1 //===- Local.cpp - Functions to perform local transformations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AssumeBundleQueries.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/MemorySSAUpdater.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DIBuilder.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/GlobalObject.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/IntrinsicsWebAssembly.h"
60 #include "llvm/IR/LLVMContext.h"
61 #include "llvm/IR/MDBuilder.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/ProfDataUtils.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <iterator>
82 #include <map>
83 #include <optional>
84 #include <utility>
85
86 using namespace llvm;
87 using namespace llvm::PatternMatch;
88
89 #define DEBUG_TYPE "local"
90
91 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
92 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd");
93
94 static cl::opt<bool> PHICSEDebugHash(
95 "phicse-debug-hash",
96 #ifdef EXPENSIVE_CHECKS
97 cl::init(true),
98 #else
99 cl::init(false),
100 #endif
101 cl::Hidden,
102 cl::desc("Perform extra assertion checking to verify that PHINodes's hash "
103 "function is well-behaved w.r.t. its isEqual predicate"));
104
105 static cl::opt<unsigned> PHICSENumPHISmallSize(
106 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden,
107 cl::desc(
108 "When the basic block contains not more than this number of PHI nodes, "
109 "perform a (faster!) exhaustive search instead of set-driven one."));
110
111 // Max recursion depth for collectBitParts used when detecting bswap and
112 // bitreverse idioms.
113 static const unsigned BitPartRecursionMaxDepth = 48;
114
115 //===----------------------------------------------------------------------===//
116 // Local constant propagation.
117 //
118
119 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
120 /// constant value, convert it into an unconditional branch to the constant
121 /// destination. This is a nontrivial operation because the successors of this
122 /// basic block must have their PHI nodes updated.
123 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
124 /// conditions and indirectbr addresses this might make dead if
125 /// DeleteDeadConditions is true.
ConstantFoldTerminator(BasicBlock * BB,bool DeleteDeadConditions,const TargetLibraryInfo * TLI,DomTreeUpdater * DTU)126 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
127 const TargetLibraryInfo *TLI,
128 DomTreeUpdater *DTU) {
129 Instruction *T = BB->getTerminator();
130 IRBuilder<> Builder(T);
131
132 // Branch - See if we are conditional jumping on constant
133 if (auto *BI = dyn_cast<BranchInst>(T)) {
134 if (BI->isUnconditional()) return false; // Can't optimize uncond branch
135
136 BasicBlock *Dest1 = BI->getSuccessor(0);
137 BasicBlock *Dest2 = BI->getSuccessor(1);
138
139 if (Dest2 == Dest1) { // Conditional branch to same location?
140 // This branch matches something like this:
141 // br bool %cond, label %Dest, label %Dest
142 // and changes it into: br label %Dest
143
144 // Let the basic block know that we are letting go of one copy of it.
145 assert(BI->getParent() && "Terminator not inserted in block!");
146 Dest1->removePredecessor(BI->getParent());
147
148 // Replace the conditional branch with an unconditional one.
149 BranchInst *NewBI = Builder.CreateBr(Dest1);
150
151 // Transfer the metadata to the new branch instruction.
152 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
153 LLVMContext::MD_annotation});
154
155 Value *Cond = BI->getCondition();
156 BI->eraseFromParent();
157 if (DeleteDeadConditions)
158 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
159 return true;
160 }
161
162 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
163 // Are we branching on constant?
164 // YES. Change to unconditional branch...
165 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
166 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
167
168 // Let the basic block know that we are letting go of it. Based on this,
169 // it will adjust it's PHI nodes.
170 OldDest->removePredecessor(BB);
171
172 // Replace the conditional branch with an unconditional one.
173 BranchInst *NewBI = Builder.CreateBr(Destination);
174
175 // Transfer the metadata to the new branch instruction.
176 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg,
177 LLVMContext::MD_annotation});
178
179 BI->eraseFromParent();
180 if (DTU)
181 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}});
182 return true;
183 }
184
185 return false;
186 }
187
188 if (auto *SI = dyn_cast<SwitchInst>(T)) {
189 // If we are switching on a constant, we can convert the switch to an
190 // unconditional branch.
191 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
192 BasicBlock *DefaultDest = SI->getDefaultDest();
193 BasicBlock *TheOnlyDest = DefaultDest;
194
195 // If the default is unreachable, ignore it when searching for TheOnlyDest.
196 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
197 SI->getNumCases() > 0) {
198 TheOnlyDest = SI->case_begin()->getCaseSuccessor();
199 }
200
201 bool Changed = false;
202
203 // Figure out which case it goes to.
204 for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
205 // Found case matching a constant operand?
206 if (i->getCaseValue() == CI) {
207 TheOnlyDest = i->getCaseSuccessor();
208 break;
209 }
210
211 // Check to see if this branch is going to the same place as the default
212 // dest. If so, eliminate it as an explicit compare.
213 if (i->getCaseSuccessor() == DefaultDest) {
214 MDNode *MD = getValidBranchWeightMDNode(*SI);
215 unsigned NCases = SI->getNumCases();
216 // Fold the case metadata into the default if there will be any branches
217 // left, unless the metadata doesn't match the switch.
218 if (NCases > 1 && MD) {
219 // Collect branch weights into a vector.
220 SmallVector<uint32_t, 8> Weights;
221 extractBranchWeights(MD, Weights);
222
223 // Merge weight of this case to the default weight.
224 unsigned idx = i->getCaseIndex();
225 // TODO: Add overflow check.
226 Weights[0] += Weights[idx+1];
227 // Remove weight for this case.
228 std::swap(Weights[idx+1], Weights.back());
229 Weights.pop_back();
230 SI->setMetadata(LLVMContext::MD_prof,
231 MDBuilder(BB->getContext()).
232 createBranchWeights(Weights));
233 }
234 // Remove this entry.
235 BasicBlock *ParentBB = SI->getParent();
236 DefaultDest->removePredecessor(ParentBB);
237 i = SI->removeCase(i);
238 e = SI->case_end();
239
240 // Removing this case may have made the condition constant. In that
241 // case, update CI and restart iteration through the cases.
242 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) {
243 CI = NewCI;
244 i = SI->case_begin();
245 }
246
247 Changed = true;
248 continue;
249 }
250
251 // Otherwise, check to see if the switch only branches to one destination.
252 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
253 // destinations.
254 if (i->getCaseSuccessor() != TheOnlyDest)
255 TheOnlyDest = nullptr;
256
257 // Increment this iterator as we haven't removed the case.
258 ++i;
259 }
260
261 if (CI && !TheOnlyDest) {
262 // Branching on a constant, but not any of the cases, go to the default
263 // successor.
264 TheOnlyDest = SI->getDefaultDest();
265 }
266
267 // If we found a single destination that we can fold the switch into, do so
268 // now.
269 if (TheOnlyDest) {
270 // Insert the new branch.
271 Builder.CreateBr(TheOnlyDest);
272 BasicBlock *BB = SI->getParent();
273
274 SmallSet<BasicBlock *, 8> RemovedSuccessors;
275
276 // Remove entries from PHI nodes which we no longer branch to...
277 BasicBlock *SuccToKeep = TheOnlyDest;
278 for (BasicBlock *Succ : successors(SI)) {
279 if (DTU && Succ != TheOnlyDest)
280 RemovedSuccessors.insert(Succ);
281 // Found case matching a constant operand?
282 if (Succ == SuccToKeep) {
283 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest
284 } else {
285 Succ->removePredecessor(BB);
286 }
287 }
288
289 // Delete the old switch.
290 Value *Cond = SI->getCondition();
291 SI->eraseFromParent();
292 if (DeleteDeadConditions)
293 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
294 if (DTU) {
295 std::vector<DominatorTree::UpdateType> Updates;
296 Updates.reserve(RemovedSuccessors.size());
297 for (auto *RemovedSuccessor : RemovedSuccessors)
298 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
299 DTU->applyUpdates(Updates);
300 }
301 return true;
302 }
303
304 if (SI->getNumCases() == 1) {
305 // Otherwise, we can fold this switch into a conditional branch
306 // instruction if it has only one non-default destination.
307 auto FirstCase = *SI->case_begin();
308 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
309 FirstCase.getCaseValue(), "cond");
310
311 // Insert the new branch.
312 BranchInst *NewBr = Builder.CreateCondBr(Cond,
313 FirstCase.getCaseSuccessor(),
314 SI->getDefaultDest());
315 SmallVector<uint32_t> Weights;
316 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) {
317 uint32_t DefWeight = Weights[0];
318 uint32_t CaseWeight = Weights[1];
319 // The TrueWeight should be the weight for the single case of SI.
320 NewBr->setMetadata(LLVMContext::MD_prof,
321 MDBuilder(BB->getContext())
322 .createBranchWeights(CaseWeight, DefWeight));
323 }
324
325 // Update make.implicit metadata to the newly-created conditional branch.
326 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
327 if (MakeImplicitMD)
328 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
329
330 // Delete the old switch.
331 SI->eraseFromParent();
332 return true;
333 }
334 return Changed;
335 }
336
337 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) {
338 // indirectbr blockaddress(@F, @BB) -> br label @BB
339 if (auto *BA =
340 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
341 BasicBlock *TheOnlyDest = BA->getBasicBlock();
342 SmallSet<BasicBlock *, 8> RemovedSuccessors;
343
344 // Insert the new branch.
345 Builder.CreateBr(TheOnlyDest);
346
347 BasicBlock *SuccToKeep = TheOnlyDest;
348 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
349 BasicBlock *DestBB = IBI->getDestination(i);
350 if (DTU && DestBB != TheOnlyDest)
351 RemovedSuccessors.insert(DestBB);
352 if (IBI->getDestination(i) == SuccToKeep) {
353 SuccToKeep = nullptr;
354 } else {
355 DestBB->removePredecessor(BB);
356 }
357 }
358 Value *Address = IBI->getAddress();
359 IBI->eraseFromParent();
360 if (DeleteDeadConditions)
361 // Delete pointer cast instructions.
362 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
363
364 // Also zap the blockaddress constant if there are no users remaining,
365 // otherwise the destination is still marked as having its address taken.
366 if (BA->use_empty())
367 BA->destroyConstant();
368
369 // If we didn't find our destination in the IBI successor list, then we
370 // have undefined behavior. Replace the unconditional branch with an
371 // 'unreachable' instruction.
372 if (SuccToKeep) {
373 BB->getTerminator()->eraseFromParent();
374 new UnreachableInst(BB->getContext(), BB);
375 }
376
377 if (DTU) {
378 std::vector<DominatorTree::UpdateType> Updates;
379 Updates.reserve(RemovedSuccessors.size());
380 for (auto *RemovedSuccessor : RemovedSuccessors)
381 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
382 DTU->applyUpdates(Updates);
383 }
384 return true;
385 }
386 }
387
388 return false;
389 }
390
391 //===----------------------------------------------------------------------===//
392 // Local dead code elimination.
393 //
394
395 /// isInstructionTriviallyDead - Return true if the result produced by the
396 /// instruction is not used, and the instruction has no side effects.
397 ///
isInstructionTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)398 bool llvm::isInstructionTriviallyDead(Instruction *I,
399 const TargetLibraryInfo *TLI) {
400 if (!I->use_empty())
401 return false;
402 return wouldInstructionBeTriviallyDead(I, TLI);
403 }
404
wouldInstructionBeTriviallyDeadOnUnusedPaths(Instruction * I,const TargetLibraryInfo * TLI)405 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths(
406 Instruction *I, const TargetLibraryInfo *TLI) {
407 // Instructions that are "markers" and have implied meaning on code around
408 // them (without explicit uses), are not dead on unused paths.
409 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
410 if (II->getIntrinsicID() == Intrinsic::stacksave ||
411 II->getIntrinsicID() == Intrinsic::launder_invariant_group ||
412 II->isLifetimeStartOrEnd())
413 return false;
414 return wouldInstructionBeTriviallyDead(I, TLI);
415 }
416
wouldInstructionBeTriviallyDead(Instruction * I,const TargetLibraryInfo * TLI)417 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
418 const TargetLibraryInfo *TLI) {
419 if (I->isTerminator())
420 return false;
421
422 // We don't want the landingpad-like instructions removed by anything this
423 // general.
424 if (I->isEHPad())
425 return false;
426
427 // We don't want debug info removed by anything this general, unless
428 // debug info is empty.
429 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
430 if (DDI->getAddress())
431 return false;
432 return true;
433 }
434 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
435 if (DVI->hasArgList() || DVI->getValue(0))
436 return false;
437 return true;
438 }
439 if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) {
440 if (DLI->getLabel())
441 return false;
442 return true;
443 }
444
445 if (auto *CB = dyn_cast<CallBase>(I))
446 if (isRemovableAlloc(CB, TLI))
447 return true;
448
449 if (!I->willReturn()) {
450 auto *II = dyn_cast<IntrinsicInst>(I);
451 if (!II)
452 return false;
453
454 // TODO: These intrinsics are not safe to remove, because this may remove
455 // a well-defined trap.
456 switch (II->getIntrinsicID()) {
457 case Intrinsic::wasm_trunc_signed:
458 case Intrinsic::wasm_trunc_unsigned:
459 case Intrinsic::ptrauth_auth:
460 case Intrinsic::ptrauth_resign:
461 return true;
462 default:
463 return false;
464 }
465 }
466
467 if (!I->mayHaveSideEffects())
468 return true;
469
470 // Special case intrinsics that "may have side effects" but can be deleted
471 // when dead.
472 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
473 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
474 if (II->getIntrinsicID() == Intrinsic::stacksave ||
475 II->getIntrinsicID() == Intrinsic::launder_invariant_group)
476 return true;
477
478 if (II->isLifetimeStartOrEnd()) {
479 auto *Arg = II->getArgOperand(1);
480 // Lifetime intrinsics are dead when their right-hand is undef.
481 if (isa<UndefValue>(Arg))
482 return true;
483 // If the right-hand is an alloc, global, or argument and the only uses
484 // are lifetime intrinsics then the intrinsics are dead.
485 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg))
486 return llvm::all_of(Arg->uses(), [](Use &Use) {
487 if (IntrinsicInst *IntrinsicUse =
488 dyn_cast<IntrinsicInst>(Use.getUser()))
489 return IntrinsicUse->isLifetimeStartOrEnd();
490 return false;
491 });
492 return false;
493 }
494
495 // Assumptions are dead if their condition is trivially true. Guards on
496 // true are operationally no-ops. In the future we can consider more
497 // sophisticated tradeoffs for guards considering potential for check
498 // widening, but for now we keep things simple.
499 if ((II->getIntrinsicID() == Intrinsic::assume &&
500 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) ||
501 II->getIntrinsicID() == Intrinsic::experimental_guard) {
502 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
503 return !Cond->isZero();
504
505 return false;
506 }
507
508 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) {
509 std::optional<fp::ExceptionBehavior> ExBehavior =
510 FPI->getExceptionBehavior();
511 return *ExBehavior != fp::ebStrict;
512 }
513 }
514
515 if (auto *Call = dyn_cast<CallBase>(I)) {
516 if (Value *FreedOp = getFreedOperand(Call, TLI))
517 if (Constant *C = dyn_cast<Constant>(FreedOp))
518 return C->isNullValue() || isa<UndefValue>(C);
519 if (isMathLibCallNoop(Call, TLI))
520 return true;
521 }
522
523 // Non-volatile atomic loads from constants can be removed.
524 if (auto *LI = dyn_cast<LoadInst>(I))
525 if (auto *GV = dyn_cast<GlobalVariable>(
526 LI->getPointerOperand()->stripPointerCasts()))
527 if (!LI->isVolatile() && GV->isConstant())
528 return true;
529
530 return false;
531 }
532
533 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
534 /// trivially dead instruction, delete it. If that makes any of its operands
535 /// trivially dead, delete them too, recursively. Return true if any
536 /// instructions were deleted.
