1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include "i915_drv.h"
9 #include "i915_perf_types.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gt_regs.h"
12 #include "intel_sseu.h"
13
intel_sseu_set_info(struct sseu_dev_info * sseu,u8 max_slices,u8 max_subslices,u8 max_eus_per_subslice)14 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
15 u8 max_subslices, u8 max_eus_per_subslice)
16 {
17 sseu->max_slices = max_slices;
18 sseu->max_subslices = max_subslices;
19 sseu->max_eus_per_subslice = max_eus_per_subslice;
20 }
21
22 unsigned int
intel_sseu_subslice_total(const struct sseu_dev_info * sseu)23 intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
24 {
25 unsigned int i, total = 0;
26
27 if (sseu->has_xehp_dss)
28 return bitmap_weight(sseu->subslice_mask.xehp,
29 XEHP_BITMAP_BITS(sseu->subslice_mask));
30
31 for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++)
32 total += hweight8(sseu->subslice_mask.hsw[i]);
33
34 return total;
35 }
36
37 unsigned int
intel_sseu_get_hsw_subslices(const struct sseu_dev_info * sseu,u8 slice)38 intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice)
39 {
40 WARN_ON(sseu->has_xehp_dss);
41 if (WARN_ON(slice >= sseu->max_slices))
42 return 0;
43
44 return sseu->subslice_mask.hsw[slice];
45 }
46
sseu_get_eus(const struct sseu_dev_info * sseu,int slice,int subslice)47 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
48 int subslice)
49 {
50 if (sseu->has_xehp_dss) {
51 WARN_ON(slice > 0);
52 return sseu->eu_mask.xehp[subslice];
53 } else {
54 return sseu->eu_mask.hsw[slice][subslice];
55 }
56 }
57
sseu_set_eus(struct sseu_dev_info * sseu,int slice,int subslice,u16 eu_mask)58 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
59 u16 eu_mask)
60 {
61 GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice);
62 if (sseu->has_xehp_dss) {
63 GEM_WARN_ON(slice > 0);
64 sseu->eu_mask.xehp[subslice] = eu_mask;
65 } else {
66 sseu->eu_mask.hsw[slice][subslice] = eu_mask;
67 }
68 }
69
compute_eu_total(const struct sseu_dev_info * sseu)70 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
71 {
72 int s, ss, total = 0;
73
74 for (s = 0; s < sseu->max_slices; s++)
75 for (ss = 0; ss < sseu->max_subslices; ss++)
76 if (sseu->has_xehp_dss)
77 total += hweight16(sseu->eu_mask.xehp[ss]);
78 else
79 total += hweight16(sseu->eu_mask.hsw[s][ss]);
80
81 return total;
82 }
83
84 /**
85 * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer
86 * @to: Pointer to userspace buffer to copy to
87 * @sseu: SSEU structure containing EU mask to copy
88 *
89 * Copies the EU mask to a userspace buffer in the format expected by
90 * the query ioctl's topology queries.
91 *
92 * Returns the result of the copy_to_user() operation.
93 */
intel_sseu_copy_eumask_to_user(void __user * to,const struct sseu_dev_info * sseu)94 int intel_sseu_copy_eumask_to_user(void __user *to,
95 const struct sseu_dev_info *sseu)
96 {
97 u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {};
98 int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
99 int len = sseu->max_slices * sseu->max_subslices * eu_stride;
100 int s, ss, i;
101
102 for (s = 0; s < sseu->max_slices; s++) {
103 for (ss = 0; ss < sseu->max_subslices; ss++) {
104 int uapi_offset =
105 s * sseu->max_subslices * eu_stride +
106 ss * eu_stride;
107 u16 mask = sseu_get_eus(sseu, s, ss);
108
109 for (i = 0; i < eu_stride; i++)
110 eu_mask[uapi_offset + i] =
111 (mask >> (BITS_PER_BYTE * i)) & 0xff;
112 }
113 }
114
115 return copy_to_user(to, eu_mask, len);
116 }
117
118 /**
119 * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer
120 * @to: Pointer to userspace buffer to copy to
121 * @sseu: SSEU structure containing subslice mask to copy
122 *
123 * Copies the subslice mask to a userspace buffer in the format expected by
124 * the query ioctl's topology queries.
125 *
126 * Returns the result of the copy_to_user() operation.
