978 * If no block is given, an Enumerator is returned instead.
4979 *
4980 * 5.upto(10) {|i| print i, " " } #=> 5 6 7 8 9 10
4981 */
4982
4983 static VALUE
int_upto_size(VALUE from,VALUE args,VALUE eobj)4984 int_upto_size(VALUE from, VALUE args, VALUE eobj)
4985 {
4986 return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(1), FALSE);
4987 }
4988
4989 static VALUE
int_upto(VALUE from,VALUE to)4990 int_upto(VALUE from, VALUE to)
4991 {
4992 RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
4993 if (FIXNUM_P(from) && FIXNUM_P(to)) {
4994 long i, end;
4995
4996 end = FIX2LONG(to);
4997 for (i = FIX2LONG(from); i <= end; i++) {
4998 rb_yield(LONG2FIX(i));
4999 }
5000 }
5001 else {
5002 VALUE i = from, c;
5003
5004 while (!(c = rb_funcall(i, '>', 1, to))) {
5005 rb_yield(i);
5006 i = rb_funcall(i, '+', 1, INT2FIX(1));
5007 }
5008 if (NIL_P(c)) rb_cmperr(i, to);
5009 }
5010 return from;
5011 }
5012
5013 /*
5014 * Document-method: Integer#downto
5015 * call-seq:
5016 * int.downto(limit) {|i| block } -> self
5017 * int.downto(limit) -> an_enumerator
5018 *
5019 * Iterates the given block, passing in decreasing values from +int+ down to
5020 * and including +limit+.
5021 *
5022 * If no block is given, an Enumerator is returned instead.
5023 *
5024 * 5.downto(1) { |n| print n, ".. " }
5025 * puts "Liftoff!"
5026 * #=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
5027 */
5028
5029 static VALUE
int_downto_size(VALUE from,VALUE args,VALUE eobj)5030 int_downto_size(VALUE from, VALUE args, VALUE eobj)
5031 {
5032 return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(-1), FALSE);
5033 }
5034
5035 static VALUE
int_downto(VALUE from,VALUE to)5036 int_downto(VALUE from, VALUE to)
5037 {
5038 RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
5039 if (FIXNUM_P(from) && FIXNUM_P(to)) {
5040 long i, end;
5041
5042 end = FIX2LONG(to);
5043 for (i=FIX2LONG(from); i >= end; i--) {
5044 rb_yield(LONG2FIX(i));
5045 }
5046 }
5047 else {
5048 VALUE i = from, c;
5049
5050 while (!(c = rb_funcall(i, '<', 1, to))) {
5051 rb_yield(i);
5052 i = rb_funcall(i, '-', 1, INT2FIX(1));
5053 }
5054 if (NIL_P(c)) rb_cmperr(i, to);
5055 }
5056 return from;
5057 }
5058
5059 /*
5060 * Document-method: Integer#times
5061 * call-seq:
5062 * int.times {|i| block } -> self
5063 * int.times -> an_enumerator
5064 *
5065 * Iterates the given block +int+ times, passing in values from zero to
5066 * <code>int - 1</code>.
5067 *
5068 * If no block is given, an Enumerator is returned instead.
5069 *
5070 * 5.times {|i| print i, " " } #=> 0 1 2 3 4
5071 */
5072
5073 static VALUE
int_dotimes_size(VALUE num,VALUE args,VALUE eobj)5074 int_dotimes_size(VALUE num, VALUE args, VALUE eobj)
5075 {
5076 if (FIXNUM_P(num)) {
5077 if (NUM2LONG(num) <= 0) return INT2FIX(0);
5078 }
5079 else {
5080 if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) return INT2FIX(0);
5081 }
5082 return num;
5083 }
5084
5085 static VALUE
int_dotimes(VALUE num)5086 int_dotimes(VALUE num)
5087 {
5088 RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
5089
5090 if (FIXNUM_P(num)) {
5091 long i, end;
5092
5093 end = FIX2LONG(num);
5094 for (i=0; i<end; i++) {
5095 rb_yield_1(LONG2FIX(i));
5096 }
5097 }
5098 else {
5099 VALUE i = INT2FIX(0);
5100
5101 for (;;) {
5102 if (!RTEST(rb_funcall(i, '<', 1, num))) break;
5103 rb_yield(i);
5104 i = rb_funcall(i, '+', 1, INT2FIX(1));
5105 }
5106 }
5107 return num;
5108 }
5109
5110 /*
5111 * Document-method: Integer#round
5112 * call-seq:
5113 * int.round([ndigits] [, half: mode]) -> integer or float
5114 *
5115 * Returns +int+ rounded to the nearest value with
5116 * a precision of +ndigits+ decimal digits (default: 0).