RecursivelyDeleteTriviallyDeadInstructions(Value * V,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU,std::function<void (Value *)> AboutToDeleteCallback)537 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
538 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU,
539 std::function<void(Value *)> AboutToDeleteCallback) {
540 Instruction *I = dyn_cast<Instruction>(V);
541 if (!I || !isInstructionTriviallyDead(I, TLI))
542 return false;
543
544 SmallVector<WeakTrackingVH, 16> DeadInsts;
545 DeadInsts.push_back(I);
546 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
547 AboutToDeleteCallback);
548
549 return true;
550 }
551
RecursivelyDeleteTriviallyDeadInstructionsPermissive(SmallVectorImpl<WeakTrackingVH> & DeadInsts,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU,std::function<void (Value *)> AboutToDeleteCallback)552 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive(
553 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
554 MemorySSAUpdater *MSSAU,
555 std::function<void(Value *)> AboutToDeleteCallback) {
556 unsigned S = 0, E = DeadInsts.size(), Alive = 0;
557 for (; S != E; ++S) {
558 auto *I = dyn_cast<Instruction>(DeadInsts[S]);
559 if (!I || !isInstructionTriviallyDead(I)) {
560 DeadInsts[S] = nullptr;
561 ++Alive;
562 }
563 }
564 if (Alive == E)
565 return false;
566 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU,
567 AboutToDeleteCallback);
568 return true;
569 }
570
RecursivelyDeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> & DeadInsts,const TargetLibraryInfo * TLI,MemorySSAUpdater * MSSAU,std::function<void (Value *)> AboutToDeleteCallback)571 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
572 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI,
573 MemorySSAUpdater *MSSAU,
574 std::function<void(Value *)> AboutToDeleteCallback) {
575 // Process the dead instruction list until empty.
576 while (!DeadInsts.empty()) {
577 Value *V = DeadInsts.pop_back_val();
578 Instruction *I = cast_or_null<Instruction>(V);
579 if (!I)
580 continue;
581 assert(isInstructionTriviallyDead(I, TLI) &&
582 "Live instruction found in dead worklist!");
583 assert(I->use_empty() && "Instructions with uses are not dead.");
584
585 // Don't lose the debug info while deleting the instructions.
586 salvageDebugInfo(*I);
587
588 if (AboutToDeleteCallback)
589 AboutToDeleteCallback(I);
590
591 // Null out all of the instruction's operands to see if any operand becomes
592 // dead as we go.
593 for (Use &OpU : I->operands()) {
594 Value *OpV = OpU.get();
595 OpU.set(nullptr);
596
597 if (!OpV->use_empty())
598 continue;
599
600 // If the operand is an instruction that became dead as we nulled out the
601 // operand, and if it is 'trivially' dead, delete it in a future loop
602 // iteration.
603 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
604 if (isInstructionTriviallyDead(OpI, TLI))
605 DeadInsts.push_back(OpI);
606 }
607 if (MSSAU)
608 MSSAU->removeMemoryAccess(I);
609
610 I->eraseFromParent();
611 }
612 }
613
replaceDbgUsesWithUndef(Instruction * I)614 bool llvm::replaceDbgUsesWithUndef(Instruction *I) {
615 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
616 findDbgUsers(DbgUsers, I);
617 for (auto *DII : DbgUsers)
618 DII->setKillLocation();
619 return !DbgUsers.empty();
620 }
621
622 /// areAllUsesEqual - Check whether the uses of a value are all the same.
623 /// This is similar to Instruction::hasOneUse() except this will also return
624 /// true when there are no uses or multiple uses that all refer to the same
625 /// value.
areAllUsesEqual(Instruction * I)626 static bool areAllUsesEqual(Instruction *I) {
627 Value::user_iterator UI = I->user_begin();
628 Value::user_iterator UE = I->user_end();
629 if (UI == UE)
630 return true;
631
632 User *TheUse = *UI;
633 for (++UI; UI != UE; ++UI) {
634 if (*UI != TheUse)
635 return false;
636 }
637 return true;
638 }
639
640 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
641 /// dead PHI node, due to being a def-use chain of single-use nodes that
642 /// either forms a cycle or is terminated by a trivially dead instruction,
643 /// delete it. If that makes any of its operands trivially dead, delete them
644 /// too, recursively. Return true if a change was made.
RecursivelyDeleteDeadPHINode(PHINode * PN,const TargetLibraryInfo * TLI,llvm::MemorySSAUpdater * MSSAU)645 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
646 const TargetLibraryInfo *TLI,
647 llvm::MemorySSAUpdater *MSSAU) {
648 SmallPtrSet<Instruction*, 4> Visited;
649 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
650 I = cast<Instruction>(*I->user_begin())) {
651 if (I->use_empty())
652 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
653
654 // If we find an instruction more than once, we're on a cycle that
655 // won't prove fruitful.
656 if (!Visited.insert(I).second) {
657 // Break the cycle and delete the instruction and its operands.
658 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
659 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU);
660 return true;
661 }
662 }
663 return false;
664 }
665
666 static bool
simplifyAndDCEInstruction(Instruction * I,SmallSetVector<Instruction *,16> & WorkList,const DataLayout & DL,const TargetLibraryInfo * TLI)667 simplifyAndDCEInstruction(Instruction *I,
668 SmallSetVector<Instruction *, 16> &WorkList,
669 const DataLayout &DL,
670 const TargetLibraryInfo *TLI) {
671 if (isInstructionTriviallyDead(I, TLI)) {
672 salvageDebugInfo(*I);
673
674 // Null out all of the instruction's operands to see if any operand becomes
675 // dead as we go.
676 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
677 Value *OpV = I->getOperand(i);
678 I->setOperand(i, nullptr);
679
680 if (!OpV->use_empty() || I == OpV)
681 continue;
682
683 // If the operand is an instruction that became dead as we nulled out the
684 // operand, and if it is 'trivially' dead, delete it in a future loop
685 // iteration.
686 if (Instruction *OpI = dyn_cast<Instruction>(OpV))
687 if (isInstructionTriviallyDead(OpI, TLI))
688 WorkList.insert(OpI);
689 }
690
691 I->eraseFromParent();
692
693 return true;
694 }
695
696 if (Value *SimpleV = simplifyInstruction(I, DL)) {
697 // Add the users to the worklist. CAREFUL: an instruction can use itself,
698 // in the case of a phi node.
699 for (User *U : I->users()) {
700 if (U != I) {
701 WorkList.insert(cast<Instruction>(U));
702 }
703 }
704
705 // Replace the instruction with its simplified value.
706 bool Changed = false;
707 if (!I->use_empty()) {
708 I->replaceAllUsesWith(SimpleV);
709 Changed = true;
710 }
711 if (isInstructionTriviallyDead(I, TLI)) {
712 I->eraseFromParent();
713 Changed = true;
714 }
715 return Changed;
716 }
717 return false;
718 }
719
720 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
721 /// simplify any instructions in it and recursively delete dead instructions.
722 ///
723 /// This returns true if it changed the code, note that it can delete
724 /// instructions in other blocks as well in this block.
SimplifyInstructionsInBlock(BasicBlock * BB,const TargetLibraryInfo * TLI)725 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
726 const TargetLibraryInfo *TLI) {
727 bool MadeChange = false;
728 const DataLayout &DL = BB->getModule()->getDataLayout();
729
730 #ifndef NDEBUG
731 // In debug builds, ensure that the terminator of the block is never replaced
732 // or deleted by these simplifications. The idea of simplification is that it
733 // cannot introduce new instructions, and there is no way to replace the
734 // terminator of a block without introducing a new instruction.
735 AssertingVH<Instruction> TerminatorVH(&BB->back());
736 #endif
737
738 SmallSetVector<Instruction *, 16> WorkList;
739 // Iterate over the original function, only adding insts to the worklist
740 // if they actually need to be revisited. This avoids having to pre-init
741 // the worklist with the entire function's worth of instructions.
742 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
743 BI != E;) {
744 assert(!BI->isTerminator());
745 Instruction *I = &*BI;
746 ++BI;
747
748 // We're visiting this instruction now, so make sure it's not in the
749 // worklist from an earlier visit.
750 if (!WorkList.count(I))
751 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
752 }
753
754 while (!WorkList.empty()) {
755 Instruction *I = WorkList.pop_back_val();
756 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
757 }
758 return MadeChange;
759 }
760
761 //===----------------------------------------------------------------------===//
762 // Control Flow Graph Restructuring.
763 //
764
MergeBasicBlockIntoOnlyPred(BasicBlock * DestBB,DomTreeUpdater * DTU)765 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB,
766 DomTreeUpdater *DTU) {
767
768 // If BB has single-entry PHI nodes, fold them.
769 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
770 Value *NewVal = PN->getIncomingValue(0);
771 // Replace self referencing PHI with poison, it must be dead.
772 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType());
773 PN->replaceAllUsesWith(NewVal);
774 PN->eraseFromParent();
775 }
776
777 BasicBlock *PredBB = DestBB->getSinglePredecessor();
778 assert(PredBB && "Block doesn't have a single predecessor!");
779
780 bool ReplaceEntryBB = PredBB->isEntryBlock();
781
782 // DTU updates: Collect all the edges that enter
783 // PredBB. These dominator edges will be redirected to DestBB.
784 SmallVector<DominatorTree::UpdateType, 32> Updates;
785
786 if (DTU) {
787 // To avoid processing the same predecessor more than once.
788 SmallPtrSet<BasicBlock *, 2> SeenPreds;
789 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1);
790 for (BasicBlock *PredOfPredBB : predecessors(PredBB))
791 // This predecessor of PredBB may already have DestBB as a successor.
792 if (PredOfPredBB != PredBB)
793 if (SeenPreds.insert(PredOfPredBB).second)
794 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB});
795 SeenPreds.clear();
796 for (BasicBlock *PredOfPredBB : predecessors(PredBB))
797 if (SeenPreds.insert(PredOfPredBB).second)
798 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB});
799 Updates.push_back({DominatorTree::Delete, PredBB, DestBB});
800 }
801
802 // Zap anything that took the address of DestBB. Not doing this will give the
803 // address an invalid value.
804 if (DestBB->hasAddressTaken()) {
805 BlockAddress *BA = BlockAddress::get(DestBB);
806 Constant *Replacement =
807 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1);
808 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
809 BA->getType()));
810 BA->destroyConstant();
811 }
812
813 // Anything that branched to PredBB now branches to DestBB.
814 PredBB->replaceAllUsesWith(DestBB);
815
816 // Splice all the instructions from PredBB to DestBB.
817 PredBB->getTerminator()->eraseFromParent();
818 DestBB->splice(DestBB->begin(), PredBB);
819 new UnreachableInst(PredBB->getContext(), PredBB);
820
821 // If the PredBB is the entry block of the function, move DestBB up to
822 // become the entry block after we erase PredBB.
823 if (ReplaceEntryBB)
824 DestBB->moveAfter(PredBB);
825
826 if (DTU) {
827 assert(PredBB->size() == 1 &&
828 isa<UnreachableInst>(PredBB->getTerminator()) &&
829 "The successor list of PredBB isn't empty before "
830 "applying corresponding DTU updates.");
831 DTU->applyUpdatesPermissive(Updates);
832 DTU->deleteBB(PredBB);
833 // Recalculation of DomTree is needed when updating a forward DomTree and
834 // the Entry BB is replaced.
835 if (ReplaceEntryBB && DTU->hasDomTree()) {
836 // The entry block was removed and there is no external interface for
837 // the dominator tree to be notified of this change. In this corner-case
838 // we recalculate the entire tree.
839 DTU->recalculate(*(DestBB->getParent()));
840 }
841 }
842
843 else {
844 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr.
845 }
846 }
847
848 /// Return true if we can choose one of these values to use in place of the
849 /// other. Note that we will always choose the non-undef value to keep.
CanMergeValues(Value * First,Value * Second)850 static bool CanMergeValues(Value *First, Value *Second) {
851 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
852 }
853
854 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional
855 /// branch to Succ, into Succ.
856 ///
857 /// Assumption: Succ is the single successor for BB.
CanPropagatePredecessorsForPHIs(BasicBlock * BB,BasicBlock * Succ)858 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
859 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
860
861 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
862 << Succ->getName() << "\n");
863 // Shortcut, if there is only a single predecessor it must be BB and merging
864 // is always safe
865 if (Succ->getSinglePredecessor()) return true;
866
867 // Make a list of the predecessors of BB
868 SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
869
870 // Look at all the phi nodes in Succ, to see if they present a conflict when
871 // merging these blocks
872 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
873 PHINode *PN = cast<PHINode>(I);
874
875 // If the incoming value from BB is again a PHINode in
876 // BB which has the same incoming value for *PI as PN does, we can
877 // merge the phi nodes and then the blocks can still be merged
878 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
879 if (BBPN && BBPN->getParent() == BB) {
880 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
881 BasicBlock *IBB = PN->getIncomingBlock(PI);
882 if (BBPreds.count(IBB) &&
883 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
884 PN->getIncomingValue(PI))) {
885 LLVM_DEBUG(dbgs()
886 << "Can't fold, phi node " << PN->getName() << " in "
887 << Succ->getName() << " is conflicting with "
888 << BBPN->getName() << " with regard to common predecessor "
889 << IBB->getName() << "\n");
890 return false;
891 }
892 }
893 } else {
894 Value* Val = PN->getIncomingValueForBlock(BB);
895 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
896 // See if the incoming value for the common predecessor is equal to the
897 // one for BB, in which case this phi node will not prevent the merging
898 // of the block.
899 BasicBlock *IBB = PN->getIncomingBlock(PI);
900 if (BBPreds.count(IBB) &&
901 !CanMergeValues(Val, PN->getIncomingValue(PI))) {
902 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName()
903 << " in " << Succ->getName()
904 << " is conflicting with regard to common "
905 << "predecessor " << IBB->getName() << "\n");
906 return false;
907 }
908 }
909 }
910 }
911
912 return true;
913 }
914
915 using PredBlockVector = SmallVector<BasicBlock *, 16>;
916 using IncomingValueMap = DenseMap<BasicBlock *, Value *>;
917
918 /// Determines the value to use as the phi node input for a block.
919 ///
920 /// Select between \p OldVal any value that we know flows from \p BB
921 /// to a particular phi on the basis of which one (if either) is not
922 /// undef. Update IncomingValues based on the selected value.
923 ///
924 /// \param OldVal The value we are considering selecting.
925 /// \param BB The block that the value flows in from.
926 /// \param IncomingValues A map from block-to-value for other phi inputs
927 /// that we have examined.
928 ///
929 /// \returns the selected value.
selectIncomingValueForBlock(Value * OldVal,BasicBlock * BB,IncomingValueMap & IncomingValues)930 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
931 IncomingValueMap &IncomingValues) {
932 if (!isa<UndefValue>(OldVal)) {
933 assert((!IncomingValues.count(BB) ||
934 IncomingValues.find(BB)->second == OldVal) &&
935 "Expected OldVal to match incoming value from BB!");
936
937 IncomingValues.insert(std::make_pair(BB, OldVal));
938 return OldVal;
939 }
940
941 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
942 if (It != IncomingValues.end()) return It->second;
943
944 return OldVal;
945 }
946
947 /// Create a map from block to value for the operands of a
948 /// given phi.
949 ///
950 /// Create a map from block to value for each non-undef value flowing
951 /// into \p PN.
952 ///
953 /// \param PN The phi we are collecting the map for.
954 /// \param IncomingValues [out] The map from block to value for this phi.
gatherIncomingValuesToPhi(PHINode * PN,IncomingValueMap & IncomingValues)955 static void gatherIncomingValuesToPhi(PHINode *PN,
956 IncomingValueMap &IncomingValues) {
957 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
958 BasicBlock *BB = PN->getIncomingBlock(i);
959 Value *V = PN->getIncomingValue(i);
960
961 if (!isa<UndefValue>(V))
962 IncomingValues.insert(std::make_pair(BB, V));
963 }
964 }
965
966 /// Replace the incoming undef values to a phi with the values
967 /// from a block-to-value map.
968 ///
969 /// \param PN The phi we are replacing the undefs in.
970 /// \param IncomingValues A map from block to value.
replaceUndefValuesInPhi(PHINode * PN,const IncomingValueMap & IncomingValues)971 static void replaceUndefValuesInPhi(PHINode *PN,
972 const IncomingValueMap &IncomingValues) {
973 SmallVector<unsigned> TrueUndefOps;
974 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
975 Value *V = PN->getIncomingValue(i);
976
977 if (!isa<UndefValue>(V)) continue;
978
979 BasicBlock *BB = PN->getIncomingBlock(i);
980 IncomingValueMap::const_iterator It = IncomingValues.find(BB);
981
982 // Keep track of undef/poison incoming values. Those must match, so we fix
983 // them up below if needed.
