1 /* $OpenBSD: armv7_machdep.c,v 1.66 2023/07/05 08:15:34 jsg Exp $ */
2 /* $NetBSD: lubbock_machdep.c,v 1.2 2003/07/15 00:25:06 lukem Exp $ */
3
4 /*
5 * Copyright (c) 2002, 2003 Genetec Corporation. All rights reserved.
6 * Written by Hiroyuki Bessho for Genetec Corporation.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of Genetec Corporation may not be used to endorse or
17 * promote products derived from this software without specific prior
18 * written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 *
32 * Machine dependant functions for kernel setup for
33 * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
34 * Based on iq80310_machhdep.c
35 */
36 /*
37 * Copyright (c) 2001 Wasabi Systems, Inc.
38 * All rights reserved.
39 *
40 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed for the NetBSD Project by
53 * Wasabi Systems, Inc.
54 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
55 * or promote products derived from this software without specific prior
56 * written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
60 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
61 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68 * POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 /*
72 * Copyright (c) 1997,1998 Mark Brinicombe.
73 * Copyright (c) 1997,1998 Causality Limited.
74 * All rights reserved.
75 *
76 * Redistribution and use in source and binary forms, with or without
77 * modification, are permitted provided that the following conditions
78 * are met:
79 * 1. Redistributions of source code must retain the above copyright
80 * notice, this list of conditions and the following disclaimer.
81 * 2. Redistributions in binary form must reproduce the above copyright
82 * notice, this list of conditions and the following disclaimer in the
83 * documentation and/or other materials provided with the distribution.
84 * 3. All advertising materials mentioning features or use of this software
85 * must display the following acknowledgement:
86 * This product includes software developed by Mark Brinicombe
87 * for the NetBSD Project.
88 * 4. The name of the company nor the name of the author may be used to
89 * endorse or promote products derived from this software without specific
90 * prior written permission.
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
93 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
94 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
95 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
96 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
97 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
98 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
100 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
101 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
102 * SUCH DAMAGE.
103 *
104 * Machine dependant functions for kernel setup for ARMv7 boards using
105 * u-boot/EFI firmware.
106 */
107
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/proc.h>
111 #include <sys/reboot.h>
112
113 #include <machine/db_machdep.h>
114 #include <machine/bootconfig.h>
115 #include <machine/machine_reg.h>
116 #include <machine/bus.h>
117
118 #include <arm/undefined.h>
119 #include <arm/machdep.h>
120 #include <arm/armv7/armv7var.h>
121 #include <armv7/armv7/armv7_machdep.h>
122
123 #include <dev/cons.h>
124 #include <dev/efi/efi.h>
125 #include <dev/ofw/fdt.h>
126 #include <dev/ofw/openfirm.h>
127
128 #include <net/if.h>
129
130 #include <ddb/db_extern.h>
131
132 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
133 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
134 #define KERNEL_VM_BASE (KERNEL_BASE + 0x04000000)
135 #define KERNEL_VM_SIZE VM_KERNEL_SPACE_SIZE
136
137 /*
138 * Address to call from cpu_reset() to reset the machine.
139 * This is machine architecture dependant as it varies depending
140 * on where the ROM appears when you turn the MMU off.
141 */
142
143 /* Define various stack sizes in pages */
144 #define IRQ_STACK_SIZE 1
145 #define ABT_STACK_SIZE 1
146 #define UND_STACK_SIZE 1
147
148 BootConfig bootconfig; /* Boot config storage */
149 char *boot_args = NULL;
150 char *boot_file = "";
151 uint8_t *bootmac = NULL;
152 u_int cpu_reset_address = 0;
153
154 vaddr_t physical_freestart;
155 int physmem;
156
157 /* Physical and virtual addresses for some global pages */
158 pv_addr_t systempage;
159 pv_addr_t irqstack;
160 pv_addr_t undstack;
161 pv_addr_t abtstack;
162 extern pv_addr_t kernelstack;
163
164 vaddr_t msgbufphys;
165
166 extern u_int data_abort_handler_address;
167 extern u_int prefetch_abort_handler_address;
168 extern u_int undefined_handler_address;
169
170 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
171 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
172 #define KERNEL_PT_KERNEL_NUM 32
173 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
174 /* Page tables for mapping kernel VM */
175 #define KERNEL_PT_VMDATA_NUM 8 /* start with 16MB of KVM */
176 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
177
178 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
179
180 extern struct user *proc0paddr;
181
182 /*
183 * safepri is a safe priority for sleep to set for a spin-wait
184 * during autoconfiguration or after a panic.