5117 *
5118 * When the precision is negative, the returned value is an integer
5119 * with at least <code>ndigits.abs</code> trailing zeros.
5120 *
5121 * Returns +self+ when +ndigits+ is zero or positive.
5122 *
5123 * 1.round #=> 1
5124 * 1.round(2) #=> 1
5125 * 15.round(-1) #=> 20
5126 * (-15).round(-1) #=> -20
5127 *
5128 * The optional +half+ keyword argument is available
5129 * similar to Float#round.
5130 *
5131 * 25.round(-1, half: :up) #=> 30
5132 * 25.round(-1, half: :down) #=> 20
5133 * 25.round(-1, half: :even) #=> 20
5134 * 35.round(-1, half: :up) #=> 40
5135 * 35.round(-1, half: :down) #=> 30
5136 * 35.round(-1, half: :even) #=> 40
5137 * (-25).round(-1, half: :up) #=> -30
5138 * (-25).round(-1, half: :down) #=> -20
5139 * (-25).round(-1, half: :even) #=> -20
5140 */
5141
5142 static VALUE
int_round(int argc,VALUE * argv,VALUE num)5143 int_round(int argc, VALUE* argv, VALUE num)
5144 {
5145 int ndigits;
5146 int mode;
5147 VALUE nd, opt;
5148
5149 if (!rb_scan_args(argc, argv, "01:", &nd, &opt)) return num;
5150 ndigits = NUM2INT(nd);
5151 mode = rb_num_get_rounding_option(opt);
5152 if (ndigits >= 0) {
5153 return num;
5154 }
5155 return rb_int_round(num, ndigits, mode);
5156 }
5157
5158 /*
5159 * Document-method: Integer#floor
5160 * call-seq:
5161 * int.floor([ndigits]) -> integer or float
5162 *
5163 * Returns the largest number less than or equal to +int+ with
5164 * a precision of +ndigits+ decimal digits (default: 0).
5165 *
5166 * When the precision is negative, the returned value is an integer
5167 * with at least <code>ndigits.abs</code> trailing zeros.
5168 *
5169 * Returns +self+ when +ndigits+ is zero or positive.
5170 *
5171 * 1.floor #=> 1
5172 * 1.floor(2) #=> 1
5173 * 18.floor(-1) #=> 10
5174 * (-18).floor(-1) #=> -20
5175 */
5176
5177 static VALUE
int_floor(int argc,VALUE * argv,VALUE num)5178 int_floor(int argc, VALUE* argv, VALUE num)
5179 {
5180 int ndigits;
5181
5182 if (!rb_check_arity(argc, 0, 1)) return num;
5183 ndigits = NUM2INT(argv[0]);
5184 if (ndigits >= 0) {
5185 return num;
5186 }
5187 return rb_int_floor(num, ndigits);
5188 }
5189
5190 /*
5191 * Document-method: Integer#ceil
5192 * call-seq:
5193 * int.ceil([ndigits]) -> integer or float
5194 *
5195 * Returns the smallest number greater than or equal to +int+ with
5196 * a precision of +ndigits+ decimal digits (default: 0).
5197 *
5198 * When the precision is negative, the returned value is an integer
5199 * with at least <code>ndigits.abs</code> trailing zeros.
5200 *
5201 * Returns +self+ when +ndigits+ is zero or positive.
5202 *
5203 * 1.ceil #=> 1
5204 * 1.ceil(2) #=> 1
5205 * 18.ceil(-1) #=> 20
5206 * (-18).ceil(-1) #=> -10
5207 */
5208
5209 static VALUE
int_ceil(int argc,VALUE * argv,VALUE num)5210 int_ceil(int argc, VALUE* argv, VALUE num)
5211 {
5212 int ndigits;
5213
5214 if (!rb_check_arity(argc, 0, 1)) return num;
5215 ndigits = NUM2INT(argv[0]);
5216 if (ndigits >= 0) {
5217 return num;
5218 }
5219 return rb_int_ceil(num, ndigits);
5220 }
5221
5222 /*
5223 * Document-method: Integer#truncate
5224 * call-seq:
5225 * int.truncate([ndigits]) -> integer or float
5226 *
5227 * Returns +int+ truncated (toward zero) to
5228 * a precision of +ndigits+ decimal digits (default: 0).