984 // Note: this is conservatively correct, but we could try harder and group
985 // the undef values per incoming basic block.
986 if (It == IncomingValues.end()) {
987 TrueUndefOps.push_back(i);
988 continue;
989 }
990
991 // There is a defined value for this incoming block, so map this undef
992 // incoming value to the defined value.
993 PN->setIncomingValue(i, It->second);
994 }
995
996 // If there are both undef and poison values incoming, then convert those
997 // values to undef. It is invalid to have different values for the same
998 // incoming block.
999 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) {
1000 return isa<PoisonValue>(PN->getIncomingValue(i));
1001 });
1002 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) {
1003 for (unsigned i : TrueUndefOps)
1004 PN->setIncomingValue(i, UndefValue::get(PN->getType()));
1005 }
1006 }
1007
1008 /// Replace a value flowing from a block to a phi with
1009 /// potentially multiple instances of that value flowing from the
1010 /// block's predecessors to the phi.
1011 ///
1012 /// \param BB The block with the value flowing into the phi.
1013 /// \param BBPreds The predecessors of BB.
1014 /// \param PN The phi that we are updating.
redirectValuesFromPredecessorsToPhi(BasicBlock * BB,const PredBlockVector & BBPreds,PHINode * PN)1015 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
1016 const PredBlockVector &BBPreds,
1017 PHINode *PN) {
1018 Value *OldVal = PN->removeIncomingValue(BB, false);
1019 assert(OldVal && "No entry in PHI for Pred BB!");
1020
1021 IncomingValueMap IncomingValues;
1022
1023 // We are merging two blocks - BB, and the block containing PN - and
1024 // as a result we need to redirect edges from the predecessors of BB
1025 // to go to the block containing PN, and update PN
1026 // accordingly. Since we allow merging blocks in the case where the
1027 // predecessor and successor blocks both share some predecessors,
1028 // and where some of those common predecessors might have undef
1029 // values flowing into PN, we want to rewrite those values to be
1030 // consistent with the non-undef values.
1031
1032 gatherIncomingValuesToPhi(PN, IncomingValues);
1033
1034 // If this incoming value is one of the PHI nodes in BB, the new entries
1035 // in the PHI node are the entries from the old PHI.
1036 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
1037 PHINode *OldValPN = cast<PHINode>(OldVal);
1038 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
1039 // Note that, since we are merging phi nodes and BB and Succ might
1040 // have common predecessors, we could end up with a phi node with
1041 // identical incoming branches. This will be cleaned up later (and
1042 // will trigger asserts if we try to clean it up now, without also
1043 // simplifying the corresponding conditional branch).
1044 BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
1045 Value *PredVal = OldValPN->getIncomingValue(i);
1046 Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
1047 IncomingValues);
1048
1049 // And add a new incoming value for this predecessor for the
1050 // newly retargeted branch.
1051 PN->addIncoming(Selected, PredBB);
1052 }
1053 } else {
1054 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
1055 // Update existing incoming values in PN for this
1056 // predecessor of BB.
1057 BasicBlock *PredBB = BBPreds[i];
1058 Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
1059 IncomingValues);
1060
1061 // And add a new incoming value for this predecessor for the
1062 // newly retargeted branch.
1063 PN->addIncoming(Selected, PredBB);
1064 }
1065 }
1066
1067 replaceUndefValuesInPhi(PN, IncomingValues);
1068 }
1069
TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock * BB,DomTreeUpdater * DTU)1070 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
1071 DomTreeUpdater *DTU) {
1072 assert(BB != &BB->getParent()->getEntryBlock() &&
1073 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
1074
1075 // We can't eliminate infinite loops.
1076 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
1077 if (BB == Succ) return false;
1078
1079 // Check to see if merging these blocks would cause conflicts for any of the
1080 // phi nodes in BB or Succ. If not, we can safely merge.
1081 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
1082
1083 // Check for cases where Succ has multiple predecessors and a PHI node in BB
1084 // has uses which will not disappear when the PHI nodes are merged. It is
1085 // possible to handle such cases, but difficult: it requires checking whether
1086 // BB dominates Succ, which is non-trivial to calculate in the case where
1087 // Succ has multiple predecessors. Also, it requires checking whether
1088 // constructing the necessary self-referential PHI node doesn't introduce any
1089 // conflicts; this isn't too difficult, but the previous code for doing this
1090 // was incorrect.
1091 //
1092 // Note that if this check finds a live use, BB dominates Succ, so BB is
1093 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
1094 // folding the branch isn't profitable in that case anyway.
1095 if (!Succ->getSinglePredecessor()) {
1096 BasicBlock::iterator BBI = BB->begin();
1097 while (isa<PHINode>(*BBI)) {
1098 for (Use &U : BBI->uses()) {
1099 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
1100 if (PN->getIncomingBlock(U) != BB)
1101 return false;
1102 } else {
1103 return false;
1104 }
1105 }
1106 ++BBI;
1107 }
1108 }
1109
1110 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop
1111 // metadata.
1112 //
1113 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given
1114 // current status (that loop metadata is implemented as metadata attached to
1115 // the branch instruction in the loop latch block). To quote from review
1116 // comments, "the current representation of loop metadata (using a loop latch
1117 // terminator attachment) is known to be fundamentally broken. Loop latches
1118 // are not uniquely associated with loops (both in that a latch can be part of
1119 // multiple loops and a loop may have multiple latches). Loop headers are. The
1120 // solution to this problem is also known: Add support for basic block
1121 // metadata, and attach loop metadata to the loop header."
1122 //
1123 // Why bail out:
1124 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is
1125 // the latch for inner-loop (see reason below), so bail out to prerserve
1126 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata
1127 // to this inner-loop.
1128 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most
1129 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L,
1130 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of
1131 // one self-looping basic block, which is contradictory with the assumption.
1132 //
1133 // To illustrate how inner-loop metadata is dropped:
1134 //
1135 // CFG Before
1136 //
1137 // BB is while.cond.exit, attached with loop metdata md2.
1138 // BB->Pred is for.body, attached with loop metadata md1.
1139 //
1140 // entry
1141 // |
1142 // v
1143 // ---> while.cond -------------> while.end
1144 // | |
1145 // | v
1146 // | while.body
1147 // | |
1148 // | v
1149 // | for.body <---- (md1)
1150 // | | |______|
1151 // | v
1152 // | while.cond.exit (md2)
1153 // | |
1154 // |_______|
1155 //
1156 // CFG After
1157 //
1158 // while.cond1 is the merge of while.cond.exit and while.cond above.
1159 // for.body is attached with md2, and md1 is dropped.
1160 // If LoopSimplify runs later (as a part of loop pass), it could create
1161 // dedicated exits for inner-loop (essentially adding `while.cond.exit`
1162 // back), but won't it won't see 'md1' nor restore it for the inner-loop.
1163 //
1164 // entry
1165 // |
1166 // v
1167 // ---> while.cond1 -------------> while.end
1168 // | |
1169 // | v
1170 // | while.body
1171 // | |
1172 // | v
1173 // | for.body <---- (md2)
1174 // |_______| |______|
1175 if (Instruction *TI = BB->getTerminator())
1176 if (TI->hasMetadata(LLVMContext::MD_loop))
1177 for (BasicBlock *Pred : predecessors(BB))
1178 if (Instruction *PredTI = Pred->getTerminator())
1179 if (PredTI->hasMetadata(LLVMContext::MD_loop))
1180 return false;
1181
1182 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
1183
1184 SmallVector<DominatorTree::UpdateType, 32> Updates;
1185 if (DTU) {
1186 // To avoid processing the same predecessor more than once.
1187 SmallPtrSet<BasicBlock *, 8> SeenPreds;
1188 // All predecessors of BB will be moved to Succ.
1189 SmallPtrSet<BasicBlock *, 8> PredsOfSucc(pred_begin(Succ), pred_end(Succ));
1190 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1);
1191 for (auto *PredOfBB : predecessors(BB))
1192 // This predecessor of BB may already have Succ as a successor.
1193 if (!PredsOfSucc.contains(PredOfBB))
1194 if (SeenPreds.insert(PredOfBB).second)
1195 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ});
1196 SeenPreds.clear();
1197 for (auto *PredOfBB : predecessors(BB))
1198 if (SeenPreds.insert(PredOfBB).second)
1199 Updates.push_back({DominatorTree::Delete, PredOfBB, BB});
1200 Updates.push_back({DominatorTree::Delete, BB, Succ});
1201 }
1202
1203 if (isa<PHINode>(Succ->begin())) {
1204 // If there is more than one pred of succ, and there are PHI nodes in
1205 // the successor, then we need to add incoming edges for the PHI nodes
1206 //
1207 const PredBlockVector BBPreds(predecessors(BB));
1208
1209 // Loop over all of the PHI nodes in the successor of BB.
1210 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
1211 PHINode *PN = cast<PHINode>(I);
1212
1213 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
1214 }
1215 }
1216
1217 if (Succ->getSinglePredecessor()) {
1218 // BB is the only predecessor of Succ, so Succ will end up with exactly
1219 // the same predecessors BB had.
1220
1221 // Copy over any phi, debug or lifetime instruction.
1222 BB->getTerminator()->eraseFromParent();
1223 Succ->splice(Succ->getFirstNonPHI()->getIterator(), BB);
1224 } else {
1225 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
1226 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1227 assert(PN->use_empty() && "There shouldn't be any uses here!");
1228 PN->eraseFromParent();
1229 }
1230 }
1231
1232 // If the unconditional branch we replaced contains llvm.loop metadata, we
1233 // add the metadata to the branch instructions in the predecessors.
1234 unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
1235 Instruction *TI = BB->getTerminator();
1236 if (TI)
1237 if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
1238 for (BasicBlock *Pred : predecessors(BB))
1239 Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
1240
1241 // Everything that jumped to BB now goes to Succ.
1242 BB->replaceAllUsesWith(Succ);
1243 if (!Succ->hasName()) Succ->takeName(BB);
1244
1245 // Clear the successor list of BB to match updates applying to DTU later.
1246 if (BB->getTerminator())
1247 BB->back().eraseFromParent();
1248 new UnreachableInst(BB->getContext(), BB);
1249 assert(succ_empty(BB) && "The successor list of BB isn't empty before "
1250 "applying corresponding DTU updates.");
1251
1252 if (DTU)
1253 DTU->applyUpdates(Updates);
1254
1255 DeleteDeadBlock(BB, DTU);
1256
1257 return true;
1258 }
1259
EliminateDuplicatePHINodesNaiveImpl(BasicBlock * BB)1260 static bool EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB) {
1261 // This implementation doesn't currently consider undef operands
1262 // specially. Theoretically, two phis which are identical except for
1263 // one having an undef where the other doesn't could be collapsed.
1264
1265 bool Changed = false;
1266
1267 // Examine each PHI.
1268 // Note that increment of I must *NOT* be in the iteration_expression, since
1269 // we don't want to immediately advance when we restart from the beginning.
1270 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) {
1271 ++I;
1272 // Is there an identical PHI node in this basic block?
1273 // Note that we only look in the upper square's triangle,
1274 // we already checked that the lower triangle PHI's aren't identical.
1275 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) {
1276 if (!DuplicatePN->isIdenticalToWhenDefined(PN))
1277 continue;
1278 // A duplicate. Replace this PHI with the base PHI.
1279 ++NumPHICSEs;
1280 DuplicatePN->replaceAllUsesWith(PN);
1281 DuplicatePN->eraseFromParent();
1282 Changed = true;
1283
1284 // The RAUW can change PHIs that we already visited.
1285 I = BB->begin();
1286 break; // Start over from the beginning.
1287 }
1288 }
1289 return Changed;
1290 }
1291
EliminateDuplicatePHINodesSetBasedImpl(BasicBlock * BB)1292 static bool EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB) {
1293 // This implementation doesn't currently consider undef operands
1294 // specially. Theoretically, two phis which are identical except for
1295 // one having an undef where the other doesn't could be collapsed.
1296
1297 struct PHIDenseMapInfo {
1298 static PHINode *getEmptyKey() {
1299 return DenseMapInfo<PHINode *>::getEmptyKey();
1300 }
1301
1302 static PHINode *getTombstoneKey() {
1303 return DenseMapInfo<PHINode *>::getTombstoneKey();
1304 }
1305
1306 static bool isSentinel(PHINode *PN) {
1307 return PN == getEmptyKey() || PN == getTombstoneKey();
1308 }
1309
1310 // WARNING: this logic must be kept in sync with
1311 // Instruction::isIdenticalToWhenDefined()!
1312 static unsigned getHashValueImpl(PHINode *PN) {
1313 // Compute a hash value on the operands. Instcombine will likely have
1314 // sorted them, which helps expose duplicates, but we have to check all
1315 // the operands to be safe in case instcombine hasn't run.
1316 return static_cast<unsigned>(hash_combine(
1317 hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
1318 hash_combine_range(PN->block_begin(), PN->block_end())));
1319 }
1320
1321 static unsigned getHashValue(PHINode *PN) {
1322 #ifndef NDEBUG
1323 // If -phicse-debug-hash was specified, return a constant -- this
1324 // will force all hashing to collide, so we'll exhaustively search
1325 // the table for a match, and the assertion in isEqual will fire if
1326 // there's a bug causing equal keys to hash differently.
1327 if (PHICSEDebugHash)
1328 return 0;
1329 #endif
1330 return getHashValueImpl(PN);
1331 }
1332
1333 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) {
1334 if (isSentinel(LHS) || isSentinel(RHS))
1335 return LHS == RHS;
1336 return LHS->isIdenticalTo(RHS);
1337 }
1338
1339 static bool isEqual(PHINode *LHS, PHINode *RHS) {
1340 // These comparisons are nontrivial, so assert that equality implies
1341 // hash equality (DenseMap demands this as an invariant).
1342 bool Result = isEqualImpl(LHS, RHS);
1343 assert(!Result || (isSentinel(LHS) && LHS == RHS) ||
1344 getHashValueImpl(LHS) == getHashValueImpl(RHS));
1345 return Result;
1346 }
1347 };
1348
1349 // Set of unique PHINodes.
1350 DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
1351 PHISet.reserve(4 * PHICSENumPHISmallSize);
1352
1353 // Examine each PHI.
1354 bool Changed = false;
1355 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
1356 auto Inserted = PHISet.insert(PN);
1357 if (!Inserted.second) {
1358 // A duplicate. Replace this PHI with its duplicate.
1359 ++NumPHICSEs;
1360 PN->replaceAllUsesWith(*Inserted.first);
1361 PN->eraseFromParent();
1362 Changed = true;
1363
1364 // The RAUW can change PHIs that we already visited. Start over from the
1365 // beginning.
1366 PHISet.clear();
1367 I = BB->begin();
1368 }
1369 }
1370
1371 return Changed;
1372 }
1373
EliminateDuplicatePHINodes(BasicBlock * BB)1374 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
1375 if (
1376 #ifndef NDEBUG
1377 !PHICSEDebugHash &&
1378 #endif
1379 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize))
1380 return EliminateDuplicatePHINodesNaiveImpl(BB);
1381 return EliminateDuplicatePHINodesSetBasedImpl(BB);
1382 }
1383
1384 /// If the specified pointer points to an object that we control, try to modify
1385 /// the object's alignment to PrefAlign. Returns a minimum known alignment of
1386 /// the value after the operation, which may be lower than PrefAlign.
1387 ///
1388 /// Increating value alignment isn't often possible though. If alignment is
1389 /// important, a more reliable approach is to simply align all global variables
1390 /// and allocation instructions to their preferred alignment from the beginning.
tryEnforceAlignment(Value * V,Align PrefAlign,const DataLayout & DL)1391 static Align tryEnforceAlignment(Value *V, Align PrefAlign,
1392 const DataLayout &DL) {
1393 V = V->stripPointerCasts();
1394
1395 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1396 // TODO: Ideally, this function would not be called if PrefAlign is smaller
1397 // than the current alignment, as the known bits calculation should have
1398 // already taken it into account. However, this is not always the case,
1399 // as computeKnownBits() has a depth limit, while stripPointerCasts()
1400 // doesn't.
1401 Align CurrentAlign = AI->getAlign();
1402 if (PrefAlign <= CurrentAlign)
1403 return CurrentAlign;
1404
1405 // If the preferred alignment is greater than the natural stack alignment
1406 // then don't round up. This avoids dynamic stack realignment.
