1 #include "convolutional_layer.h"
2 #include "utils.h"
3 #include "batchnorm_layer.h"
4 #include "im2col.h"
5 #include "col2im.h"
6 #include "blas.h"
7 #include "gemm.h"
8 #include "box.h"
9 #include <stdio.h>
10 #include <time.h>
11 
12 #ifdef AI2
13 #include "xnor_layer.h"
14 #endif
15 
16 #ifdef __cplusplus
17 #define PUT_IN_REGISTER
18 #else
19 #define PUT_IN_REGISTER register
20 #endif
21 
22 #ifndef AI2
23 #define AI2 0
24 void forward_xnor_layer(layer l, network_state state);
25 #endif
26 
swap_binary(convolutional_layer * l)27 void swap_binary(convolutional_layer *l)
28 {
29     float *swap = l->weights;
30     l->weights = l->binary_weights;
31     l->binary_weights = swap;
32 
33     #ifdef GPU
34     swap = l->weights_gpu;
35     l->weights_gpu = l->binary_weights_gpu;
36     l->binary_weights_gpu = swap;
37     #endif
38 }
39 
binarize_weights(float * weights,int n,int size,float * binary)40 void binarize_weights(float *weights, int n, int size, float *binary)
41 {
42     int i, f;
43     for(f = 0; f < n; ++f){
44         float mean = 0;
45         for(i = 0; i < size; ++i){
46             mean += fabs(weights[f*size + i]);
47         }
48         mean = mean / size;
49         for(i = 0; i < size; ++i){
50             binary[f*size + i] = (weights[f*size + i] > 0) ? mean: -mean;
51         }
52     }
53 }
54 
binarize_cpu(float * input,int n,float * binary)55 void binarize_cpu(float *input, int n, float *binary)
56 {
57     int i;
58     for(i = 0; i < n; ++i){
59         binary[i] = (input[i] > 0) ? 1 : -1;
60     }
61 }
62 
binarize_input(float * input,int n,int size,float * binary)63 void binarize_input(float *input, int n, int size, float *binary)
64 {
65     int i, s;
66     for(s = 0; s < size; ++s){
67         float mean = 0;
68         for(i = 0; i < n; ++i){
69             mean += fabs(input[i*size + s]);
70         }
71         mean = mean / n;
72         for(i = 0; i < n; ++i){
73             binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
74         }
75     }
76 }
77 
convolutional_out_height(convolutional_layer l)78 int convolutional_out_height(convolutional_layer l)
79 {
80     return (l.h + 2*l.pad - l.size) / l.stride_y + 1;
81 }
82 
convolutional_out_width(convolutional_layer l)83 int convolutional_out_width(convolutional_layer l)
84 {
85     return (l.w + 2*l.pad - l.size) / l.stride_x + 1;
86 }
87 
get_convolutional_image(convolutional_layer l)88 image get_convolutional_image(convolutional_layer l)
89 {
90     int h,w,c;
91     h = convolutional_out_height(l);
92     w = convolutional_out_width(l);
93     c = l.n;
94     return float_to_image(w,h,c,l.output);
95 }
96 
get_convolutional_delta(convolutional_layer l)97 image get_convolutional_delta(convolutional_layer l)
98 {
99     int h,w,c;
100     h = convolutional_out_height(l);
101     w = convolutional_out_width(l);
102     c = l.n;
103     return float_to_image(w,h,c,l.delta);
104 }
105 
get_workspace_size32(layer l)106 size_t get_workspace_size32(layer l){
107 #ifdef CUDNN
108     if(gpu_index >= 0){
109         size_t most = 0;
110         size_t s = 0;
111         CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
112                 l.srcTensorDesc,
113                 l.weightDesc,
114                 l.convDesc,
115                 l.dstTensorDesc,
116                 l.fw_algo,
117                 &s));
118         if (s > most) most = s;
119         CHECK_CUDNN(cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
120                 l.srcTensorDesc,
121                 l.ddstTensorDesc,
122                 l.convDesc,
123                 l.dweightDesc,
124                 l.bf_algo,
125                 &s));
126         if (s > most && l.train) most = s;
127         CHECK_CUDNN(cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
128                 l.weightDesc,
129                 l.ddstTensorDesc,
130                 l.convDesc,
131                 l.dsrcTensorDesc,
132                 l.bd_algo,
133                 &s));
134         if (s > most && l.train) most = s;
135         return most;
136     }
137     #endif
138     if (l.xnor) {
139         size_t re_packed_input_size = l.c * l.w * l.h * sizeof(float);
140         size_t workspace_size = (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float);
141         if (workspace_size < re_packed_input_size) workspace_size = re_packed_input_size;
142         return workspace_size;
143     }
144     return (size_t)l.out_h*l.out_w*l.size*l.size*(l.c / l.groups)*sizeof(float);
145 }
146 
get_workspace_size16(layer l)147 size_t get_workspace_size16(layer l) {
148 #if defined(CUDNN) && defined(CUDNN_HALF)
149     if (gpu_index >= 0) {
150         size_t most = 0;
151         size_t s = 0;
152         CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
153             l.srcTensorDesc16,
154             l.weightDesc16,
155             l.convDesc,
156             l.dstTensorDesc16,
157             l.fw_algo16,
158             &s));
159         if (s > most) most = s;
160         CHECK_CUDNN(cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
161             l.srcTensorDesc16,
162             l.ddstTensorDesc16,
163             l.convDesc,
164             l.dweightDesc16,
165             l.bf_algo16,
166             &s));
167         if (s > most && l.train) most = s;
168         CHECK_CUDNN(cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
169             l.weightDesc16,
170             l.ddstTensorDesc16,
171             l.convDesc,
172             l.dsrcTensorDesc16,
173             l.bd_algo16,
174             &s));
175         if (s > most && l.train) most = s;
176         return most;
177     }
178 #endif
179     return 0;
180     //if (l.xnor) return (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float);
181     //return (size_t)l.out_h*l.out_w*l.size*l.size*l.c * sizeof(float);
182 }
183 
get_convolutional_workspace_size(layer l)184 size_t get_convolutional_workspace_size(layer l) {
185     size_t workspace_size = get_workspace_size32(l);
186     size_t workspace_size16 = get_workspace_size16(l);
187     if (workspace_size16 > workspace_size) workspace_size = workspace_size16;
188     return workspace_size;
189 }
190 #ifdef GPU
191 #ifdef CUDNN
create_convolutional_cudnn_tensors(layer * l)192 void create_convolutional_cudnn_tensors(layer *l)
193 {
194     CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normTensorDesc));
195 
196     CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDesc));
197     CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->srcTensorDesc));
198     CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dstTensorDesc));
199     CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->weightDesc));
200     CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dsrcTensorDesc));
201     CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->ddstTensorDesc));
202     CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->dweightDesc));
203 
204     CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDescF16));
205     CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->srcTensorDesc16));
206     CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dstTensorDesc16));
207     CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->weightDesc16));
208     CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dsrcTensorDesc16));
209     CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->ddstTensorDesc16));
210     CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->dweightDesc16));
211 
212     CHECK_CUDNN(cudnnCreateConvolutionDescriptor(&l->convDesc));
213 }
214 
cudnn_convolutional_setup(layer * l,int cudnn_preference,size_t workspace_size_specify)215 void cudnn_convolutional_setup(layer *l, int cudnn_preference, size_t workspace_size_specify)
216 {
217 
218 // CUDNN_HALF
219     // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0):
220     //   Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
221     // PSEUDO_HALF_CONFIG is required for Tensor Cores - our case!
222 
223     cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
224 
225 #if(CUDNN_MAJOR >= 7)
226     // Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
227     // For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT
228     // otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF
229     // Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
230     // 1. Accumulation into FP32
231     // 2. Loss Scaling - required only for: activation gradients. We do not use.
232     // 3. FP32 Master Copy of Weights
233     // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
234     if (l->groups < 1) l->groups = 1;
235     if (l->stride_x < 1) l->stride_x = 1;
236     if (l->stride_y < 1) l->stride_y = 1;
237     CHECK_CUDNN(cudnnSetConvolutionGroupCount(l->convDesc, l->groups));
238     CHECK_CUDNN(cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH));
239 #if((CUDNN_MAJOR*10 + CUDNN_MINOR) >= 72)   // cuDNN >= 7.2
240     //CHECK_CUDNN(cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION)); // reduces the speed of regular and group convolution
241 #endif
242 #else   //if(CUDNN_MAJOR >= 7)
243     if (l->groups > 1) {
244         error("CUDNN < 7 doesn't support groups, please upgrade!");
245     }
246 #endif
247 
248     // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported
249     //   on architectures with DP4A support (compute capability 6.1 and later).