127 */
intel_sseu_copy_ssmask_to_user(void __user * to,const struct sseu_dev_info * sseu)128 int intel_sseu_copy_ssmask_to_user(void __user *to,
129 const struct sseu_dev_info *sseu)
130 {
131 u8 ss_mask[GEN_SS_MASK_SIZE] = {};
132 int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
133 int len = sseu->max_slices * ss_stride;
134 int s, ss, i;
135
136 for (s = 0; s < sseu->max_slices; s++) {
137 for (ss = 0; ss < sseu->max_subslices; ss++) {
138 i = s * ss_stride * BITS_PER_BYTE + ss;
139
140 if (!intel_sseu_has_subslice(sseu, s, ss))
141 continue;
142
143 ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
144 }
145 }
146
147 return copy_to_user(to, ss_mask, len);
148 }
149
gen11_compute_sseu_info(struct sseu_dev_info * sseu,u32 ss_en,u16 eu_en)150 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
151 u32 ss_en, u16 eu_en)
152 {
153 u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0);
154 int ss;
155
156 sseu->slice_mask |= BIT(0);
157 sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask;
158
159 for (ss = 0; ss < sseu->max_subslices; ss++)
160 if (intel_sseu_has_subslice(sseu, 0, ss))
161 sseu_set_eus(sseu, 0, ss, eu_en);
162
163 sseu->eu_per_subslice = hweight16(eu_en);
164 sseu->eu_total = compute_eu_total(sseu);
165 }
166
xehp_compute_sseu_info(struct sseu_dev_info * sseu,u16 eu_en)167 static void xehp_compute_sseu_info(struct sseu_dev_info *sseu,
168 u16 eu_en)
169 {
170 int ss;
171
172 sseu->slice_mask |= BIT(0);
173
174 bitmap_or(sseu->subslice_mask.xehp,
175 sseu->compute_subslice_mask.xehp,
176 sseu->geometry_subslice_mask.xehp,
177 XEHP_BITMAP_BITS(sseu->subslice_mask));
178
179 for (ss = 0; ss < sseu->max_subslices; ss++)
180 if (intel_sseu_has_subslice(sseu, 0, ss))
181 sseu_set_eus(sseu, 0, ss, eu_en);
182
183 sseu->eu_per_subslice = hweight16(eu_en);
184 sseu->eu_total = compute_eu_total(sseu);
185 }
186
187 static void
xehp_load_dss_mask(struct intel_uncore * uncore,intel_sseu_ss_mask_t * ssmask,int numregs,...)188 xehp_load_dss_mask(struct intel_uncore *uncore,
189 intel_sseu_ss_mask_t *ssmask,
190 int numregs,
191 ...)
192 {
193 va_list argp;
194 u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {};
195 int i;
196
197 if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS))
198 numregs = I915_MAX_SS_FUSE_REGS;
199
200 va_start(argp, numregs);
201 for (i = 0; i < numregs; i++)
202 fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t));
203 va_end(argp);
204
205 bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32);
206 }
207
xehp_sseu_info_init(struct intel_gt * gt)208 static void xehp_sseu_info_init(struct intel_gt *gt)
209 {
210 struct sseu_dev_info *sseu = >->info.sseu;
211 struct intel_uncore *uncore = gt->uncore;
212 u16 eu_en = 0;
213 u8 eu_en_fuse;
214 int num_compute_regs, num_geometry_regs;
215 int eu;
216
217 if (IS_PONTEVECCHIO(gt->i915)) {
218 num_geometry_regs = 0;
219 num_compute_regs = 2;
220 } else {
221 num_geometry_regs = 1;
222 num_compute_regs = 1;
223 }
224
225 /*
226 * The concept of slice has been removed in Xe_HP. To be compatible
227 * with prior generations, assume a single slice across the entire
228 * device. Then calculate out the DSS for each workload type within
229 * that software slice.