185 */
186 int safepri = 0;
187
188 /* Prototypes */
189
190 int bootstrap_bs_map(void *, uint64_t, bus_size_t, int,
191 bus_space_handle_t *);
192 void collect_kernel_args(const char *);
193 void process_kernel_args(void);
194 void consinit(void);
195
196 bs_protos(bs_notimpl);
197
198 int stdout_node;
199 int stdout_speed;
200
201 void (*cpuresetfn)(void);
202 void (*powerdownfn)(void);
203
204 /*
205 * void boot(int howto, char *bootstr)
206 *
207 * Reboots the system
208 *
209 * Deal with any syncing, unmounting, dumping and shutdown hooks,
210 * then reset the CPU.
211 */
212 __dead void
boot(int howto)213 boot(int howto)
214 {
215 if ((howto & RB_RESET) != 0)
216 goto doreset;
217
218 if (cold) {
219 if ((howto & RB_USERREQ) == 0)
220 howto |= RB_HALT;
221 goto haltsys;
222 }
223
224 /* Disable console buffering */
225 /* cnpollc(1);*/
226
227 /*
228 * If RB_NOSYNC was not specified sync the discs.
229 * Note: Unless cold is set to 1 here, syslogd will die during the
230 * unmount. It looks like syslogd is getting woken up only to find
231 * that it cannot page part of the binary in as the filesystem has
232 * been unmounted.
233 */
234 if ((howto & RB_NOSYNC) == 0)
235 bootsync(howto);
236
237 if_downall();
238
239 uvm_shutdown();
240 splhigh();
241 cold = 1;
242
243 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
244 dumpsys();
245
246 haltsys:
247 config_suspend_all(DVACT_POWERDOWN);
248
249 /* Make sure IRQ's are disabled */
250 intr_disable();
251
252 if ((howto & RB_HALT) != 0) {
253 if ((howto & RB_POWERDOWN) != 0) {
254 printf("\nAttempting to power down...\n");
255 delay(500000);
256 if (powerdownfn)
257 (*powerdownfn)();
258 }
259
260 printf("The operating system has halted.\n");
261 printf("Please press any key to reboot.\n\n");
262 cngetc();
263 }
264
265 doreset:
266 printf("rebooting...\n");
267 delay(500000);
268 if (cpuresetfn)
269 (*cpuresetfn)();
270 printf("reboot failed; spinning\n");
271 for (;;)
272 continue;
273 /* NOTREACHED */
274 }
275
276 static __inline
277 pd_entry_t *
read_ttb(void)278 read_ttb(void)
279 {
280 long ttb;
281
282 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb));
283
284
285 return (pd_entry_t *)(ttb & ~((1<<14)-1));
286 }
287
288 #define VERBOSE_INIT_ARM
289
290 /*
291 * simple memory mapping function used in early bootstrap stage
292 * before pmap is initialized.
293 * ignores cacheability and does map the sections with nocache.