250     //cudnnDataType_t data_type = CUDNN_DATA_INT8;
251 
252     // backward delta
253     CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w));
254     CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w));
255     CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size));
256 
257     // forward
258     CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w));
259     CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w));
260     CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size));
261 
262     // backward delta
263     CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dsrcTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->c, l->h, l->w));
264     CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->ddstTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w));
265     CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->dweightDesc16, CUDNN_DATA_HALF, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size));
266 
267     // forward
268     CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->srcTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->c, l->h, l->w));
269     CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dstTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w));
270     CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->weightDesc16, CUDNN_DATA_HALF, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size));
271 
272     // batch norm
273     CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w));
274 
275     // batch norm
276     CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1));
277     CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w));
278 
279     //printf("\n l->dilation = %d, l->pad = %d, l->size = %d, l->stride = %d, l->stride_x = %d, l->stride_y = %d, l->groups = %d, l->w = %d, l->h = %d, l->c = %d, l->n = %d, l->out_w = %d, l->out_h = %d, l->out_c = %d, l->batch = %d, data_type = %d \n",
280     //    l->dilation, l->pad, l->size, l->stride, l->stride_x, l->stride_y, l->groups, l->w, l->h, l->c, l->n, l->out_w, l->out_h, l->out_c, l->batch, data_type);
281 #if(CUDNN_MAJOR >= 6)
282     CHECK_CUDNN(cudnnSetConvolution2dDescriptor(l->convDesc, l->pad * l->dilation, l->pad * l->dilation, l->stride_y, l->stride_x, l->dilation, l->dilation, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT));    // cudnn >= 6.0
283 #else
284     CHECK_CUDNN(cudnnSetConvolution2dDescriptor(l->convDesc, l->pad * l->dilation, l->pad * l->dilation, l->stride_y, l->stride_x, l->dilation, l->dilation, CUDNN_CROSS_CORRELATION));    // cudnn 5.1
285 #endif
286     int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST;
287     int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST;
288     int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST;
289     if (cudnn_preference == cudnn_smallest)
290     {
291         forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE;
292         backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE;
293         backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE;
294         printf(" CUDNN-slow ");
295     }
296     if (cudnn_preference == cudnn_specify)
297     {
298         forward_algo = CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT;
299         backward_algo = CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT;
300         backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT;
301         //printf(" CUDNN-specified %zu ", workspace_size_specify);
302     }
303 
304     CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
305             l->srcTensorDesc,
306             l->weightDesc,
307             l->convDesc,
308             l->dstTensorDesc,
309             (cudnnConvolutionFwdPreference_t)forward_algo,
310             workspace_size_specify,
311             &l->fw_algo));
312     CHECK_CUDNN(cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
313             l->weightDesc,
314             l->ddstTensorDesc,
315             l->convDesc,
316             l->dsrcTensorDesc,
317             (cudnnConvolutionBwdDataPreference_t)backward_algo,
318             workspace_size_specify,
319             &l->bd_algo));
320     CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
321             l->srcTensorDesc,
322             l->ddstTensorDesc,
323             l->convDesc,
324             l->dweightDesc,
325             (cudnnConvolutionBwdFilterPreference_t)backward_filter,
326             workspace_size_specify,
327             &l->bf_algo));
328 
329     //if (data_type == CUDNN_DATA_HALF)
330     {
331         // HALF-16 if(data_type == CUDNN_DATA_HALF)
332         l->fw_algo16 = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
333         l->bd_algo16 = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
334         l->bf_algo16 = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
335 
336         // FLOAT-32 if(data_type == CUDNN_DATA_FLOAT)
337         //l->fw_algo16 = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED;
338         //l->bd_algo16 = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED;
339         //l->bf_algo16 = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED;
340     }
341 }
342 #endif
343 #endif
344 
345 
free_convolutional_batchnorm(convolutional_layer * l)346 void free_convolutional_batchnorm(convolutional_layer *l)
347 {
348     if (!l->share_layer) {
349         if (l->scales)          free(l->scales),            l->scales = NULL;
350         if (l->scale_updates)   free(l->scale_updates),     l->scale_updates = NULL;
351         if (l->mean)            free(l->mean),              l->mean = NULL;
352         if (l->variance)        free(l->variance),          l->variance = NULL;
353         if (l->mean_delta)      free(l->mean_delta),        l->mean_delta = NULL;
354         if (l->variance_delta)  free(l->variance_delta),    l->variance_delta = NULL;
355         if (l->rolling_mean)    free(l->rolling_mean),      l->rolling_mean = NULL;
356         if (l->rolling_variance) free(l->rolling_variance),  l->rolling_variance = NULL;
357         if (l->x)               free(l->x),                 l->x = NULL;
358         if (l->x_norm)          free(l->x_norm),            l->x_norm = NULL;
359 
360 #ifdef GPU
361         if (l->scales_gpu)          cuda_free(l->scales_gpu),           l->scales_gpu = NULL;
362         if (l->scale_updates_gpu)   cuda_free(l->scale_updates_gpu),    l->scale_updates_gpu = NULL;
363         if (l->mean_gpu)            cuda_free(l->mean_gpu),             l->mean_gpu = NULL;
364         if (l->variance_gpu)        cuda_free(l->variance_gpu),         l->variance_gpu = NULL;
365         if (l->mean_delta_gpu)      cuda_free(l->mean_delta_gpu),       l->mean_delta_gpu = NULL;
366         if (l->variance_delta_gpu)  cuda_free(l->variance_delta_gpu),   l->variance_delta_gpu = NULL;
367         if (l->rolling_mean_gpu)    cuda_free(l->rolling_mean_gpu),     l->rolling_mean_gpu = NULL;
368         if (l->rolling_variance_gpu) cuda_free(l->rolling_variance_gpu), l->rolling_variance_gpu = NULL;
369         if (l->x_gpu)               cuda_free(l->x_gpu),                l->x_gpu = NULL;
370         if (l->x_norm_gpu)          cuda_free(l->x_norm_gpu),           l->x_norm_gpu = NULL;
371 #endif
372     }
373 }
374 
make_convolutional_layer(int batch,int steps,int h,int w,int c,int n,int groups,int size,int stride_x,int stride_y,int dilation,int padding,ACTIVATION activation,int batch_normalize,int binary,int xnor,int adam,int use_bin_output,int index,int antialiasing,convolutional_layer * share_layer,int assisted_excitation,int deform,int train)375 convolutional_layer make_convolutional_layer(int batch, int steps, int h, int w, int c, int n, int groups, int size, int stride_x, int stride_y, int dilation, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam, int use_bin_output, int index, int antialiasing, convolutional_layer *share_layer, int assisted_excitation, int deform, int train)
376 {
377     int total_batch = batch*steps;
378     int i;
379     convolutional_layer l = { (LAYER_TYPE)0 };
380     l.type = CONVOLUTIONAL;
381     l.train = train;
382 
383     if (xnor) groups = 1;   // disable groups for XNOR-net
384     if (groups < 1) groups = 1;
385 
386     const int blur_stride_x = stride_x;
387     const int blur_stride_y = stride_y;