230 */
231 intel_sseu_set_info(sseu, 1,
232 32 * max(num_geometry_regs, num_compute_regs),
233 HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16);
234 sseu->has_xehp_dss = 1;
235
236 xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask,
237 num_geometry_regs,
238 GEN12_GT_GEOMETRY_DSS_ENABLE);
239 xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask,
240 num_compute_regs,
241 GEN12_GT_COMPUTE_DSS_ENABLE,
242 XEHPC_GT_COMPUTE_DSS_ENABLE_EXT);
243
244 eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
245
246 if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915))
247 eu_en = eu_en_fuse;
248 else
249 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
250 if (eu_en_fuse & BIT(eu))
251 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
252
253 xehp_compute_sseu_info(sseu, eu_en);
254 }
255
gen12_sseu_info_init(struct intel_gt * gt)256 static void gen12_sseu_info_init(struct intel_gt *gt)
257 {
258 struct sseu_dev_info *sseu = >->info.sseu;
259 struct intel_uncore *uncore = gt->uncore;
260 u32 g_dss_en;
261 u16 eu_en = 0;
262 u8 eu_en_fuse;
263 u8 s_en;
264 int eu;
265
266 /*
267 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
268 * Instead of splitting these, provide userspace with an array
269 * of DSS to more closely represent the hardware resource.
270 */
271 intel_sseu_set_info(sseu, 1, 6, 16);
272
273 /*
274 * Although gen12 architecture supported multiple slices, TGL, RKL,
275 * DG1, and ADL only had a single slice.
276 */
277 s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
278 GEN11_GT_S_ENA_MASK;
279 drm_WARN_ON(>->i915->drm, s_en != 0x1);
280
281 g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
282
283 /* one bit per pair of EUs */
284 eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
285 GEN11_EU_DIS_MASK);
286
287 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
288 if (eu_en_fuse & BIT(eu))
289 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
290
291 gen11_compute_sseu_info(sseu, g_dss_en, eu_en);
292
293 /* TGL only supports slice-level power gating */
294 sseu->has_slice_pg = 1;
295 }
296
gen11_sseu_info_init(struct intel_gt * gt)297 static void gen11_sseu_info_init(struct intel_gt *gt)
298 {
299 struct sseu_dev_info *sseu = >->info.sseu;
300 struct intel_uncore *uncore = gt->uncore;
301 u32 ss_en;
302 u8 eu_en;
303 u8 s_en;
304
305 if (IS_JASPERLAKE(gt->i915) || IS_ELKHARTLAKE(gt->i915))
306 intel_sseu_set_info(sseu, 1, 4, 8);
307 else
308 intel_sseu_set_info(sseu, 1, 8, 8);
309
310 /*
311 * Although gen11 architecture supported multiple slices, ICL and
312 * EHL/JSL only had a single slice in practice.
313 */
314 s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
315 GEN11_GT_S_ENA_MASK;
316 drm_WARN_ON(>->i915->drm, s_en != 0x1);
317
318 ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
319
320 eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
321 GEN11_EU_DIS_MASK);
322
323 gen11_compute_sseu_info(sseu, ss_en, eu_en);
324
325 /* ICL has no power gating restrictions. */
326 sseu->has_slice_pg = 1;
327 sseu->has_subslice_pg = 1;
328 sseu->has_eu_pg = 1;
329 }
330
cherryview_sseu_info_init(struct intel_gt * gt)331 static void cherryview_sseu_info_init(struct intel_gt *gt)
332 {
333 struct sseu_dev_info *sseu = >->info.sseu;
334 u32 fuse;
335
336 fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
337
338 sseu->slice_mask = BIT(0);
339 intel_sseu_set_info(sseu, 1, 2, 8);
340
341 if (!(fuse & CHV_FGT_DISABLE_SS0)) {
342 u8 disabled_mask =
343 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
344 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
345 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
346 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
347
348 sseu->subslice_mask.hsw[0] |= BIT(0);
349 sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF);
350 }
351
352 if (!(fuse & CHV_FGT_DISABLE_SS1)) {
353 u8 disabled_mask =
354 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
355 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
356 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
357 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
358
359 sseu->subslice_mask.hsw[0] |= BIT(1);
360 sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF);
361 }
362
363 sseu->eu_total = compute_eu_total(sseu);
364
365 /*
366 * CHV expected to always have a uniform distribution of EU
367 * across subslices.
368 */
369 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
370 sseu->eu_total /
371 intel_sseu_subslice_total(sseu) :
372 0;
373 /*
374 * CHV supports subslice power gating on devices with more than
375 * one subslice, and supports EU power gating on devices with
376 * more than one EU pair per subslice.