294 */
295 static vaddr_t section_free = 0xfd000000; /* XXX - huh */
296
297 int
bootstrap_bs_map(void * t,uint64_t bpa,bus_size_t size,int flags,bus_space_handle_t * bshp)298 bootstrap_bs_map(void *t, uint64_t bpa, bus_size_t size,
299 int flags, bus_space_handle_t *bshp)
300 {
301 u_long startpa, pa, endpa;
302 vaddr_t va;
303 pd_entry_t *pagedir = read_ttb();
304 /* This assumes PA==VA for page directory */
305
306 va = section_free;
307
308 startpa = bpa & ~L1_S_OFFSET;
309 endpa = (bpa + size) & ~L1_S_OFFSET;
310 if ((bpa + size) & L1_S_OFFSET)
311 endpa += L1_S_SIZE;
312
313 *bshp = (bus_space_handle_t)(va + (bpa - startpa));
314
315 for (pa = startpa; pa < endpa; pa += L1_S_SIZE, va += L1_S_SIZE)
316 pmap_map_section((vaddr_t)pagedir, va, pa,
317 PROT_READ | PROT_WRITE, PTE_NOCACHE);
318
319 cpu_tlb_flushD();
320
321 section_free = va;
322
323 return 0;
324 }
325
326 static void
copy_io_area_map(pd_entry_t * new_pd)327 copy_io_area_map(pd_entry_t *new_pd)
328 {
329 pd_entry_t *cur_pd = read_ttb();
330 vaddr_t va;
331
332 for (va = MACHINE_IO_AREA_VBASE;
333 (cur_pd[va>>L1_S_SHIFT] & L1_TYPE_MASK) == L1_TYPE_S;
334 va += L1_S_SIZE) {
335
336 new_pd[va>>L1_S_SHIFT] = cur_pd[va>>L1_S_SHIFT];
337 if (va == (ARM_VECTORS_HIGH & ~(0x00400000 - 1)))
338 break; /* STUPID */
339
340 }
341 }
342
343 uint64_t mmap_start;
344 uint32_t mmap_size;
345 uint32_t mmap_desc_size;
346 uint32_t mmap_desc_ver;
347
348 EFI_MEMORY_DESCRIPTOR *mmap;
349
350 /*
351 * u_int initarm(...)
352 *
353 * Initial entry point on startup. This gets called before main() is
354 * entered.
355 * It should be responsible for setting up everything that must be
356 * in place when main is called.
357 * This includes
358 * Taking a copy of the FDT.
359 * Initialising the physical console so characters can be printed.
360 * Setting up page tables for the kernel.
361 */
362 u_int
initarm(void * arg0,void * arg1,void * arg2,paddr_t loadaddr)363 initarm(void *arg0, void *arg1, void *arg2, paddr_t loadaddr)
364 {
365 int loop, loop1;
366 u_int l1pagetable;
367 pv_addr_t kernel_l1pt;
368 pv_addr_t fdt, map;
369 struct fdt_reg reg;
370 paddr_t memstart, memend;
371 void *config;
372 size_t size;
373 void *node;
374 extern uint32_t esym; /* &_end if no symbols are loaded */
375
376 /* early bus_space_map support */
377 struct bus_space tmp_bs_tag;
378 int (*map_func_save)(void *, uint64_t, bus_size_t, int,
379 bus_space_handle_t *);
380
381 if (arg0)
382 esym = (uint32_t)arg0;
383
384 /*
385 * Heads up ... Setup the CPU / MMU / TLB functions
386 */
387 if (set_cpufuncs())
388 panic("cpu not recognized!");
389
390 /*
391 * Temporarily replace bus_space_map() functions so that
392 * console devices can get mapped.
393 */
394 tmp_bs_tag = armv7_bs_tag;
395 map_func_save = armv7_bs_tag.bs_map;
396 armv7_bs_tag.bs_map = bootstrap_bs_map;
397 tmp_bs_tag.bs_map = bootstrap_bs_map;
398
399 /*
400 * Now, map the FDT area.
401 *
402 * As we don't know the size of a possible FDT, map the size of a
403 * typical bootstrap bs map. The FDT might not be aligned, so this
404 * might take up to two L1_S_SIZEd mappings.
405 *
406 * XXX: There's (currently) no way to unmap a bootstrap mapping, so
407 * we might lose a bit of the bootstrap address space.
