xref: /linux/kernel/rcu/tree_plugin.h (revision 32a9f26e)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
rcu_rdp_is_offloaded(struct rcu_data * rdp)16 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp)
17 {
18 	/*
19 	 * In order to read the offloaded state of an rdp in a safe
20 	 * and stable way and prevent from its value to be changed
21 	 * under us, we must either hold the barrier mutex, the cpu
22 	 * hotplug lock (read or write) or the nocb lock. Local
23 	 * non-preemptible reads are also safe. NOCB kthreads and
24 	 * timers have their own means of synchronization against the
25 	 * offloaded state updaters.
26 	 */
27 	RCU_NOCB_LOCKDEP_WARN(
28 		!(lockdep_is_held(&rcu_state.barrier_mutex) ||
29 		  (IS_ENABLED(CONFIG_HOTPLUG_CPU) && lockdep_is_cpus_held()) ||
30 		  lockdep_is_held(&rdp->nocb_lock) ||
31 		  lockdep_is_held(&rcu_state.nocb_mutex) ||
32 		  (!(IS_ENABLED(CONFIG_PREEMPT_COUNT) && preemptible()) &&
33 		   rdp == this_cpu_ptr(&rcu_data)) ||
34 		  rcu_current_is_nocb_kthread(rdp)),
35 		"Unsafe read of RCU_NOCB offloaded state"
36 	);
37 
38 	return rcu_segcblist_is_offloaded(&rdp->cblist);
39 }
40 
41 /*
42  * Check the RCU kernel configuration parameters and print informative
43  * messages about anything out of the ordinary.
44  */
rcu_bootup_announce_oddness(void)45 static void __init rcu_bootup_announce_oddness(void)
46 {
47 	if (IS_ENABLED(CONFIG_RCU_TRACE))
48 		pr_info("\tRCU event tracing is enabled.\n");
49 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
50 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
51 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
52 			RCU_FANOUT);
53 	if (rcu_fanout_exact)
54 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
55 	if (IS_ENABLED(CONFIG_PROVE_RCU))
56 		pr_info("\tRCU lockdep checking is enabled.\n");
57 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
58 		pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
59 	if (RCU_NUM_LVLS >= 4)
60 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
61 	if (RCU_FANOUT_LEAF != 16)
62 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
63 			RCU_FANOUT_LEAF);
64 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
65 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
66 			rcu_fanout_leaf);
67 	if (nr_cpu_ids != NR_CPUS)
68 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
69 #ifdef CONFIG_RCU_BOOST
70 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
71 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
72 #endif
73 	if (blimit != DEFAULT_RCU_BLIMIT)
74 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
75 	if (qhimark != DEFAULT_RCU_QHIMARK)
76 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
77 	if (qlowmark != DEFAULT_RCU_QLOMARK)
78 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
79 	if (qovld != DEFAULT_RCU_QOVLD)
80 		pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
81 	if (jiffies_till_first_fqs != ULONG_MAX)
82 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
83 	if (jiffies_till_next_fqs != ULONG_MAX)
84 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
85 	if (jiffies_till_sched_qs != ULONG_MAX)
86 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
87 	if (rcu_kick_kthreads)
88 		pr_info("\tKick kthreads if too-long grace period.\n");
89 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
90 		pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
91 	if (gp_preinit_delay)
92 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
93 	if (gp_init_delay)
94 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
95 	if (gp_cleanup_delay)
96 		pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay);
97 	if (nohz_full_patience_delay < 0) {
98 		pr_info("\tRCU NOCB CPU patience negative (%d), resetting to zero.\n", nohz_full_patience_delay);
99 		nohz_full_patience_delay = 0;
100 	} else if (nohz_full_patience_delay > 5 * MSEC_PER_SEC) {
101 		pr_info("\tRCU NOCB CPU patience too large (%d), resetting to %ld.\n", nohz_full_patience_delay, 5 * MSEC_PER_SEC);
102 		nohz_full_patience_delay = 5 * MSEC_PER_SEC;
103 	} else if (nohz_full_patience_delay) {
104 		pr_info("\tRCU NOCB CPU patience set to %d milliseconds.\n", nohz_full_patience_delay);
105 	}
106 	nohz_full_patience_delay_jiffies = msecs_to_jiffies(nohz_full_patience_delay);
107 	if (!use_softirq)
108 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
109 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
110 		pr_info("\tRCU debug extended QS entry/exit.\n");
111 	rcupdate_announce_bootup_oddness();
112 }
113 
114 #ifdef CONFIG_PREEMPT_RCU
115 
116 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
117 static void rcu_read_unlock_special(struct task_struct *t);
118 
119 /*
120  * Tell them what RCU they are running.
121  */
rcu_bootup_announce(void)122 static void __init rcu_bootup_announce(void)
123 {
124 	pr_info("Preemptible hierarchical RCU implementation.\n");
125 	rcu_bootup_announce_oddness();
126 }
127 
128 /* Flags for rcu_preempt_ctxt_queue() decision table. */
129 #define RCU_GP_TASKS	0x8
130 #define RCU_EXP_TASKS	0x4
131 #define RCU_GP_BLKD	0x2
132 #define RCU_EXP_BLKD	0x1
133 
134 /*
135  * Queues a task preempted within an RCU-preempt read-side critical
136  * section into the appropriate location within the ->blkd_tasks list,
137  * depending on the states of any ongoing normal and expedited grace
138  * periods.  The ->gp_tasks pointer indicates which element the normal
139  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
140  * indicates which element the expedited grace period is waiting on (again,
141  * NULL if none).  If a grace period is waiting on a given element in the
142  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
143  * adding a task to the tail of the list blocks any grace period that is
144  * already waiting on one of the elements.  In contrast, adding a task
145  * to the head of the list won't block any grace period that is already
146  * waiting on one of the elements.