5229 *
5230 * When the precision is negative, the returned value is an integer
5231 * with at least <code>ndigits.abs</code> trailing zeros.
5232 *
5233 * Returns +self+ when +ndigits+ is zero or positive.
5234 *
5235 * 1.truncate #=> 1
5236 * 1.truncate(2) #=> 1
5237 * 18.truncate(-1) #=> 10
5238 * (-18).truncate(-1) #=> -10
5239 */
5240
5241 static VALUE
int_truncate(int argc,VALUE * argv,VALUE num)5242 int_truncate(int argc, VALUE* argv, VALUE num)
5243 {
5244 int ndigits;
5245
5246 if (!rb_check_arity(argc, 0, 1)) return num;
5247 ndigits = NUM2INT(argv[0]);
5248 if (ndigits >= 0) {
5249 return num;
5250 }
5251 return rb_int_truncate(num, ndigits);
5252 }
5253
5254 #define DEFINE_INT_SQRT(rettype, prefix, argtype) \
5255 rettype \
5256 prefix##_isqrt(argtype n) \
5257 { \
5258 if (!argtype##_IN_DOUBLE_P(n)) { \
5259 unsigned int b = bit_length(n); \
5260 argtype t; \
5261 rettype x = (rettype)(n >> (b/2+1)); \
5262 x |= ((rettype)1LU << (b-1)/2); \
5263 while ((t = n/x) < (argtype)x) x = (rettype)((x + t) >> 1); \
5264 return x; \
5265 } \
5266 return (rettype)sqrt(argtype##_TO_DOUBLE(n)); \
5267 }
5268
5269 #if SIZEOF_LONG*CHAR_BIT > DBL_MANT_DIG
5270 # define RB_ULONG_IN_DOUBLE_P(n) ((n) < (1UL << DBL_MANT_DIG))
5271 #else
5272 # define RB_ULONG_IN_DOUBLE_P(n) 1
5273 #endif
5274 #define RB_ULONG_TO_DOUBLE(n) (double)(n)
5275 #define RB_ULONG unsigned long
5276 DEFINE_INT_SQRT(unsigned long, rb_ulong, RB_ULONG)
5277
5278 #if 2*SIZEOF_BDIGIT > SIZEOF_LONG
5279 # if 2*SIZEOF_BDIGIT*CHAR_BIT > DBL_MANT_DIG
5280 # define BDIGIT_DBL_IN_DOUBLE_P(n) ((n) < ((BDIGIT_DBL)1UL << DBL_MANT_DIG))
5281 # else
5282 # define BDIGIT_DBL_IN_DOUBLE_P(n) 1
5283 # endif
5284 # ifdef ULL_TO_DOUBLE
5285 # define BDIGIT_DBL_TO_DOUBLE(n) ULL_TO_DOUBLE(n)
5286 # else
5287 # define BDIGIT_DBL_TO_DOUBLE(n) (double)(n)
5288 # endif
5289 DEFINE_INT_SQRT(BDIGIT, rb_bdigit_dbl, BDIGIT_DBL)
5290 #endif
5291
5292 #define domain_error(msg) \
5293 rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg)
5294
5295 VALUE rb_big_isqrt(VALUE);
5296
5297 /*
5298 * Document-method: Integer::sqrt
5299 * call-seq:
5300 * Integer.sqrt(n) -> integer
5301 *
5302 * Returns the integer square root of the non-negative integer +n+,
5303 * i.e. the largest non-negative integer less than or equal to the
5304 * square root of +n+.
5305 *
5306 * Integer.sqrt(0) #=> 0
5307 * Integer.sqrt(1) #=> 1
5308 * Integer.sqrt(24) #=> 4
5309 * Integer.sqrt(25) #=> 5
5310 * Integer.sqrt(10**400) #=> 10**200
5311 *
5312 * Equivalent to <code>Math.sqrt(n).floor</code>, except that
5313 * the result of the latter code may differ from the true value
5314 * due to the limited precision of floating point arithmetic.