1407 if (DL.exceedsNaturalStackAlignment(PrefAlign))
1408 return CurrentAlign;
1409 AI->setAlignment(PrefAlign);
1410 return PrefAlign;
1411 }
1412
1413 if (auto *GO = dyn_cast<GlobalObject>(V)) {
1414 // TODO: as above, this shouldn't be necessary.
1415 Align CurrentAlign = GO->getPointerAlignment(DL);
1416 if (PrefAlign <= CurrentAlign)
1417 return CurrentAlign;
1418
1419 // If there is a large requested alignment and we can, bump up the alignment
1420 // of the global. If the memory we set aside for the global may not be the
1421 // memory used by the final program then it is impossible for us to reliably
1422 // enforce the preferred alignment.
1423 if (!GO->canIncreaseAlignment())
1424 return CurrentAlign;
1425
1426 GO->setAlignment(PrefAlign);
1427 return PrefAlign;
1428 }
1429
1430 return Align(1);
1431 }
1432
getOrEnforceKnownAlignment(Value * V,MaybeAlign PrefAlign,const DataLayout & DL,const Instruction * CxtI,AssumptionCache * AC,const DominatorTree * DT)1433 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
1434 const DataLayout &DL,
1435 const Instruction *CxtI,
1436 AssumptionCache *AC,
1437 const DominatorTree *DT) {
1438 assert(V->getType()->isPointerTy() &&
1439 "getOrEnforceKnownAlignment expects a pointer!");
1440
1441 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT);
1442 unsigned TrailZ = Known.countMinTrailingZeros();
1443
1444 // Avoid trouble with ridiculously large TrailZ values, such as
1445 // those computed from a null pointer.
1446 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent).
1447 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent);
1448
1449 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ));
1450
1451 if (PrefAlign && *PrefAlign > Alignment)
1452 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL));
1453
1454 // We don't need to make any adjustment.
1455 return Alignment;
1456 }
1457
1458 ///===---------------------------------------------------------------------===//
1459 /// Dbg Intrinsic utilities
1460 ///
1461
1462 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
PhiHasDebugValue(DILocalVariable * DIVar,DIExpression * DIExpr,PHINode * APN)1463 static bool PhiHasDebugValue(DILocalVariable *DIVar,
1464 DIExpression *DIExpr,
1465 PHINode *APN) {
1466 // Since we can't guarantee that the original dbg.declare intrinsic
1467 // is removed by LowerDbgDeclare(), we need to make sure that we are
1468 // not inserting the same dbg.value intrinsic over and over.
1469 SmallVector<DbgValueInst *, 1> DbgValues;
1470 findDbgValues(DbgValues, APN);
1471 for (auto *DVI : DbgValues) {
1472 assert(is_contained(DVI->getValues(), APN));
1473 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1474 return true;
1475 }
1476 return false;
1477 }
1478
1479 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1480 /// (or fragment of the variable) described by \p DII.
1481 ///
1482 /// This is primarily intended as a helper for the different
1483 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1484 /// converted describes an alloca'd variable, so we need to use the
1485 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1486 /// identified as covering an n-bit fragment, if the store size of i1 is at
1487 /// least n bits.
valueCoversEntireFragment(Type * ValTy,DbgVariableIntrinsic * DII)1488 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) {
1489 const DataLayout &DL = DII->getModule()->getDataLayout();
1490 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy);
1491 if (std::optional<uint64_t> FragmentSize = DII->getFragmentSizeInBits()) {
1492 assert(!ValueSize.isScalable() &&
1493 "Fragments don't work on scalable types.");
1494 return ValueSize.getFixedValue() >= *FragmentSize;
1495 }
1496 // We can't always calculate the size of the DI variable (e.g. if it is a
1497 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1498 // intead.
1499 if (DII->isAddressOfVariable()) {
1500 // DII should have exactly 1 location when it is an address.
1501 assert(DII->getNumVariableLocationOps() == 1 &&
1502 "address of variable must have exactly 1 location operand.");
1503 if (auto *AI =
1504 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) {
1505 if (std::optional<TypeSize> FragmentSize =
1506 AI->getAllocationSizeInBits(DL)) {
1507 return TypeSize::isKnownGE(ValueSize, *FragmentSize);
1508 }
1509 }
1510 }
1511 // Could not determine size of variable. Conservatively return false.
1512 return false;
1513 }
1514
1515 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1516 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,StoreInst * SI,DIBuilder & Builder)1517 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1518 StoreInst *SI, DIBuilder &Builder) {
1519 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII));
1520 auto *DIVar = DII->getVariable();
1521 assert(DIVar && "Missing variable");
1522 auto *DIExpr = DII->getExpression();
1523 Value *DV = SI->getValueOperand();
1524
1525 DebugLoc NewLoc = getDebugValueLoc(DII);
1526
1527 if (!valueCoversEntireFragment(DV->getType(), DII)) {
1528 // FIXME: If storing to a part of the variable described by the dbg.declare,
1529 // then we want to insert a dbg.value for the corresponding fragment.
1530 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1531 << *DII << '\n');
1532 // For now, when there is a store to parts of the variable (but we do not
1533 // know which part) we insert an dbg.value intrinsic to indicate that we
1534 // know nothing about the variable's content.
1535 DV = UndefValue::get(DV->getType());
1536 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1537 return;
1538 }
1539
1540 Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, SI);
1541 }
1542
1543 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1544 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,LoadInst * LI,DIBuilder & Builder)1545 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1546 LoadInst *LI, DIBuilder &Builder) {
1547 auto *DIVar = DII->getVariable();
1548 auto *DIExpr = DII->getExpression();
1549 assert(DIVar && "Missing variable");
1550
1551 if (!valueCoversEntireFragment(LI->getType(), DII)) {
1552 // FIXME: If only referring to a part of the variable described by the
1553 // dbg.declare, then we want to insert a dbg.value for the corresponding
1554 // fragment.
1555 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1556 << *DII << '\n');
1557 return;
1558 }
1559
1560 DebugLoc NewLoc = getDebugValueLoc(DII);
1561
1562 // We are now tracking the loaded value instead of the address. In the
1563 // future if multi-location support is added to the IR, it might be
1564 // preferable to keep tracking both the loaded value and the original
1565 // address in case the alloca can not be elided.
1566 Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1567 LI, DIVar, DIExpr, NewLoc, (Instruction *)nullptr);
1568 DbgValue->insertAfter(LI);
1569 }
1570
1571 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1572 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic * DII,PHINode * APN,DIBuilder & Builder)1573 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
1574 PHINode *APN, DIBuilder &Builder) {
1575 auto *DIVar = DII->getVariable();
1576 auto *DIExpr = DII->getExpression();
1577 assert(DIVar && "Missing variable");
1578
1579 if (PhiHasDebugValue(DIVar, DIExpr, APN))
1580 return;
1581
1582 if (!valueCoversEntireFragment(APN->getType(), DII)) {
1583 // FIXME: If only referring to a part of the variable described by the
1584 // dbg.declare, then we want to insert a dbg.value for the corresponding
1585 // fragment.
1586 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1587 << *DII << '\n');
1588 return;
1589 }
1590
1591 BasicBlock *BB = APN->getParent();
1592 auto InsertionPt = BB->getFirstInsertionPt();
1593
1594 DebugLoc NewLoc = getDebugValueLoc(DII);
1595
1596 // The block may be a catchswitch block, which does not have a valid
1597 // insertion point.
1598 // FIXME: Insert dbg.value markers in the successors when appropriate.
1599 if (InsertionPt != BB->end())
1600 Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, NewLoc, &*InsertionPt);
1601 }
1602
1603 /// Determine whether this alloca is either a VLA or an array.
isArray(AllocaInst * AI)1604 static bool isArray(AllocaInst *AI) {
1605 return AI->isArrayAllocation() ||
1606 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy());
1607 }
1608
1609 /// Determine whether this alloca is a structure.
isStructure(AllocaInst * AI)1610 static bool isStructure(AllocaInst *AI) {
1611 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy();
1612 }
1613
1614 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1615 /// of llvm.dbg.value intrinsics.
LowerDbgDeclare(Function & F)1616 bool llvm::LowerDbgDeclare(Function &F) {
1617 bool Changed = false;
1618 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1619 SmallVector<DbgDeclareInst *, 4> Dbgs;
1620 for (auto &FI : F)
1621 for (Instruction &BI : FI)
1622 if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1623 Dbgs.push_back(DDI);
1624
1625 if (Dbgs.empty())
1626 return Changed;
1627
1628 for (auto &I : Dbgs) {
1629 DbgDeclareInst *DDI = I;
1630 AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1631 // If this is an alloca for a scalar variable, insert a dbg.value
1632 // at each load and store to the alloca and erase the dbg.declare.
1633 // The dbg.values allow tracking a variable even if it is not
1634 // stored on the stack, while the dbg.declare can only describe
1635 // the stack slot (and at a lexical-scope granularity). Later
1636 // passes will attempt to elide the stack slot.
1637 if (!AI || isArray(AI) || isStructure(AI))
1638 continue;
1639
1640 // A volatile load/store means that the alloca can't be elided anyway.
1641 if (llvm::any_of(AI->users(), [](User *U) -> bool {
1642 if (LoadInst *LI = dyn_cast<LoadInst>(U))
1643 return LI->isVolatile();
1644 if (StoreInst *SI = dyn_cast<StoreInst>(U))
1645 return SI->isVolatile();
1646 return false;
1647 }))
1648 continue;
1649
1650 SmallVector<const Value *, 8> WorkList;
1651 WorkList.push_back(AI);
1652 while (!WorkList.empty()) {
1653 const Value *V = WorkList.pop_back_val();
1654 for (const auto &AIUse : V->uses()) {
1655 User *U = AIUse.getUser();
1656 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1657 if (AIUse.getOperandNo() == 1)
1658 ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1659 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1660 ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1661 } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1662 // This is a call by-value or some other instruction that takes a
1663 // pointer to the variable. Insert a *value* intrinsic that describes
1664 // the variable by dereferencing the alloca.
1665 if (!CI->isLifetimeStartOrEnd()) {
1666 DebugLoc NewLoc = getDebugValueLoc(DDI);
1667 auto *DerefExpr =
1668 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref);
1669 DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr,
1670 NewLoc, CI);
1671 }
1672 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
1673 if (BI->getType()->isPointerTy())
1674 WorkList.push_back(BI);
1675 }
1676 }
1677 }
1678 DDI->eraseFromParent();
1679 Changed = true;
1680 }
1681
1682 if (Changed)
1683 for (BasicBlock &BB : F)
1684 RemoveRedundantDbgInstrs(&BB);
1685
1686 return Changed;
1687 }
1688
1689 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
insertDebugValuesForPHIs(BasicBlock * BB,SmallVectorImpl<PHINode * > & InsertedPHIs)1690 void llvm::insertDebugValuesForPHIs(BasicBlock *BB,
1691 SmallVectorImpl<PHINode *> &InsertedPHIs) {
1692 assert(BB && "No BasicBlock to clone dbg.value(s) from.");
1693 if (InsertedPHIs.size() == 0)
1694 return;
1695
1696 // Map existing PHI nodes to their dbg.values.
1697 ValueToValueMapTy DbgValueMap;
1698 for (auto &I : *BB) {
1699 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) {
1700 for (Value *V : DbgII->location_ops())
1701 if (auto *Loc = dyn_cast_or_null<PHINode>(V))
1702 DbgValueMap.insert({Loc, DbgII});
1703 }
1704 }
1705 if (DbgValueMap.size() == 0)
1706 return;
1707
1708 // Map a pair of the destination BB and old dbg.value to the new dbg.value,
1709 // so that if a dbg.value is being rewritten to use more than one of the
1710 // inserted PHIs in the same destination BB, we can update the same dbg.value
1711 // with all the new PHIs instead of creating one copy for each.
1712 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>,
1713 DbgVariableIntrinsic *>
1714 NewDbgValueMap;
1715 // Then iterate through the new PHIs and look to see if they use one of the
1716 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will
1717 // propagate the info through the new PHI. If we use more than one new PHI in
1718 // a single destination BB with the same old dbg.value, merge the updates so
1719 // that we get a single new dbg.value with all the new PHIs.
1720 for (auto *PHI : InsertedPHIs) {
1721 BasicBlock *Parent = PHI->getParent();
1722 // Avoid inserting an intrinsic into an EH block.
1723 if (Parent->getFirstNonPHI()->isEHPad())
1724 continue;
1725 for (auto *VI : PHI->operand_values()) {
1726 auto V = DbgValueMap.find(VI);
1727 if (V != DbgValueMap.end()) {
1728 auto *DbgII = cast<DbgVariableIntrinsic>(V->second);
1729 auto NewDI = NewDbgValueMap.find({Parent, DbgII});
1730 if (NewDI == NewDbgValueMap.end()) {
1731 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone());
1732 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first;
1733 }
1734 DbgVariableIntrinsic *NewDbgII = NewDI->second;
1735 // If PHI contains VI as an operand more than once, we may
1736 // replaced it in NewDbgII; confirm that it is present.
1737 if (is_contained(NewDbgII->location_ops(), VI))
1738 NewDbgII->replaceVariableLocationOp(VI, PHI);
1739 }
1740 }
1741 }
1742 // Insert thew new dbg.values into their destination blocks.
1743 for (auto DI : NewDbgValueMap) {
1744 BasicBlock *Parent = DI.first.first;
1745 auto *NewDbgII = DI.second;
1746 auto InsertionPt = Parent->getFirstInsertionPt();
1747 assert(InsertionPt != Parent->end() && "Ill-formed basic block");
1748 NewDbgII->insertBefore(&*InsertionPt);
1749 }
1750 }
1751
replaceDbgDeclare(Value * Address,Value * NewAddress,DIBuilder & Builder,uint8_t DIExprFlags,int Offset)1752 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1753 DIBuilder &Builder, uint8_t DIExprFlags,
1754 int Offset) {
1755 auto DbgAddrs = FindDbgAddrUses(Address);
1756 for (DbgVariableIntrinsic *DII : DbgAddrs) {
1757 const DebugLoc &Loc = DII->getDebugLoc();
1758 auto *DIVar = DII->getVariable();
1759 auto *DIExpr = DII->getExpression();
1760 assert(DIVar && "Missing variable");
1761 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset);
1762 // Insert llvm.dbg.declare immediately before DII, and remove old
1763 // llvm.dbg.declare.
1764 Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, DII);
1765 DII->eraseFromParent();
1766 }
1767 return !DbgAddrs.empty();
1768 }
1769
replaceOneDbgValueForAlloca(DbgValueInst * DVI,Value * NewAddress,DIBuilder & Builder,int Offset)1770 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1771 DIBuilder &Builder, int Offset) {
1772 const DebugLoc &Loc = DVI->getDebugLoc();
1773 auto *DIVar = DVI->getVariable();
1774 auto *DIExpr = DVI->getExpression();
1775 assert(DIVar && "Missing variable");
1776
1777 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1778 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1779 // it and give up.
1780 if (!DIExpr || DIExpr->getNumElements() < 1 ||
1781 DIExpr->getElement(0) != dwarf::DW_OP_deref)
1782 return;
1783
1784 // Insert the offset before the first deref.
1785 // We could just change the offset argument of dbg.value, but it's unsigned...
1786 if (Offset)
1787 DIExpr = DIExpression::prepend(DIExpr, 0, Offset);
1788
1789 Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI);
1790 DVI->eraseFromParent();
1791 }
1792
replaceDbgValueForAlloca(AllocaInst * AI,Value * NewAllocaAddress,DIBuilder & Builder,int Offset)1793 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1794 DIBuilder &Builder, int Offset) {
1795 if (auto *L = LocalAsMetadata::getIfExists(AI))
1796 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1797 for (Use &U : llvm::make_early_inc_range(MDV->uses()))
1798 if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1799 replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1800 }
1801
1802 /// Where possible to salvage debug information for \p I do so.
1803 /// If not possible mark undef.
salvageDebugInfo(Instruction & I)1804 void llvm::salvageDebugInfo(Instruction &I) {
1805 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
1806 findDbgUsers(DbgUsers, &I);
1807 salvageDebugInfoForDbgValues(I, DbgUsers);
1808 }
1809
1810 /// Salvage the address component of \p DAI.
salvageDbgAssignAddress(DbgAssignIntrinsic * DAI)1811 static void salvageDbgAssignAddress(DbgAssignIntrinsic *DAI) {
1812 Instruction *I = dyn_cast<Instruction>(DAI->getAddress());
1813 // Only instructions can be salvaged at the moment.