147  *
148  * This queuing is imprecise, and can sometimes make an ongoing grace
149  * period wait for a task that is not strictly speaking blocking it.
150  * Given the choice, we needlessly block a normal grace period rather than
151  * blocking an expedited grace period.
152  *
153  * Note that an endless sequence of expedited grace periods still cannot
154  * indefinitely postpone a normal grace period.  Eventually, all of the
155  * fixed number of preempted tasks blocking the normal grace period that are
156  * not also blocking the expedited grace period will resume and complete
157  * their RCU read-side critical sections.  At that point, the ->gp_tasks
158  * pointer will equal the ->exp_tasks pointer, at which point the end of
159  * the corresponding expedited grace period will also be the end of the
160  * normal grace period.
161  */
rcu_preempt_ctxt_queue(struct rcu_node * rnp,struct rcu_data * rdp)162 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
163 	__releases(rnp->lock) /* But leaves rrupts disabled. */
164 {
165 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
166 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
167 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
168 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
169 	struct task_struct *t = current;
170 
171 	raw_lockdep_assert_held_rcu_node(rnp);
172 	WARN_ON_ONCE(rdp->mynode != rnp);
173 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
174 	/* RCU better not be waiting on newly onlined CPUs! */
175 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
176 		     rdp->grpmask);
177 
178 	/*
179 	 * Decide where to queue the newly blocked task.  In theory,
180 	 * this could be an if-statement.  In practice, when I tried
181 	 * that, it was quite messy.
182 	 */
183 	switch (blkd_state) {
184 	case 0:
185 	case                RCU_EXP_TASKS:
186 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
187 	case RCU_GP_TASKS:
188 	case RCU_GP_TASKS + RCU_EXP_TASKS:
189 
190 		/*
191 		 * Blocking neither GP, or first task blocking the normal
192 		 * GP but not blocking the already-waiting expedited GP.
193 		 * Queue at the head of the list to avoid unnecessarily
194 		 * blocking the already-waiting GPs.
195 		 */
196 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
197 		break;
198 
199 	case                                              RCU_EXP_BLKD:
200 	case                                RCU_GP_BLKD:
201 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
202 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
203 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
204 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
205 
206 		/*
207 		 * First task arriving that blocks either GP, or first task
208 		 * arriving that blocks the expedited GP (with the normal
209 		 * GP already waiting), or a task arriving that blocks
210 		 * both GPs with both GPs already waiting.  Queue at the
211 		 * tail of the list to avoid any GP waiting on any of the
212 		 * already queued tasks that are not blocking it.
213 		 */
214 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
215 		break;
216 
217 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
218 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
219 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
220 
221 		/*
222 		 * Second or subsequent task blocking the expedited GP.
223 		 * The task either does not block the normal GP, or is the
224 		 * first task blocking the normal GP.  Queue just after
225 		 * the first task blocking the expedited GP.
226 		 */
227 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
228 		break;
229 
230 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
231 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
232 
233 		/*
234 		 * Second or subsequent task blocking the normal GP.
235 		 * The task does not block the expedited GP. Queue just
236 		 * after the first task blocking the normal GP.
237 		 */
238 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
239 		break;
240 
241 	default:
242 
243 		/* Yet another exercise in excessive paranoia. */
244 		WARN_ON_ONCE(1);
245 		break;
246 	}
247 
248 	/*
249 	 * We have now queued the task.  If it was the first one to
250 	 * block either grace period, update the ->gp_tasks and/or
251 	 * ->exp_tasks pointers, respectively, to reference the newly
252 	 * blocked tasks.
253 	 */
254 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
255 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
256 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
257 	}
258 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
259 		WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
260 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
261 		     !(rnp->qsmask & rdp->grpmask));
262 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
263 		     !(rnp->expmask & rdp->grpmask));
264 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
265 
266 	/*
267 	 * Report the quiescent state for the expedited GP.  This expedited
268 	 * GP should not be able to end until we report, so there should be
269 	 * no need to check for a subsequent expedited GP.  (Though we are
270 	 * still in a quiescent state in any case.)
271 	 *
272 	 * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change.
273 	 */
274 	if (blkd_state & RCU_EXP_BLKD && rdp->cpu_no_qs.b.exp)
275 		rcu_report_exp_rdp(rdp);
276 	else
277 		WARN_ON_ONCE(rdp->cpu_no_qs.b.exp);
278 }
279 
280 /*
281  * Record a preemptible-RCU quiescent state for the specified CPU.
282  * Note that this does not necessarily mean that the task currently running
283  * on the CPU is in a quiescent state:  Instead, it means that the current
284  * grace period need not wait on any RCU read-side critical section that
285  * starts later on this CPU.  It also means that if the current task is
286  * in an RCU read-side critical section, it has already added itself to
287  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
288  * current task, there might be any number of other tasks blocked while
289  * in an RCU read-side critical section.
290  *
291  * Unlike non-preemptible-RCU, quiescent state reports for expedited
292  * grace periods are handled separately via deferred quiescent states
293  * and context switch events.
294  *
295  * Callers to this function must disable preemption.
296  */
rcu_qs(void)297 static void rcu_qs(void)
298 {
299 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
300 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.norm)) {
301 		trace_rcu_grace_period(TPS("rcu_preempt"),
302 				       __this_cpu_read(rcu_data.gp_seq),
303 				       TPS("cpuqs"));
304 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
305 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
306 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
307 	}
308 }
309 
310 /*
311  * We have entered the scheduler, and the current task might soon be
312  * context-switched away from.  If this task is in an RCU read-side
313  * critical section, we will no longer be able to rely on the CPU to
314  * record that fact, so we enqueue the task on the blkd_tasks list.