5315 *
5316 * Integer.sqrt(10**46) #=> 100000000000000000000000
5317 * Math.sqrt(10**46).floor #=> 99999999999999991611392 (!)
5318 *
5319 * If +n+ is not an Integer, it is converted to an Integer first.
5320 * If +n+ is negative, a Math::DomainError is raised.
5321 */
5322
5323 static VALUE
rb_int_s_isqrt(VALUE self,VALUE num)5324 rb_int_s_isqrt(VALUE self, VALUE num)
5325 {
5326 unsigned long n, sq;
5327 num = rb_to_int(num);
5328 if (FIXNUM_P(num)) {
5329 if (FIXNUM_NEGATIVE_P(num)) {
5330 domain_error("isqrt");
5331 }
5332 n = FIX2ULONG(num);
5333 sq = rb_ulong_isqrt(n);
5334 return LONG2FIX(sq);
5335 }
5336 else {
5337 size_t biglen;
5338 if (RBIGNUM_NEGATIVE_P(num)) {
5339 domain_error("isqrt");
5340 }
5341 biglen = BIGNUM_LEN(num);
5342 if (biglen == 0) return INT2FIX(0);
5343 #if SIZEOF_BDIGIT <= SIZEOF_LONG
5344 /* short-circuit */
5345 if (biglen == 1) {
5346 n = BIGNUM_DIGITS(num)[0];
5347 sq = rb_ulong_isqrt(n);
5348 return ULONG2NUM(sq);
5349 }
5350 #endif
5351 return rb_big_isqrt(num);
5352 }
5353 }
5354
5355 /*
5356 * Document-class: ZeroDivisionError
5357 *
5358 * Raised when attempting to divide an integer by 0.
5359 *
5360 * 42 / 0 #=> ZeroDivisionError: divided by 0
5361 *
5362 * Note that only division by an exact 0 will raise the exception:
5363 *
5364 * 42 / 0.0 #=> Float::INFINITY
5365 * 42 / -0.0 #=> -Float::INFINITY
5366 * 0 / 0.0 #=> NaN
5367 */
5368
5369 /*
5370 * Document-class: FloatDomainError
5371 *
5372 * Raised when attempting to convert special float values (in particular
5373 * +Infinity+ or +NaN+) to numerical classes which don't support them.
5374 *
5375 * Float::INFINITY.to_r #=> FloatDomainError: Infinity
5376 */
5377
5378 /*
5379 * Document-class: Numeric
5380 *
5381 * Numeric is the class from which all higher-level numeric classes should inherit.
5382 *
5383 * Numeric allows instantiation of heap-allocated objects. Other core numeric classes such as
5384 * Integer are implemented as immediates, which means that each Integer is a single immutable
5385 * object which is always passed by value.
5386 *
5387 * a = 1
5388 * 1.object_id == a.object_id #=> true
5389 *
5390 * There can only ever be one instance of the integer +1+, for example. Ruby ensures this
5391 * by preventing instantiation. If duplication is attempted, the same instance is returned.
5392 *
5393 * Integer.new(1) #=> NoMethodError: undefined method `new' for Integer:Class
5394 * 1.dup #=> 1
5395 * 1.object_id == 1.dup.object_id #=> true
5396 *
5397 * For this reason, Numeric should be used when defining other numeric classes.
5398 *
5399 * Classes which inherit from Numeric must implement +coerce+, which returns a two-member
5400 * Array containing an object that has been coerced into an instance of the new class
5401 * and +self+ (see #coerce).
5402 *
5403 * Inheriting classes should also implement arithmetic operator methods (<code>+</code>,
5404 * <code>-</code>, <code>*</code> and <code>/</code>) and the <code><=></code> operator (see
5405 * Comparable). These methods may rely on +coerce+ to ensure interoperability with
5406 * instances of other numeric classes.