1814 if (!I)
1815 return;
1816
1817 assert(!DAI->getAddressExpression()->getFragmentInfo().has_value() &&
1818 "address-expression shouldn't have fragment info");
1819
1820 // The address component of a dbg.assign cannot be variadic.
1821 uint64_t CurrentLocOps = 0;
1822 SmallVector<Value *, 4> AdditionalValues;
1823 SmallVector<uint64_t, 16> Ops;
1824 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues);
1825
1826 // Check if the salvage failed.
1827 if (!NewV)
1828 return;
1829
1830 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg(
1831 DAI->getAddressExpression(), Ops, 0, /*StackValue=*/false);
1832 assert(!SalvagedExpr->getFragmentInfo().has_value() &&
1833 "address-expression shouldn't have fragment info");
1834
1835 // Salvage succeeds if no additional values are required.
1836 if (AdditionalValues.empty()) {
1837 DAI->setAddress(NewV);
1838 DAI->setAddressExpression(SalvagedExpr);
1839 } else {
1840 DAI->setKillAddress();
1841 }
1842 }
1843
salvageDebugInfoForDbgValues(Instruction & I,ArrayRef<DbgVariableIntrinsic * > DbgUsers)1844 void llvm::salvageDebugInfoForDbgValues(
1845 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) {
1846 // These are arbitrary chosen limits on the maximum number of values and the
1847 // maximum size of a debug expression we can salvage up to, used for
1848 // performance reasons.
1849 const unsigned MaxDebugArgs = 16;
1850 const unsigned MaxExpressionSize = 128;
1851 bool Salvaged = false;
1852
1853 for (auto *DII : DbgUsers) {
1854 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) {
1855 if (DAI->getAddress() == &I) {
1856 salvageDbgAssignAddress(DAI);
1857 Salvaged = true;
1858 }
1859 if (DAI->getValue() != &I)
1860 continue;
1861 }
1862
1863 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1864 // are implicitly pointing out the value as a DWARF memory location
1865 // description.
1866 bool StackValue = isa<DbgValueInst>(DII);
1867 auto DIILocation = DII->location_ops();
1868 assert(
1869 is_contained(DIILocation, &I) &&
1870 "DbgVariableIntrinsic must use salvaged instruction as its location");
1871 SmallVector<Value *, 4> AdditionalValues;
1872 // `I` may appear more than once in DII's location ops, and each use of `I`
1873 // must be updated in the DIExpression and potentially have additional
1874 // values added; thus we call salvageDebugInfoImpl for each `I` instance in
1875 // DIILocation.
1876 Value *Op0 = nullptr;
1877 DIExpression *SalvagedExpr = DII->getExpression();
1878 auto LocItr = find(DIILocation, &I);
1879 while (SalvagedExpr && LocItr != DIILocation.end()) {
1880 SmallVector<uint64_t, 16> Ops;
1881 unsigned LocNo = std::distance(DIILocation.begin(), LocItr);
1882 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands();
1883 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues);
1884 if (!Op0)
1885 break;
1886 SalvagedExpr =
1887 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue);
1888 LocItr = std::find(++LocItr, DIILocation.end(), &I);
1889 }
1890 // salvageDebugInfoImpl should fail on examining the first element of
1891 // DbgUsers, or none of them.
1892 if (!Op0)
1893 break;
1894
1895 DII->replaceVariableLocationOp(&I, Op0);
1896 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize;
1897 if (AdditionalValues.empty() && IsValidSalvageExpr) {
1898 DII->setExpression(SalvagedExpr);
1899 } else if (isa<DbgValueInst>(DII) && !isa<DbgAssignIntrinsic>(DII) &&
1900 IsValidSalvageExpr &&
1901 DII->getNumVariableLocationOps() + AdditionalValues.size() <=
1902 MaxDebugArgs) {
1903 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr);
1904 } else {
1905 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is
1906 // not currently supported in those instructions. Do not salvage using
1907 // DIArgList for dbg.assign yet. FIXME: support this.
1908 // Also do not salvage if the resulting DIArgList would contain an
1909 // unreasonably large number of values.
1910 DII->setKillLocation();
1911 }
1912 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n');
1913 Salvaged = true;
1914 }
1915
1916 if (Salvaged)
1917 return;
1918
1919 for (auto *DII : DbgUsers)
1920 DII->setKillLocation();
1921 }
1922
getSalvageOpsForGEP(GetElementPtrInst * GEP,const DataLayout & DL,uint64_t CurrentLocOps,SmallVectorImpl<uint64_t> & Opcodes,SmallVectorImpl<Value * > & AdditionalValues)1923 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL,
1924 uint64_t CurrentLocOps,
1925 SmallVectorImpl<uint64_t> &Opcodes,
1926 SmallVectorImpl<Value *> &AdditionalValues) {
1927 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
1928 // Rewrite a GEP into a DIExpression.
1929 MapVector<Value *, APInt> VariableOffsets;
1930 APInt ConstantOffset(BitWidth, 0);
1931 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
1932 return nullptr;
1933 if (!VariableOffsets.empty() && !CurrentLocOps) {
1934 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0});
1935 CurrentLocOps = 1;
1936 }
1937 for (auto Offset : VariableOffsets) {
1938 AdditionalValues.push_back(Offset.first);
1939 assert(Offset.second.isStrictlyPositive() &&
1940 "Expected strictly positive multiplier for offset.");
1941 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu,
1942 Offset.second.getZExtValue(), dwarf::DW_OP_mul,
1943 dwarf::DW_OP_plus});
1944 }
1945 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue());
1946 return GEP->getOperand(0);
1947 }
1948
getDwarfOpForBinOp(Instruction::BinaryOps Opcode)1949 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) {
1950 switch (Opcode) {
1951 case Instruction::Add:
1952 return dwarf::DW_OP_plus;
1953 case Instruction::Sub:
1954 return dwarf::DW_OP_minus;
1955 case Instruction::Mul:
1956 return dwarf::DW_OP_mul;
1957 case Instruction::SDiv:
1958 return dwarf::DW_OP_div;
1959 case Instruction::SRem:
1960 return dwarf::DW_OP_mod;
1961 case Instruction::Or:
1962 return dwarf::DW_OP_or;
1963 case Instruction::And:
1964 return dwarf::DW_OP_and;
1965 case Instruction::Xor:
1966 return dwarf::DW_OP_xor;
1967 case Instruction::Shl:
1968 return dwarf::DW_OP_shl;
1969 case Instruction::LShr:
1970 return dwarf::DW_OP_shr;
1971 case Instruction::AShr:
1972 return dwarf::DW_OP_shra;
1973 default:
1974 // TODO: Salvage from each kind of binop we know about.
1975 return 0;
1976 }
1977 }
1978
getSalvageOpsForBinOp(BinaryOperator * BI,uint64_t CurrentLocOps,SmallVectorImpl<uint64_t> & Opcodes,SmallVectorImpl<Value * > & AdditionalValues)1979 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps,
1980 SmallVectorImpl<uint64_t> &Opcodes,
1981 SmallVectorImpl<Value *> &AdditionalValues) {
1982 // Handle binary operations with constant integer operands as a special case.
1983 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1));
1984 // Values wider than 64 bits cannot be represented within a DIExpression.
1985 if (ConstInt && ConstInt->getBitWidth() > 64)
1986 return nullptr;
1987
1988 Instruction::BinaryOps BinOpcode = BI->getOpcode();
1989 // Push any Constant Int operand onto the expression stack.
1990 if (ConstInt) {
1991 uint64_t Val = ConstInt->getSExtValue();
1992 // Add or Sub Instructions with a constant operand can potentially be
1993 // simplified.
1994 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) {
1995 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val);
1996 DIExpression::appendOffset(Opcodes, Offset);
1997 return BI->getOperand(0);
1998 }
1999 Opcodes.append({dwarf::DW_OP_constu, Val});
2000 } else {
2001 if (!CurrentLocOps) {
2002 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0});
2003 CurrentLocOps = 1;
2004 }
2005 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps});
2006 AdditionalValues.push_back(BI->getOperand(1));
2007 }
2008
2009 // Add salvaged binary operator to expression stack, if it has a valid
2010 // representation in a DIExpression.
2011 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode);
2012 if (!DwarfBinOp)
2013 return nullptr;
2014 Opcodes.push_back(DwarfBinOp);
2015 return BI->getOperand(0);
2016 }
2017
salvageDebugInfoImpl(Instruction & I,uint64_t CurrentLocOps,SmallVectorImpl<uint64_t> & Ops,SmallVectorImpl<Value * > & AdditionalValues)2018 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
2019 SmallVectorImpl<uint64_t> &Ops,
2020 SmallVectorImpl<Value *> &AdditionalValues) {
2021 auto &M = *I.getModule();
2022 auto &DL = M.getDataLayout();
2023
2024 if (auto *CI = dyn_cast<CastInst>(&I)) {
2025 Value *FromValue = CI->getOperand(0);
2026 // No-op casts are irrelevant for debug info.
2027 if (CI->isNoopCast(DL)) {
2028 return FromValue;
2029 }
2030
2031 Type *Type = CI->getType();
2032 if (Type->isPointerTy())
2033 Type = DL.getIntPtrType(Type);
2034 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged.
2035 if (Type->isVectorTy() ||
2036 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) ||
2037 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I)))
2038 return nullptr;
2039
2040 llvm::Type *FromType = FromValue->getType();
2041 if (FromType->isPointerTy())
2042 FromType = DL.getIntPtrType(FromType);
2043
2044 unsigned FromTypeBitSize = FromType->getScalarSizeInBits();
2045 unsigned ToTypeBitSize = Type->getScalarSizeInBits();
2046
2047 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize,
2048 isa<SExtInst>(&I));
2049 Ops.append(ExtOps.begin(), ExtOps.end());
2050 return FromValue;
2051 }
2052
2053 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
2054 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues);
2055 if (auto *BI = dyn_cast<BinaryOperator>(&I))
2056 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues);
2057
2058 // *Not* to do: we should not attempt to salvage load instructions,
2059 // because the validity and lifetime of a dbg.value containing
2060 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
2061 return nullptr;
2062 }
2063
2064 /// A replacement for a dbg.value expression.
2065 using DbgValReplacement = std::optional<DIExpression *>;
2066
2067 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
2068 /// possibly moving/undefing users to prevent use-before-def. Returns true if
2069 /// changes are made.
rewriteDebugUsers(Instruction & From,Value & To,Instruction & DomPoint,DominatorTree & DT,function_ref<DbgValReplacement (DbgVariableIntrinsic & DII)> RewriteExpr)2070 static bool rewriteDebugUsers(
2071 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT,
2072 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) {
2073 // Find debug users of From.
2074 SmallVector<DbgVariableIntrinsic *, 1> Users;
2075 findDbgUsers(Users, &From);
2076 if (Users.empty())
2077 return false;
2078
2079 // Prevent use-before-def of To.
2080 bool Changed = false;
2081 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage;
2082 if (isa<Instruction>(&To)) {
2083 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint;
2084
2085 for (auto *DII : Users) {
2086 // It's common to see a debug user between From and DomPoint. Move it
2087 // after DomPoint to preserve the variable update without any reordering.
2088 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) {
2089 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n');
2090 DII->moveAfter(&DomPoint);
2091 Changed = true;
2092
2093 // Users which otherwise aren't dominated by the replacement value must
2094 // be salvaged or deleted.
2095 } else if (!DT.dominates(&DomPoint, DII)) {
2096 UndefOrSalvage.insert(DII);
2097 }
2098 }
2099 }
2100
2101 // Update debug users without use-before-def risk.
2102 for (auto *DII : Users) {
2103 if (UndefOrSalvage.count(DII))
2104 continue;
2105
2106 DbgValReplacement DVR = RewriteExpr(*DII);
2107 if (!DVR)
2108 continue;
2109
2110 DII->replaceVariableLocationOp(&From, &To);
2111 DII->setExpression(*DVR);
2112 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n');
2113 Changed = true;
2114 }
2115
2116 if (!UndefOrSalvage.empty()) {
2117 // Try to salvage the remaining debug users.
2118 salvageDebugInfo(From);
2119 Changed = true;
2120 }
2121
2122 return Changed;
2123 }
2124
2125 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
2126 /// losslessly preserve the bits and semantics of the value. This predicate is
2127 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
2128 ///
2129 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
2130 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
2131 /// and also does not allow lossless pointer <-> integer conversions.
isBitCastSemanticsPreserving(const DataLayout & DL,Type * FromTy,Type * ToTy)2132 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy,
2133 Type *ToTy) {
2134 // Trivially compatible types.
2135 if (FromTy == ToTy)
2136 return true;
2137
2138 // Handle compatible pointer <-> integer conversions.
2139 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) {
2140 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy);
2141 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) &&
2142 !DL.isNonIntegralPointerType(ToTy);
2143 return SameSize && LosslessConversion;
2144 }
2145
2146 // TODO: This is not exhaustive.
2147 return false;
2148 }
2149
replaceAllDbgUsesWith(Instruction & From,Value & To,Instruction & DomPoint,DominatorTree & DT)2150 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To,
2151 Instruction &DomPoint, DominatorTree &DT) {
2152 // Exit early if From has no debug users.
2153 if (!From.isUsedByMetadata())
2154 return false;
2155
2156 assert(&From != &To && "Can't replace something with itself");
2157
2158 Type *FromTy = From.getType();
2159 Type *ToTy = To.getType();
2160
2161 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2162 return DII.getExpression();
2163 };
2164
2165 // Handle no-op conversions.
2166 Module &M = *From.getModule();
2167 const DataLayout &DL = M.getDataLayout();
2168 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy))
2169 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2170
2171 // Handle integer-to-integer widening and narrowing.
2172 // FIXME: Use DW_OP_convert when it's available everywhere.
2173 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) {
2174 uint64_t FromBits = FromTy->getPrimitiveSizeInBits();
2175 uint64_t ToBits = ToTy->getPrimitiveSizeInBits();
2176 assert(FromBits != ToBits && "Unexpected no-op conversion");
2177
2178 // When the width of the result grows, assume that a debugger will only
2179 // access the low `FromBits` bits when inspecting the source variable.
2180 if (FromBits < ToBits)
2181 return rewriteDebugUsers(From, To, DomPoint, DT, Identity);
2182
2183 // The width of the result has shrunk. Use sign/zero extension to describe
2184 // the source variable's high bits.
2185 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement {
2186 DILocalVariable *Var = DII.getVariable();
2187
2188 // Without knowing signedness, sign/zero extension isn't possible.
2189 auto Signedness = Var->getSignedness();
2190 if (!Signedness)
2191 return std::nullopt;
2192
2193 bool Signed = *Signedness == DIBasicType::Signedness::Signed;
2194 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits,
2195 Signed);
2196 };
2197 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt);
2198 }
2199
2200 // TODO: Floating-point conversions, vectors.
2201 return false;
2202 }
2203
2204 std::pair<unsigned, unsigned>
removeAllNonTerminatorAndEHPadInstructions(BasicBlock * BB)2205 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
2206 unsigned NumDeadInst = 0;
2207 unsigned NumDeadDbgInst = 0;
2208 // Delete the instructions backwards, as it has a reduced likelihood of
2209 // having to update as many def-use and use-def chains.
2210 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2211 while (EndInst != &BB->front()) {
2212 // Delete the next to last instruction.
2213 Instruction *Inst = &*--EndInst->getIterator();
2214 if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
2215 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
2216 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
2217 EndInst = Inst;
2218 continue;
2219 }
2220 if (isa<DbgInfoIntrinsic>(Inst))
2221 ++NumDeadDbgInst;
2222 else
2223 ++NumDeadInst;
2224 Inst->eraseFromParent();
2225 }
2226 return {NumDeadInst, NumDeadDbgInst};
2227 }
2228
changeToUnreachable(Instruction * I,bool PreserveLCSSA,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU)2229 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA,
2230 DomTreeUpdater *DTU,
2231 MemorySSAUpdater *MSSAU) {
2232 BasicBlock *BB = I->getParent();
2233
2234 if (MSSAU)
2235 MSSAU->changeToUnreachable(I);
2236
2237 SmallSet<BasicBlock *, 8> UniqueSuccessors;
2238
2239 // Loop over all of the successors, removing BB's entry from any PHI
2240 // nodes.