315  * The task will dequeue itself when it exits the outermost enclosing
316  * RCU read-side critical section.  Therefore, the current grace period
317  * cannot be permitted to complete until the blkd_tasks list entries
318  * predating the current grace period drain, in other words, until
319  * rnp->gp_tasks becomes NULL.
320  *
321  * Caller must disable interrupts.
322  */
rcu_note_context_switch(bool preempt)323 void rcu_note_context_switch(bool preempt)
324 {
325 	struct task_struct *t = current;
326 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
327 	struct rcu_node *rnp;
328 
329 	trace_rcu_utilization(TPS("Start context switch"));
330 	lockdep_assert_irqs_disabled();
331 	WARN_ONCE(!preempt && rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
332 	if (rcu_preempt_depth() > 0 &&
333 	    !t->rcu_read_unlock_special.b.blocked) {
334 
335 		/* Possibly blocking in an RCU read-side critical section. */
336 		rnp = rdp->mynode;
337 		raw_spin_lock_rcu_node(rnp);
338 		t->rcu_read_unlock_special.b.blocked = true;
339 		t->rcu_blocked_node = rnp;
340 
341 		/*
342 		 * Verify the CPU's sanity, trace the preemption, and
343 		 * then queue the task as required based on the states
344 		 * of any ongoing and expedited grace periods.
345 		 */
346 		WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp));
347 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
348 		trace_rcu_preempt_task(rcu_state.name,
349 				       t->pid,
350 				       (rnp->qsmask & rdp->grpmask)
351 				       ? rnp->gp_seq
352 				       : rcu_seq_snap(&rnp->gp_seq));
353 		rcu_preempt_ctxt_queue(rnp, rdp);
354 	} else {
355 		rcu_preempt_deferred_qs(t);
356 	}
357 
358 	/*
359 	 * Either we were not in an RCU read-side critical section to
360 	 * begin with, or we have now recorded that critical section
361 	 * globally.  Either way, we can now note a quiescent state
362 	 * for this CPU.  Again, if we were in an RCU read-side critical
363 	 * section, and if that critical section was blocking the current
364 	 * grace period, then the fact that the task has been enqueued
365 	 * means that we continue to block the current grace period.
366 	 */
367 	rcu_qs();
368 	if (rdp->cpu_no_qs.b.exp)
369 		rcu_report_exp_rdp(rdp);
370 	rcu_tasks_qs(current, preempt);
371 	trace_rcu_utilization(TPS("End context switch"));
372 }
373 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
374 
375 /*
376  * Check for preempted RCU readers blocking the current grace period
377  * for the specified rcu_node structure.  If the caller needs a reliable
378  * answer, it must hold the rcu_node's ->lock.
379  */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)380 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
381 {
382 	return READ_ONCE(rnp->gp_tasks) != NULL;
383 }
384 
385 /* limit value for ->rcu_read_lock_nesting. */
386 #define RCU_NEST_PMAX (INT_MAX / 2)
387 
rcu_preempt_read_enter(void)388 static void rcu_preempt_read_enter(void)
389 {
390 	WRITE_ONCE(current->rcu_read_lock_nesting, READ_ONCE(current->rcu_read_lock_nesting) + 1);
391 }
392 
rcu_preempt_read_exit(void)393 static int rcu_preempt_read_exit(void)
394 {
395 	int ret = READ_ONCE(current->rcu_read_lock_nesting) - 1;
396 
397 	WRITE_ONCE(current->rcu_read_lock_nesting, ret);
398 	return ret;
399 }
400 
rcu_preempt_depth_set(int val)401 static void rcu_preempt_depth_set(int val)
402 {
403 	WRITE_ONCE(current->rcu_read_lock_nesting, val);
404 }
405 
406 /*
407  * Preemptible RCU implementation for rcu_read_lock().
408  * Just increment ->rcu_read_lock_nesting, shared state will be updated
409  * if we block.
410  */
__rcu_read_lock(void)411 void __rcu_read_lock(void)
412 {
413 	rcu_preempt_read_enter();
414 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
415 		WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
416 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) && rcu_state.gp_kthread)
417 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
418 	barrier();  /* critical section after entry code. */
419 }
420 EXPORT_SYMBOL_GPL(__rcu_read_lock);
421 
422 /*
423  * Preemptible RCU implementation for rcu_read_unlock().
424  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
425  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
426  * invoke rcu_read_unlock_special() to clean up after a context switch
427  * in an RCU read-side critical section and other special cases.
428  */
__rcu_read_unlock(void)429 void __rcu_read_unlock(void)
430 {
431 	struct task_struct *t = current;
432 
433 	barrier();  // critical section before exit code.
434 	if (rcu_preempt_read_exit() == 0) {
435 		barrier();  // critical-section exit before .s check.
436 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
437 			rcu_read_unlock_special(t);
438 	}
439 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
440 		int rrln = rcu_preempt_depth();
441 
442 		WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
443 	}
444 }
445 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
446 
447 /*
448  * Advance a ->blkd_tasks-list pointer to the next entry, instead
449  * returning NULL if at the end of the list.
450  */
rcu_next_node_entry(struct task_struct * t,struct rcu_node * rnp)451 static struct list_head *rcu_next_node_entry(struct task_struct *t,
452 					     struct rcu_node *rnp)
453 {
454 	struct list_head *np;
455 
456 	np = t->rcu_node_entry.next;
457 	if (np == &rnp->blkd_tasks)
458 		np = NULL;
459 	return np;
460 }
461 
462 /*
463  * Return true if the specified rcu_node structure has tasks that were
464  * preempted within an RCU read-side critical section.
