1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "link.h"
44 #include "clk_mgr.h"
45 #include "dc_state_priv.h"
46 #include "dc_stream_priv.h"
47
48 #include "virtual/virtual_link_hwss.h"
49 #include "link/hwss/link_hwss_dio.h"
50 #include "link/hwss/link_hwss_dpia.h"
51 #include "link/hwss/link_hwss_hpo_dp.h"
52 #include "link/hwss/link_hwss_dio_fixed_vs_pe_retimer.h"
53 #include "link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
54
55 #if defined(CONFIG_DRM_AMD_DC_SI)
56 #include "dce60/dce60_resource.h"
57 #endif
58 #include "dce80/dce80_resource.h"
59 #include "dce100/dce100_resource.h"
60 #include "dce110/dce110_resource.h"
61 #include "dce112/dce112_resource.h"
62 #include "dce120/dce120_resource.h"
63 #include "dcn10/dcn10_resource.h"
64 #include "dcn20/dcn20_resource.h"
65 #include "dcn21/dcn21_resource.h"
66 #include "dcn201/dcn201_resource.h"
67 #include "dcn30/dcn30_resource.h"
68 #include "dcn301/dcn301_resource.h"
69 #include "dcn302/dcn302_resource.h"
70 #include "dcn303/dcn303_resource.h"
71 #include "dcn31/dcn31_resource.h"
72 #include "dcn314/dcn314_resource.h"
73 #include "dcn315/dcn315_resource.h"
74 #include "dcn316/dcn316_resource.h"
75 #include "dcn32/dcn32_resource.h"
76 #include "dcn321/dcn321_resource.h"
77 #include "dcn35/dcn35_resource.h"
78 #include "dcn351/dcn351_resource.h"
79 #include "dcn401/dcn401_resource.h"
80 #if defined(CONFIG_DRM_AMD_DC_FP)
81 #include "dc_spl_translate.h"
82 #endif
83
84 #define VISUAL_CONFIRM_BASE_DEFAULT 3
85 #define VISUAL_CONFIRM_BASE_MIN 1
86 #define VISUAL_CONFIRM_BASE_MAX 10
87 /* we choose 240 because it is a common denominator of common v addressable
88 * such as 2160, 1440, 1200, 960. So we take 1/240 portion of v addressable as
89 * the visual confirm dpp offset height. So visual confirm height can stay
90 * relatively the same independent from timing used.
91 */
92 #define VISUAL_CONFIRM_DPP_OFFSET_DENO 240
93
94 #define DC_LOGGER \
95 dc->ctx->logger
96 #define DC_LOGGER_INIT(logger)
97
98 #include "dml2/dml2_wrapper.h"
99
100 #define UNABLE_TO_SPLIT -1
101
resource_parse_asic_id(struct hw_asic_id asic_id)102 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
103 {
104 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
105
106 switch (asic_id.chip_family) {
107
108 #if defined(CONFIG_DRM_AMD_DC_SI)
109 case FAMILY_SI:
110 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
111 ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
112 ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
113 dc_version = DCE_VERSION_6_0;
114 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
115 dc_version = DCE_VERSION_6_4;
116 else
117 dc_version = DCE_VERSION_6_1;
118 break;
119 #endif
120 case FAMILY_CI:
121 dc_version = DCE_VERSION_8_0;
122 break;
123 case FAMILY_KV:
124 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
125 ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
126 ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
127 dc_version = DCE_VERSION_8_3;
128 else
129 dc_version = DCE_VERSION_8_1;
130 break;
131 case FAMILY_CZ:
132 dc_version = DCE_VERSION_11_0;
133 break;
134
135 case FAMILY_VI:
136 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
137 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
138 dc_version = DCE_VERSION_10_0;
139 break;
140 }
141 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
142 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
143 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
144 dc_version = DCE_VERSION_11_2;
145 }
146 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
147 dc_version = DCE_VERSION_11_22;
148 break;
149 case FAMILY_AI:
150 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
151 dc_version = DCE_VERSION_12_1;
152 else
153 dc_version = DCE_VERSION_12_0;
154 break;
155 case FAMILY_RV:
156 dc_version = DCN_VERSION_1_0;