5407 *
5408 * class Tally < Numeric
5409 * def initialize(string)
5410 * @string = string
5411 * end
5412 *
5413 * def to_s
5414 * @string
5415 * end
5416 *
5417 * def to_i
5418 * @string.size
5419 * end
5420 *
5421 * def coerce(other)
5422 * [self.class.new('|' * other.to_i), self]
5423 * end
5424 *
5425 * def <=>(other)
5426 * to_i <=> other.to_i
5427 * end
5428 *
5429 * def +(other)
5430 * self.class.new('|' * (to_i + other.to_i))
5431 * end
5432 *
5433 * def -(other)
5434 * self.class.new('|' * (to_i - other.to_i))
5435 * end
5436 *
5437 * def *(other)
5438 * self.class.new('|' * (to_i * other.to_i))
5439 * end
5440 *
5441 * def /(other)
5442 * self.class.new('|' * (to_i / other.to_i))
5443 * end
5444 * end
5445 *
5446 * tally = Tally.new('||')
5447 * puts tally * 2 #=> "||||"
5448 * puts tally > 1 #=> true
5449 */
5450 void
Init_Numeric(void)5451 Init_Numeric(void)
5452 {
5453 #undef rb_intern
5454 #define rb_intern(str) rb_intern_const(str)
5455
5456 #ifdef _UNICOSMP
5457 /* Turn off floating point exceptions for divide by zero, etc. */
5458 _set_Creg(0, 0);
5459 #endif
5460 id_coerce = rb_intern("coerce");
5461 id_div = rb_intern("div");
5462 id_divmod = rb_intern("divmod");
5463
5464 rb_eZeroDivError = rb_define_class("ZeroDivisionError", rb_eStandardError);
5465 rb_eFloatDomainError = rb_define_class("FloatDomainError", rb_eRangeError);
5466 rb_cNumeric = rb_define_class("Numeric", rb_cObject);
5467
5468 rb_define_method(rb_cNumeric, "singleton_method_added", num_sadded, 1);
5469 rb_include_module(rb_cNumeric, rb_mComparable);
5470 rb_define_method(rb_cNumeric, "coerce", num_coerce, 1);
5471 rb_define_method(rb_cNumeric, "clone", num_clone, -1);
5472 rb_define_method(rb_cNumeric, "dup", num_dup, 0);
5473
5474 rb_define_method(rb_cNumeric, "i", num_imaginary, 0);
5475 rb_define_method(rb_cNumeric, "+@", num_uplus, 0);
5476 rb_define_method(rb_cNumeric, "-@", num_uminus, 0);
5477 rb_define_method(rb_cNumeric, "<=>", num_cmp, 1);
5478 rb_define_method(rb_cNumeric, "eql?", num_eql, 1);
5479 rb_define_method(rb_cNumeric, "fdiv", num_fdiv, 1);
5480 rb_define_method(rb_cNumeric, "div", num_div, 1);
5481 rb_define_method(rb_cNumeric, "divmod", num_divmod, 1);
5482 rb_define_method(rb_cNumeric, "%", num_modulo, 1);
5483 rb_define_method(rb_cNumeric, "modulo", num_modulo, 1);
5484 rb_define_method(rb_cNumeric, "remainder", num_remainder, 1);
5485 rb_define_method(rb_cNumeric, "abs", num_abs, 0);
5486 rb_define_method(rb_cNumeric, "magnitude", num_abs, 0);
5487 rb_define_method(rb_cNumeric, "to_int", num_to_int, 0);
5488
5489 rb_define_method(rb_cNumeric, "real?", num_real_p, 0);
5490 rb_define_method(rb_cNumeric, "integer?", num_int_p, 0);
5491 rb_define_method(rb_cNumeric, "zero?", num_zero_p, 0);
5492 rb_define_method(rb_cNumeric, "nonzero?", num_nonzero_p, 0);
5493 rb_define_method(rb_cNumeric, "finite?", num_finite_p, 0);
5494 rb_define_method(rb_cNumeric, "infinite?", num_infinite_p, 0);
5495
5496 rb_define_method(rb_cNumeric, "floor", num_floor, -1);
5497 rb_define_method(rb_cNumeric, "ceil", num_ceil, -1);
5498 rb_define_method(rb_cNumeric, "round", num_round, -1);
5499 rb_define_method(rb_cNumeric, "truncate", num_truncate, -1);
5500 rb_define_method(rb_cNumeric, "step", num_step, -1);
5501 rb_define_method(rb_cNumeric, "positive?", num_positive_p, 0);
5502 rb_define_method(rb_cNumeric, "negative?", num_negative_p, 0);
5503
5504 rb_cInteger = rb_define_class("Integer", rb_cNumeric);
5505 rb_undef_alloc_func(rb_cInteger);
5506 rb_undef_method(CLASS_OF(rb_cInteger), "new");
5507 rb_define_singleton_method(rb_cInteger, "sqrt", rb_int_s_isqrt, 1);
5508
5509 rb_define_method(rb_cInteger, "to_s", int_to_s, -1);