377 */
378 sseu->has_slice_pg = 0;
379 sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
380 sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
381 }
382
gen9_sseu_info_init(struct intel_gt * gt)383 static void gen9_sseu_info_init(struct intel_gt *gt)
384 {
385 struct drm_i915_private *i915 = gt->i915;
386 struct sseu_dev_info *sseu = >->info.sseu;
387 struct intel_uncore *uncore = gt->uncore;
388 u32 fuse2, eu_disable, subslice_mask;
389 const u8 eu_mask = 0xff;
390 int s, ss;
391
392 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
393 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
394
395 /* BXT has a single slice and at most 3 subslices. */
396 intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
397 IS_GEN9_LP(i915) ? 3 : 4, 8);
398
399 /*
400 * The subslice disable field is global, i.e. it applies
401 * to each of the enabled slices.
402 */
403 subslice_mask = (1 << sseu->max_subslices) - 1;
404 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
405 GEN9_F2_SS_DIS_SHIFT);
406
407 /*
408 * Iterate through enabled slices and subslices to
409 * count the total enabled EU.
410 */
411 for (s = 0; s < sseu->max_slices; s++) {
412 if (!(sseu->slice_mask & BIT(s)))
413 /* skip disabled slice */
414 continue;
415
416 sseu->subslice_mask.hsw[s] = subslice_mask;
417
418 eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
419 for (ss = 0; ss < sseu->max_subslices; ss++) {
420 int eu_per_ss;
421 u8 eu_disabled_mask;
422
423 if (!intel_sseu_has_subslice(sseu, s, ss))
424 /* skip disabled subslice */
425 continue;
426
427 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
428
429 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask);
430
431 eu_per_ss = sseu->max_eus_per_subslice -
432 hweight8(eu_disabled_mask);
433
434 /*
435 * Record which subslice(s) has(have) 7 EUs. we
436 * can tune the hash used to spread work among
437 * subslices if they are unbalanced.
438 */
439 if (eu_per_ss == 7)
440 sseu->subslice_7eu[s] |= BIT(ss);
441 }
442 }
443
444 sseu->eu_total = compute_eu_total(sseu);
445
446 /*
447 * SKL is expected to always have a uniform distribution
448 * of EU across subslices with the exception that any one
449 * EU in any one subslice may be fused off for die
450 * recovery. BXT is expected to be perfectly uniform in EU
451 * distribution.
452 */
453 sseu->eu_per_subslice =
454 intel_sseu_subslice_total(sseu) ?
455 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
456 0;
457
458 /*
459 * SKL+ supports slice power gating on devices with more than
460 * one slice, and supports EU power gating on devices with
461 * more than one EU pair per subslice. BXT+ supports subslice
462 * power gating on devices with more than one subslice, and
463 * supports EU power gating on devices with more than one EU
464 * pair per subslice.
465 */
466 sseu->has_slice_pg =
467 !IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
468 sseu->has_subslice_pg =
469 IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
470 sseu->has_eu_pg = sseu->eu_per_subslice > 2;
471
472 if (IS_GEN9_LP(i915)) {
473 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask.hsw[0] & BIT(ss)))
474 RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3;
475
476 sseu->min_eu_in_pool = 0;
477 if (HAS_POOLED_EU(i915)) {
478 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
479 sseu->min_eu_in_pool = 3;
480 else if (IS_SS_DISABLED(1))
481 sseu->min_eu_in_pool = 6;
482 else
483 sseu->min_eu_in_pool = 9;
484 }
485 #undef IS_SS_DISABLED
486 }
487 }
488
bdw_sseu_info_init(struct intel_gt * gt)489 static void bdw_sseu_info_init(struct intel_gt *gt)
490 {
491 struct sseu_dev_info *sseu = >->info.sseu;
492 struct intel_uncore *uncore = gt->uncore;
493 int s, ss;
494 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
495 u32 eu_disable0, eu_disable1, eu_disable2;
496
497 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
498 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
499 intel_sseu_set_info(sseu, 3, 3, 8);
500
501 /*
502 * The subslice disable field is global, i.e. it applies
503 * to each of the enabled slices.
504 */
505 subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
506 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
507 GEN8_F2_SS_DIS_SHIFT);
508 eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
509 eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
510 eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
511 eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
512 eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
513 ((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
514 (32 - GEN8_EU_DIS0_S1_SHIFT));
515 eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
516 ((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
517 (32 - GEN8_EU_DIS1_S2_SHIFT));
518
519 /*
520 * Iterate through enabled slices and subslices to
521 * count the total enabled EU.