157 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
158 dc_version = DCN_VERSION_1_01;
159 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
160 dc_version = DCN_VERSION_2_1;
161 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
162 dc_version = DCN_VERSION_2_1;
163 break;
164
165 case FAMILY_NV:
166 dc_version = DCN_VERSION_2_0;
167 if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
168 dc_version = DCN_VERSION_2_01;
169 break;
170 }
171 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
172 dc_version = DCN_VERSION_3_0;
173 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
174 dc_version = DCN_VERSION_3_02;
175 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
176 dc_version = DCN_VERSION_3_03;
177 break;
178
179 case FAMILY_VGH:
180 dc_version = DCN_VERSION_3_01;
181 break;
182
183 case FAMILY_YELLOW_CARP:
184 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
185 dc_version = DCN_VERSION_3_1;
186 break;
187 case AMDGPU_FAMILY_GC_10_3_6:
188 if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
189 dc_version = DCN_VERSION_3_15;
190 break;
191 case AMDGPU_FAMILY_GC_10_3_7:
192 if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
193 dc_version = DCN_VERSION_3_16;
194 break;
195 case AMDGPU_FAMILY_GC_11_0_0:
196 dc_version = DCN_VERSION_3_2;
197 if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
198 dc_version = DCN_VERSION_3_21;
199 break;
200 case AMDGPU_FAMILY_GC_11_0_1:
201 dc_version = DCN_VERSION_3_14;
202 break;
203 case AMDGPU_FAMILY_GC_11_5_0:
204 dc_version = DCN_VERSION_3_5;
205 if (ASICREV_IS_GC_11_0_4(asic_id.hw_internal_rev))
206 dc_version = DCN_VERSION_3_51;
207 break;
208 case AMDGPU_FAMILY_GC_12_0_0:
209 if (ASICREV_IS_GC_12_0_1_A0(asic_id.hw_internal_rev) ||
210 ASICREV_IS_GC_12_0_0_A0(asic_id.hw_internal_rev))
211 dc_version = DCN_VERSION_4_01;
212 break;
213 default:
214 dc_version = DCE_VERSION_UNKNOWN;
215 break;
216 }
217 return dc_version;
218 }
219
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)220 struct resource_pool *dc_create_resource_pool(struct dc *dc,
221 const struct dc_init_data *init_data,
222 enum dce_version dc_version)
223 {
224 struct resource_pool *res_pool = NULL;
225
226 switch (dc_version) {
227 #if defined(CONFIG_DRM_AMD_DC_SI)
228 case DCE_VERSION_6_0:
229 res_pool = dce60_create_resource_pool(
230 init_data->num_virtual_links, dc);
231 break;
232 case DCE_VERSION_6_1:
233 res_pool = dce61_create_resource_pool(
234 init_data->num_virtual_links, dc);
235 break;
236 case DCE_VERSION_6_4:
237 res_pool = dce64_create_resource_pool(
238 init_data->num_virtual_links, dc);
239 break;
240 #endif
241 case DCE_VERSION_8_0:
242 res_pool = dce80_create_resource_pool(
243 init_data->num_virtual_links, dc);
244 break;
245 case DCE_VERSION_8_1:
246 res_pool = dce81_create_resource_pool(
247 init_data->num_virtual_links, dc);
248 break;
249 case DCE_VERSION_8_3:
250 res_pool = dce83_create_resource_pool(
251 init_data->num_virtual_links, dc);
252 break;
253 case DCE_VERSION_10_0:
254 res_pool = dce100_create_resource_pool(
255 init_data->num_virtual_links, dc);
256 break;
257 case DCE_VERSION_11_0:
258 res_pool = dce110_create_resource_pool(
259 init_data->num_virtual_links, dc,
260 init_data->asic_id);
261 break;
262 case DCE_VERSION_11_2:
263 case DCE_VERSION_11_22:
264 res_pool = dce112_create_resource_pool(
265 init_data->num_virtual_links, dc);
266 break;
267 case DCE_VERSION_12_0:
268 case DCE_VERSION_12_1:
269 res_pool = dce120_create_resource_pool(
270 init_data->num_virtual_links, dc);
271 break;
272
273 #if defined(CONFIG_DRM_AMD_DC_FP)
274 case DCN_VERSION_1_0:
275 case DCN_VERSION_1_01:
276 res_pool = dcn10_create_resource_pool(init_data, dc);
277 break;
278 case DCN_VERSION_2_0:
279 res_pool = dcn20_create_resource_pool(init_data, dc);
280 break;
281 case DCN_VERSION_2_1:
282 res_pool = dcn21_create_resource_pool(init_data, dc);
283 break;