2241 for (BasicBlock *Successor : successors(BB)) {
2242 Successor->removePredecessor(BB, PreserveLCSSA);
2243 if (DTU)
2244 UniqueSuccessors.insert(Successor);
2245 }
2246 auto *UI = new UnreachableInst(I->getContext(), I);
2247 UI->setDebugLoc(I->getDebugLoc());
2248
2249 // All instructions after this are dead.
2250 unsigned NumInstrsRemoved = 0;
2251 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
2252 while (BBI != BBE) {
2253 if (!BBI->use_empty())
2254 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
2255 BBI++->eraseFromParent();
2256 ++NumInstrsRemoved;
2257 }
2258 if (DTU) {
2259 SmallVector<DominatorTree::UpdateType, 8> Updates;
2260 Updates.reserve(UniqueSuccessors.size());
2261 for (BasicBlock *UniqueSuccessor : UniqueSuccessors)
2262 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor});
2263 DTU->applyUpdates(Updates);
2264 }
2265 return NumInstrsRemoved;
2266 }
2267
createCallMatchingInvoke(InvokeInst * II)2268 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) {
2269 SmallVector<Value *, 8> Args(II->args());
2270 SmallVector<OperandBundleDef, 1> OpBundles;
2271 II->getOperandBundlesAsDefs(OpBundles);
2272 CallInst *NewCall = CallInst::Create(II->getFunctionType(),
2273 II->getCalledOperand(), Args, OpBundles);
2274 NewCall->setCallingConv(II->getCallingConv());
2275 NewCall->setAttributes(II->getAttributes());
2276 NewCall->setDebugLoc(II->getDebugLoc());
2277 NewCall->copyMetadata(*II);
2278
2279 // If the invoke had profile metadata, try converting them for CallInst.
2280 uint64_t TotalWeight;
2281 if (NewCall->extractProfTotalWeight(TotalWeight)) {
2282 // Set the total weight if it fits into i32, otherwise reset.
2283 MDBuilder MDB(NewCall->getContext());
2284 auto NewWeights = uint32_t(TotalWeight) != TotalWeight
2285 ? nullptr
2286 : MDB.createBranchWeights({uint32_t(TotalWeight)});
2287 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights);
2288 }
2289
2290 return NewCall;
2291 }
2292
2293 // changeToCall - Convert the specified invoke into a normal call.
changeToCall(InvokeInst * II,DomTreeUpdater * DTU)2294 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) {
2295 CallInst *NewCall = createCallMatchingInvoke(II);
2296 NewCall->takeName(II);
2297 NewCall->insertBefore(II);
2298 II->replaceAllUsesWith(NewCall);
2299
2300 // Follow the call by a branch to the normal destination.
2301 BasicBlock *NormalDestBB = II->getNormalDest();
2302 BranchInst::Create(NormalDestBB, II);
2303
2304 // Update PHI nodes in the unwind destination
2305 BasicBlock *BB = II->getParent();
2306 BasicBlock *UnwindDestBB = II->getUnwindDest();
2307 UnwindDestBB->removePredecessor(BB);
2308 II->eraseFromParent();
2309 if (DTU)
2310 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2311 return NewCall;
2312 }
2313
changeToInvokeAndSplitBasicBlock(CallInst * CI,BasicBlock * UnwindEdge,DomTreeUpdater * DTU)2314 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
2315 BasicBlock *UnwindEdge,
2316 DomTreeUpdater *DTU) {
2317 BasicBlock *BB = CI->getParent();
2318
2319 // Convert this function call into an invoke instruction. First, split the
2320 // basic block.
2321 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr,
2322 CI->getName() + ".noexc");
2323
2324 // Delete the unconditional branch inserted by SplitBlock
2325 BB->back().eraseFromParent();
2326
2327 // Create the new invoke instruction.
2328 SmallVector<Value *, 8> InvokeArgs(CI->args());
2329 SmallVector<OperandBundleDef, 1> OpBundles;
2330
2331 CI->getOperandBundlesAsDefs(OpBundles);
2332
2333 // Note: we're round tripping operand bundles through memory here, and that
2334 // can potentially be avoided with a cleverer API design that we do not have
2335 // as of this time.
2336
2337 InvokeInst *II =
2338 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split,
2339 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB);
2340 II->setDebugLoc(CI->getDebugLoc());
2341 II->setCallingConv(CI->getCallingConv());
2342 II->setAttributes(CI->getAttributes());
2343 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof));
2344
2345 if (DTU)
2346 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}});
2347
2348 // Make sure that anything using the call now uses the invoke! This also
2349 // updates the CallGraph if present, because it uses a WeakTrackingVH.
2350 CI->replaceAllUsesWith(II);
2351
2352 // Delete the original call
2353 Split->front().eraseFromParent();
2354 return Split;
2355 }
2356
markAliveBlocks(Function & F,SmallPtrSetImpl<BasicBlock * > & Reachable,DomTreeUpdater * DTU=nullptr)2357 static bool markAliveBlocks(Function &F,
2358 SmallPtrSetImpl<BasicBlock *> &Reachable,
2359 DomTreeUpdater *DTU = nullptr) {
2360 SmallVector<BasicBlock*, 128> Worklist;
2361 BasicBlock *BB = &F.front();
2362 Worklist.push_back(BB);
2363 Reachable.insert(BB);
2364 bool Changed = false;
2365 do {
2366 BB = Worklist.pop_back_val();
2367
2368 // Do a quick scan of the basic block, turning any obviously unreachable
2369 // instructions into LLVM unreachable insts. The instruction combining pass
2370 // canonicalizes unreachable insts into stores to null or undef.
2371 for (Instruction &I : *BB) {
2372 if (auto *CI = dyn_cast<CallInst>(&I)) {
2373 Value *Callee = CI->getCalledOperand();
2374 // Handle intrinsic calls.
2375 if (Function *F = dyn_cast<Function>(Callee)) {
2376 auto IntrinsicID = F->getIntrinsicID();
2377 // Assumptions that are known to be false are equivalent to
2378 // unreachable. Also, if the condition is undefined, then we make the
2379 // choice most beneficial to the optimizer, and choose that to also be
2380 // unreachable.
2381 if (IntrinsicID == Intrinsic::assume) {
2382 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2383 // Don't insert a call to llvm.trap right before the unreachable.
2384 changeToUnreachable(CI, false, DTU);
2385 Changed = true;
2386 break;
2387 }
2388 } else if (IntrinsicID == Intrinsic::experimental_guard) {
2389 // A call to the guard intrinsic bails out of the current
2390 // compilation unit if the predicate passed to it is false. If the
2391 // predicate is a constant false, then we know the guard will bail
2392 // out of the current compile unconditionally, so all code following
2393 // it is dead.
2394 //
2395 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2396 // guards to treat `undef` as `false` since a guard on `undef` can
2397 // still be useful for widening.
2398 if (match(CI->getArgOperand(0), m_Zero()))
2399 if (!isa<UnreachableInst>(CI->getNextNode())) {
2400 changeToUnreachable(CI->getNextNode(), false, DTU);
2401 Changed = true;
2402 break;
2403 }
2404 }
2405 } else if ((isa<ConstantPointerNull>(Callee) &&
2406 !NullPointerIsDefined(CI->getFunction(),
2407 cast<PointerType>(Callee->getType())
2408 ->getAddressSpace())) ||
2409 isa<UndefValue>(Callee)) {
2410 changeToUnreachable(CI, false, DTU);
2411 Changed = true;
2412 break;
2413 }
2414 if (CI->doesNotReturn() && !CI->isMustTailCall()) {
2415 // If we found a call to a no-return function, insert an unreachable
2416 // instruction after it. Make sure there isn't *already* one there
2417 // though.
2418 if (!isa<UnreachableInst>(CI->getNextNode())) {
2419 // Don't insert a call to llvm.trap right before the unreachable.
2420 changeToUnreachable(CI->getNextNode(), false, DTU);
2421 Changed = true;
2422 }
2423 break;
2424 }
2425 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
2426 // Store to undef and store to null are undefined and used to signal
2427 // that they should be changed to unreachable by passes that can't
2428 // modify the CFG.
2429
2430 // Don't touch volatile stores.
2431 if (SI->isVolatile()) continue;
2432
2433 Value *Ptr = SI->getOperand(1);
2434
2435 if (isa<UndefValue>(Ptr) ||
2436 (isa<ConstantPointerNull>(Ptr) &&
2437 !NullPointerIsDefined(SI->getFunction(),
2438 SI->getPointerAddressSpace()))) {
2439 changeToUnreachable(SI, false, DTU);
2440 Changed = true;
2441 break;
2442 }
2443 }
2444 }
2445
2446 Instruction *Terminator = BB->getTerminator();
2447 if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
2448 // Turn invokes that call 'nounwind' functions into ordinary calls.
2449 Value *Callee = II->getCalledOperand();
2450 if ((isa<ConstantPointerNull>(Callee) &&
2451 !NullPointerIsDefined(BB->getParent())) ||
2452 isa<UndefValue>(Callee)) {
2453 changeToUnreachable(II, false, DTU);
2454 Changed = true;
2455 } else {
2456 if (II->doesNotReturn() &&
2457 !isa<UnreachableInst>(II->getNormalDest()->front())) {
2458 // If we found an invoke of a no-return function,
2459 // create a new empty basic block with an `unreachable` terminator,
2460 // and set it as the normal destination for the invoke,
2461 // unless that is already the case.
2462 // Note that the original normal destination could have other uses.
2463 BasicBlock *OrigNormalDest = II->getNormalDest();
2464 OrigNormalDest->removePredecessor(II->getParent());
2465 LLVMContext &Ctx = II->getContext();
2466 BasicBlock *UnreachableNormalDest = BasicBlock::Create(
2467 Ctx, OrigNormalDest->getName() + ".unreachable",
2468 II->getFunction(), OrigNormalDest);
2469 new UnreachableInst(Ctx, UnreachableNormalDest);
2470 II->setNormalDest(UnreachableNormalDest);
2471 if (DTU)
2472 DTU->applyUpdates(
2473 {{DominatorTree::Delete, BB, OrigNormalDest},
2474 {DominatorTree::Insert, BB, UnreachableNormalDest}});
2475 Changed = true;
2476 }
2477 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
2478 if (II->use_empty() && !II->mayHaveSideEffects()) {
2479 // jump to the normal destination branch.
2480 BasicBlock *NormalDestBB = II->getNormalDest();
2481 BasicBlock *UnwindDestBB = II->getUnwindDest();
2482 BranchInst::Create(NormalDestBB, II);
2483 UnwindDestBB->removePredecessor(II->getParent());
2484 II->eraseFromParent();
2485 if (DTU)
2486 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}});
2487 } else
2488 changeToCall(II, DTU);
2489 Changed = true;
2490 }
2491 }
2492 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
2493 // Remove catchpads which cannot be reached.
2494 struct CatchPadDenseMapInfo {
2495 static CatchPadInst *getEmptyKey() {
2496 return DenseMapInfo<CatchPadInst *>::getEmptyKey();
2497 }
2498
2499 static CatchPadInst *getTombstoneKey() {
2500 return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
2501 }
2502
2503 static unsigned getHashValue(CatchPadInst *CatchPad) {
2504 return static_cast<unsigned>(hash_combine_range(
2505 CatchPad->value_op_begin(), CatchPad->value_op_end()));
2506 }
2507
2508 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
2509 if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
2510 RHS == getEmptyKey() || RHS == getTombstoneKey())
2511 return LHS == RHS;
2512 return LHS->isIdenticalTo(RHS);
2513 }
2514 };
2515
2516 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
2517 // Set of unique CatchPads.
2518 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
2519 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
2520 HandlerSet;
2521 detail::DenseSetEmpty Empty;
2522 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
2523 E = CatchSwitch->handler_end();
2524 I != E; ++I) {
2525 BasicBlock *HandlerBB = *I;
2526 if (DTU)
2527 ++NumPerSuccessorCases[HandlerBB];
2528 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
2529 if (!HandlerSet.insert({CatchPad, Empty}).second) {
2530 if (DTU)
2531 --NumPerSuccessorCases[HandlerBB];
2532 CatchSwitch->removeHandler(I);
2533 --I;
2534 --E;
2535 Changed = true;
2536 }
2537 }
2538 if (DTU) {
2539 std::vector<DominatorTree::UpdateType> Updates;
2540 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
2541 if (I.second == 0)
2542 Updates.push_back({DominatorTree::Delete, BB, I.first});
2543 DTU->applyUpdates(Updates);
2544 }
2545 }
2546
2547 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU);
2548 for (BasicBlock *Successor : successors(BB))
2549 if (Reachable.insert(Successor).second)
2550 Worklist.push_back(Successor);
2551 } while (!Worklist.empty());
2552 return Changed;
2553 }
2554
removeUnwindEdge(BasicBlock * BB,DomTreeUpdater * DTU)2555 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) {
2556 Instruction *TI = BB->getTerminator();
2557
2558 if (auto *II = dyn_cast<InvokeInst>(TI))
2559 return changeToCall(II, DTU);
2560
2561 Instruction *NewTI;
2562 BasicBlock *UnwindDest;
2563
2564 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
2565 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
2566 UnwindDest = CRI->getUnwindDest();
2567 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
2568 auto *NewCatchSwitch = CatchSwitchInst::Create(
2569 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
2570 CatchSwitch->getName(), CatchSwitch);
2571 for (BasicBlock *PadBB : CatchSwitch->handlers())
2572 NewCatchSwitch->addHandler(PadBB);
2573
2574 NewTI = NewCatchSwitch;
2575 UnwindDest = CatchSwitch->getUnwindDest();
2576 } else {
2577 llvm_unreachable("Could not find unwind successor");
2578 }
2579
2580 NewTI->takeName(TI);
2581 NewTI->setDebugLoc(TI->getDebugLoc());
2582 UnwindDest->removePredecessor(BB);
2583 TI->replaceAllUsesWith(NewTI);
2584 TI->eraseFromParent();
2585 if (DTU)
2586 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}});
2587 return NewTI;
2588 }
2589
2590 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2591 /// if they are in a dead cycle. Return true if a change was made, false
2592 /// otherwise.
removeUnreachableBlocks(Function & F,DomTreeUpdater * DTU,MemorySSAUpdater * MSSAU)2593 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
2594 MemorySSAUpdater *MSSAU) {
2595 SmallPtrSet<BasicBlock *, 16> Reachable;
2596 bool Changed = markAliveBlocks(F, Reachable, DTU);
2597
2598 // If there are unreachable blocks in the CFG...
2599 if (Reachable.size() == F.size())
2600 return Changed;
2601
2602 assert(Reachable.size() < F.size());
2603
2604 // Are there any blocks left to actually delete?
2605 SmallSetVector<BasicBlock *, 8> BlocksToRemove;
2606 for (BasicBlock &BB : F) {
2607 // Skip reachable basic blocks
2608 if (Reachable.count(&BB))
2609 continue;
2610 // Skip already-deleted blocks
2611 if (DTU && DTU->isBBPendingDeletion(&BB))
2612 continue;
2613 BlocksToRemove.insert(&BB);
2614 }
2615
2616 if (BlocksToRemove.empty())
2617 return Changed;
2618
2619 Changed = true;
2620 NumRemoved += BlocksToRemove.size();
2621
2622 if (MSSAU)
2623 MSSAU->removeBlocks(BlocksToRemove);
2624
2625 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU);
2626
2627 return Changed;
2628 }
2629
combineMetadata(Instruction * K,const Instruction * J,ArrayRef<unsigned> KnownIDs,bool DoesKMove)2630 void llvm::combineMetadata(Instruction *K, const Instruction *J,
2631 ArrayRef<unsigned> KnownIDs, bool DoesKMove) {
2632 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
2633 K->dropUnknownNonDebugMetadata(KnownIDs);
2634 K->getAllMetadataOtherThanDebugLoc(Metadata);
2635 for (const auto &MD : Metadata) {
2636 unsigned Kind = MD.first;
2637 MDNode *JMD = J->getMetadata(Kind);
2638 MDNode *KMD = MD.second;
2639
2640 switch (Kind) {
2641 default:
2642 K->setMetadata(Kind, nullptr); // Remove unknown metadata
2643 break;
2644 case LLVMContext::MD_dbg:
2645 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2646 case LLVMContext::MD_DIAssignID:
2647 K->mergeDIAssignID(J);
2648 break;
2649 case LLVMContext::MD_tbaa:
2650 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2651 break;
2652 case LLVMContext::MD_alias_scope:
2653 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
2654 break;
2655 case LLVMContext::MD_noalias:
2656 case LLVMContext::MD_mem_parallel_loop_access:
2657 K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
2658 break;
2659 case LLVMContext::MD_access_group:
2660 K->setMetadata(LLVMContext::MD_access_group,
2661 intersectAccessGroups(K, J));
2662 break;
2663 case LLVMContext::MD_range:
2664
2665 // If K does move, use most generic range. Otherwise keep the range of
2666 // K.