388     l.antialiasing = antialiasing;
389     if (antialiasing) {
390         stride_x = stride_y = l.stride = l.stride_x = l.stride_y = 1; // use stride=1 in host-layer
391     }
392 
393     l.deform = deform;
394     l.assisted_excitation = assisted_excitation;
395     l.share_layer = share_layer;
396     l.index = index;
397     l.h = h;
398     l.w = w;
399     l.c = c;
400     l.groups = groups;
401     l.n = n;
402     l.binary = binary;
403     l.xnor = xnor;
404     l.use_bin_output = use_bin_output;
405     l.batch = batch;
406     l.steps = steps;
407     l.stride = stride_x;
408     l.stride_x = stride_x;
409     l.stride_y = stride_y;
410     l.dilation = dilation;
411     l.size = size;
412     l.pad = padding;
413     l.batch_normalize = batch_normalize;
414     l.learning_rate_scale = 1;
415     l.nweights = (c / groups) * n * size * size;
416 
417     if (l.share_layer) {
418         if (l.size != l.share_layer->size || l.nweights != l.share_layer->nweights || l.c != l.share_layer->c || l.n != l.share_layer->n) {
419             printf(" Layer size, nweights, channels or filters don't match for the share_layer");
420             getchar();
421         }
422 
423         l.weights = l.share_layer->weights;
424         l.weight_updates = l.share_layer->weight_updates;
425 
426         l.biases = l.share_layer->biases;
427         l.bias_updates = l.share_layer->bias_updates;
428     }
429     else {
430         l.weights = (float*)xcalloc(l.nweights, sizeof(float));
431         l.biases = (float*)xcalloc(n, sizeof(float));
432 
433         if (train) {
434             l.weight_updates = (float*)xcalloc(l.nweights, sizeof(float));
435             l.bias_updates = (float*)xcalloc(n, sizeof(float));
436         }
437     }
438 
439     // float scale = 1./sqrt(size*size*c);
440     float scale = sqrt(2./(size*size*c/groups));
441     if (l.activation == NORM_CHAN || l.activation == NORM_CHAN_SOFTMAX || l.activation == NORM_CHAN_SOFTMAX_MAXVAL) {
442         for (i = 0; i < l.nweights; ++i) l.weights[i] = 1;   // rand_normal();
443     }
444     else {
445         for (i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_uniform(-1, 1);   // rand_normal();
446     }
447     int out_h = convolutional_out_height(l);
448     int out_w = convolutional_out_width(l);
449     l.out_h = out_h;
450     l.out_w = out_w;
451     l.out_c = n;
452     l.outputs = l.out_h * l.out_w * l.out_c;
453     l.inputs = l.w * l.h * l.c;
454     l.activation = activation;
455 
456     l.output = (float*)xcalloc(total_batch*l.outputs, sizeof(float));
457 #ifndef GPU
458     if (train) l.delta = (float*)xcalloc(total_batch*l.outputs, sizeof(float));
459 #endif  // not GPU
460 
461     l.forward = forward_convolutional_layer;
462     l.backward = backward_convolutional_layer;
463     l.update = update_convolutional_layer;
464     if(binary){
465         l.binary_weights = (float*)xcalloc(l.nweights, sizeof(float));
466         l.cweights = (char*)xcalloc(l.nweights, sizeof(char));
467         l.scales = (float*)xcalloc(n, sizeof(float));
468     }
469     if(xnor){
470         l.binary_weights = (float*)xcalloc(l.nweights, sizeof(float));
471         l.binary_input = (float*)xcalloc(l.inputs * l.batch, sizeof(float));
472 
473         int align = 32;// 8;
474         int src_align = l.out_h*l.out_w;
475         l.bit_align = src_align + (align - src_align % align);
476 
477         l.mean_arr = (float*)xcalloc(l.n, sizeof(float));
478 
479         const size_t new_c = l.c / 32;
480         size_t in_re_packed_input_size = new_c * l.w * l.h + 1;
481         l.bin_re_packed_input = (uint32_t*)xcalloc(in_re_packed_input_size, sizeof(uint32_t));
482 
483         l.lda_align = 256;  // AVX2
484         int k = l.size*l.size*l.c;
485         size_t k_aligned = k + (l.lda_align - k%l.lda_align);
486         size_t t_bit_input_size = k_aligned * l.bit_align / 8;
487         l.t_bit_input = (char*)xcalloc(t_bit_input_size, sizeof(char));
488     }
489 
490     if(batch_normalize){
491         if (l.share_layer) {
492             l.scales = l.share_layer->scales;
493             l.scale_updates = l.share_layer->scale_updates;
494             l.mean = l.share_layer->mean;
495             l.variance = l.share_layer->variance;
496             l.mean_delta = l.share_layer->mean_delta;
497             l.variance_delta = l.share_layer->variance_delta;
498             l.rolling_mean = l.share_layer->rolling_mean;
499             l.rolling_variance = l.share_layer->rolling_variance;
500         }
501         else {
502             l.scales = (float*)xcalloc(n, sizeof(float));
503             for (i = 0; i < n; ++i) {
504                 l.scales[i] = 1;
505             }
506             if (train) {
507                 l.scale_updates = (float*)xcalloc(n, sizeof(float));
508 
509                 l.mean = (float*)xcalloc(n, sizeof(float));
510                 l.variance = (float*)xcalloc(n, sizeof(float));
511 
512                 l.mean_delta = (float*)xcalloc(n, sizeof(float));
513                 l.variance_delta = (float*)xcalloc(n, sizeof(float));
514             }
515             l.rolling_mean = (float*)xcalloc(n, sizeof(float));
516             l.rolling_variance = (float*)xcalloc(n, sizeof(float));
517         }
518 
519 #ifndef GPU
520         if (train) {
521             l.x = (float*)xcalloc(total_batch * l.outputs, sizeof(float));
522             l.x_norm = (float*)xcalloc(total_batch * l.outputs, sizeof(float));
523         }
524 #endif  // not GPU
525     }
526 
527 #ifndef GPU
528     if (l.activation == SWISH || l.activation == MISH) l.activation_input = (float*)calloc(total_batch*l.outputs, sizeof(float));
529 #endif  // not GPU
530 
531     if(adam){
532         l.adam = 1;
533         l.m = (float*)xcalloc(l.nweights, sizeof(float));
534         l.v = (float*)xcalloc(l.nweights, sizeof(float));
535         l.bias_m = (float*)xcalloc(n, sizeof(float));
536         l.scale_m = (float*)xcalloc(n, sizeof(float));
537         l.bias_v = (float*)xcalloc(n, sizeof(float));
538         l.scale_v = (float*)xcalloc(n, sizeof(float));
539     }
540 
541 #ifdef GPU
542 
543 
544     l.forward_gpu = forward_convolutional_layer_gpu;
545     l.backward_gpu = backward_convolutional_layer_gpu;
546     l.update_gpu = update_convolutional_layer_gpu;
547 
548     if(gpu_index >= 0){
549 
550         if (train && (l.activation == SWISH || l.activation == MISH)) {
551             l.activation_input_gpu = cuda_make_array(l.activation_input, total_batch*l.outputs);
552         }
553 
554         if (l.deform) l.weight_deform_gpu = cuda_make_array(NULL, l.nweights);
555 
556         if (adam) {
557             l.m_gpu = cuda_make_array(l.m, l.nweights);
558             l.v_gpu = cuda_make_array(l.v, l.nweights);
559             l.bias_m_gpu = cuda_make_array(l.bias_m, n);
560             l.bias_v_gpu = cuda_make_array(l.bias_v, n);
561             l.scale_m_gpu = cuda_make_array(l.scale_m, n);
562             l.scale_v_gpu = cuda_make_array(l.scale_v, n);
563         }
564         if (l.share_layer) {
565             l.weights_gpu = l.share_layer->weights_gpu;
566             l.weight_updates_gpu = l.share_layer->weight_updates_gpu;
567             l.weights_gpu16 = l.share_layer->weights_gpu16;
568             l.weight_updates_gpu16 = l.share_layer->weight_updates_gpu16;
569             l.biases_gpu = l.share_layer->biases_gpu;
570             l.bias_updates_gpu = l.share_layer->bias_updates_gpu;
571         }
572         else {
573             l.weights_gpu = cuda_make_array(l.weights, l.nweights);
574             if (train) l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights);
575 #ifdef CUDNN_HALF
576             l.weights_gpu16 = cuda_make_array(NULL, l.nweights / 2 + 1);
577             if (train) l.weight_updates_gpu16 = cuda_make_array(NULL, l.nweights / 2 + 1);
578 #endif  // CUDNN_HALF
579             l.biases_gpu = cuda_make_array(l.biases, n);
580             if (train) l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
581         }
582 
583         l.output_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n);
584         if (train) l.delta_gpu = cuda_make_array(l.delta, total_batch*out_h*out_w*n);
585 
586         if(binary){