5510 rb_define_alias(rb_cInteger, "inspect", "to_s");
5511 rb_define_method(rb_cInteger, "integer?", int_int_p, 0);
5512 rb_define_method(rb_cInteger, "odd?", rb_int_odd_p, 0);
5513 rb_define_method(rb_cInteger, "even?", int_even_p, 0);
5514 rb_define_method(rb_cInteger, "allbits?", int_allbits_p, 1);
5515 rb_define_method(rb_cInteger, "anybits?", int_anybits_p, 1);
5516 rb_define_method(rb_cInteger, "nobits?", int_nobits_p, 1);
5517 rb_define_method(rb_cInteger, "upto", int_upto, 1);
5518 rb_define_method(rb_cInteger, "downto", int_downto, 1);
5519 rb_define_method(rb_cInteger, "times", int_dotimes, 0);
5520 rb_define_method(rb_cInteger, "succ", int_succ, 0);
5521 rb_define_method(rb_cInteger, "next", int_succ, 0);
5522 rb_define_method(rb_cInteger, "pred", int_pred, 0);
5523 rb_define_method(rb_cInteger, "chr", int_chr, -1);
5524 rb_define_method(rb_cInteger, "ord", int_ord, 0);
5525 rb_define_method(rb_cInteger, "to_i", int_to_i, 0);
5526 rb_define_method(rb_cInteger, "to_int", int_to_i, 0);
5527 rb_define_method(rb_cInteger, "to_f", int_to_f, 0);
5528 rb_define_method(rb_cInteger, "floor", int_floor, -1);
5529 rb_define_method(rb_cInteger, "ceil", int_ceil, -1);
5530 rb_define_method(rb_cInteger, "truncate", int_truncate, -1);
5531 rb_define_method(rb_cInteger, "round", int_round, -1);
5532 rb_define_method(rb_cInteger, "<=>", rb_int_cmp, 1);
5533
5534 rb_define_method(rb_cInteger, "-@", rb_int_uminus, 0);
5535 rb_define_method(rb_cInteger, "+", rb_int_plus, 1);
5536 rb_define_method(rb_cInteger, "-", rb_int_minus, 1);
5537 rb_define_method(rb_cInteger, "*", rb_int_mul, 1);
5538 rb_define_method(rb_cInteger, "/", rb_int_div, 1);
5539 rb_define_method(rb_cInteger, "div", rb_int_idiv, 1);
5540 rb_define_method(rb_cInteger, "%", rb_int_modulo, 1);
5541 rb_define_method(rb_cInteger, "modulo", rb_int_modulo, 1);
5542 rb_define_method(rb_cInteger, "remainder", int_remainder, 1);
5543 rb_define_method(rb_cInteger, "divmod", rb_int_divmod, 1);
5544 rb_define_method(rb_cInteger, "fdiv", rb_int_fdiv, 1);
5545 rb_define_method(rb_cInteger, "**", rb_int_pow, 1);
5546
5547 rb_define_method(rb_cInteger, "pow", rb_int_powm, -1); /* in bignum.c */
5548
5549 rb_define_method(rb_cInteger, "abs", rb_int_abs, 0);
5550 rb_define_method(rb_cInteger, "magnitude", rb_int_abs, 0);
5551
5552 rb_define_method(rb_cInteger, "===", rb_int_equal, 1);
5553 rb_define_method(rb_cInteger, "==", rb_int_equal, 1);
5554 rb_define_method(rb_cInteger, ">", rb_int_gt, 1);
5555 rb_define_method(rb_cInteger, ">=", rb_int_ge, 1);
5556 rb_define_method(rb_cInteger, "<", int_lt, 1);
5557 rb_define_method(rb_cInteger, "<=", int_le, 1);
5558
5559 rb_define_method(rb_cInteger, "~", int_comp, 0);
5560 rb_define_method(rb_cInteger, "&", rb_int_and, 1);
5561 rb_define_method(rb_cInteger, "|", int_or, 1);
5562 rb_define_method(rb_cInteger, "^", int_xor, 1);
5563 rb_define_method(rb_cInteger, "[]", int_aref, 1);
5564
5565 rb_define_method(rb_cInteger, "<<", rb_int_lshift, 1);
5566 rb_define_method(rb_cInteger, ">>", rb_int_rshift, 1);
5567
5568 rb_define_method(rb_cInteger, "size", int_size, 0);
5569 rb_define_method(rb_cInteger, "bit_length", rb_int_bit_length, 0);
5570 rb_define_method(rb_cInteger, "digits", rb_int_digits, -1);
5571
5572 #ifndef RUBY_INTEGER_UNIFICATION
5573 rb_cFixnum = rb_cInteger;
5574 #endif
5575 /* An obsolete class, use Integer */
5576 rb_define_const(rb_cObject, "Fixnum", rb_cInteger);
5577 rb_deprecate_constant(rb_cObject, "Fixnum");
5578
5579 rb_cFloat = rb_define_class("Float", rb_cNumeric);
5580
5581 rb_undef_alloc_func(rb_cFloat);
5582 rb_undef_method(CLASS_OF(rb_cFloat), "new");
5583
5584 /*
5585 * Represents the rounding mode for floating point addition.