408 */
409 bootstrap_bs_map(NULL, (bus_addr_t)arg2, L1_S_SIZE, 0,
410 (bus_space_handle_t *)&config);
411
412 if (!fdt_init(config) || fdt_get_size(config) == 0)
413 panic("initarm: no FDT");
414
415 node = fdt_find_node("/chosen");
416 if (node != NULL) {
417 char *prop;
418 int len;
419 static uint8_t lladdr[6];
420
421 len = fdt_node_property(node, "bootargs", &prop);
422 if (len > 0)
423 collect_kernel_args(prop);
424
425 len = fdt_node_property(node, "openbsd,boothowto", &prop);
426 if (len == sizeof(boothowto))
427 boothowto = bemtoh32((uint32_t *)prop);
428
429 len = fdt_node_property(node, "openbsd,bootduid", &prop);
430 if (len == sizeof(bootduid))
431 memcpy(bootduid, prop, sizeof(bootduid));
432
433 len = fdt_node_property(node, "openbsd,bootmac", &prop);
434 if (len == sizeof(lladdr)) {
435 memcpy(lladdr, prop, sizeof(lladdr));
436 bootmac = lladdr;
437 }
438
439 len = fdt_node_property(node, "openbsd,uefi-mmap-start", &prop);
440 if (len == sizeof(mmap_start))
441 mmap_start = bemtoh64((uint64_t *)prop);
442 len = fdt_node_property(node, "openbsd,uefi-mmap-size", &prop);
443 if (len == sizeof(mmap_size))
444 mmap_size = bemtoh32((uint32_t *)prop);
445 len = fdt_node_property(node, "openbsd,uefi-mmap-desc-size", &prop);
446 if (len == sizeof(mmap_desc_size))
447 mmap_desc_size = bemtoh32((uint32_t *)prop);
448 len = fdt_node_property(node, "openbsd,uefi-mmap-desc-ver", &prop);
449 if (len == sizeof(mmap_desc_ver))
450 mmap_desc_ver = bemtoh32((uint32_t *)prop);
451
452 len = fdt_node_property(node, "openbsd,dma-constraint", &prop);
453 if (len == sizeof(uint64_t[2])) {
454 dma_constraint.ucr_low = bemtoh64((uint64_t *)prop);
455 dma_constraint.ucr_high = bemtoh64((uint64_t *)prop + 1);
456 }
457 }
458
459 process_kernel_args();
460
461 if (mmap_start != 0)
462 bootstrap_bs_map(NULL, mmap_start, mmap_size, 0,
463 (bus_space_handle_t *)&mmap);
464
465 platform_init();
466
467 /* setup a serial console for very early boot */
468 consinit();
469
470 /* Talk to the user */
471 printf("\nOpenBSD/armv7 booting ...\n");
472
473 printf("arg0 %p arg1 %p arg2 %p\n", arg0, arg1, arg2);
474
475 #ifdef RAMDISK_HOOKS
476 boothowto |= RB_DFLTROOT;
477 #endif /* RAMDISK_HOOKS */
478
479 physical_freestart = (((unsigned long)esym - KERNEL_TEXT_BASE + 0xfff) & ~0xfff) + loadaddr;
480
481 /* The bootloader has loaded us ubto a 32MB block. */
482 memstart = loadaddr;
483 memend = memstart + 32 * 1024 * 1024;
484
485 /*
486 * Okay, the kernel starts 2MB in from the bottom of physical
487 * memory. We are going to allocate our bootstrap pages downwards
488 * from there.
489 *
490 * We need to allocate some fixed page tables to get the kernel
491 * going. We allocate one page directory and a number of page
492 * tables and store the physical addresses in the kernel_pt_table
493 * array.
494 *
495 * The kernel page directory must be on a 16K boundary. The page
496 * tables must be on 4K boundaries. What we do is allocate the
497 * page directory on the first 16K boundary that we encounter, and
498 * the page tables on 4K boundaries otherwise. Since we allocate
499 * at least 3 L2 page tables, we are guaranteed to encounter at
500 * least one 16K aligned region.