587             l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
588         }
589         if(xnor){
590             l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
591             l.mean_arr_gpu = cuda_make_array(0, l.n);
592             l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
593         }
594 
595         if(batch_normalize){
596             if (l.share_layer) {
597                 l.scales_gpu = l.share_layer->scales_gpu;
598                 l.scale_updates_gpu = l.share_layer->scale_updates_gpu;
599                 l.mean_gpu = l.share_layer->mean_gpu;
600                 l.variance_gpu = l.share_layer->variance_gpu;
601                 l.rolling_mean_gpu = l.share_layer->rolling_mean_gpu;
602                 l.rolling_variance_gpu = l.share_layer->rolling_variance_gpu;
603                 l.mean_delta_gpu = l.share_layer->mean_delta_gpu;
604                 l.variance_delta_gpu = l.share_layer->variance_delta_gpu;
605             }
606             else {
607                 l.scales_gpu = cuda_make_array(l.scales, n);
608 
609                 if (train) {
610                     l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
611 
612                     l.mean_gpu = cuda_make_array(l.mean, n);
613                     l.variance_gpu = cuda_make_array(l.variance, n);
614                     l.m_cbn_avg_gpu = cuda_make_array(l.mean, n);
615                     l.v_cbn_avg_gpu = cuda_make_array(l.variance, n);
616 #ifndef CUDNN
617                     l.mean_delta_gpu = cuda_make_array(l.mean, n);
618                     l.variance_delta_gpu = cuda_make_array(l.variance, n);
619 #endif  // CUDNN
620                 }
621 
622                 l.rolling_mean_gpu = cuda_make_array(l.mean, n);
623                 l.rolling_variance_gpu = cuda_make_array(l.variance, n);
624             }
625 
626             if (train) {
627                 l.x_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n);
628 #ifndef CUDNN
629                 l.x_norm_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n);
630 #endif  // CUDNN
631             }
632         }
633 
634         if (l.assisted_excitation)
635         {
636             const int size = l.out_w * l.out_h * l.batch;
637             l.gt_gpu = cuda_make_array(NULL, size);
638             l.a_avg_gpu = cuda_make_array(NULL, size);
639         }
640 #ifdef CUDNN
641         create_convolutional_cudnn_tensors(&l);
642         cudnn_convolutional_setup(&l, cudnn_fastest, 0);
643 #endif  // CUDNN
644     }
645 #endif  // GPU
646     l.workspace_size = get_convolutional_workspace_size(l);
647 
648     //fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
649     l.bflops = (2.0 * l.nweights * l.out_h*l.out_w) / 1000000000.;
650     if (l.xnor) l.bflops = l.bflops / 32;
651     if (l.xnor && l.use_bin_output) fprintf(stderr, "convXB");
652     else if (l.xnor) fprintf(stderr, "convX ");
653     else if (l.share_layer) fprintf(stderr, "convS ");
654     else if (l.assisted_excitation) fprintf(stderr, "convAE");
655     else fprintf(stderr, "conv  ");
656 
657     if (groups > 1) fprintf(stderr, "%5d/%4d ", n, groups);
658     else           fprintf(stderr, "%5d      ", n);
659 
660     if (stride_x != stride_y) fprintf(stderr, "%2dx%2d/%2dx%2d ", size, size, stride_x, stride_y);
661     else {
662         if (dilation > 1) fprintf(stderr, "%2d x%2d/%2d(%1d)", size, size, stride_x, dilation);
663         else             fprintf(stderr, "%2d x%2d/%2d   ", size, size, stride_x);
664     }
665 
666     fprintf(stderr, "%4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", w, h, c, l.out_w, l.out_h, l.out_c, l.bflops);
667 
668     //fprintf(stderr, "%5d/%2d %2d x%2d /%2d(%d)%4d x%4d x%4d  -> %4d x%4d x%4d %5.3f BF\n", n, groups, size, size, stride, dilation, w, h, c, l.out_w, l.out_h, l.out_c, l.bflops);
669 
670     if (l.antialiasing) {
671         printf("AA:  ");
672         l.input_layer = (layer*)calloc(1, sizeof(layer));
673         int blur_size = 3;
674         int blur_pad = blur_size / 2;
675         if (l.antialiasing == 2) {
676             blur_size = 2;
677             blur_pad = 0;
678         }
679         *(l.input_layer) = make_convolutional_layer(batch, steps, out_h, out_w, n, n, n, blur_size, blur_stride_x, blur_stride_y, 1, blur_pad, LINEAR, 0, 0, 0, 0, 0, index, 0, NULL, 0, 0, train);
680         const int blur_nweights = n * blur_size * blur_size;  // (n / n) * n * blur_size * blur_size;
681         int i;
682         if (blur_size == 2) {
683             for (i = 0; i < blur_nweights; i += (blur_size*blur_size)) {
684                 l.input_layer->weights[i + 0] = 1 / 4.f;
685                 l.input_layer->weights[i + 1] = 1 / 4.f;
686                 l.input_layer->weights[i + 2] = 1 / 4.f;
687                 l.input_layer->weights[i + 3] = 1 / 4.f;
688             }
689         }
690         else {
691             for (i = 0; i < blur_nweights; i += (blur_size*blur_size)) {
692                 l.input_layer->weights[i + 0] = 1 / 16.f;
693                 l.input_layer->weights[i + 1] = 2 / 16.f;
694                 l.input_layer->weights[i + 2] = 1 / 16.f;
695 
696                 l.input_layer->weights[i + 3] = 2 / 16.f;
697                 l.input_layer->weights[i + 4] = 4 / 16.f;
698                 l.input_layer->weights[i + 5] = 2 / 16.f;
699 
700                 l.input_layer->weights[i + 6] = 1 / 16.f;
701                 l.input_layer->weights[i + 7] = 2 / 16.f;
702                 l.input_layer->weights[i + 8] = 1 / 16.f;
703             }
704         }
705         for (i = 0; i < n; ++i) l.input_layer->biases[i] = 0;
706 #ifdef GPU
707         if (gpu_index >= 0) {
708             l.input_antialiasing_gpu = cuda_make_array(NULL, l.batch*l.outputs);
709             push_convolutional_layer(*(l.input_layer));
710         }
711 #endif  // GPU
712     }
713 
714     return l;
715 }
716 
denormalize_convolutional_layer(convolutional_layer l)717 void denormalize_convolutional_layer(convolutional_layer l)
718 {
719     int i, j;
720     for(i = 0; i < l.n; ++i){
721         float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
722         for(j = 0; j < l.nweights; ++j){
723             l.weights[i*l.nweights + j] *= scale;
724         }
725         l.biases[i] -= l.rolling_mean[i] * scale;
726         l.scales[i] = 1;
727         l.rolling_mean[i] = 0;
728         l.rolling_variance[i] = 1;
729     }
730 }
731 
test_convolutional_layer()732 void test_convolutional_layer()
733 {
734     convolutional_layer l = make_convolutional_layer(1, 1, 5, 5, 3, 2, 1, 5, 2, 2, 1, 1, LEAKY, 1, 0, 0, 0, 0, 0, 0, NULL, 0, 0, 0);
735     l.batch_normalize = 1;
736     float data[] = {1,1,1,1,1,
737         1,1,1,1,1,
738         1,1,1,1,1,
739         1,1,1,1,1,
740         1,1,1,1,1,
741         2,2,2,2,2,
742         2,2,2,2,2,
743         2,2,2,2,2,
744         2,2,2,2,2,
745         2,2,2,2,2,
746         3,3,3,3,3,
747         3,3,3,3,3,
748         3,3,3,3,3,
749         3,3,3,3,3,
750         3,3,3,3,3};
751     network_state state = {0};
752     state.input = data;
753     forward_convolutional_layer(l, state);
754 }
755 
resize_convolutional_layer(convolutional_layer * l,int w,int h)756 void resize_convolutional_layer(convolutional_layer *l, int w, int h)
757 {
758     int total_batch = l->batch*l->steps;
759     int old_w = l->w;
760     int old_h = l->h;
761     l->w = w;
762     l->h = h;
763     int out_w = convolutional_out_width(*l);
764     int out_h = convolutional_out_height(*l);
765 
766     l->out_w = out_w;
767     l->out_h = out_h;
768 
769     l->outputs = l->out_h * l->out_w * l->out_c;
770     l->inputs = l->w * l->h * l->c;
771 
772 
773     l->output = (float*)xrealloc(l->output, total_batch * l->outputs * sizeof(float));
774     if (l->train) {
775         l->delta = (float*)xrealloc(l->delta, total_batch * l->outputs * sizeof(float));
776 
777         if (l->batch_normalize) {
778             l->x = (float*)xrealloc(l->x, total_batch * l->outputs * sizeof(float));
779             l->x_norm = (float*)xrealloc(l->x_norm, total_batch * l->outputs * sizeof(float));
780         }
781     }
782 
783     if (l->xnor) {
784         //l->binary_input = realloc(l->inputs*l->batch, sizeof(float));
785     }
786 