284 case DCN_VERSION_2_01:
285 res_pool = dcn201_create_resource_pool(init_data, dc);
286 break;
287 case DCN_VERSION_3_0:
288 res_pool = dcn30_create_resource_pool(init_data, dc);
289 break;
290 case DCN_VERSION_3_01:
291 res_pool = dcn301_create_resource_pool(init_data, dc);
292 break;
293 case DCN_VERSION_3_02:
294 res_pool = dcn302_create_resource_pool(init_data, dc);
295 break;
296 case DCN_VERSION_3_03:
297 res_pool = dcn303_create_resource_pool(init_data, dc);
298 break;
299 case DCN_VERSION_3_1:
300 res_pool = dcn31_create_resource_pool(init_data, dc);
301 break;
302 case DCN_VERSION_3_14:
303 res_pool = dcn314_create_resource_pool(init_data, dc);
304 break;
305 case DCN_VERSION_3_15:
306 res_pool = dcn315_create_resource_pool(init_data, dc);
307 break;
308 case DCN_VERSION_3_16:
309 res_pool = dcn316_create_resource_pool(init_data, dc);
310 break;
311 case DCN_VERSION_3_2:
312 res_pool = dcn32_create_resource_pool(init_data, dc);
313 break;
314 case DCN_VERSION_3_21:
315 res_pool = dcn321_create_resource_pool(init_data, dc);
316 break;
317 case DCN_VERSION_3_5:
318 res_pool = dcn35_create_resource_pool(init_data, dc);
319 break;
320 case DCN_VERSION_3_51:
321 res_pool = dcn351_create_resource_pool(init_data, dc);
322 break;
323 case DCN_VERSION_4_01:
324 res_pool = dcn401_create_resource_pool(init_data, dc);
325 break;
326 #endif /* CONFIG_DRM_AMD_DC_FP */
327 default:
328 break;
329 }
330
331 if (res_pool != NULL) {
332 if (dc->ctx->dc_bios->fw_info_valid) {
333 res_pool->ref_clocks.xtalin_clock_inKhz =
334 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
335 /* initialize with firmware data first, no all
336 * ASIC have DCCG SW component. FPGA or
337 * simulation need initialization of
338 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
339 * with xtalin_clock_inKhz
340 */
341 res_pool->ref_clocks.dccg_ref_clock_inKhz =
342 res_pool->ref_clocks.xtalin_clock_inKhz;
343 res_pool->ref_clocks.dchub_ref_clock_inKhz =
344 res_pool->ref_clocks.xtalin_clock_inKhz;
345 } else
346 ASSERT_CRITICAL(false);
347 }
348
349 return res_pool;
350 }
351
dc_destroy_resource_pool(struct dc * dc)352 void dc_destroy_resource_pool(struct dc *dc)
353 {
354 if (dc) {
355 if (dc->res_pool)
356 dc->res_pool->funcs->destroy(&dc->res_pool);
357
358 kfree(dc->hwseq);
359 }
360 }
361
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)362 static void update_num_audio(
363 const struct resource_straps *straps,
364 unsigned int *num_audio,
365 struct audio_support *aud_support)
366 {
367 aud_support->dp_audio = true;
368 aud_support->hdmi_audio_native = false;
369 aud_support->hdmi_audio_on_dongle = false;
370
371 if (straps->hdmi_disable == 0) {
372 if (straps->dc_pinstraps_audio & 0x2) {
373 aud_support->hdmi_audio_on_dongle = true;
374 aud_support->hdmi_audio_native = true;
375 }
376 }
377
378 switch (straps->audio_stream_number) {
379 case 0: /* multi streams supported */
380 break;
381 case 1: /* multi streams not supported */
382 *num_audio = 1;
383 break;
384 default:
385 DC_ERR("DC: unexpected audio fuse!\n");
386 }
387 }
388
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)389 bool resource_construct(
390 unsigned int num_virtual_links,
391 struct dc *dc,
392 struct resource_pool *pool,
393 const struct resource_create_funcs *create_funcs)
394 {
395 struct dc_context *ctx = dc->ctx;
396 const struct resource_caps *caps = pool->res_cap;
397 int i;
398 unsigned int num_audio = caps->num_audio;
399 struct resource_straps straps = {0};
400
401 if (create_funcs->read_dce_straps)
402 create_funcs->read_dce_straps(dc->ctx, &straps);
403
404 pool->audio_count = 0;
405 if (create_funcs->create_audio) {
406 /* find the total number of streams available via the
407 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
408 * registers (one for each pin) starting from pin 1
409 * up to the max number of audio pins.