465  */
rcu_preempt_has_tasks(struct rcu_node * rnp)466 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
467 {
468 	return !list_empty(&rnp->blkd_tasks);
469 }
470 
471 /*
472  * Report deferred quiescent states.  The deferral time can
473  * be quite short, for example, in the case of the call from
474  * rcu_read_unlock_special().
475  */
476 static notrace void
rcu_preempt_deferred_qs_irqrestore(struct task_struct * t,unsigned long flags)477 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
478 {
479 	bool empty_exp;
480 	bool empty_norm;
481 	bool empty_exp_now;
482 	struct list_head *np;
483 	bool drop_boost_mutex = false;
484 	struct rcu_data *rdp;
485 	struct rcu_node *rnp;
486 	union rcu_special special;
487 
488 	/*
489 	 * If RCU core is waiting for this CPU to exit its critical section,
490 	 * report the fact that it has exited.  Because irqs are disabled,
491 	 * t->rcu_read_unlock_special cannot change.
492 	 */
493 	special = t->rcu_read_unlock_special;
494 	rdp = this_cpu_ptr(&rcu_data);
495 	if (!special.s && !rdp->cpu_no_qs.b.exp) {
496 		local_irq_restore(flags);
497 		return;
498 	}
499 	t->rcu_read_unlock_special.s = 0;
500 	if (special.b.need_qs) {
501 		if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
502 			rdp->cpu_no_qs.b.norm = false;
503 			rcu_report_qs_rdp(rdp);
504 			udelay(rcu_unlock_delay);
505 		} else {
506 			rcu_qs();
507 		}
508 	}
509 
510 	/*
511 	 * Respond to a request by an expedited grace period for a
512 	 * quiescent state from this CPU.  Note that requests from
513 	 * tasks are handled when removing the task from the
514 	 * blocked-tasks list below.
515 	 */
516 	if (rdp->cpu_no_qs.b.exp)
517 		rcu_report_exp_rdp(rdp);
518 
519 	/* Clean up if blocked during RCU read-side critical section. */
520 	if (special.b.blocked) {
521 
522 		/*
523 		 * Remove this task from the list it blocked on.  The task
524 		 * now remains queued on the rcu_node corresponding to the
525 		 * CPU it first blocked on, so there is no longer any need
526 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
527 		 */
528 		rnp = t->rcu_blocked_node;
529 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
530 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
531 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
532 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
533 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
534 			     (!empty_norm || rnp->qsmask));
535 		empty_exp = sync_rcu_exp_done(rnp);
536 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
537 		np = rcu_next_node_entry(t, rnp);
538 		list_del_init(&t->rcu_node_entry);
539 		t->rcu_blocked_node = NULL;
540 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
541 						rnp->gp_seq, t->pid);
542 		if (&t->rcu_node_entry == rnp->gp_tasks)
543 			WRITE_ONCE(rnp->gp_tasks, np);
544 		if (&t->rcu_node_entry == rnp->exp_tasks)
545 			WRITE_ONCE(rnp->exp_tasks, np);
546 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
547 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
548 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx.rtmutex) == t;
549 			if (&t->rcu_node_entry == rnp->boost_tasks)
550 				WRITE_ONCE(rnp->boost_tasks, np);
551 		}
552 
553 		/*
554 		 * If this was the last task on the current list, and if
555 		 * we aren't waiting on any CPUs, report the quiescent state.
556 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
557 		 * so we must take a snapshot of the expedited state.
558 		 */
559 		empty_exp_now = sync_rcu_exp_done(rnp);
560 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
561 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
562 							 rnp->gp_seq,
563 							 0, rnp->qsmask,
564 							 rnp->level,
565 							 rnp->grplo,
566 							 rnp->grphi,
567 							 !!rnp->gp_tasks);
568 			rcu_report_unblock_qs_rnp(rnp, flags);
569 		} else {
570 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
571 		}
572 
573 		/*
574 		 * If this was the last task on the expedited lists,
575 		 * then we need to report up the rcu_node hierarchy.
576 		 */
577 		if (!empty_exp && empty_exp_now)
578 			rcu_report_exp_rnp(rnp, true);
579 
580 		/* Unboost if we were boosted. */
581 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
582 			rt_mutex_futex_unlock(&rnp->boost_mtx.rtmutex);
583 	} else {
584 		local_irq_restore(flags);
585 	}
586 }
587 
588 /*
589  * Is a deferred quiescent-state pending, and are we also not in
590  * an RCU read-side critical section?  It is the caller's responsibility
591  * to ensure it is otherwise safe to report any deferred quiescent
592  * states.  The reason for this is that it is safe to report a
593  * quiescent state during context switch even though preemption
594  * is disabled.  This function cannot be expected to understand these
595  * nuances, so the caller must handle them.
596  */
rcu_preempt_need_deferred_qs(struct task_struct * t)597 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
598 {
599 	return (__this_cpu_read(rcu_data.cpu_no_qs.b.exp) ||
600 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
601 	       rcu_preempt_depth() == 0;
602 }
603 
604 /*
605  * Report a deferred quiescent state if needed and safe to do so.
606  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
607  * not being in an RCU read-side critical section.  The caller must
608  * evaluate safety in terms of interrupt, softirq, and preemption
609  * disabling.
610  */
rcu_preempt_deferred_qs(struct task_struct * t)611 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
612 {
613 	unsigned long flags;
614 
615 	if (!rcu_preempt_need_deferred_qs(t))
616 		return;
617 	local_irq_save(flags);
618 	rcu_preempt_deferred_qs_irqrestore(t, flags);
619 }
620 
621 /*
622  * Minimal handler to give the scheduler a chance to re-evaluate.