787     if (l->activation == SWISH || l->activation == MISH) l->activation_input = (float*)realloc(l->activation_input, total_batch*l->outputs * sizeof(float));
788 #ifdef GPU
789     if (old_w < w || old_h < h || l->dynamic_minibatch) {
790         if (l->train) {
791             cuda_free(l->delta_gpu);
792             l->delta_gpu = cuda_make_array(l->delta, total_batch*l->outputs);
793         }
794 
795         cuda_free(l->output_gpu);
796         l->output_gpu = cuda_make_array(l->output, total_batch*l->outputs);
797 
798         if (l->batch_normalize) {
799             cuda_free(l->x_gpu);
800             l->x_gpu = cuda_make_array(l->output, total_batch*l->outputs);
801 
802 #ifndef CUDNN
803             cuda_free(l->x_norm_gpu);
804             l->x_norm_gpu = cuda_make_array(l->output, total_batch*l->outputs);
805 #endif  // CUDNN
806         }
807 
808         if (l->xnor) {
809             cuda_free(l->binary_input_gpu);
810             l->binary_input_gpu = cuda_make_array(0, l->inputs*l->batch);
811         }
812 
813         if (l->activation == SWISH || l->activation == MISH) {
814             cuda_free(l->activation_input_gpu);
815             l->activation_input_gpu = cuda_make_array(l->activation_input, total_batch*l->outputs);
816         }
817 
818         if (l->assisted_excitation)
819         {
820             cuda_free(l->gt_gpu);
821             cuda_free(l->a_avg_gpu);
822 
823             const int size = l->out_w * l->out_h * l->batch;
824             l->gt_gpu = cuda_make_array(NULL, size);
825             l->a_avg_gpu = cuda_make_array(NULL, size);
826         }
827     }
828 #ifdef CUDNN
829     cudnn_convolutional_setup(l, cudnn_fastest, 0);
830 #endif
831 #endif
832     l->workspace_size = get_convolutional_workspace_size(*l);
833 
834 #ifdef CUDNN
835     // check for excessive memory consumption
836     size_t free_byte;
837     size_t total_byte;
838     CHECK_CUDA(cudaMemGetInfo(&free_byte, &total_byte));
839     if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
840         printf(" used slow CUDNN algo without Workspace! Need memory: %zu, available: %zu\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2);
841         cudnn_convolutional_setup(l, cudnn_smallest, 0);
842         l->workspace_size = get_convolutional_workspace_size(*l);
843     }
844 #endif
845 }
846 
set_specified_workspace_limit(convolutional_layer * l,size_t workspace_size_limit)847 void set_specified_workspace_limit(convolutional_layer *l, size_t workspace_size_limit)
848 {
849 #ifdef CUDNN
850     size_t free_byte;
851     size_t total_byte;
852     CHECK_CUDA(cudaMemGetInfo(&free_byte, &total_byte));
853     cudnn_convolutional_setup(l, cudnn_specify, workspace_size_limit);
854     l->workspace_size = get_convolutional_workspace_size(*l);
855     //printf("Set specified workspace limit for cuDNN: %zu, available: %zu, workspace = %zu \n", workspace_size_limit, free_byte, l->workspace_size);
856 #endif  // CUDNN
857 }
858 
add_bias(float * output,float * biases,int batch,int n,int size)859 void add_bias(float *output, float *biases, int batch, int n, int size)
860 {
861     int i,j,b;
862     for(b = 0; b < batch; ++b){
863         for(i = 0; i < n; ++i){
864             for(j = 0; j < size; ++j){
865                 output[(b*n + i)*size + j] += biases[i];
866             }
867         }
868     }
869 }
870 
scale_bias(float * output,float * scales,int batch,int n,int size)871 void scale_bias(float *output, float *scales, int batch, int n, int size)
872 {
873     int i,j,b;
874     for(b = 0; b < batch; ++b){
875         for(i = 0; i < n; ++i){
876             for(j = 0; j < size; ++j){
877                 output[(b*n + i)*size + j] *= scales[i];
878             }
879         }
880     }
881 }
882 
backward_bias(float * bias_updates,float * delta,int batch,int n,int size)883 void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
884 {
885     int i,b;
886     for(b = 0; b < batch; ++b){
887         for(i = 0; i < n; ++i){
888             bias_updates[i] += sum_array(delta+size*(i+b*n), size);
889         }
890     }
891 }
892 
gemm_nn_custom(int M,int N,int K,float ALPHA,float * A,int lda,float * B,int ldb,float * C,int ldc)893 void gemm_nn_custom(int M, int N, int K, float ALPHA,
894     float *A, int lda,
895     float *B, int ldb,
896     float *C, int ldc)
897 {
898     int i, j, k;
899     for (i = 0; i < M; ++i) {
900         for (k = 0; k < K; ++k) {
901             PUT_IN_REGISTER float A_PART = ALPHA * A[i * lda + k];
902             //printf("\n weight = %f \n", A_PART);
903             for (j = 0; j < N; ++j) {
904                 C[i*ldc + j] += A_PART*B[k*ldb + j];
905             }
906         }
907     }
908 }
909 
910 
get_mean_array(float * src,size_t size,size_t filters,float * mean_arr)911 void get_mean_array(float *src, size_t size, size_t filters, float *mean_arr) {
912     size_t i, counter;
913     counter = 0;
914     for (i = 0; i < size; i += size / filters) {
915         mean_arr[counter++] = fabs(src[i]);
916     }
917 }
918 
919 /*
920 void float_to_bit(float *src, unsigned char *dst, size_t size) {
921 
922     size_t dst_size = size / 8 + 1;
923     memset(dst, 0, dst_size);
924     size_t i, dst_i, dst_shift;
925     for (i = 0; i < size; ++i) {
926         if (src[i] > 0) set_bit(dst, i);
927     }
928 }
929 */
930 
bit_to_float(unsigned char * src,float * dst,size_t size,size_t filters,float * mean_arr)931 void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, float *mean_arr) {
932     memset(dst, 0, size *sizeof(float));
933     size_t i;
934 
935     for (i = 0; i < size; ++i) {
936         float mean_val = 1;
937         if(mean_arr != NULL) mean_val = fabs(mean_arr[i / (size / filters)]);
938         if(get_bit(src, i)) dst[i] = mean_val;
939         else dst[i] = -mean_val;
940     }
941 }
942 
binary_align_weights(convolutional_layer * l)943 void binary_align_weights(convolutional_layer *l)
944 {
945     int m = l->n;   // (l->n / l->groups)
946     int k = l->size*l->size*l->c;   // ->size*l->size*(l->c / l->groups)
947     size_t new_lda = k + (l->lda_align - k % l->lda_align); // (k / 8 + 1) * 8;
948     l->new_lda = new_lda;
949 
950     binarize_weights(l->weights, m, k, l->binary_weights);
951 
952     size_t align_weights_size = new_lda * m;
953     l->align_bit_weights_size = align_weights_size / 8 + 1;
954     float* align_weights = (float*)xcalloc(align_weights_size, sizeof(float));
955     l->align_bit_weights = (char*)xcalloc(l->align_bit_weights_size, sizeof(char));
956 
957     size_t i, j;
958     // align A without transpose
959     for (i = 0; i < m; ++i) {
960         for (j = 0; j < k; ++j) {
961             align_weights[i*new_lda + j] = l->binary_weights[i*k + j];
962         }
963     }
964 
965 
966     if (l->c % 32 == 0)
967     //if(gpu_index < 0 && l->stride == 1 && l->pad == 1 && l->c % 32 == 0)
968     //if (l->stride == 1 && l->pad == 1 && l->c % 32 == 0)
969     {
970         int fil, chan;
971         const int items_per_filter = l->c * l->size * l->size;
972         //const int dst_items_per_filter = new_lda;
973         for (fil = 0; fil < l->n; ++fil)
974         {
975             for (chan = 0; chan < l->c; chan += 32)
976             {
977                 const int items_per_channel = l->size*l->size;
978                 for (i = 0; i < items_per_channel; ++i)
979                 {
980                     //uint32_t val = 0;
981                     int c_pack;
982                     for (c_pack = 0; c_pack < 32; ++c_pack) {
983                         float src = l->binary_weights[fil*items_per_filter + (chan + c_pack)*items_per_channel + i];
984 
985                         //align_weights[fil*items_per_filter + chan*items_per_channel + i * 32 + c_pack] = src;
986 
987                         align_weights[fil*new_lda + chan*items_per_channel + i*32 + c_pack] = src;
988                         //val |= (src << c);
989                     }
990 
991                 }
992             }
993         }
994 
995         //printf("\n l.index = %d \t aw[0] = %f, aw[1] = %f, aw[2] = %f, aw[3] = %f \n", l->index, align_weights[0], align_weights[1], align_weights[2], align_weights[3]);
996         //memcpy(l->binary_weights, align_weights, (l->size * l->size * l->c * l->n) * sizeof(float));
997 