410 * We stop on the first pin where
411 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
412 */
413 update_num_audio(&straps, &num_audio, &pool->audio_support);
414 for (i = 0; i < caps->num_audio; i++) {
415 struct audio *aud = create_funcs->create_audio(ctx, i);
416
417 if (aud == NULL) {
418 DC_ERR("DC: failed to create audio!\n");
419 return false;
420 }
421 if (!aud->funcs->endpoint_valid(aud)) {
422 aud->funcs->destroy(&aud);
423 break;
424 }
425 pool->audios[i] = aud;
426 pool->audio_count++;
427 }
428 }
429
430 pool->stream_enc_count = 0;
431 if (create_funcs->create_stream_encoder) {
432 for (i = 0; i < caps->num_stream_encoder; i++) {
433 pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
434 if (pool->stream_enc[i] == NULL)
435 DC_ERR("DC: failed to create stream_encoder!\n");
436 pool->stream_enc_count++;
437 }
438 }
439
440 pool->hpo_dp_stream_enc_count = 0;
441 if (create_funcs->create_hpo_dp_stream_encoder) {
442 for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
443 pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
444 if (pool->hpo_dp_stream_enc[i] == NULL)
445 DC_ERR("DC: failed to create HPO DP stream encoder!\n");
446 pool->hpo_dp_stream_enc_count++;
447
448 }
449 }
450
451 pool->hpo_dp_link_enc_count = 0;
452 if (create_funcs->create_hpo_dp_link_encoder) {
453 for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
454 pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
455 if (pool->hpo_dp_link_enc[i] == NULL)
456 DC_ERR("DC: failed to create HPO DP link encoder!\n");
457 pool->hpo_dp_link_enc_count++;
458 }
459 }
460
461 for (i = 0; i < caps->num_mpc_3dlut; i++) {
462 pool->mpc_lut[i] = dc_create_3dlut_func();
463 if (pool->mpc_lut[i] == NULL)
464 DC_ERR("DC: failed to create MPC 3dlut!\n");
465 pool->mpc_shaper[i] = dc_create_transfer_func();
466 if (pool->mpc_shaper[i] == NULL)
467 DC_ERR("DC: failed to create MPC shaper!\n");
468 }
469
470 dc->caps.dynamic_audio = false;
471 if (pool->audio_count < pool->stream_enc_count) {
472 dc->caps.dynamic_audio = true;
473 }
474 for (i = 0; i < num_virtual_links; i++) {
475 pool->stream_enc[pool->stream_enc_count] =
476 virtual_stream_encoder_create(
477 ctx, ctx->dc_bios);
478 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
479 DC_ERR("DC: failed to create stream_encoder!\n");
480 return false;
481 }
482 pool->stream_enc_count++;
483 }
484
485 dc->hwseq = create_funcs->create_hwseq(ctx);
486
487 return true;
488 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)489 static int find_matching_clock_source(
490 const struct resource_pool *pool,
491 struct clock_source *clock_source)
492 {
493
494 int i;
495
496 for (i = 0; i < pool->clk_src_count; i++) {
497 if (pool->clock_sources[i] == clock_source)
498 return i;
499 }
500 return -1;
501 }
502
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)503 void resource_unreference_clock_source(
504 struct resource_context *res_ctx,
505 const struct resource_pool *pool,
506 struct clock_source *clock_source)
507 {
508 int i = find_matching_clock_source(pool, clock_source);
509
510 if (i > -1)
511 res_ctx->clock_source_ref_count[i]--;
512
513 if (pool->dp_clock_source == clock_source)
514 res_ctx->dp_clock_source_ref_count--;
515 }
516
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)517 void resource_reference_clock_source(
518 struct resource_context *res_ctx,
519 const struct resource_pool *pool,
520 struct clock_source *clock_source)
521 {
522 int i = find_matching_clock_source(pool, clock_source);
523
524 if (i > -1)
525 res_ctx->clock_source_ref_count[i]++;
526
527 if (pool->dp_clock_source == clock_source)
528 res_ctx->dp_clock_source_ref_count++;
529 }
530
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)531 int resource_get_clock_source_reference(
532 struct resource_context *res_ctx,
533 const struct resource_pool *pool,
534 struct clock_source *clock_source)
535 {
536 int i = find_matching_clock_source(pool, clock_source);
537
538 if (i > -1)
539 return res_ctx->clock_source_ref_count[i];
540
541 if (pool->dp_clock_source == clock_source)
542 return res_ctx->dp_clock_source_ref_count;
543
544 return -1;
545 }
546
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)547 bool resource_are_vblanks_synchronizable(
548 struct dc_stream_state *stream1,
549 struct dc_stream_state *stream2)
550 {
551 uint32_t base60_refresh_rates[] = {10, 20, 5};
552 uint8_t i;
553 uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
554 uint64_t frame_time_diff;
555
556 if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
557 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
558 dc_is_dp_signal(stream1->signal) &&
559 dc_is_dp_signal(stream2->signal) &&
560 false == stream1->has_non_synchronizable_pclk &&
561 false == stream2->has_non_synchronizable_pclk &&
562 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
563 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
564 /* disable refresh rates higher than 60Hz for now */
565 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
566 stream1->timing.v_total > 60)
567 return false;
568 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
569 stream2->timing.v_total > 60)
570 return false;
571 frame_time_diff = (uint64_t)10000 *
572 stream1->timing.h_total *