2667 if (DoesKMove)
2668 // FIXME: If K does move, we should drop the range info and nonnull.
2669 // Currently this function is used with DoesKMove in passes
2670 // doing hoisting/sinking and the current behavior of using the
2671 // most generic range is correct in those cases.
2672 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
2673 break;
2674 case LLVMContext::MD_fpmath:
2675 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2676 break;
2677 case LLVMContext::MD_invariant_load:
2678 // Only set the !invariant.load if it is present in both instructions.
2679 K->setMetadata(Kind, JMD);
2680 break;
2681 case LLVMContext::MD_nonnull:
2682 // If K does move, keep nonull if it is present in both instructions.
2683 if (DoesKMove)
2684 K->setMetadata(Kind, JMD);
2685 break;
2686 case LLVMContext::MD_invariant_group:
2687 // Preserve !invariant.group in K.
2688 break;
2689 case LLVMContext::MD_align:
2690 K->setMetadata(Kind,
2691 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2692 break;
2693 case LLVMContext::MD_dereferenceable:
2694 case LLVMContext::MD_dereferenceable_or_null:
2695 K->setMetadata(Kind,
2696 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
2697 break;
2698 case LLVMContext::MD_preserve_access_index:
2699 // Preserve !preserve.access.index in K.
2700 break;
2701 }
2702 }
2703 // Set !invariant.group from J if J has it. If both instructions have it
2704 // then we will just pick it from J - even when they are different.
2705 // Also make sure that K is load or store - f.e. combining bitcast with load
2706 // could produce bitcast with invariant.group metadata, which is invalid.
2707 // FIXME: we should try to preserve both invariant.group md if they are
2708 // different, but right now instruction can only have one invariant.group.
2709 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
2710 if (isa<LoadInst>(K) || isa<StoreInst>(K))
2711 K->setMetadata(LLVMContext::MD_invariant_group, JMD);
2712 }
2713
combineMetadataForCSE(Instruction * K,const Instruction * J,bool KDominatesJ)2714 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J,
2715 bool KDominatesJ) {
2716 unsigned KnownIDs[] = {
2717 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2718 LLVMContext::MD_noalias, LLVMContext::MD_range,
2719 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
2720 LLVMContext::MD_invariant_group, LLVMContext::MD_align,
2721 LLVMContext::MD_dereferenceable,
2722 LLVMContext::MD_dereferenceable_or_null,
2723 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index};
2724 combineMetadata(K, J, KnownIDs, KDominatesJ);
2725 }
2726
copyMetadataForLoad(LoadInst & Dest,const LoadInst & Source)2727 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) {
2728 SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
2729 Source.getAllMetadata(MD);
2730 MDBuilder MDB(Dest.getContext());
2731 Type *NewType = Dest.getType();
2732 const DataLayout &DL = Source.getModule()->getDataLayout();
2733 for (const auto &MDPair : MD) {
2734 unsigned ID = MDPair.first;
2735 MDNode *N = MDPair.second;
2736 // Note, essentially every kind of metadata should be preserved here! This
2737 // routine is supposed to clone a load instruction changing *only its type*.
2738 // The only metadata it makes sense to drop is metadata which is invalidated
2739 // when the pointer type changes. This should essentially never be the case
2740 // in LLVM, but we explicitly switch over only known metadata to be
2741 // conservatively correct. If you are adding metadata to LLVM which pertains
2742 // to loads, you almost certainly want to add it here.
2743 switch (ID) {
2744 case LLVMContext::MD_dbg:
2745 case LLVMContext::MD_tbaa:
2746 case LLVMContext::MD_prof:
2747 case LLVMContext::MD_fpmath:
2748 case LLVMContext::MD_tbaa_struct:
2749 case LLVMContext::MD_invariant_load:
2750 case LLVMContext::MD_alias_scope:
2751 case LLVMContext::MD_noalias:
2752 case LLVMContext::MD_nontemporal:
2753 case LLVMContext::MD_mem_parallel_loop_access:
2754 case LLVMContext::MD_access_group:
2755 case LLVMContext::MD_noundef:
2756 // All of these directly apply.
2757 Dest.setMetadata(ID, N);
2758 break;
2759
2760 case LLVMContext::MD_nonnull:
2761 copyNonnullMetadata(Source, N, Dest);
2762 break;
2763
2764 case LLVMContext::MD_align:
2765 case LLVMContext::MD_dereferenceable:
2766 case LLVMContext::MD_dereferenceable_or_null:
2767 // These only directly apply if the new type is also a pointer.
2768 if (NewType->isPointerTy())
2769 Dest.setMetadata(ID, N);
2770 break;
2771
2772 case LLVMContext::MD_range:
2773 copyRangeMetadata(DL, Source, N, Dest);
2774 break;
2775 }
2776 }
2777 }
2778
patchReplacementInstruction(Instruction * I,Value * Repl)2779 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) {
2780 auto *ReplInst = dyn_cast<Instruction>(Repl);
2781 if (!ReplInst)
2782 return;
2783
2784 // Patch the replacement so that it is not more restrictive than the value
2785 // being replaced.
2786 // Note that if 'I' is a load being replaced by some operation,
2787 // for example, by an arithmetic operation, then andIRFlags()
2788 // would just erase all math flags from the original arithmetic
2789 // operation, which is clearly not wanted and not needed.
2790 if (!isa<LoadInst>(I))
2791 ReplInst->andIRFlags(I);
2792
2793 // FIXME: If both the original and replacement value are part of the
2794 // same control-flow region (meaning that the execution of one
2795 // guarantees the execution of the other), then we can combine the
2796 // noalias scopes here and do better than the general conservative
2797 // answer used in combineMetadata().
2798
2799 // In general, GVN unifies expressions over different control-flow
2800 // regions, and so we need a conservative combination of the noalias
2801 // scopes.
2802 static const unsigned KnownIDs[] = {
2803 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
2804 LLVMContext::MD_noalias, LLVMContext::MD_range,
2805 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
2806 LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull,
2807 LLVMContext::MD_access_group, LLVMContext::MD_preserve_access_index};
2808 combineMetadata(ReplInst, I, KnownIDs, false);
2809 }
2810
2811 template <typename RootType, typename DominatesFn>
replaceDominatedUsesWith(Value * From,Value * To,const RootType & Root,const DominatesFn & Dominates)2812 static unsigned replaceDominatedUsesWith(Value *From, Value *To,
2813 const RootType &Root,
2814 const DominatesFn &Dominates) {
2815 assert(From->getType() == To->getType());
2816
2817 unsigned Count = 0;
2818 for (Use &U : llvm::make_early_inc_range(From->uses())) {
2819 if (!Dominates(Root, U))
2820 continue;
2821 U.set(To);
2822 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName()
2823 << "' as " << *To << " in " << *U << "\n");
2824 ++Count;
2825 }
2826 return Count;
2827 }
2828
replaceNonLocalUsesWith(Instruction * From,Value * To)2829 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) {
2830 assert(From->getType() == To->getType());
2831 auto *BB = From->getParent();
2832 unsigned Count = 0;
2833
2834 for (Use &U : llvm::make_early_inc_range(From->uses())) {
2835 auto *I = cast<Instruction>(U.getUser());
2836 if (I->getParent() == BB)
2837 continue;
2838 U.set(To);
2839 ++Count;
2840 }
2841 return Count;
2842 }
2843
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlockEdge & Root)2844 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2845 DominatorTree &DT,
2846 const BasicBlockEdge &Root) {
2847 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) {
2848 return DT.dominates(Root, U);
2849 };
2850 return ::replaceDominatedUsesWith(From, To, Root, Dominates);
2851 }
2852
replaceDominatedUsesWith(Value * From,Value * To,DominatorTree & DT,const BasicBlock * BB)2853 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
2854 DominatorTree &DT,
2855 const BasicBlock *BB) {
2856 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) {
2857 return DT.dominates(BB, U);
2858 };
2859 return ::replaceDominatedUsesWith(From, To, BB, Dominates);
2860 }
2861
callsGCLeafFunction(const CallBase * Call,const TargetLibraryInfo & TLI)2862 bool llvm::callsGCLeafFunction(const CallBase *Call,
2863 const TargetLibraryInfo &TLI) {
2864 // Check if the function is specifically marked as a gc leaf function.
2865 if (Call->hasFnAttr("gc-leaf-function"))
2866 return true;
2867 if (const Function *F = Call->getCalledFunction()) {
2868 if (F->hasFnAttribute("gc-leaf-function"))
2869 return true;
2870
2871 if (auto IID = F->getIntrinsicID()) {
2872 // Most LLVM intrinsics do not take safepoints.
2873 return IID != Intrinsic::experimental_gc_statepoint &&
2874 IID != Intrinsic::experimental_deoptimize &&
2875 IID != Intrinsic::memcpy_element_unordered_atomic &&
2876 IID != Intrinsic::memmove_element_unordered_atomic;
2877 }
2878 }
2879
2880 // Lib calls can be materialized by some passes, and won't be
2881 // marked as 'gc-leaf-function.' All available Libcalls are
2882 // GC-leaf.
2883 LibFunc LF;
2884 if (TLI.getLibFunc(*Call, LF)) {
2885 return TLI.has(LF);
2886 }
2887
2888 return false;
2889 }
2890
copyNonnullMetadata(const LoadInst & OldLI,MDNode * N,LoadInst & NewLI)2891 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N,
2892 LoadInst &NewLI) {
2893 auto *NewTy = NewLI.getType();
2894
2895 // This only directly applies if the new type is also a pointer.
2896 if (NewTy->isPointerTy()) {
2897 NewLI.setMetadata(LLVMContext::MD_nonnull, N);
2898 return;
2899 }
2900
2901 // The only other translation we can do is to integral loads with !range
2902 // metadata.
2903 if (!NewTy->isIntegerTy())
2904 return;
2905
2906 MDBuilder MDB(NewLI.getContext());
2907 const Value *Ptr = OldLI.getPointerOperand();
2908 auto *ITy = cast<IntegerType>(NewTy);
2909 auto *NullInt = ConstantExpr::getPtrToInt(
2910 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
2911 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
2912 NewLI.setMetadata(LLVMContext::MD_range,
2913 MDB.createRange(NonNullInt, NullInt));
2914 }
2915
copyRangeMetadata(const DataLayout & DL,const LoadInst & OldLI,MDNode * N,LoadInst & NewLI)2916 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI,
2917 MDNode *N, LoadInst &NewLI) {
2918 auto *NewTy = NewLI.getType();
2919 // Simply copy the metadata if the type did not change.
2920 if (NewTy == OldLI.getType()) {
2921 NewLI.setMetadata(LLVMContext::MD_range, N);
2922 return;
2923 }
2924
2925 // Give up unless it is converted to a pointer where there is a single very
2926 // valuable mapping we can do reliably.
2927 // FIXME: It would be nice to propagate this in more ways, but the type
2928 // conversions make it hard.
2929 if (!NewTy->isPointerTy())
2930 return;
2931
2932 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy);
2933 if (BitWidth == OldLI.getType()->getScalarSizeInBits() &&
2934 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
2935 MDNode *NN = MDNode::get(OldLI.getContext(), std::nullopt);
2936 NewLI.setMetadata(LLVMContext::MD_nonnull, NN);
2937 }
2938 }
2939
dropDebugUsers(Instruction & I)2940 void llvm::dropDebugUsers(Instruction &I) {
2941 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers;
2942 findDbgUsers(DbgUsers, &I);
2943 for (auto *DII : DbgUsers)
2944 DII->eraseFromParent();
2945 }
2946
hoistAllInstructionsInto(BasicBlock * DomBlock,Instruction * InsertPt,BasicBlock * BB)2947 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
2948 BasicBlock *BB) {
2949 // Since we are moving the instructions out of its basic block, we do not
2950 // retain their original debug locations (DILocations) and debug intrinsic
2951 // instructions.
2952 //
2953 // Doing so would degrade the debugging experience and adversely affect the
2954 // accuracy of profiling information.
2955 //
2956 // Currently, when hoisting the instructions, we take the following actions:
2957 // - Remove their debug intrinsic instructions.
2958 // - Set their debug locations to the values from the insertion point.
2959 //
2960 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2961 // need to be deleted, is because there will not be any instructions with a
2962 // DILocation in either branch left after performing the transformation. We
2963 // can only insert a dbg.value after the two branches are joined again.
2964 //
2965 // See PR38762, PR39243 for more details.
2966 //
2967 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2968 // encode predicated DIExpressions that yield different results on different
2969 // code paths.
2970
2971 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
2972 Instruction *I = &*II;
2973 I->dropUndefImplyingAttrsAndUnknownMetadata();
2974 if (I->isUsedByMetadata())
2975 dropDebugUsers(*I);
2976 if (I->isDebugOrPseudoInst()) {
2977 // Remove DbgInfo and pseudo probe Intrinsics.
2978 II = I->eraseFromParent();
2979 continue;
2980 }
2981 I->setDebugLoc(InsertPt->getDebugLoc());
2982 ++II;
2983 }
2984 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(),
2985 BB->getTerminator()->getIterator());
2986 }
2987
2988 namespace {
2989
2990 /// A potential constituent of a bitreverse or bswap expression. See
2991 /// collectBitParts for a fuller explanation.
2992 struct BitPart {
BitPart__anon8b8bf7060811::BitPart2993 BitPart(Value *P, unsigned BW) : Provider(P) {
2994 Provenance.resize(BW);
2995 }
2996
2997 /// The Value that this is a bitreverse/bswap of.
2998 Value *Provider;
2999
3000 /// The "provenance" of each bit. Provenance[A] = B means that bit A
3001 /// in Provider becomes bit B in the result of this expression.
3002 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
3003
3004 enum { Unset = -1 };
3005 };
3006
3007 } // end anonymous namespace
3008
3009 /// Analyze the specified subexpression and see if it is capable of providing
3010 /// pieces of a bswap or bitreverse. The subexpression provides a potential
3011 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in
3012 /// the output of the expression came from a corresponding bit in some other
3013 /// value. This function is recursive, and the end result is a mapping of
3014 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
3015 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
3016 ///
3017 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
3018 /// that the expression deposits the low byte of %X into the high byte of the
3019 /// result and that all other bits are zero. This expression is accepted and a
3020 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
3021 /// [0-7].
3022 ///
3023 /// For vector types, all analysis is performed at the per-element level. No
3024 /// cross-element analysis is supported (shuffle/insertion/reduction), and all
3025 /// constant masks must be splatted across all elements.
3026 ///
3027 /// To avoid revisiting values, the BitPart results are memoized into the
3028 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
3029 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
3030 /// store BitParts objects, not pointers. As we need the concept of a nullptr
3031 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
3032 /// type instead to provide the same functionality.
3033 ///
3034 /// Because we pass around references into \c BPS, we must use a container that
3035 /// does not invalidate internal references (std::map instead of DenseMap).
3036 static const std::optional<BitPart> &
collectBitParts(Value * V,bool MatchBSwaps,bool MatchBitReversals,std::map<Value *,std::optional<BitPart>> & BPS,int Depth,bool & FoundRoot)3037 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
3038 std::map<Value *, std::optional<BitPart>> &BPS, int Depth,
3039 bool &FoundRoot) {
3040 auto I = BPS.find(V);
3041 if (I != BPS.end())
3042 return I->second;
3043
3044 auto &Result = BPS[V] = std::nullopt;
3045 auto BitWidth = V->getType()->getScalarSizeInBits();
3046
3047 // Can't do integer/elements > 128 bits.