998         float_to_bit(align_weights, (unsigned char*)l->align_bit_weights, align_weights_size);
999 
1000         //if (l->n >= 32)
1001         if(gpu_index >= 0)
1002         {
1003             //int M = l->n;
1004             //int N = l->out_w*l->out_h;
1005             //printf("\n M = %d, N = %d, M %% 8 = %d, N %% 8 = %d - weights \n", M, N, M % 8, N % 8);
1006             //printf("\n l.w = %d, l.c = %d, l.n = %d \n", l->w, l->c, l->n);
1007             for (i = 0; i < align_weights_size / 8; ++i) l->align_bit_weights[i] = ~(l->align_bit_weights[i]);
1008         }
1009 
1010 
1011 
1012         get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr);
1013         //get_mean_array(l->binary_weights, m*new_lda, l->n, l->mean_arr);
1014     }
1015     else {
1016         float_to_bit(align_weights, (unsigned char*)l->align_bit_weights, align_weights_size);
1017 
1018         get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr);
1019     }
1020 
1021     //l->mean_arr = calloc(l->n, sizeof(float));
1022 
1023     //get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr);
1024 
1025 
1026 
1027 
1028 #ifdef GPU
1029     cudaError_t status;
1030     l->align_workspace_size = l->bit_align * l->size * l->size * l->c;
1031     status = cudaMalloc((void **)&l->align_workspace_gpu, l->align_workspace_size * sizeof(float));
1032     status = cudaMalloc((void **)&l->transposed_align_workspace_gpu, l->align_workspace_size * sizeof(float));
1033     CHECK_CUDA(status);
1034 
1035     //l->align_bit_weights_gpu = cuda_make_array(l->align_bit_weights, l->align_bit_weights_size * sizeof(char)/sizeof(float));
1036     status = cudaMalloc((void **)&l->align_bit_weights_gpu, l->align_bit_weights_size);
1037     CHECK_CUDA(status);
1038     status = cudaMemcpy(l->align_bit_weights_gpu, l->align_bit_weights, l->align_bit_weights_size, cudaMemcpyHostToDevice);
1039     CHECK_CUDA(status);
1040     status = cudaMemcpy(l->binary_weights_gpu, l->binary_weights, m*k * sizeof(float), cudaMemcpyHostToDevice);
1041     CHECK_CUDA(status);
1042 
1043     //l->mean_arr_gpu = cuda_make_array(l->mean_arr, l->n);
1044     cuda_push_array(l->mean_arr_gpu, l->mean_arr, l->n);
1045     CHECK_CUDA(cudaDeviceSynchronize());
1046 #endif // GPU
1047 
1048     free(align_weights);
1049 }
1050 
1051 // binary transpose
binary_transpose_align_input(int k,int n,float * b,char ** t_bit_input,size_t ldb_align,int bit_align)1052 size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align, int bit_align)
1053 {
1054     size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
1055     //printf("\n n = %d, bit_align = %d \n", n, bit_align);
1056     size_t t_intput_size = new_ldb * bit_align;// n;
1057     size_t t_bit_input_size = t_intput_size / 8;// +1;
1058 
1059     memset(*t_bit_input, 0, t_bit_input_size * sizeof(char));
1060     //int src_size = k * bit_align;
1061 
1062     // b - [bit_align, k] - [l.bit_align, l.size*l.size*l.c] = src_size
1063     // t_input - [bit_align, k] - [n', k]
1064     // t_bit_input - [new_ldb, n] - [k', n]
1065 
1066     //transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8);
1067     transpose_bin((uint32_t*)b, (uint32_t*)*t_bit_input, k, n, bit_align, new_ldb, 8);
1068 
1069     return t_intput_size;
1070 }
1071 
1072 
forward_convolutional_layer(convolutional_layer l,network_state state)1073 void forward_convolutional_layer(convolutional_layer l, network_state state)
1074 {
1075     int out_h = convolutional_out_height(l);
1076     int out_w = convolutional_out_width(l);
1077     int i, j;
1078 
1079     fill_cpu(l.outputs*l.batch, 0, l.output, 1);
1080 
1081     if (l.xnor && (!l.align_bit_weights || state.train)) {
1082         if (!l.align_bit_weights || state.train) {
1083             binarize_weights(l.weights, l.n, l.nweights, l.binary_weights);
1084             //printf("\n binarize_weights l.align_bit_weights = %p \n", l.align_bit_weights);
1085         }
1086         swap_binary(&l);
1087         binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input);
1088         state.input = l.binary_input;
1089     }
1090 
1091     int m = l.n / l.groups;
1092     int k = l.size*l.size*l.c / l.groups;
1093     int n = out_h*out_w;
1094 
1095     static int u = 0;
1096     u++;
1097 
1098     for(i = 0; i < l.batch; ++i)
1099     {
1100         for (j = 0; j < l.groups; ++j)
1101         {
1102             float *a = l.weights +j*l.nweights / l.groups;
1103             float *b = state.workspace;
1104             float *c = l.output +(i*l.groups + j)*n*m;
1105 
1106             //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
1107             //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
1108             if (l.xnor && l.align_bit_weights && !state.train && l.stride_x == l.stride_y)
1109             {
1110                 memset(b, 0, l.bit_align*l.size*l.size*l.c * sizeof(float));
1111 
1112                 if (l.c % 32 == 0)
1113                 {
1114                     //printf(" l.index = %d - new XNOR \n", l.index);
1115 
1116                     int ldb_align = l.lda_align;
1117                     size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
1118                     //size_t t_intput_size = new_ldb * l.bit_align;// n;
1119                     //size_t t_bit_input_size = t_intput_size / 8;// +1;
1120 
1121                     int re_packed_input_size = l.c * l.w * l.h;
1122                     memset(state.workspace, 0, re_packed_input_size * sizeof(float));
1123 
1124                     const size_t new_c = l.c / 32;
1125                     size_t in_re_packed_input_size = new_c * l.w * l.h + 1;
1126                     memset(l.bin_re_packed_input, 0, in_re_packed_input_size * sizeof(uint32_t));
1127 
1128                     //float *re_packed_input = calloc(l.c * l.w * l.h, sizeof(float));
1129                     //uint32_t *bin_re_packed_input = calloc(new_c * l.w * l.h + 1, sizeof(uint32_t));
1130 
1131                     // float32x4 by channel (as in cuDNN)
1132                     repack_input(state.input, state.workspace, l.w, l.h, l.c);
1133 
1134                     // 32 x floats -> 1 x uint32_t
1135                     float_to_bit(state.workspace, (unsigned char *)l.bin_re_packed_input, l.c * l.w * l.h);
1136 
1137                     //free(re_packed_input);
1138 
1139                     // slow - convolution the packed inputs and weights: float x 32 by channel (as in cuDNN)
1140                     //convolution_repacked((uint32_t *)bin_re_packed_input, (uint32_t *)l.align_bit_weights, l.output,
1141                     //    l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr);
1142 
1143                     // // then exit from if()
1144 
1145 
1146                     im2col_cpu_custom((float *)l.bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, state.workspace);
1147                     //im2col_cpu((float *)bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, b);
1148 
1149                     //free(bin_re_packed_input);
1150 
1151                     int new_k = l.size*l.size*l.c / 32;
1152 
1153                     // good for (l.c == 64)
1154                     //gemm_nn_bin_32bit_packed(m, n, new_k, 1,
1155                     //    l.align_bit_weights, l.new_lda/32,
1156                     //    b, n,
1157                     //    c, n, l.mean_arr);
1158 
1159     // // then exit from if()
1160 
1161                     transpose_uint32((uint32_t *)state.workspace, (uint32_t*)l.t_bit_input, new_k, n, n, new_ldb);
1162 
1163                     // the main GEMM function
1164                     gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (unsigned char*)l.align_bit_weights, new_ldb, (unsigned char*)l.t_bit_input, new_ldb, c, n, l.mean_arr);
1165 
1166                     // // alternative GEMM
1167                     //gemm_nn_bin_transposed_32bit_packed(m, n, new_k, 1,
1168                     //    l.align_bit_weights, l.new_lda/32,
1169                     //    t_bit_input, new_ldb / 32,
1170                     //    c, n, l.mean_arr);
1171 
1172                     //free(t_bit_input);
1173 
1174                 }
1175                 else
1176                 { // else (l.c % 32 != 0)
1177 
1178                     //--------------------------------------------------------