522 */
523 for (s = 0; s < sseu->max_slices; s++) {
524 if (!(sseu->slice_mask & BIT(s)))
525 /* skip disabled slice */
526 continue;
527
528 sseu->subslice_mask.hsw[s] = subslice_mask;
529
530 for (ss = 0; ss < sseu->max_subslices; ss++) {
531 u8 eu_disabled_mask;
532 u32 n_disabled;
533
534 if (!intel_sseu_has_subslice(sseu, s, ss))
535 /* skip disabled subslice */
536 continue;
537
538 eu_disabled_mask =
539 eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
540
541 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF);
542
543 n_disabled = hweight8(eu_disabled_mask);
544
545 /*
546 * Record which subslices have 7 EUs.
547 */
548 if (sseu->max_eus_per_subslice - n_disabled == 7)
549 sseu->subslice_7eu[s] |= 1 << ss;
550 }
551 }
552
553 sseu->eu_total = compute_eu_total(sseu);
554
555 /*
556 * BDW is expected to always have a uniform distribution of EU across
557 * subslices with the exception that any one EU in any one subslice may
558 * be fused off for die recovery.
559 */
560 sseu->eu_per_subslice =
561 intel_sseu_subslice_total(sseu) ?
562 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
563 0;
564
565 /*
566 * BDW supports slice power gating on devices with more than
567 * one slice.
568 */
569 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
570 sseu->has_subslice_pg = 0;
571 sseu->has_eu_pg = 0;
572 }
573
hsw_sseu_info_init(struct intel_gt * gt)574 static void hsw_sseu_info_init(struct intel_gt *gt)
575 {
576 struct drm_i915_private *i915 = gt->i915;
577 struct sseu_dev_info *sseu = >->info.sseu;
578 u32 fuse1;
579 u8 subslice_mask = 0;
580 int s, ss;
581
582 /*
583 * There isn't a register to tell us how many slices/subslices. We
584 * work off the PCI-ids here.
585 */
586 switch (INTEL_INFO(i915)->gt) {
587 default:
588 MISSING_CASE(INTEL_INFO(i915)->gt);
589 fallthrough;
590 case 1:
591 sseu->slice_mask = BIT(0);
592 subslice_mask = BIT(0);
593 break;
594 case 2:
595 sseu->slice_mask = BIT(0);
596 subslice_mask = BIT(0) | BIT(1);
597 break;
598 case 3:
599 sseu->slice_mask = BIT(0) | BIT(1);
600 subslice_mask = BIT(0) | BIT(1);
601 break;
602 }
603
604 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
605 switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
606 default:
607 MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
608 fallthrough;
609 case HSW_F1_EU_DIS_10EUS:
610 sseu->eu_per_subslice = 10;
611 break;
612 case HSW_F1_EU_DIS_8EUS:
613 sseu->eu_per_subslice = 8;
614 break;
615 case HSW_F1_EU_DIS_6EUS:
616 sseu->eu_per_subslice = 6;
617 break;
618 }
619
620 intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
621 hweight8(subslice_mask),
622 sseu->eu_per_subslice);
623
624 for (s = 0; s < sseu->max_slices; s++) {
625 sseu->subslice_mask.hsw[s] = subslice_mask;
626
627 for (ss = 0; ss < sseu->max_subslices; ss++) {
628 sseu_set_eus(sseu, s, ss,
629 (1UL << sseu->eu_per_subslice) - 1);
630 }
631 }
632
633 sseu->eu_total = compute_eu_total(sseu);
634
635 /* No powergating for you. */
636 sseu->has_slice_pg = 0;
637 sseu->has_subslice_pg = 0;
638 sseu->has_eu_pg = 0;
639 }
640
intel_sseu_info_init(struct intel_gt * gt)641 void intel_sseu_info_init(struct intel_gt *gt)
642 {
643 struct drm_i915_private *i915 = gt->i915;
644
645 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
646 xehp_sseu_info_init(gt);
647 else if (GRAPHICS_VER(i915) >= 12)
648 gen12_sseu_info_init(gt);
649 else if (GRAPHICS_VER(i915) >= 11)
650 gen11_sseu_info_init(gt);
651 else if (GRAPHICS_VER(i915) >= 9)
652 gen9_sseu_info_init(gt);
653 else if (IS_BROADWELL(i915))
654 bdw_sseu_info_init(gt);
655 else if (IS_CHERRYVIEW(i915))
656 cherryview_sseu_info_init(gt);
657 else if (IS_HASWELL(i915))
658 hsw_sseu_info_init(gt);
659 }
660
intel_sseu_make_rpcs(struct intel_gt * gt,const struct intel_sseu * req_sseu)661 u32 intel_sseu_make_rpcs(struct intel_gt *gt,
662 const struct intel_sseu *req_sseu)
663 {
664 struct drm_i915_private *i915 = gt->i915;
665 const struct sseu_dev_info *sseu = >->info.sseu;
666 bool subslice_pg = sseu->has_subslice_pg;
667 u8 slices, subslices;
668 u32 rpcs = 0;
669
670 /*
671 * No explicit RPCS request is needed to ensure full
672 * slice/subslice/EU enablement prior to Gen9.