573 stream1->timing.v_total *
574 stream2->timing.pix_clk_100hz;
575 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
576 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
577 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
578 for (i = 0; i < rr_count; i++) {
579 int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
580
581 if (diff < 0)
582 diff = -diff;
583 if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
584 return true;
585 }
586 }
587 return false;
588 }
589
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)590 bool resource_are_streams_timing_synchronizable(
591 struct dc_stream_state *stream1,
592 struct dc_stream_state *stream2)
593 {
594 if (stream1->timing.h_total != stream2->timing.h_total)
595 return false;
596
597 if (stream1->timing.v_total != stream2->timing.v_total)
598 return false;
599
600 if (stream1->timing.h_addressable
601 != stream2->timing.h_addressable)
602 return false;
603
604 if (stream1->timing.v_addressable
605 != stream2->timing.v_addressable)
606 return false;
607
608 if (stream1->timing.v_front_porch
609 != stream2->timing.v_front_porch)
610 return false;
611
612 if (stream1->timing.pix_clk_100hz
613 != stream2->timing.pix_clk_100hz)
614 return false;
615
616 if (stream1->clamping.c_depth != stream2->clamping.c_depth)
617 return false;
618
619 if (stream1->phy_pix_clk != stream2->phy_pix_clk
620 && (!dc_is_dp_signal(stream1->signal)
621 || !dc_is_dp_signal(stream2->signal)))
622 return false;
623
624 if (stream1->view_format != stream2->view_format)
625 return false;
626
627 if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
628 return false;
629
630 return true;
631 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)632 static bool is_dp_and_hdmi_sharable(
633 struct dc_stream_state *stream1,
634 struct dc_stream_state *stream2)
635 {
636 if (stream1->ctx->dc->caps.disable_dp_clk_share)
637 return false;
638
639 if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
640 stream2->clamping.c_depth != COLOR_DEPTH_888)
641 return false;
642
643 return true;
644
645 }
646
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)647 static bool is_sharable_clk_src(
648 const struct pipe_ctx *pipe_with_clk_src,
649 const struct pipe_ctx *pipe)
650 {
651 if (pipe_with_clk_src->clock_source == NULL)
652 return false;
653
654 if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
655 return false;
656
657 if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
658 (dc_is_dp_signal(pipe->stream->signal) &&
659 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
660 pipe->stream)))
661 return false;
662
663 if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
664 && dc_is_dual_link_signal(pipe->stream->signal))
665 return false;
666
667 if (dc_is_hdmi_signal(pipe->stream->signal)
668 && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
669 return false;
670
671 if (!resource_are_streams_timing_synchronizable(
672 pipe_with_clk_src->stream, pipe->stream))
673 return false;
674
675 return true;
676 }
677
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)678 struct clock_source *resource_find_used_clk_src_for_sharing(
679 struct resource_context *res_ctx,
680 struct pipe_ctx *pipe_ctx)
681 {
682 int i;
683
684 for (i = 0; i < MAX_PIPES; i++) {
685 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
686 return res_ctx->pipe_ctx[i].clock_source;
687 }
688
689 return NULL;
690 }
691
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)692 static enum pixel_format convert_pixel_format_to_dalsurface(
693 enum surface_pixel_format surface_pixel_format)
694 {
695 enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
696
697 switch (surface_pixel_format) {
698 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
699 dal_pixel_format = PIXEL_FORMAT_INDEX8;
700 break;
701 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
702 dal_pixel_format = PIXEL_FORMAT_RGB565;
703 break;
704 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
705 dal_pixel_format = PIXEL_FORMAT_RGB565;
706 break;
707 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
708 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
709 break;
710 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
711 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
712 break;
713 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
714 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
715 break;
716 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
717 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
718 break;
719 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
720 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
721 break;
722 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
723 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
724 dal_pixel_format = PIXEL_FORMAT_FP16;
725 break;
726 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
727 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
728 dal_pixel_format = PIXEL_FORMAT_420BPP8;
729 break;
730 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
731 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
732 dal_pixel_format = PIXEL_FORMAT_420BPP10;
733 break;
734 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