5586 *
5587 * Usually defaults to 1, rounding to the nearest number.
5588 *
5589 * Other modes include:
5590 *
5591 * -1:: Indeterminable
5592 * 0:: Rounding towards zero
5593 * 1:: Rounding to the nearest number
5594 * 2:: Rounding towards positive infinity
5595 * 3:: Rounding towards negative infinity
5596 */
5597 rb_define_const(rb_cFloat, "ROUNDS", INT2FIX(FLT_ROUNDS));
5598 /*
5599 * The base of the floating point, or number of unique digits used to
5600 * represent the number.
5601 *
5602 * Usually defaults to 2 on most systems, which would represent a base-10 decimal.
5603 */
5604 rb_define_const(rb_cFloat, "RADIX", INT2FIX(FLT_RADIX));
5605 /*
5606 * The number of base digits for the +double+ data type.
5607 *
5608 * Usually defaults to 53.
5609 */
5610 rb_define_const(rb_cFloat, "MANT_DIG", INT2FIX(DBL_MANT_DIG));
5611 /*
5612 * The minimum number of significant decimal digits in a double-precision
5613 * floating point.
5614 *
5615 * Usually defaults to 15.
5616 */
5617 rb_define_const(rb_cFloat, "DIG", INT2FIX(DBL_DIG));
5618 /*
5619 * The smallest possible exponent value in a double-precision floating
5620 * point.
5621 *
5622 * Usually defaults to -1021.
5623 */
5624 rb_define_const(rb_cFloat, "MIN_EXP", INT2FIX(DBL_MIN_EXP));
5625 /*
5626 * The largest possible exponent value in a double-precision floating
5627 * point.
5628 *
5629 * Usually defaults to 1024.
5630 */
5631 rb_define_const(rb_cFloat, "MAX_EXP", INT2FIX(DBL_MAX_EXP));
5632 /*
5633 * The smallest negative exponent in a double-precision floating point
5634 * where 10 raised to this power minus 1.
5635 *
5636 * Usually defaults to -307.
5637 */
5638 rb_define_const(rb_cFloat, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP));
5639 /*
5640 * The largest positive exponent in a double-precision floating point where
5641 * 10 raised to this power minus 1.
5642 *
5643 * Usually defaults to 308.
5644 */
5645 rb_define_const(rb_cFloat, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP));
5646 /*
5647 * The smallest positive normalized number in a double-precision floating point.
5648 *
5649 * Usually defaults to 2.2250738585072014e-308.
5650 *
5651 * If the platform supports denormalized numbers,
5652 * there are numbers between zero and Float::MIN.
5653 * 0.0.next_float returns the smallest positive floating point number
5654 * including denormalized numbers.
5655 */
5656 rb_define_const(rb_cFloat, "MIN", DBL2NUM(DBL_MIN));
5657 /*
5658 * The largest possible integer in a double-precision floating point number.
5659 *
5660 * Usually defaults to 1.7976931348623157e+308.
5661 */
5662 rb_define_const(rb_cFloat, "MAX", DBL2NUM(DBL_MAX));
5663 /*
5664 * The difference between 1 and the smallest double-precision floating
5665 * point number greater than 1.
5666 *
5667 * Usually defaults to 2.2204460492503131e-16.