501 */
502
503 #ifdef VERBOSE_INIT_ARM
504 printf("Allocating page tables\n");
505 #endif
506
507 /* Define a macro to simplify memory allocation */
508 #define valloc_pages(var, np) \
509 alloc_pages((var).pv_pa, (np)); \
510 (var).pv_va = KERNEL_BASE + (var).pv_pa - loadaddr;
511
512 #define alloc_pages(var, np) \
513 (var) = physical_freestart; \
514 physical_freestart += ((np) * PAGE_SIZE); \
515 if (physical_freestart > memend) \
516 panic("initarm: out of memory"); \
517 memset((char *)(var), 0, ((np) * PAGE_SIZE));
518
519 loop1 = 0;
520 kernel_l1pt.pv_pa = 0;
521 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
522 /* Are we 16KB aligned for an L1 ? */
523 if (((physical_freestart) & (L1_TABLE_SIZE - 1)) == 0
524 && kernel_l1pt.pv_pa == 0) {
525 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
526 } else {
527 valloc_pages(kernel_pt_table[loop1],
528 L2_TABLE_SIZE / PAGE_SIZE);
529 ++loop1;
530 }
531 }
532
533 /* This should never be able to happen but better confirm that. */
534 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
535 panic("initarm: Failed to align the kernel page directory");
536
537 /*
538 * Allocate a page for the system page mapped to V0x00000000
539 * This page will just contain the system vectors and can be
540 * shared by all processes.
541 */
542 vector_page = ARM_VECTORS_HIGH;
543 alloc_pages(systempage.pv_pa, 1);
544 systempage.pv_va = vector_page;
545
546 /* Allocate stacks for all modes */
547 valloc_pages(irqstack, IRQ_STACK_SIZE);
548 valloc_pages(abtstack, ABT_STACK_SIZE);
549 valloc_pages(undstack, UND_STACK_SIZE);
550 valloc_pages(kernelstack, UPAGES);
551
552 /* Allocate enough pages for cleaning the Mini-Data cache. */
553
554 #ifdef VERBOSE_INIT_ARM
555 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
556 irqstack.pv_va);
557 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
558 abtstack.pv_va);
559 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
560 undstack.pv_va);
561 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
562 kernelstack.pv_va);
563 #endif
564
565 /* Relocate the FDT to safe memory. */
566 size = fdt_get_size(config);
567 valloc_pages(fdt, round_page(size) / PAGE_SIZE);
568 memcpy((void *)fdt.pv_pa, config, size);
569
570 /* Relocate the EFI memory map too. */
571 if (mmap_start != 0) {
572 valloc_pages(map, round_page(mmap_size) / PAGE_SIZE);
573 memcpy((void *)map.pv_pa, mmap, mmap_size);
574 }
575
576 /*
577 * XXX Defer this to later so that we can reclaim the memory
578 */
579 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
580
581 /*
582 * Ok we have allocated physical pages for the primary kernel
583 * page tables
584 */
585
586 #ifdef VERBOSE_INIT_ARM
587 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
588 #endif
589
590 /*
591 * Now we start construction of the L1 page table
592 * We start by mapping the L2 page tables into the L1.