623  */
rcu_preempt_deferred_qs_handler(struct irq_work * iwp)624 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
625 {
626 	struct rcu_data *rdp;
627 
628 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
629 	rdp->defer_qs_iw_pending = false;
630 }
631 
632 /*
633  * Handle special cases during rcu_read_unlock(), such as needing to
634  * notify RCU core processing or task having blocked during the RCU
635  * read-side critical section.
636  */
rcu_read_unlock_special(struct task_struct * t)637 static void rcu_read_unlock_special(struct task_struct *t)
638 {
639 	unsigned long flags;
640 	bool irqs_were_disabled;
641 	bool preempt_bh_were_disabled =
642 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
643 
644 	/* NMI handlers cannot block and cannot safely manipulate state. */
645 	if (in_nmi())
646 		return;
647 
648 	local_irq_save(flags);
649 	irqs_were_disabled = irqs_disabled_flags(flags);
650 	if (preempt_bh_were_disabled || irqs_were_disabled) {
651 		bool expboost; // Expedited GP in flight or possible boosting.
652 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
653 		struct rcu_node *rnp = rdp->mynode;
654 
655 		expboost = (t->rcu_blocked_node && READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
656 			   (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
657 			   (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
658 			   ((rdp->grpmask & READ_ONCE(rnp->qsmask)) || t->rcu_blocked_node)) ||
659 			   (IS_ENABLED(CONFIG_RCU_BOOST) && irqs_were_disabled &&
660 			    t->rcu_blocked_node);
661 		// Need to defer quiescent state until everything is enabled.
662 		if (use_softirq && (in_hardirq() || (expboost && !irqs_were_disabled))) {
663 			// Using softirq, safe to awaken, and either the
664 			// wakeup is free or there is either an expedited
665 			// GP in flight or a potential need to deboost.
666 			raise_softirq_irqoff(RCU_SOFTIRQ);
667 		} else {
668 			// Enabling BH or preempt does reschedule, so...
669 			// Also if no expediting and no possible deboosting,
670 			// slow is OK.  Plus nohz_full CPUs eventually get
671 			// tick enabled.
672 			set_tsk_need_resched(current);
673 			set_preempt_need_resched();
674 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
675 			    expboost && !rdp->defer_qs_iw_pending && cpu_online(rdp->cpu)) {
676 				// Get scheduler to re-evaluate and call hooks.
677 				// If !IRQ_WORK, FQS scan will eventually IPI.
678 				if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) &&
679 				    IS_ENABLED(CONFIG_PREEMPT_RT))
680 					rdp->defer_qs_iw = IRQ_WORK_INIT_HARD(
681 								rcu_preempt_deferred_qs_handler);
682 				else
683 					init_irq_work(&rdp->defer_qs_iw,
684 						      rcu_preempt_deferred_qs_handler);
685 				rdp->defer_qs_iw_pending = true;
686 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
687 			}
688 		}
689 		local_irq_restore(flags);
690 		return;
691 	}
692 	rcu_preempt_deferred_qs_irqrestore(t, flags);
693 }
694 
695 /*
696  * Check that the list of blocked tasks for the newly completed grace
697  * period is in fact empty.  It is a serious bug to complete a grace
698  * period that still has RCU readers blocked!  This function must be
699  * invoked -before- updating this rnp's ->gp_seq.
700  *
701  * Also, if there are blocked tasks on the list, they automatically
702  * block the newly created grace period, so set up ->gp_tasks accordingly.
703  */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)704 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
705 {
706 	struct task_struct *t;
707 
708 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
709 	raw_lockdep_assert_held_rcu_node(rnp);
710 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
711 		dump_blkd_tasks(rnp, 10);
712 	if (rcu_preempt_has_tasks(rnp) &&
713 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
714 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
715 		t = container_of(rnp->gp_tasks, struct task_struct,
716 				 rcu_node_entry);
717 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
718 						rnp->gp_seq, t->pid);
719 	}
720 	WARN_ON_ONCE(rnp->qsmask);
721 }
722 
723 /*
724  * Check for a quiescent state from the current CPU, including voluntary
725  * context switches for Tasks RCU.  When a task blocks, the task is
726  * recorded in the corresponding CPU's rcu_node structure, which is checked
727  * elsewhere, hence this function need only check for quiescent states
728  * related to the current CPU, not to those related to tasks.
729  */
rcu_flavor_sched_clock_irq(int user)730 static void rcu_flavor_sched_clock_irq(int user)
731 {
732 	struct task_struct *t = current;
733 
734 	lockdep_assert_irqs_disabled();
735 	if (rcu_preempt_depth() > 0 ||
736 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
737 		/* No QS, force context switch if deferred. */
738 		if (rcu_preempt_need_deferred_qs(t)) {
739 			set_tsk_need_resched(t);
740 			set_preempt_need_resched();
741 		}
742 	} else if (rcu_preempt_need_deferred_qs(t)) {
743 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
744 		return;
745 	} else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
746 		rcu_qs(); /* Report immediate QS. */
747 		return;
748 	}
749 
750 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
751 	if (rcu_preempt_depth() > 0 &&
752 	    __this_cpu_read(rcu_data.core_needs_qs) &&
753 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
754 	    !t->rcu_read_unlock_special.b.need_qs &&
755 	    time_after(jiffies, rcu_state.gp_start + HZ))
756 		t->rcu_read_unlock_special.b.need_qs = true;
757 }
758 
759 /*
760  * Check for a task exiting while in a preemptible-RCU read-side
761  * critical section, clean up if so.  No need to issue warnings, as
762  * debug_check_no_locks_held() already does this if lockdep is enabled.