3048 if (BitWidth > 128)
3049 return Result;
3050
3051 // Prevent stack overflow by limiting the recursion depth
3052 if (Depth == BitPartRecursionMaxDepth) {
3053 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
3054 return Result;
3055 }
3056
3057 if (auto *I = dyn_cast<Instruction>(V)) {
3058 Value *X, *Y;
3059 const APInt *C;
3060
3061 // If this is an or instruction, it may be an inner node of the bswap.
3062 if (match(V, m_Or(m_Value(X), m_Value(Y)))) {
3063 // Check we have both sources and they are from the same provider.
3064 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3065 Depth + 1, FoundRoot);
3066 if (!A || !A->Provider)
3067 return Result;
3068
3069 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3070 Depth + 1, FoundRoot);
3071 if (!B || A->Provider != B->Provider)
3072 return Result;
3073
3074 // Try and merge the two together.
3075 Result = BitPart(A->Provider, BitWidth);
3076 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) {
3077 if (A->Provenance[BitIdx] != BitPart::Unset &&
3078 B->Provenance[BitIdx] != BitPart::Unset &&
3079 A->Provenance[BitIdx] != B->Provenance[BitIdx])
3080 return Result = std::nullopt;
3081
3082 if (A->Provenance[BitIdx] == BitPart::Unset)
3083 Result->Provenance[BitIdx] = B->Provenance[BitIdx];
3084 else
3085 Result->Provenance[BitIdx] = A->Provenance[BitIdx];
3086 }
3087
3088 return Result;
3089 }
3090
3091 // If this is a logical shift by a constant, recurse then shift the result.
3092 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) {
3093 const APInt &BitShift = *C;
3094
3095 // Ensure the shift amount is defined.
3096 if (BitShift.uge(BitWidth))
3097 return Result;
3098
3099 // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3100 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0)
3101 return Result;
3102
3103 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3104 Depth + 1, FoundRoot);
3105 if (!Res)
3106 return Result;
3107 Result = Res;
3108
3109 // Perform the "shift" on BitProvenance.
3110 auto &P = Result->Provenance;
3111 if (I->getOpcode() == Instruction::Shl) {
3112 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end());
3113 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset);
3114 } else {
3115 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue()));
3116 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset);
3117 }
3118
3119 return Result;
3120 }
3121
3122 // If this is a logical 'and' with a mask that clears bits, recurse then
3123 // unset the appropriate bits.
3124 if (match(V, m_And(m_Value(X), m_APInt(C)))) {
3125 const APInt &AndMask = *C;
3126
3127 // Check that the mask allows a multiple of 8 bits for a bswap, for an
3128 // early exit.
3129 unsigned NumMaskedBits = AndMask.countPopulation();
3130 if (!MatchBitReversals && (NumMaskedBits % 8) != 0)
3131 return Result;
3132
3133 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3134 Depth + 1, FoundRoot);
3135 if (!Res)
3136 return Result;
3137 Result = Res;
3138
3139 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3140 // If the AndMask is zero for this bit, clear the bit.
3141 if (AndMask[BitIdx] == 0)
3142 Result->Provenance[BitIdx] = BitPart::Unset;
3143 return Result;
3144 }
3145
3146 // If this is a zext instruction zero extend the result.
3147 if (match(V, m_ZExt(m_Value(X)))) {
3148 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3149 Depth + 1, FoundRoot);
3150 if (!Res)
3151 return Result;
3152
3153 Result = BitPart(Res->Provider, BitWidth);
3154 auto NarrowBitWidth = X->getType()->getScalarSizeInBits();
3155 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx)
3156 Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3157 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx)
3158 Result->Provenance[BitIdx] = BitPart::Unset;
3159 return Result;
3160 }
3161
3162 // If this is a truncate instruction, extract the lower bits.
3163 if (match(V, m_Trunc(m_Value(X)))) {
3164 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3165 Depth + 1, FoundRoot);
3166 if (!Res)
3167 return Result;
3168
3169 Result = BitPart(Res->Provider, BitWidth);
3170 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3171 Result->Provenance[BitIdx] = Res->Provenance[BitIdx];
3172 return Result;
3173 }
3174
3175 // BITREVERSE - most likely due to us previous matching a partial
3176 // bitreverse.
3177 if (match(V, m_BitReverse(m_Value(X)))) {
3178 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3179 Depth + 1, FoundRoot);
3180 if (!Res)
3181 return Result;
3182
3183 Result = BitPart(Res->Provider, BitWidth);
3184 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3185 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx];
3186 return Result;
3187 }
3188
3189 // BSWAP - most likely due to us previous matching a partial bswap.
3190 if (match(V, m_BSwap(m_Value(X)))) {
3191 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3192 Depth + 1, FoundRoot);
3193 if (!Res)
3194 return Result;
3195
3196 unsigned ByteWidth = BitWidth / 8;
3197 Result = BitPart(Res->Provider, BitWidth);
3198 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) {
3199 unsigned ByteBitOfs = ByteIdx * 8;
3200 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx)
3201 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] =
3202 Res->Provenance[ByteBitOfs + BitIdx];
3203 }
3204 return Result;
3205 }
3206
3207 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift
3208 // amount (modulo).
3209 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3210 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3211 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) ||
3212 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) {
3213 // We can treat fshr as a fshl by flipping the modulo amount.
3214 unsigned ModAmt = C->urem(BitWidth);
3215 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr)
3216 ModAmt = BitWidth - ModAmt;
3217
3218 // For bswap-only, limit shift amounts to whole bytes, for an early exit.
3219 if (!MatchBitReversals && (ModAmt % 8) != 0)
3220 return Result;
3221
3222 // Check we have both sources and they are from the same provider.
3223 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS,
3224 Depth + 1, FoundRoot);
3225 if (!LHS || !LHS->Provider)
3226 return Result;
3227
3228 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS,
3229 Depth + 1, FoundRoot);
3230 if (!RHS || LHS->Provider != RHS->Provider)
3231 return Result;
3232
3233 unsigned StartBitRHS = BitWidth - ModAmt;
3234 Result = BitPart(LHS->Provider, BitWidth);
3235 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx)
3236 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx];
3237 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx)
3238 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS];
3239 return Result;
3240 }
3241 }
3242
3243 // If we've already found a root input value then we're never going to merge
3244 // these back together.
3245 if (FoundRoot)
3246 return Result;
3247
3248 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must
3249 // be the root input value to the bswap/bitreverse.
3250 FoundRoot = true;
3251 Result = BitPart(V, BitWidth);
3252 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx)
3253 Result->Provenance[BitIdx] = BitIdx;
3254 return Result;
3255 }
3256
bitTransformIsCorrectForBSwap(unsigned From,unsigned To,unsigned BitWidth)3257 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
3258 unsigned BitWidth) {
3259 if (From % 8 != To % 8)
3260 return false;
3261 // Convert from bit indices to byte indices and check for a byte reversal.
3262 From >>= 3;
3263 To >>= 3;
3264 BitWidth >>= 3;
3265 return From == BitWidth - To - 1;
3266 }
3267
bitTransformIsCorrectForBitReverse(unsigned From,unsigned To,unsigned BitWidth)3268 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
3269 unsigned BitWidth) {
3270 return From == BitWidth - To - 1;
3271 }
3272
recognizeBSwapOrBitReverseIdiom(Instruction * I,bool MatchBSwaps,bool MatchBitReversals,SmallVectorImpl<Instruction * > & InsertedInsts)3273 bool llvm::recognizeBSwapOrBitReverseIdiom(
3274 Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
3275 SmallVectorImpl<Instruction *> &InsertedInsts) {
3276 if (!match(I, m_Or(m_Value(), m_Value())) &&
3277 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) &&
3278 !match(I, m_FShr(m_Value(), m_Value(), m_Value())))
3279 return false;
3280 if (!MatchBSwaps && !MatchBitReversals)
3281 return false;
3282 Type *ITy = I->getType();
3283 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128)
3284 return false; // Can't do integer/elements > 128 bits.
3285
3286 // Try to find all the pieces corresponding to the bswap.
3287 bool FoundRoot = false;
3288 std::map<Value *, std::optional<BitPart>> BPS;
3289 const auto &Res =
3290 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot);
3291 if (!Res)
3292 return false;
3293 ArrayRef<int8_t> BitProvenance = Res->Provenance;
3294 assert(all_of(BitProvenance,
3295 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) &&
3296 "Illegal bit provenance index");
3297
3298 // If the upper bits are zero, then attempt to perform as a truncated op.
3299 Type *DemandedTy = ITy;
3300 if (BitProvenance.back() == BitPart::Unset) {
3301 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset)
3302 BitProvenance = BitProvenance.drop_back();
3303 if (BitProvenance.empty())
3304 return false; // TODO - handle null value?
3305 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size());
3306 if (auto *IVecTy = dyn_cast<VectorType>(ITy))
3307 DemandedTy = VectorType::get(DemandedTy, IVecTy);
3308 }
3309
3310 // Check BitProvenance hasn't found a source larger than the result type.
3311 unsigned DemandedBW = DemandedTy->getScalarSizeInBits();
3312 if (DemandedBW > ITy->getScalarSizeInBits())
3313 return false;
3314
3315 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
3316 // only byteswap values with an even number of bytes.
3317 APInt DemandedMask = APInt::getAllOnes(DemandedBW);
3318 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0;
3319 bool OKForBitReverse = MatchBitReversals;
3320 for (unsigned BitIdx = 0;
3321 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) {
3322 if (BitProvenance[BitIdx] == BitPart::Unset) {
3323 DemandedMask.clearBit(BitIdx);
3324 continue;
3325 }
3326 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx,
3327 DemandedBW);
3328 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx],
3329 BitIdx, DemandedBW);
3330 }
3331
3332 Intrinsic::ID Intrin;
3333 if (OKForBSwap)
3334 Intrin = Intrinsic::bswap;
3335 else if (OKForBitReverse)
3336 Intrin = Intrinsic::bitreverse;
3337 else
3338 return false;
3339
3340 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
3341 Value *Provider = Res->Provider;
3342
3343 // We may need to truncate the provider.
3344 if (DemandedTy != Provider->getType()) {
3345 auto *Trunc =
3346 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I);
3347 InsertedInsts.push_back(Trunc);
3348 Provider = Trunc;
3349 }
3350
3351 Instruction *Result = CallInst::Create(F, Provider, "rev", I);
3352 InsertedInsts.push_back(Result);
3353
3354 if (!DemandedMask.isAllOnes()) {
3355 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask);
3356 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I);
3357 InsertedInsts.push_back(Result);
3358 }
3359
3360 // We may need to zeroextend back to the result type.
3361 if (ITy != Result->getType()) {
3362 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I);
3363 InsertedInsts.push_back(ExtInst);
3364 }
3365
3366 return true;
3367 }
3368
3369 // CodeGen has special handling for some string functions that may replace
3370 // them with target-specific intrinsics. Since that'd skip our interceptors
3371 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
3372 // we mark affected calls as NoBuiltin, which will disable optimization
3373 // in CodeGen.
maybeMarkSanitizerLibraryCallNoBuiltin(CallInst * CI,const TargetLibraryInfo * TLI)3374 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
3375 CallInst *CI, const TargetLibraryInfo *TLI) {
3376 Function *F = CI->getCalledFunction();
3377 LibFunc Func;
3378 if (F && !F->hasLocalLinkage() && F->hasName() &&
3379 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
3380 !F->doesNotAccessMemory())
3381 CI->addFnAttr(Attribute::NoBuiltin);
3382 }
3383
canReplaceOperandWithVariable(const Instruction * I,unsigned OpIdx)3384 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) {
3385 // We can't have a PHI with a metadata type.
3386 if (I->getOperand(OpIdx)->getType()->isMetadataTy())
3387 return false;
3388
3389 // Early exit.
3390 if (!isa<Constant>(I->getOperand(OpIdx)))
3391 return true;
3392
3393 switch (I->getOpcode()) {
3394 default:
3395 return true;
3396 case Instruction::Call:
3397 case Instruction::Invoke: {
3398 const auto &CB = cast<CallBase>(*I);
3399
3400 // Can't handle inline asm. Skip it.
3401 if (CB.isInlineAsm())
3402 return false;
3403
3404 // Constant bundle operands may need to retain their constant-ness for
3405 // correctness.
3406 if (CB.isBundleOperand(OpIdx))
3407 return false;
3408
3409 if (OpIdx < CB.arg_size()) {
3410 // Some variadic intrinsics require constants in the variadic arguments,
3411 // which currently aren't markable as immarg.
3412 if (isa<IntrinsicInst>(CB) &&
3413 OpIdx >= CB.getFunctionType()->getNumParams()) {
3414 // This is known to be OK for stackmap.
3415 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap;
3416 }
3417
3418 // gcroot is a special case, since it requires a constant argument which
3419 // isn't also required to be a simple ConstantInt.
3420 if (CB.getIntrinsicID() == Intrinsic::gcroot)
3421 return false;
3422
3423 // Some intrinsic operands are required to be immediates.
3424 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg);
3425 }
3426
3427 // It is never allowed to replace the call argument to an intrinsic, but it
3428 // may be possible for a call.
3429 return !isa<IntrinsicInst>(CB);
3430 }
3431 case Instruction::ShuffleVector:
3432 // Shufflevector masks are constant.
3433 return OpIdx != 2;
3434 case Instruction::Switch:
3435 case Instruction::ExtractValue:
3436 // All operands apart from the first are constant.
3437 return OpIdx == 0;
3438 case Instruction::InsertValue:
3439 // All operands apart from the first and the second are constant.
3440 return OpIdx < 2;
3441 case Instruction::Alloca:
3442 // Static allocas (constant size in the entry block) are handled by
3443 // prologue/epilogue insertion so they're free anyway. We definitely don't
3444 // want to make them non-constant.
3445 return !cast<AllocaInst>(I)->isStaticAlloca();
3446 case Instruction::GetElementPtr:
3447 if (OpIdx == 0)
3448 return true;
3449 gep_type_iterator It = gep_type_begin(I);
3450 for (auto E = std::next(It, OpIdx); It != E; ++It)
3451 if (It.isStruct())
3452 return false;
3453 return true;
3454 }
3455 }
3456
invertCondition(Value * Condition)3457 Value *llvm::invertCondition(Value *Condition) {
3458 // First: Check if it's a constant
3459 if (Constant *C = dyn_cast<Constant>(Condition))
3460 return ConstantExpr::getNot(C);
3461
3462 // Second: If the condition is already inverted, return the original value
3463 Value *NotCondition;
3464 if (match(Condition, m_Not(m_Value(NotCondition))))
3465 return NotCondition;
3466
3467 BasicBlock *Parent = nullptr;
3468 Instruction *Inst = dyn_cast<Instruction>(Condition);
3469 if (Inst)
3470 Parent = Inst->getParent();
3471 else if (Argument *Arg = dyn_cast<Argument>(Condition))
3472 Parent = &Arg->getParent()->getEntryBlock();
3473 assert(Parent && "Unsupported condition to invert");
3474
3475 // Third: Check all the users for an invert
3476 for (User *U : Condition->users())
3477 if (Instruction *I = dyn_cast<Instruction>(U))
3478 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
3479 return I;
3480
3481 // Last option: Create a new instruction
3482 auto *Inverted =
3483 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv");
3484 if (Inst && !isa<PHINode>(Inst))
3485 Inverted->insertAfter(Inst);
3486 else
3487 Inverted->insertBefore(&*Parent->getFirstInsertionPt());
3488 return Inverted;
3489 }
3490
inferAttributesFromOthers(Function & F)3491 bool llvm::inferAttributesFromOthers(Function &F) {
3492 // Note: We explicitly check for attributes rather than using cover functions
3493 // because some of the cover functions include the logic being implemented.
3494
3495 bool Changed = false;
3496 // readnone + not convergent implies nosync
3497 if (!F.hasFnAttribute(Attribute::NoSync) &&
3498 F.doesNotAccessMemory() && !F.isConvergent()) {
3499 F.setNoSync();
3500 Changed = true;
3501 }
3502
3503 // readonly implies nofree
3504 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) {
3505 F.setDoesNotFreeMemory();
3506 Changed = true;
3507 }
3508
3509 // willreturn implies mustprogress
3510 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) {
3511 F.setMustProgress();
3512 Changed = true;
3513 }
3514
3515 // TODO: There are a bunch of cases of restrictive memory effects we
3516 // can infer by inspecting arguments of argmemonly-ish functions.
3517
3518 return Changed;
3519 }
3520