593 * This means that we can replace L1 mappings later on if necessary
594 */
595 l1pagetable = kernel_l1pt.pv_pa;
596
597 /* Map the L2 pages tables in the L1 page table */
598 pmap_link_l2pt(l1pagetable, vector_page & ~(0x00400000 - 1),
599 &kernel_pt_table[KERNEL_PT_SYS]);
600
601 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
602 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
603 &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
604
605 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
606 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
607 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
608
609 /* update the top of the kernel VM */
610 pmap_curmaxkvaddr =
611 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
612
613 #ifdef VERBOSE_INIT_ARM
614 printf("Mapping kernel\n");
615 #endif
616
617 /* Now we fill in the L2 pagetable for the kernel static code/data */
618 {
619 extern char __text_start[], _etext[];
620 extern char __rodata_start[], _erodata[];
621 size_t textsize = (u_int32_t) (_etext - __text_start);
622 size_t rodatasize = (u_int32_t) (_erodata - __rodata_start);
623 size_t totalsize = esym - (u_int32_t)__text_start;
624 u_int logical;
625
626 textsize = (textsize + PGOFSET) & ~PGOFSET;
627 rodatasize = (rodatasize + PGOFSET) & ~PGOFSET;
628 totalsize = (totalsize + PGOFSET) & ~PGOFSET;
629
630 logical = 0x00300000; /* offset of kernel in RAM */
631
632 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
633 loadaddr + logical, textsize,
634 PROT_READ | PROT_EXEC, PTE_CACHE);
635 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
636 loadaddr + logical, rodatasize,
637 PROT_READ, PTE_CACHE);
638 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
639 loadaddr + logical, totalsize - (textsize + rodatasize),
640 PROT_READ | PROT_WRITE, PTE_CACHE);
641 }
642
643 #ifdef VERBOSE_INIT_ARM
644 printf("Constructing L2 page tables\n");
645 #endif
646
647 /* Map the stack pages */
648 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
649 IRQ_STACK_SIZE * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE);
650 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
651 ABT_STACK_SIZE * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE);
652 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
653 UND_STACK_SIZE * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE);
654 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
655 UPAGES * PAGE_SIZE, PROT_READ | PROT_WRITE, PTE_CACHE);
656
657 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
658 L1_TABLE_SIZE, PROT_READ | PROT_WRITE, PTE_PAGETABLE);
659
660 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
661 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
662 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
663 PROT_READ | PROT_WRITE, PTE_PAGETABLE);
664 }
665
666 /* Map the Mini-Data cache clean area. */
667
668 /* Map the vector page. */
669 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
670 PROT_READ | PROT_WRITE, PTE_CACHE);
671
672 /* Map the FDT. */
673 pmap_map_chunk(l1pagetable, fdt.pv_va, fdt.pv_pa,
674 round_page(fdt_get_size((void *)fdt.pv_pa)),
675 PROT_READ | PROT_WRITE, PTE_CACHE);
676
677 /* Map the EFI memory map. */
678 if (mmap_start != 0) {
679 pmap_map_chunk(l1pagetable, map.pv_va, map.pv_pa,
680 round_page(mmap_size),
681 PROT_READ | PROT_WRITE, PTE_CACHE);
682 mmap = (void *)map.pv_va;
683 }
684
685 /*
686 * map integrated peripherals at same address in l1pagetable
687 * so that we can continue to use console.
688 */
689 copy_io_area_map((pd_entry_t *)l1pagetable);
690
691 /*
692 * Now we have the real page tables in place so we can switch to them.
693 * Once this is done we will be running with the REAL kernel page
694 * tables.
695 */
696 setttb(kernel_l1pt.pv_pa);
697 cpu_tlb_flushID();
698
699 /*
700 * Moved from cpu_startup() as data_abort_handler() references
701 * this during uvm init
702 */
703 proc0paddr = (struct user *)kernelstack.pv_va;
704 proc0.p_addr = proc0paddr;
705
706 arm32_vector_init(vector_page, ARM_VEC_ALL);
707
708 /*
709 * Pages were allocated during the secondary bootstrap for the
710 * stacks for different CPU modes.
711 * We must now set the r13 registers in the different CPU modes to
712 * point to these stacks.
713 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
714 * of the stack memory.
715 */
716
717 set_stackptr(PSR_IRQ32_MODE,
718 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
719 set_stackptr(PSR_ABT32_MODE,
720 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
721 set_stackptr(PSR_UND32_MODE,
722 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
723
724 /*
725 * Well we should set a data abort handler.
726 * Once things get going this will change as we will need a proper
727 * handler.
728 * Until then we will use a handler that just panics but tells us
729 * why.
730 * Initialisation of the vectors will just panic on a data abort.
731 * This just fills in a slightly better one.