763  * Besides, if this function does anything other than just immediately
764  * return, there was a bug of some sort.  Spewing warnings from this
765  * function is like as not to simply obscure important prior warnings.
766  */
exit_rcu(void)767 void exit_rcu(void)
768 {
769 	struct task_struct *t = current;
770 
771 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
772 		rcu_preempt_depth_set(1);
773 		barrier();
774 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
775 	} else if (unlikely(rcu_preempt_depth())) {
776 		rcu_preempt_depth_set(1);
777 	} else {
778 		return;
779 	}
780 	__rcu_read_unlock();
781 	rcu_preempt_deferred_qs(current);
782 }
783 
784 /*
785  * Dump the blocked-tasks state, but limit the list dump to the
786  * specified number of elements.
787  */
788 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)789 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
790 {
791 	int cpu;
792 	int i;
793 	struct list_head *lhp;
794 	struct rcu_data *rdp;
795 	struct rcu_node *rnp1;
796 
797 	raw_lockdep_assert_held_rcu_node(rnp);
798 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
799 		__func__, rnp->grplo, rnp->grphi, rnp->level,
800 		(long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
801 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
802 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
803 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
804 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
805 		__func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
806 		READ_ONCE(rnp->exp_tasks));
807 	pr_info("%s: ->blkd_tasks", __func__);
808 	i = 0;
809 	list_for_each(lhp, &rnp->blkd_tasks) {
810 		pr_cont(" %p", lhp);
811 		if (++i >= ncheck)
812 			break;
813 	}
814 	pr_cont("\n");
815 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
816 		rdp = per_cpu_ptr(&rcu_data, cpu);
817 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
818 			cpu, ".o"[rcu_rdp_cpu_online(rdp)],
819 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
820 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
821 	}
822 }
823 
824 #else /* #ifdef CONFIG_PREEMPT_RCU */
825 
826 /*
827  * If strict grace periods are enabled, and if the calling
828  * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
829  * report that quiescent state and, if requested, spin for a bit.
830  */
rcu_read_unlock_strict(void)831 void rcu_read_unlock_strict(void)
832 {
833 	struct rcu_data *rdp;
834 
835 	if (irqs_disabled() || preempt_count() || !rcu_state.gp_kthread)
836 		return;
837 	rdp = this_cpu_ptr(&rcu_data);
838 	rdp->cpu_no_qs.b.norm = false;
839 	rcu_report_qs_rdp(rdp);
840 	udelay(rcu_unlock_delay);
841 }
842 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict);
843 
844 /*
845  * Tell them what RCU they are running.
846  */
rcu_bootup_announce(void)847 static void __init rcu_bootup_announce(void)
848 {
849 	pr_info("Hierarchical RCU implementation.\n");
850 	rcu_bootup_announce_oddness();
851 }
852 
853 /*
854  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
855  * how many quiescent states passed, just if there was at least one since
856  * the start of the grace period, this just sets a flag.  The caller must
857  * have disabled preemption.
858  */
rcu_qs(void)859 static void rcu_qs(void)
860 {
861 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
862 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
863 		return;
864 	trace_rcu_grace_period(TPS("rcu_sched"),
865 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
866 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
867 	if (__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
868 		rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
869 }
870 
871 /*
872  * Register an urgently needed quiescent state.  If there is an
873  * emergency, invoke rcu_momentary_eqs() to do a heavy-weight
874  * dyntick-idle quiescent state visible to other CPUs, which will in
875  * some cases serve for expedited as well as normal grace periods.
876  * Either way, register a lightweight quiescent state.
877  */
rcu_all_qs(void)878 void rcu_all_qs(void)
879 {
880 	unsigned long flags;
881 
882 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
883 		return;
884 	preempt_disable();  // For CONFIG_PREEMPT_COUNT=y kernels
885 	/* Load rcu_urgent_qs before other flags. */
886 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
887 		preempt_enable();
888 		return;
889 	}
890 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
891 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
892 		local_irq_save(flags);
893 		rcu_momentary_eqs();
894 		local_irq_restore(flags);
895 	}
896 	rcu_qs();
897 	preempt_enable();
898 }
899 EXPORT_SYMBOL_GPL(rcu_all_qs);
900 
901 /*
902  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
903  */
rcu_note_context_switch(bool preempt)904 void rcu_note_context_switch(bool preempt)
905 {
906 	trace_rcu_utilization(TPS("Start context switch"));
907 	rcu_qs();
908 	/* Load rcu_urgent_qs before other flags. */
909 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
910 		goto out;
911 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
912 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
913 		rcu_momentary_eqs();
914 out:
915 	rcu_tasks_qs(current, preempt);
916 	trace_rcu_utilization(TPS("End context switch"));
917 }
918 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
919 
920 /*
921  * Because preemptible RCU does not exist, there are never any preempted
922  * RCU readers.
923  */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)924 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
925 {
926 	return 0;
927 }
928 
929 /*
930  * Because there is no preemptible RCU, there can be no readers blocked.
931  */
rcu_preempt_has_tasks(struct rcu_node * rnp)932 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
933 {
934 	return false;
935 }
936 
937 /*
938  * Because there is no preemptible RCU, there can be no deferred quiescent
939  * states.