735 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
736 default:
737 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
738 break;
739 }
740 return dal_pixel_format;
741 }
742
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)743 static inline void get_vp_scan_direction(
744 enum dc_rotation_angle rotation,
745 bool horizontal_mirror,
746 bool *orthogonal_rotation,
747 bool *flip_vert_scan_dir,
748 bool *flip_horz_scan_dir)
749 {
750 *orthogonal_rotation = false;
751 *flip_vert_scan_dir = false;
752 *flip_horz_scan_dir = false;
753 if (rotation == ROTATION_ANGLE_180) {
754 *flip_vert_scan_dir = true;
755 *flip_horz_scan_dir = true;
756 } else if (rotation == ROTATION_ANGLE_90) {
757 *orthogonal_rotation = true;
758 *flip_horz_scan_dir = true;
759 } else if (rotation == ROTATION_ANGLE_270) {
760 *orthogonal_rotation = true;
761 *flip_vert_scan_dir = true;
762 }
763
764 if (horizontal_mirror)
765 *flip_horz_scan_dir = !*flip_horz_scan_dir;
766 }
767
768 /*
769 * This is a preliminary vp size calculation to allow us to check taps support.
770 * The result is completely overridden afterwards.
771 */
calculate_viewport_size(struct pipe_ctx * pipe_ctx)772 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
773 {
774 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
775
776 data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
777 data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
778 data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
779 data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
780 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
781 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
782 swap(data->viewport.width, data->viewport.height);
783 swap(data->viewport_c.width, data->viewport_c.height);
784 }
785 }
786
intersect_rec(const struct rect * r0,const struct rect * r1)787 static struct rect intersect_rec(const struct rect *r0, const struct rect *r1)
788 {
789 struct rect rec;
790 int r0_x_end = r0->x + r0->width;
791 int r1_x_end = r1->x + r1->width;
792 int r0_y_end = r0->y + r0->height;
793 int r1_y_end = r1->y + r1->height;
794
795 rec.x = r0->x > r1->x ? r0->x : r1->x;
796 rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
797 rec.y = r0->y > r1->y ? r0->y : r1->y;
798 rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
799
800 /* in case that there is no intersection */
801 if (rec.width < 0 || rec.height < 0)
802 memset(&rec, 0, sizeof(rec));
803
804 return rec;
805 }
806
shift_rec(const struct rect * rec_in,int x,int y)807 static struct rect shift_rec(const struct rect *rec_in, int x, int y)
808 {
809 struct rect rec_out = *rec_in;
810
811 rec_out.x += x;
812 rec_out.y += y;
813
814 return rec_out;
815 }
816
calculate_plane_rec_in_timing_active(struct pipe_ctx * pipe_ctx,const struct rect * rec_in)817 static struct rect calculate_plane_rec_in_timing_active(
818 struct pipe_ctx *pipe_ctx,
819 const struct rect *rec_in)
820 {
821 /*
822 * The following diagram shows an example where we map a 1920x1200
823 * desktop to a 2560x1440 timing with a plane rect in the middle
824 * of the screen. To map a plane rect from Stream Source to Timing
825 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
826 * horizontal and 1440/1200 vertical) to the plane's x and y, then
827 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
828 * This will give us a plane rect's position in Timing Active. However
829 * we have to remove the fractional. The rule is that we find left/right
830 * and top/bottom positions and round the value to the adjacent integer.
831 *
832 * Stream Source Space
833 * ------------
834 * __________________________________________________
835 * |Stream Source (1920 x 1200) ^ |
836 * | y |
837 * | <------- w --------|> |
838 * | __________________V |
839 * |<-- x -->|Plane//////////////| ^ |
840 * | |(pre scale)////////| | |
841 * | |///////////////////| | |
842 * | |///////////////////| h |
843 * | |///////////////////| | |
844 * | |///////////////////| | |
845 * | |///////////////////| V |
846 * | |
847 * | |
848 * |__________________________________________________|
849 *
850 *
851 * Timing Active Space
852 * ---------------------------------
853 *
854 * Timing Active (2560 x 1440)
855 * __________________________________________________
856 * |*****| Stteam Destination (2304 x 1440) |*****|
857 * |*****| |*****|
858 * |<128>| |*****|
859 * |*****| __________________ |*****|
860 * |*****| |Plane/////////////| |*****|
861 * |*****| |(post scale)//////| |*****|
862 * |*****| |//////////////////| |*****|
863 * |*****| |//////////////////| |*****|
864 * |*****| |//////////////////| |*****|
865 * |*****| |//////////////////| |*****|
866 * |*****| |*****|
867 * |*****| |*****|
868 * |*****| |*****|
869 * |*****|______________________________________|*****|
870 *
871 * So the resulting formulas are shown below:
872 *
873 * recout_x = 128 + round(plane_x * 2304 / 1920)
874 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
875 * recout_y = 0 + round(plane_y * 1440 / 1280)
876 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
877 *
878 * NOTE: fixed point division is not error free. To reduce errors
879 * introduced by fixed point division, we divide only after
880 * multiplication is complete.