732 */
733
734 data_abort_handler_address = (u_int)data_abort_handler;
735 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
736 undefined_handler_address = (u_int)undefinedinstruction_bounce;
737
738 /* Now we can reinit the FDT, using the virtual address. */
739 fdt_init((void *)fdt.pv_va);
740
741 /* Initialise the undefined instruction handlers */
742 #ifdef VERBOSE_INIT_ARM
743 printf("undefined ");
744 #endif
745 undefined_init();
746
747 /* Load memory into UVM. */
748 #ifdef VERBOSE_INIT_ARM
749 printf("page ");
750 #endif
751 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
752
753 /* Make what's left of the initial 32MB block available to UVM. */
754 uvm_page_physload(atop(physical_freestart), atop(memend),
755 atop(physical_freestart), atop(memend), 0);
756 physmem = atop(memend - memstart);
757
758 /* Make all other physical memory available to UVM. */
759 if (mmap && mmap_desc_ver == EFI_MEMORY_DESCRIPTOR_VERSION) {
760 EFI_MEMORY_DESCRIPTOR *desc = mmap;
761 int i;
762
763 /*
764 * Load all memory marked as EfiConventionalMemory.
765 * Don't bother with blocks smaller than 64KB. The
766 * initial 64MB memory block should be marked as
767 * EfiLoaderData so it won't be added again here.
768 */
769 for (i = 0; i < mmap_size / mmap_desc_size; i++) {
770 printf("type 0x%x pa 0x%llx va 0x%llx pages 0x%llx attr 0x%llx\n",
771 desc->Type, desc->PhysicalStart,
772 desc->VirtualStart, desc->NumberOfPages,
773 desc->Attribute);
774 if (desc->Type == EfiConventionalMemory &&
775 desc->NumberOfPages >= 16) {
776 uvm_page_physload(atop(desc->PhysicalStart),
777 atop(desc->PhysicalStart) +
778 desc->NumberOfPages,
779 atop(desc->PhysicalStart),
780 atop(desc->PhysicalStart) +
781 desc->NumberOfPages, 0);
782 physmem += desc->NumberOfPages;
783 }
784 desc = NextMemoryDescriptor(desc, mmap_desc_size);
785 }
786 } else {
787 paddr_t start, end;
788 int i;
789
790 node = fdt_find_node("/memory");
791 if (node == NULL)
792 panic("%s: no memory specified", __func__);
793
794 for (i = 0; i < VM_PHYSSEG_MAX; i++) {
795 if (fdt_get_reg(node, i, ®))
796 break;
797 if (reg.size == 0)
798 continue;
799
800 start = reg.addr;
801 end = MIN(reg.addr + reg.size, (paddr_t)-PAGE_SIZE);
802
803 /*
804 * The initial 32MB block is not excluded, so we need
805 * to make sure we don't add it here.
806 */
807 if (start < memend && end > memstart) {
808 if (start < memstart) {
809 uvm_page_physload(atop(start),
810 atop(memstart), atop(start),
811 atop(memstart), 0);
812 physmem += atop(memstart - start);
813 }
814 if (end > memend) {
815 uvm_page_physload(atop(memend),
816 atop(end), atop(memend),
817 atop(end), 0);
818 physmem += atop(end - memend);
819 }
820 } else {
821 uvm_page_physload(atop(start), atop(end),
822 atop(start), atop(end), 0);
823 physmem += atop(end - start);
824 }
825 }
826 }
827
828 /* Boot strap pmap telling it where the kernel page table is */
829 #ifdef VERBOSE_INIT_ARM
830 printf("pmap ");
831 #endif
832 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
833 KERNEL_VM_BASE + KERNEL_VM_SIZE);
834
835 vector_page_setprot(PROT_READ | PROT_EXEC);
836
837 /*
838 * Restore proper bus_space operation, now that pmap is initialized.