673 */
674 if (GRAPHICS_VER(i915) < 9)
675 return 0;
676
677 /*
678 * If i915/perf is active, we want a stable powergating configuration
679 * on the system. Use the configuration pinned by i915/perf.
680 */
681 if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream)
682 req_sseu = >->perf.sseu;
683
684 slices = hweight8(req_sseu->slice_mask);
685 subslices = hweight8(req_sseu->subslice_mask);
686
687 /*
688 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
689 * wide and Icelake has up to eight subslices, specfial programming is
690 * needed in order to correctly enable all subslices.
691 *
692 * According to documentation software must consider the configuration
693 * as 2x4x8 and hardware will translate this to 1x8x8.
694 *
695 * Furthemore, even though SScount is three bits, maximum documented
696 * value for it is four. From this some rules/restrictions follow:
697 *
698 * 1.
699 * If enabled subslice count is greater than four, two whole slices must
700 * be enabled instead.
701 *
702 * 2.
703 * When more than one slice is enabled, hardware ignores the subslice
704 * count altogether.
705 *
706 * From these restrictions it follows that it is not possible to enable
707 * a count of subslices between the SScount maximum of four restriction,
708 * and the maximum available number on a particular SKU. Either all
709 * subslices are enabled, or a count between one and four on the first
710 * slice.
711 */
712 if (GRAPHICS_VER(i915) == 11 &&
713 slices == 1 &&
714 subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) {
715 GEM_BUG_ON(subslices & 1);
716
717 subslice_pg = false;
718 slices *= 2;
719 }
720
721 /*
722 * Starting in Gen9, render power gating can leave
723 * slice/subslice/EU in a partially enabled state. We
724 * must make an explicit request through RPCS for full
725 * enablement.
726 */
727 if (sseu->has_slice_pg) {
728 u32 mask, val = slices;
729
730 if (GRAPHICS_VER(i915) >= 11) {
731 mask = GEN11_RPCS_S_CNT_MASK;
732 val <<= GEN11_RPCS_S_CNT_SHIFT;
733 } else {
734 mask = GEN8_RPCS_S_CNT_MASK;
735 val <<= GEN8_RPCS_S_CNT_SHIFT;
736 }
737
738 GEM_BUG_ON(val & ~mask);
739 val &= mask;
740
741 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
742 }
743
744 if (subslice_pg) {
745 u32 val = subslices;
746
747 val <<= GEN8_RPCS_SS_CNT_SHIFT;
748
749 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
750 val &= GEN8_RPCS_SS_CNT_MASK;
751
752 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
753 }
754
755 if (sseu->has_eu_pg) {
756 u32 val;
757
758 val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
759 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
760 val &= GEN8_RPCS_EU_MIN_MASK;
761
762 rpcs |= val;
763
764 val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
765 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
766 val &= GEN8_RPCS_EU_MAX_MASK;
767
768 rpcs |= val;
769
770 rpcs |= GEN8_RPCS_ENABLE;
771 }
772
773 return rpcs;
774 }
775
intel_sseu_dump(const struct sseu_dev_info * sseu,struct drm_printer * p)776 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
777 {
778 int s;
779
780 if (sseu->has_xehp_dss) {
781 drm_printf(p, "subslice total: %u\n",
782 intel_sseu_subslice_total(sseu));
783 drm_printf(p, "geometry dss mask=%*pb\n",
784 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask),
785 sseu->geometry_subslice_mask.xehp);
786 drm_printf(p, "compute dss mask=%*pb\n",
787 XEHP_BITMAP_BITS(sseu->compute_subslice_mask),
788 sseu->compute_subslice_mask.xehp);
789 } else {
790 drm_printf(p, "slice total: %u, mask=%04x\n",
791 hweight8(sseu->slice_mask), sseu->slice_mask);
792 drm_printf(p, "subslice total: %u\n",
793 intel_sseu_subslice_total(sseu));
794
795 for (s = 0; s < sseu->max_slices; s++) {