940  */
rcu_preempt_need_deferred_qs(struct task_struct * t)941 static notrace bool rcu_preempt_need_deferred_qs(struct task_struct *t)
942 {
943 	return false;
944 }
945 
946 // Except that we do need to respond to a request by an expedited
947 // grace period for a quiescent state from this CPU.  Note that in
948 // non-preemptible kernels, there can be no context switches within RCU
949 // read-side critical sections, which in turn means that the leaf rcu_node
950 // structure's blocked-tasks list is always empty.  is therefore no need to
951 // actually check it.  Instead, a quiescent state from this CPU suffices,
952 // and this function is only called from such a quiescent state.
rcu_preempt_deferred_qs(struct task_struct * t)953 notrace void rcu_preempt_deferred_qs(struct task_struct *t)
954 {
955 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
956 
957 	if (READ_ONCE(rdp->cpu_no_qs.b.exp))
958 		rcu_report_exp_rdp(rdp);
959 }
960 
961 /*
962  * Because there is no preemptible RCU, there can be no readers blocked,
963  * so there is no need to check for blocked tasks.  So check only for
964  * bogus qsmask values.
965  */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)966 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
967 {
968 	WARN_ON_ONCE(rnp->qsmask);
969 }
970 
971 /*
972  * Check to see if this CPU is in a non-context-switch quiescent state,
973  * namely user mode and idle loop.
974  */
rcu_flavor_sched_clock_irq(int user)975 static void rcu_flavor_sched_clock_irq(int user)
976 {
977 	if (user || rcu_is_cpu_rrupt_from_idle()) {
978 
979 		/*
980 		 * Get here if this CPU took its interrupt from user
981 		 * mode or from the idle loop, and if this is not a
982 		 * nested interrupt.  In this case, the CPU is in
983 		 * a quiescent state, so note it.
984 		 *
985 		 * No memory barrier is required here because rcu_qs()
986 		 * references only CPU-local variables that other CPUs
987 		 * neither access nor modify, at least not while the
988 		 * corresponding CPU is online.
989 		 */
990 		rcu_qs();
991 	}
992 }
993 
994 /*
995  * Because preemptible RCU does not exist, tasks cannot possibly exit
996  * while in preemptible RCU read-side critical sections.
997  */
exit_rcu(void)998 void exit_rcu(void)
999 {
1000 }
1001 
1002 /*
1003  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
1004  */
1005 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)1006 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1007 {
1008 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1009 }
1010 
1011 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1012 
1013 /*
1014  * If boosting, set rcuc kthreads to realtime priority.
1015  */
rcu_cpu_kthread_setup(unsigned int cpu)1016 static void rcu_cpu_kthread_setup(unsigned int cpu)
1017 {
1018 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1019 #ifdef CONFIG_RCU_BOOST
1020 	struct sched_param sp;
1021 
1022 	sp.sched_priority = kthread_prio;
1023 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1024 #endif /* #ifdef CONFIG_RCU_BOOST */
1025 
1026 	WRITE_ONCE(rdp->rcuc_activity, jiffies);
1027 }
1028 
rcu_is_callbacks_nocb_kthread(struct rcu_data * rdp)1029 static bool rcu_is_callbacks_nocb_kthread(struct rcu_data *rdp)
1030 {
1031 #ifdef CONFIG_RCU_NOCB_CPU
1032 	return rdp->nocb_cb_kthread == current;
1033 #else
1034 	return false;
1035 #endif
1036 }
1037 
1038 /*
1039  * Is the current CPU running the RCU-callbacks kthread?
1040  * Caller must have preemption disabled.
1041  */
rcu_is_callbacks_kthread(struct rcu_data * rdp)1042 static bool rcu_is_callbacks_kthread(struct rcu_data *rdp)
1043 {
1044 	return rdp->rcu_cpu_kthread_task == current ||
1045 			rcu_is_callbacks_nocb_kthread(rdp);
1046 }
1047 
1048 #ifdef CONFIG_RCU_BOOST
1049 
1050 /*
1051  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1052  * or ->boost_tasks, advancing the pointer to the next task in the
1053  * ->blkd_tasks list.
1054  *
1055  * Note that irqs must be enabled: boosting the task can block.
1056  * Returns 1 if there are more tasks needing to be boosted.
1057  */
rcu_boost(struct rcu_node * rnp)1058 static int rcu_boost(struct rcu_node *rnp)
1059 {
1060 	unsigned long flags;
1061 	struct task_struct *t;
1062 	struct list_head *tb;
1063 
1064 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
1065 	    READ_ONCE(rnp->boost_tasks) == NULL)
1066 		return 0;  /* Nothing left to boost. */
1067 
1068 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1069 
1070 	/*
1071 	 * Recheck under the lock: all tasks in need of boosting
1072 	 * might exit their RCU read-side critical sections on their own.
1073 	 */
1074 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1075 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1076 		return 0;
1077 	}
1078 
1079 	/*
1080 	 * Preferentially boost tasks blocking expedited grace periods.
1081 	 * This cannot starve the normal grace periods because a second
1082 	 * expedited grace period must boost all blocked tasks, including
1083 	 * those blocking the pre-existing normal grace period.
1084 	 */
1085 	if (rnp->exp_tasks != NULL)
1086 		tb = rnp->exp_tasks;
1087 	else
1088 		tb = rnp->boost_tasks;
1089 
1090 	/*
1091 	 * We boost task t by manufacturing an rt_mutex that appears to
1092 	 * be held by task t.  We leave a pointer to that rt_mutex where
1093 	 * task t can find it, and task t will release the mutex when it
1094 	 * exits its outermost RCU read-side critical section.  Then
1095 	 * simply acquiring this artificial rt_mutex will boost task
1096 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1097 	 *
1098 	 * Note that task t must acquire rnp->lock to remove itself from
1099 	 * the ->blkd_tasks list, which it will do from exit() if from
1100 	 * nowhere else.  We therefore are guaranteed that task t will
1101 	 * stay around at least until we drop rnp->lock.  Note that
1102 	 * rnp->lock also resolves races between our priority boosting
1103 	 * and task t's exiting its outermost RCU read-side critical
1104 	 * section.