839 */
840 armv7_bs_tag.bs_map = map_func_save;
841
842 #ifdef DDB
843 db_machine_init();
844
845 /* Firmware doesn't load symbols. */
846 ddb_init();
847
848 if (boothowto & RB_KDB)
849 db_enter();
850 #endif
851
852 cpu_setup();
853
854 /* We return the new stack pointer address */
855 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
856 }
857
858 char bootargs[256];
859
860 void
collect_kernel_args(const char * args)861 collect_kernel_args(const char *args)
862 {
863 /* Make a local copy of the bootargs */
864 strlcpy(bootargs, args, sizeof(bootargs));
865 }
866
867 void
process_kernel_args(void)868 process_kernel_args(void)
869 {
870 char *cp = bootargs;
871
872 if (*cp == 0)
873 return;
874
875 boot_file = bootargs;
876
877 /* Skip the kernel image filename */
878 while (*cp != ' ' && *cp != 0)
879 cp++;
880
881 if (*cp != 0)
882 *cp++ = 0;
883
884 while (*cp == ' ')
885 cp++;
886
887 boot_args = cp;
888
889 printf("bootfile: %s\n", boot_file);
890 printf("bootargs: %s\n", boot_args);
891
892 /* Setup pointer to boot flags */
893 while (*cp != '-')
894 if (*cp++ == '\0')
895 return;
896
897 while (*cp != 0) {
898 switch(*cp) {
899 case 'a':
900 boothowto |= RB_ASKNAME;
901 break;
902 case 'c':
903 boothowto |= RB_CONFIG;
904 break;
905 case 'd':
906 boothowto |= RB_KDB;
907 break;
908 case 's':
909 boothowto |= RB_SINGLE;
910 break;
911 default:
912 printf("unknown option `%c'\n", *cp);
913 break;
914 }
915 cp++;
916 }
917 }
918
919 static int
atoi(const char * s)920 atoi(const char *s)
921 {
922 int n, neg;
923
924 n = 0;
925 neg = 0;
926
927 while (*s == '-') {
928 s++;
929 neg = !neg;
930 }
931
932 while (*s != '\0') {
933 if (*s < '0' || *s > '9')
934 break;
935
936 n = (10 * n) + (*s - '0');
937 s++;
938 }
939
940 return (neg ? -n : n);
941 }
942
943 void *
fdt_find_cons(const char * name)944 fdt_find_cons(const char *name)
945 {
946 char *alias = "serial0";
947 char buf[128];
948 char *stdout = NULL;
949 char *p;
950 void *node;
951
952 /* First check if "stdout-path" is set. */
953 node = fdt_find_node("/chosen");
954 if (node) {
955 if (fdt_node_property(node, "stdout-path", &stdout) > 0) {
956 if (strchr(stdout, ':') != NULL) {
957 strlcpy(buf, stdout, sizeof(buf));
958 if ((p = strchr(buf, ':')) != NULL) {
959 *p++ = '\0';
960 stdout_speed = atoi(p);
961 }
962 stdout = buf;
963 }
964 if (stdout[0] != '/') {
965 /* It's an alias. */
966 alias = stdout;
967 stdout = NULL;
968 }
969 }
970 }
971
972 /* Perform alias lookup if necessary. */
973 if (stdout == NULL) {
974 node = fdt_find_node("/aliases");
975 if (node)
976 fdt_node_property(node, alias, &stdout);
977 }
978
979 /* Lookup the physical address of the interface. */
980 if (stdout) {
981 node = fdt_find_node(stdout);
982 if (node && fdt_is_compatible(node, name)) {
983 stdout_node = OF_finddevice(stdout);
984 return (node);
985 }
986 }
987
988 return (NULL);
989 }
990
991 void
consinit(void)992 consinit(void)
993 {
994 static int consinit_called = 0;
995
996 if (consinit_called != 0)
997 return;
998
999 consinit_called = 1;
1000
1001 platform_init_cons();
1002 }
1003
1004 void
board_startup(void)1005 board_startup(void)
1006 {
1007 if (boothowto & RB_CONFIG) {
1008 #ifdef BOOT_CONFIG
1009 user_config();
1010 #else
1011 printf("kernel does not support -c; continuing..\n");
1012 #endif
1013 }
1014 }
1015
1016 unsigned int
cpu_rnd_messybits(void)1017 cpu_rnd_messybits(void)
1018 {
1019 struct timespec ts;
1020
1021 nanotime(&ts);
1022 return (ts.tv_nsec ^ (ts.tv_sec << 20));
1023 }
1024