796 u8 ss_mask = sseu->subslice_mask.hsw[s];
797
798 drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
799 s, hweight8(ss_mask), ss_mask);
800 }
801 }
802
803 drm_printf(p, "EU total: %u\n", sseu->eu_total);
804 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
805 drm_printf(p, "has slice power gating: %s\n",
806 str_yes_no(sseu->has_slice_pg));
807 drm_printf(p, "has subslice power gating: %s\n",
808 str_yes_no(sseu->has_subslice_pg));
809 drm_printf(p, "has EU power gating: %s\n",
810 str_yes_no(sseu->has_eu_pg));
811 }
812
sseu_print_hsw_topology(const struct sseu_dev_info * sseu,struct drm_printer * p)813 static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
814 struct drm_printer *p)
815 {
816 int s, ss;
817
818 for (s = 0; s < sseu->max_slices; s++) {
819 u8 ss_mask = sseu->subslice_mask.hsw[s];
820
821 drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
822 s, hweight8(ss_mask), ss_mask);
823
824 for (ss = 0; ss < sseu->max_subslices; ss++) {
825 u16 enabled_eus = sseu_get_eus(sseu, s, ss);
826
827 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
828 ss, hweight16(enabled_eus), enabled_eus);
829 }
830 }
831 }
832
sseu_print_xehp_topology(const struct sseu_dev_info * sseu,struct drm_printer * p)833 static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
834 struct drm_printer *p)
835 {
836 int dss;
837
838 for (dss = 0; dss < sseu->max_subslices; dss++) {
839 u16 enabled_eus = sseu_get_eus(sseu, 0, dss);
840
841 drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
842 str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)),
843 str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)),
844 hweight16(enabled_eus), enabled_eus);
845 }
846 }
847
intel_sseu_print_topology(struct drm_i915_private * i915,const struct sseu_dev_info * sseu,struct drm_printer * p)848 void intel_sseu_print_topology(struct drm_i915_private *i915,
849 const struct sseu_dev_info *sseu,
850 struct drm_printer *p)
851 {
852 if (sseu->max_slices == 0) {
853 drm_printf(p, "Unavailable\n");
854 } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
855 sseu_print_xehp_topology(sseu, p);
856 } else {
857 sseu_print_hsw_topology(sseu, p);
858 }
859 }
860
intel_sseu_print_ss_info(const char * type,const struct sseu_dev_info * sseu,struct seq_file * m)861 void intel_sseu_print_ss_info(const char *type,
862 const struct sseu_dev_info *sseu,
863 struct seq_file *m)
864 {
865 int s;
866
867 if (sseu->has_xehp_dss) {
868 seq_printf(m, " %s Geometry DSS: %u\n", type,
869 bitmap_weight(sseu->geometry_subslice_mask.xehp,
870 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask)));
871 seq_printf(m, " %s Compute DSS: %u\n", type,
872 bitmap_weight(sseu->compute_subslice_mask.xehp,
873 XEHP_BITMAP_BITS(sseu->compute_subslice_mask)));
874 } else {
875 for (s = 0; s < fls(sseu->slice_mask); s++)
876 seq_printf(m, " %s Slice%i subslices: %u\n", type,
877 s, hweight8(sseu->subslice_mask.hsw[s]));
878 }
879 }
880
intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,int dss_per_slice)881 u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,
882 int dss_per_slice)
883 {
884 STUB();
885 return 0;
886 #ifdef notyet
887 intel_sseu_ss_mask_t per_slice_mask = {};
888 unsigned long slice_mask = 0;
889 int i;
890
891 WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) >
892 8 * sizeof(slice_mask));
893
894 bitmap_fill(per_slice_mask.xehp, dss_per_slice);
895 for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) {
896 if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice))
897 slice_mask |= BIT(i);
898
899 bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice,
900 XEHP_BITMAP_BITS(dss_mask));
901 }
902
903 return slice_mask;
904 #endif
905 }
906