1179                     //printf(" l.index = %d - old XNOR \n", l.index);
1180 
1181                     //im2col_cpu_custom_align(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
1182                     im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace, l.bit_align);
1183 
1184                     //size_t output_size = l.outputs;
1185                     //float *count_output = calloc(output_size, sizeof(float));
1186                     //size_t bit_output_size = output_size / 8 + 1;
1187                     //char *bit_output = calloc(bit_output_size, sizeof(char));
1188 
1189                     //size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col()
1190                     //size_t bit_input_size = intput_size / 8 + 1;
1191                     //char *bit_input = calloc(bit_input_size, sizeof(char));
1192 
1193                     //size_t weights_size = k * m; //l.size*l.size*l.c*l.n; // l.nweights
1194                     //size_t bit_weights_size = weights_size / 8 + 1;
1195 
1196                     //char *bit_weights = calloc(bit_weights_size, sizeof(char));
1197                     //float *mean_arr = calloc(l.n, sizeof(float));
1198 
1199                     // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits)
1200                     {
1201                         //size_t ldb_align = 256; // 256 bit for AVX2
1202                         int ldb_align = l.lda_align;
1203                         size_t new_ldb = k + (ldb_align - k%ldb_align);
1204                         size_t t_intput_size = binary_transpose_align_input(k, n, state.workspace, &l.t_bit_input, ldb_align, l.bit_align);
1205 
1206                         // 5x times faster than gemm()-float32
1207                         gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (unsigned char*)l.align_bit_weights, new_ldb, (unsigned char*)l.t_bit_input, new_ldb, c, n, l.mean_arr);
1208 
1209                         //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr);
1210 
1211                         //free(t_input);
1212                         //free(t_bit_input);
1213                         //}
1214                     }
1215 
1216                 }
1217 
1218                 add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
1219 
1220                 //activate_array(l.output, m*n*l.batch, l.activation);
1221                 if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output);
1222                 else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output);
1223                 else if (l.activation == NORM_CHAN) activate_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output);
1224                 else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 0);
1225                 else if (l.activation == NORM_CHAN_SOFTMAX_MAXVAL) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 1);
1226                 else activate_array_cpu_custom(l.output, m*n*l.batch, l.activation);
1227                 return;
1228 
1229             }
1230             else {
1231                 //printf(" l.index = %d - FP32 \n", l.index);
1232                 float *im = state.input + (i*l.groups + j)*(l.c / l.groups)*l.h*l.w;
1233                 if (l.size == 1) {
1234                     b = im;
1235                 }
1236                 else {
1237                     //im2col_cpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
1238 
1239                     im2col_cpu_ext(im,   // input
1240                         l.c / l.groups,     // input channels
1241                         l.h, l.w,           // input size (h, w)
1242                         l.size, l.size,     // kernel size (h, w)
1243                         l.pad * l.dilation, l.pad * l.dilation,       // padding (h, w)
1244                         l.stride_y, l.stride_x, // stride (h, w)
1245                         l.dilation, l.dilation, // dilation (h, w)
1246                         b);                 // output
1247 
1248                 }
1249 
1250                 gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n);
1251                 // bit-count to float
1252             }
1253             //c += n*m;
1254             //state.input += l.c*l.h*l.w;
1255         }
1256     }
1257 
1258     if(l.batch_normalize){
1259         forward_batchnorm_layer(l, state);
1260     }
1261     else {
1262         add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
1263     }
1264 
1265     //activate_array(l.output, m*n*l.batch, l.activation);
1266     if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output);
1267     else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output);
1268     else if (l.activation == NORM_CHAN) activate_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output);
1269     else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 0);
1270     else if (l.activation == NORM_CHAN_SOFTMAX_MAXVAL) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 1);
1271     else activate_array_cpu_custom(l.output, l.outputs*l.batch, l.activation);
1272 
1273     if(l.binary || l.xnor) swap_binary(&l);
1274 
1275     //visualize_convolutional_layer(l, "conv_visual", NULL);
1276     //wait_until_press_key_cv();
1277 
1278     if(l.assisted_excitation && state.train) assisted_excitation_forward(l, state);
1279 
1280     if (l.antialiasing) {
1281         network_state s = { 0 };
1282         s.train = state.train;
1283         s.workspace = state.workspace;
1284         s.net = state.net;
1285         s.input = l.output;
1286         forward_convolutional_layer(*(l.input_layer), s);
1287         //simple_copy_ongpu(l.outputs*l.batch, l.output, l.input_antialiasing);
1288         memcpy(l.output, l.input_layer->output, l.input_layer->outputs * l.input_layer->batch * sizeof(float));
1289     }
1290 }
1291 
assisted_excitation_forward(convolutional_layer l,network_state state)1292 void assisted_excitation_forward(convolutional_layer l, network_state state)
1293 {
1294     const int iteration_num = (*state.net.seen) / (state.net.batch*state.net.subdivisions);
1295 
1296     // epoch
1297     //const float epoch = (float)(*state.net.seen) / state.net.train_images_num;
1298 
1299     // calculate alpha
1300     //const float alpha = (1 + cos(3.141592 * iteration_num)) / (2 * state.net.max_batches);
1301     //const float alpha = (1 + cos(3.141592 * epoch)) / (2 * state.net.max_batches);
1302     float alpha = (1 + cos(3.141592 * iteration_num / state.net.max_batches));
1303 
1304     if (l.assisted_excitation > 1) {
1305         if (iteration_num > l.assisted_excitation) alpha = 0;
1306         else alpha = (1 + cos(3.141592 * iteration_num / l.assisted_excitation));
1307     }
1308 
1309     //printf("\n epoch = %f, alpha = %f, seen = %d, max_batches = %d, train_images_num = %d \n",
1310     //    epoch, alpha, (*state.net.seen), state.net.max_batches, state.net.train_images_num);
1311 
1312     float *a_avg = (float *)xcalloc(l.out_w * l.out_h * l.batch, sizeof(float));
1313     float *g = (float *)xcalloc(l.out_w * l.out_h * l.batch, sizeof(float));
1314 
1315     int b;
1316     int w, h, c;
1317 
1318     l.max_boxes = state.net.num_boxes;
1319     l.truths = l.max_boxes*(4 + 1);
1320 
1321     for (b = 0; b < l.batch; ++b)
1322     {
1323         // calculate G
1324         int t;
1325         for (t = 0; t < state.net.num_boxes; ++t) {
1326             box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
1327             if (!truth.x) break;  // continue;
1328 
1329             int left = floor((truth.x - truth.w / 2) * l.out_w);
1330             int right = ceil((truth.x + truth.w / 2) * l.out_w);
1331             int top = floor((truth.y - truth.h / 2) * l.out_h);
1332             int bottom = ceil((truth.y + truth.h / 2) * l.out_h);
1333 
1334             for (w = left; w <= right; w++) {
1335                 for (h = top; h < bottom; h++) {
1336                     g[w + l.out_w * h + l.out_w*l.out_h*b] = 1;
1337                 }
1338             }
1339         }
1340     }
1341 
1342     for (b = 0; b < l.batch; ++b)
1343     {
1344         // calculate average A
1345         for (w = 0; w < l.out_w; w++) {
1346             for (h = 0; h < l.out_h; h++) {
1347                 for (c = 0; c < l.out_c; c++) {