5668 */
5669 rb_define_const(rb_cFloat, "EPSILON", DBL2NUM(DBL_EPSILON));
5670 /*
5671 * An expression representing positive infinity.
5672 */
5673 rb_define_const(rb_cFloat, "INFINITY", DBL2NUM(HUGE_VAL));
5674 /*
5675 * An expression representing a value which is "not a number".
5676 */
5677 rb_define_const(rb_cFloat, "NAN", DBL2NUM(nan("")));
5678
5679 rb_define_method(rb_cFloat, "to_s", flo_to_s, 0);
5680 rb_define_alias(rb_cFloat, "inspect", "to_s");
5681 rb_define_method(rb_cFloat, "coerce", flo_coerce, 1);
5682 rb_define_method(rb_cFloat, "-@", rb_float_uminus, 0);
5683 rb_define_method(rb_cFloat, "+", rb_float_plus, 1);
5684 rb_define_method(rb_cFloat, "-", rb_float_minus, 1);
5685 rb_define_method(rb_cFloat, "*", rb_float_mul, 1);
5686 rb_define_method(rb_cFloat, "/", rb_float_div, 1);
5687 rb_define_method(rb_cFloat, "quo", flo_quo, 1);
5688 rb_define_method(rb_cFloat, "fdiv", flo_quo, 1);
5689 rb_define_method(rb_cFloat, "%", flo_mod, 1);
5690 rb_define_method(rb_cFloat, "modulo", flo_mod, 1);
5691 rb_define_method(rb_cFloat, "divmod", flo_divmod, 1);
5692 rb_define_method(rb_cFloat, "**", rb_float_pow, 1);
5693 rb_define_method(rb_cFloat, "==", flo_eq, 1);
5694 rb_define_method(rb_cFloat, "===", flo_eq, 1);
5695 rb_define_method(rb_cFloat, "<=>", flo_cmp, 1);
5696 rb_define_method(rb_cFloat, ">", rb_float_gt, 1);
5697 rb_define_method(rb_cFloat, ">=", flo_ge, 1);
5698 rb_define_method(rb_cFloat, "<", flo_lt, 1);
5699 rb_define_method(rb_cFloat, "<=", flo_le, 1);
5700 rb_define_method(rb_cFloat, "eql?", flo_eql, 1);
5701 rb_define_method(rb_cFloat, "hash", flo_hash, 0);
5702 rb_define_method(rb_cFloat, "to_f", flo_to_f, 0);
5703 rb_define_method(rb_cFloat, "abs", rb_float_abs, 0);
5704 rb_define_method(rb_cFloat, "magnitude", rb_float_abs, 0);
5705 rb_define_method(rb_cFloat, "zero?", flo_zero_p, 0);
5706
5707 rb_define_method(rb_cFloat, "to_i", flo_to_i, 0);
5708 rb_define_method(rb_cFloat, "to_int", flo_to_i, 0);
5709 rb_define_method(rb_cFloat, "floor", flo_floor, -1);
5710 rb_define_method(rb_cFloat, "ceil", flo_ceil, -1);
5711 rb_define_method(rb_cFloat, "round", flo_round, -1);
5712 rb_define_method(rb_cFloat, "truncate", flo_truncate, -1);
5713
5714 rb_define_method(rb_cFloat, "nan?", flo_is_nan_p, 0);
5715 rb_define_method(rb_cFloat, "infinite?", rb_flo_is_infinite_p, 0);
5716 rb_define_method(rb_cFloat, "finite?", rb_flo_is_finite_p, 0);
5717 rb_define_method(rb_cFloat, "next_float", flo_next_float, 0);
5718 rb_define_method(rb_cFloat, "prev_float", flo_prev_float, 0);
5719 rb_define_method(rb_cFloat, "positive?", flo_positive_p, 0);
5720 rb_define_method(rb_cFloat, "negative?", flo_negative_p, 0);
5721
5722 id_to = rb_intern("to");
5723 id_by = rb_intern("by");
5724 }
5725
5726 #undef rb_float_value
5727 double
rb_float_value(VALUE v)5728 rb_float_value(VALUE v)
5729 {
5730 return rb_float_value_inline(v);
5731 }
5732
5733 #undef rb_float_new
5734 VALUE
rb_float_new(double d)5735 rb_float_new(double d)
5736 {
5737 return rb_float_new_inline(d);
5738 }
5739