881 */
882 const struct dc_stream_state *stream = pipe_ctx->stream;
883 struct rect rec_out = {0};
884 struct fixed31_32 temp;
885
886 temp = dc_fixpt_from_fraction(rec_in->x * (long long)stream->dst.width,
887 stream->src.width);
888 rec_out.x = stream->dst.x + dc_fixpt_round(temp);
889
890 temp = dc_fixpt_from_fraction(
891 (rec_in->x + rec_in->width) * (long long)stream->dst.width,
892 stream->src.width);
893 rec_out.width = stream->dst.x + dc_fixpt_round(temp) - rec_out.x;
894
895 temp = dc_fixpt_from_fraction(rec_in->y * (long long)stream->dst.height,
896 stream->src.height);
897 rec_out.y = stream->dst.y + dc_fixpt_round(temp);
898
899 temp = dc_fixpt_from_fraction(
900 (rec_in->y + rec_in->height) * (long long)stream->dst.height,
901 stream->src.height);
902 rec_out.height = stream->dst.y + dc_fixpt_round(temp) - rec_out.y;
903
904 return rec_out;
905 }
906
calculate_mpc_slice_in_timing_active(struct pipe_ctx * pipe_ctx,struct rect * plane_clip_rec)907 static struct rect calculate_mpc_slice_in_timing_active(
908 struct pipe_ctx *pipe_ctx,
909 struct rect *plane_clip_rec)
910 {
911 const struct dc_stream_state *stream = pipe_ctx->stream;
912 int mpc_slice_count = resource_get_mpc_slice_count(pipe_ctx);
913 int mpc_slice_idx = resource_get_mpc_slice_index(pipe_ctx);
914 int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
915 struct rect mpc_rec;
916
917 mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
918 mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
919 mpc_rec.height = plane_clip_rec->height;
920 mpc_rec.y = plane_clip_rec->y;
921 ASSERT(mpc_slice_count == 1 ||
922 stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE ||
923 mpc_rec.width % 2 == 0);
924
925 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
926 mpc_rec.x -= (mpc_rec.width * mpc_slice_idx);
927
928 /* extra pixels in the division remainder need to go to pipes after
929 * the extra pixel index minus one(epimo) defined here as:
930 */
931 if (mpc_slice_idx > epimo) {
932 mpc_rec.x += mpc_slice_idx - epimo - 1;
933 mpc_rec.width += 1;
934 }
935
936 if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
937 ASSERT(mpc_rec.height % 2 == 0);
938 mpc_rec.height /= 2;
939 }
940 return mpc_rec;
941 }
942
calculate_adjust_recout_for_visual_confirm(struct pipe_ctx * pipe_ctx,int * base_offset,int * dpp_offset)943 static void calculate_adjust_recout_for_visual_confirm(struct pipe_ctx *pipe_ctx,
944 int *base_offset, int *dpp_offset)
945 {
946 struct dc *dc = pipe_ctx->stream->ctx->dc;
947 *base_offset = 0;
948 *dpp_offset = 0;
949
950 if (dc->debug.visual_confirm == VISUAL_CONFIRM_DISABLE || !pipe_ctx->plane_res.dpp)
951 return;
952
953 *dpp_offset = pipe_ctx->stream->timing.v_addressable / VISUAL_CONFIRM_DPP_OFFSET_DENO;
954 *dpp_offset *= pipe_ctx->plane_res.dpp->inst;
955
956 if ((dc->debug.visual_confirm_rect_height >= VISUAL_CONFIRM_BASE_MIN) &&
957 dc->debug.visual_confirm_rect_height <= VISUAL_CONFIRM_BASE_MAX)
958 *base_offset = dc->debug.visual_confirm_rect_height;
959 else
960 *base_offset = VISUAL_CONFIRM_BASE_DEFAULT;
961 }
962
adjust_recout_for_visual_confirm(struct rect * recout,struct pipe_ctx * pipe_ctx)963 static void adjust_recout_for_visual_confirm(struct rect *recout,
964 struct pipe_ctx *pipe_ctx)
965 {
966 int dpp_offset, base_offset;
967
968 calculate_adjust_recout_for_visual_confirm(pipe_ctx, &base_offset,
969 &dpp_offset);
970 recout->height -= base_offset;
971 recout->height -= dpp_offset;
972 }
973
974 /*
975 * The function maps a plane clip from Stream Source Space to ODM Slice Space
976 * and calculates the rec of the overlapping area of MPC slice of the plane
977 * clip, ODM slice associated with the pipe context and stream destination rec.