1105 	 */
1106 	t = container_of(tb, struct task_struct, rcu_node_entry);
1107 	rt_mutex_init_proxy_locked(&rnp->boost_mtx.rtmutex, t);
1108 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1109 	/* Lock only for side effect: boosts task t's priority. */
1110 	rt_mutex_lock(&rnp->boost_mtx);
1111 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1112 	rnp->n_boosts++;
1113 
1114 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1115 	       READ_ONCE(rnp->boost_tasks) != NULL;
1116 }
1117 
1118 /*
1119  * Priority-boosting kthread, one per leaf rcu_node.
1120  */
rcu_boost_kthread(void * arg)1121 static int rcu_boost_kthread(void *arg)
1122 {
1123 	struct rcu_node *rnp = (struct rcu_node *)arg;
1124 	int spincnt = 0;
1125 	int more2boost;
1126 
1127 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1128 	for (;;) {
1129 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1130 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1131 		rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1132 			 READ_ONCE(rnp->exp_tasks));
1133 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1134 		WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1135 		more2boost = rcu_boost(rnp);
1136 		if (more2boost)
1137 			spincnt++;
1138 		else
1139 			spincnt = 0;
1140 		if (spincnt > 10) {
1141 			WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1142 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1143 			schedule_timeout_idle(2);
1144 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1145 			spincnt = 0;
1146 		}
1147 	}
1148 	/* NOTREACHED */
1149 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1150 	return 0;
1151 }
1152 
1153 /*
1154  * Check to see if it is time to start boosting RCU readers that are
1155  * blocking the current grace period, and, if so, tell the per-rcu_node
1156  * kthread to start boosting them.  If there is an expedited grace
1157  * period in progress, it is always time to boost.
1158  *
1159  * The caller must hold rnp->lock, which this function releases.
1160  * The ->boost_kthread_task is immortal, so we don't need to worry
1161  * about it going away.
1162  */
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1163 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1164 	__releases(rnp->lock)
1165 {
1166 	raw_lockdep_assert_held_rcu_node(rnp);
1167 	if (!rnp->boost_kthread_task ||
1168 	    (!rcu_preempt_blocked_readers_cgp(rnp) && !rnp->exp_tasks)) {
1169 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1170 		return;
1171 	}
1172 	if (rnp->exp_tasks != NULL ||
1173 	    (rnp->gp_tasks != NULL &&
1174 	     rnp->boost_tasks == NULL &&
1175 	     rnp->qsmask == 0 &&
1176 	     (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld ||
1177 	      IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)))) {
1178 		if (rnp->exp_tasks == NULL)
1179 			WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1180 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1181 		rcu_wake_cond(rnp->boost_kthread_task,
1182 			      READ_ONCE(rnp->boost_kthread_status));
1183 	} else {
1184 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1185 	}
1186 }
1187 
1188 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1189 
1190 /*
1191  * Do priority-boost accounting for the start of a new grace period.
1192  */
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1193 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1194 {
1195 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1196 }
1197 
1198 /*
1199  * Create an RCU-boost kthread for the specified node if one does not
1200  * already exist.  We only create this kthread for preemptible RCU.
1201  */
rcu_spawn_one_boost_kthread(struct rcu_node * rnp)1202 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1203 {
1204 	unsigned long flags;
1205 	int rnp_index = rnp - rcu_get_root();
1206 	struct sched_param sp;
1207 	struct task_struct *t;
1208 
1209 	if (rnp->boost_kthread_task)
1210 		return;
1211 
1212 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1213 			   "rcub/%d", rnp_index);
1214 	if (WARN_ON_ONCE(IS_ERR(t)))
1215 		return;
1216 
1217 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1218 	rnp->boost_kthread_task = t;
1219 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1220 	sp.sched_priority = kthread_prio;
1221 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1222 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1223 }
1224 
rcu_boost_task(struct rcu_node * rnp)1225 static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
1226 {
1227 	return READ_ONCE(rnp->boost_kthread_task);
1228 }
1229 
1230 #else /* #ifdef CONFIG_RCU_BOOST */
1231 
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1232 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1233 	__releases(rnp->lock)
1234 {
1235 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1236 }
1237 
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1238 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1239 {
1240 }
1241 
rcu_spawn_one_boost_kthread(struct rcu_node * rnp)1242 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1243 {
1244 }
1245 
rcu_boost_task(struct rcu_node * rnp)1246 static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
1247 {
1248 	return NULL;
1249 }
1250 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1251 
1252 /*
1253  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1254  * grace-period kthread will do force_quiescent_state() processing?
1255  * The idea is to avoid waking up RCU core processing on such a
1256  * CPU unless the grace period has extended for too long.
1257  *
1258  * This code relies on the fact that all NO_HZ_FULL CPUs are also
1259  * RCU_NOCB_CPU CPUs.
1260  */
rcu_nohz_full_cpu(void)1261 static bool rcu_nohz_full_cpu(void)
1262 {
1263 #ifdef CONFIG_NO_HZ_FULL
1264 	if (tick_nohz_full_cpu(smp_processor_id()) &&
1265 	    (!rcu_gp_in_progress() ||
1266 	     time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
1267 		return true;
1268 #endif /* #ifdef CONFIG_NO_HZ_FULL */
1269 	return false;
1270 }
1271 
1272 /*
1273  * Bind the RCU grace-period kthreads to the housekeeping CPU.
1274  */
rcu_bind_gp_kthread(void)1275 static void rcu_bind_gp_kthread(void)
1276 {
1277 	if (!tick_nohz_full_enabled())
1278 		return;
1279 	housekeeping_affine(current, HK_TYPE_RCU);
1280 }
1281