1348                     a_avg[w + l.out_w*(h + l.out_h*b)] += l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))];
1349                 }
1350                 a_avg[w + l.out_w*(h + l.out_h*b)] /= l.out_c;  // a_avg / d
1351             }
1352         }
1353     }
1354 
1355     // change activation
1356     for (b = 0; b < l.batch; ++b)
1357     {
1358         for (w = 0; w < l.out_w; w++) {
1359             for (h = 0; h < l.out_h; h++) {
1360                 for (c = 0; c < l.out_c; c++)
1361                 {
1362                     // a = a + alpha(t) + e(c,i,j) = a + alpha(t) + g(i,j) * avg_a(i,j) / channels
1363                     l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] +=
1364                         alpha *
1365                         g[w + l.out_w*(h + l.out_h*b)] *
1366                         a_avg[w + l.out_w*(h + l.out_h*b)];
1367 
1368                     //l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] =
1369                     //    alpha * g[w + l.out_w*(h + l.out_h*b)] * a_avg[w + l.out_w*(h + l.out_h*b)];
1370                 }
1371             }
1372         }
1373     }
1374 
1375     if(0)   // visualize ground truth
1376     {
1377 #ifdef OPENCV
1378         for (b = 0; b < l.batch; ++b)
1379         {
1380             image img = float_to_image(l.out_w, l.out_h, 1, &g[l.out_w*l.out_h*b]);
1381             char buff[100];
1382             sprintf(buff, "a_excitation_%d", b);
1383             show_image_cv(img, buff);
1384 
1385             image img2 = float_to_image(l.out_w, l.out_h, 1, &l.output[l.out_w*l.out_h*l.out_c*b]);
1386             char buff2[100];
1387             sprintf(buff2, "a_excitation_act_%d", b);
1388             show_image_cv(img2, buff2);
1389             wait_key_cv(5);
1390         }
1391         wait_until_press_key_cv();
1392 #endif // OPENCV
1393     }
1394 
1395     free(g);
1396     free(a_avg);
1397 }
1398 
1399 
backward_convolutional_layer(convolutional_layer l,network_state state)1400 void backward_convolutional_layer(convolutional_layer l, network_state state)
1401 {
1402     int i, j;
1403     int m = l.n / l.groups;
1404     int n = l.size*l.size*l.c / l.groups;
1405     int k = l.out_w*l.out_h;
1406 
1407     if (l.activation == SWISH) gradient_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.delta);
1408     else if (l.activation == MISH) gradient_array_mish(l.outputs*l.batch, l.activation_input, l.delta);
1409     else if (l.activation == NORM_CHAN_SOFTMAX || l.activation == NORM_CHAN_SOFTMAX_MAXVAL) gradient_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
1410     else if (l.activation == NORM_CHAN) gradient_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
1411     else gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
1412 
1413     if (l.batch_normalize) {
1414         backward_batchnorm_layer(l, state);
1415     }
1416     else {
1417         backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
1418     }
1419 
1420     for (i = 0; i < l.batch; ++i) {
1421         for (j = 0; j < l.groups; ++j) {
1422             float *a = l.delta + (i*l.groups + j)*m*k;
1423             float *b = state.workspace;
1424             float *c = l.weight_updates + j*l.nweights / l.groups;
1425 
1426             float *im = state.input + (i*l.groups + j)* (l.c / l.groups)*l.h*l.w;
1427 
1428             //im2col_cpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
1429             im2col_cpu_ext(
1430                 im,                 // input
1431                 l.c / l.groups,     // input channels
1432                 l.h, l.w,           // input size (h, w)
1433                 l.size, l.size,     // kernel size (h, w)
1434                 l.pad * l.dilation, l.pad * l.dilation,       // padding (h, w)
1435                 l.stride_y, l.stride_x, // stride (h, w)
1436                 l.dilation, l.dilation, // dilation (h, w)
1437                 b);                 // output
1438 
1439             gemm(0, 1, m, n, k, 1, a, k, b, k, 1, c, n);
1440 
1441             if (state.delta) {
1442                 a = l.weights + j*l.nweights / l.groups;
1443                 b = l.delta + (i*l.groups + j)*m*k;
1444                 c = state.workspace;
1445 
1446                 gemm(1, 0, n, k, m, 1, a, n, b, k, 0, c, k);
1447 
1448                 //col2im_cpu(state.workspace, l.c / l.groups, l.h, l.w, l.size, l.stride,
1449                 //     l.pad, state.delta + (i*l.groups + j)*l.c / l.groups*l.h*l.w);
1450 
1451                 col2im_cpu_ext(
1452                     state.workspace,        // input
1453                     l.c / l.groups,         // input channels (h, w)
1454                     l.h, l.w,               // input size (h, w)
1455                     l.size, l.size,         // kernel size (h, w)
1456                     l.pad * l.dilation, l.pad * l.dilation,           // padding (h, w)
1457                     l.stride_y, l.stride_x,     // stride (h, w)
1458                     l.dilation, l.dilation, // dilation (h, w)
1459                     state.delta + (i*l.groups + j)* (l.c / l.groups)*l.h*l.w); // output (delta)
1460             }
1461         }
1462     }
1463 }
1464 
update_convolutional_layer(convolutional_layer l,int batch,float learning_rate_init,float momentum,float decay)1465 void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate_init, float momentum, float decay)
1466 {
1467     float learning_rate = learning_rate_init*l.learning_rate_scale;
1468     //float momentum = a.momentum;
1469     //float decay = a.decay;
1470     //int batch = a.batch;
1471 
1472     axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1);
1473     axpy_cpu(l.nweights, learning_rate / batch, l.weight_updates, 1, l.weights, 1);
1474     scal_cpu(l.nweights, momentum, l.weight_updates, 1);
1475 
1476     axpy_cpu(l.n, learning_rate / batch, l.bias_updates, 1, l.biases, 1);
1477     scal_cpu(l.n, momentum, l.bias_updates, 1);
1478 
1479     if (l.scales) {
1480         axpy_cpu(l.n, learning_rate / batch, l.scale_updates, 1, l.scales, 1);
1481         scal_cpu(l.n, momentum, l.scale_updates, 1);
1482     }
1483 }
1484 
1485 
1486 
get_convolutional_weight(convolutional_layer l,int i)1487 image get_convolutional_weight(convolutional_layer l, int i)
1488 {
1489     int h = l.size;
1490     int w = l.size;
1491     int c = l.c / l.groups;
1492     return float_to_image(w, h, c, l.weights + i*h*w*c);
1493 }
1494 
rgbgr_weights(convolutional_layer l)1495 void rgbgr_weights(convolutional_layer l)
1496 {
1497     int i;
1498     for (i = 0; i < l.n; ++i) {
1499         image im = get_convolutional_weight(l, i);
1500         if (im.c == 3) {
1501             rgbgr_image(im);
1502         }
1503     }
1504 }
1505 
rescale_weights(convolutional_layer l,float scale,float trans)1506 void rescale_weights(convolutional_layer l, float scale, float trans)
1507 {
1508     int i;
1509     for (i = 0; i < l.n; ++i) {
1510         image im = get_convolutional_weight(l, i);
1511         if (im.c == 3) {
1512             scale_image(im, scale);
1513             float sum = sum_array(im.data, im.w*im.h*im.c);
1514             l.biases[i] += sum*trans;
1515         }
1516     }
1517 }
1518 
get_weights(convolutional_layer l)1519 image *get_weights(convolutional_layer l)
1520 {
1521     image *weights = (image *)xcalloc(l.n, sizeof(image));
1522     int i;
1523     for (i = 0; i < l.n; ++i) {
1524         weights[i] = copy_image(get_convolutional_weight(l, i));
1525         normalize_image(weights[i]);
1526         /*
1527         char buff[256];
1528         sprintf(buff, "filter%d", i);
1529         save_image(weights[i], buff);
1530         */
1531     }
1532     //error("hey");
1533     return weights;
1534 }
1535 
visualize_convolutional_layer(convolutional_layer l,char * window,image * prev_weights)1536 image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights)
1537 {
1538     image *single_weights = get_weights(l);
1539     show_images(single_weights, l.n, window);
1540 
1541     image delta = get_convolutional_image(l);
1542     image dc = collapse_image_layers(delta, 1);
1543     char buff[256];
1544     sprintf(buff, "%s: Output", window);
1545     show_image(dc, buff);
1546     //save_image(dc, buff);
1547     free_image(dc);
1548     return single_weights;
1549 }
1550 
1551