978 */
calculate_recout(struct pipe_ctx * pipe_ctx)979 static void calculate_recout(struct pipe_ctx *pipe_ctx)
980 {
981 /*
982 * A plane clip represents the desired plane size and position in Stream
983 * Source Space. Stream Source is the destination where all planes are
984 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
985 * all planes associated with the current stream are drawn together.
986 * After Stream Source is completed, we will further scale and
987 * reposition the entire canvas of the stream source to Stream
988 * Destination in Timing Active Space. This could be due to display
989 * overscan adjustment where we will need to rescale and reposition all
990 * the planes so they can fit into a TV with overscan or downscale
991 * upscale features such as GPU scaling or VSR.
992 *
993 * This two step blending is a virtual procedure in software. In
994 * hardware there is no such thing as Stream Source. all planes are
995 * blended once in Timing Active Space. Software virtualizes a Stream
996 * Source space to decouple the math complicity so scaling param
997 * calculation focuses on one step at a time.
998 *
999 * In the following two diagrams, user applied 10% overscan adjustment
1000 * so the Stream Source needs to be scaled down a little before mapping
1001 * to Timing Active Space. As a result the Plane Clip is also scaled
1002 * down by the same ratio, Plane Clip position (i.e. x and y) with
1003 * respect to Stream Source is also scaled down. To map it in Timing
1004 * Active Space additional x and y offsets from Stream Destination are
1005 * added to Plane Clip as well.
1006 *
1007 * Stream Source Space
1008 * ------------
1009 * __________________________________________________
1010 * |Stream Source (3840 x 2160) ^ |
1011 * | y |
1012 * | | |
1013 * | __________________V |
1014 * |<-- x -->|Plane Clip/////////| |
1015 * | |(pre scale)////////| |
1016 * | |///////////////////| |
1017 * | |///////////////////| |
1018 * | |///////////////////| |
1019 * | |///////////////////| |
1020 * | |///////////////////| |
1021 * | |
1022 * | |
1023 * |__________________________________________________|
1024 *
1025 *
1026 * Timing Active Space (3840 x 2160)
1027 * ---------------------------------
1028 *
1029 * Timing Active
1030 * __________________________________________________
1031 * | y_____________________________________________ |
1032 * |x |Stream Destination (3456 x 1944) | |
1033 * | | | |
1034 * | | __________________ | |
1035 * | | |Plane Clip////////| | |
1036 * | | |(post scale)//////| | |
1037 * | | |//////////////////| | |
1038 * | | |//////////////////| | |
1039 * | | |//////////////////| | |
1040 * | | |//////////////////| | |
1041 * | | | |
1042 * | | | |
1043 * | |____________________________________________| |
1044 * |__________________________________________________|
1045 *
1046 *
1047 * In Timing Active Space a plane clip could be further sliced into
1048 * pieces called MPC slices. Each Pipe Context is responsible for
1049 * processing only one MPC slice so the plane processing workload can be
1050 * distributed to multiple DPP Pipes. MPC slices could be blended
1051 * together to a single ODM slice. Each ODM slice is responsible for
1052 * processing a portion of Timing Active divided horizontally so the
1053 * output pixel processing workload can be distributed to multiple OPP
1054 * pipes. All ODM slices are mapped together in ODM block so all MPC
1055 * slices belong to different ODM slices could be pieced together to
1056 * form a single image in Timing Active. MPC slices must belong to
1057 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
1058 * needs to be divided into two MPC slices one for each ODM slice.
1059 *
1060 * In the following diagram the output pixel processing workload is
1061 * divided horizontally into two ODM slices one for each OPP blend tree.
1062 * OPP0 blend tree is responsible for processing left half of Timing
1063 * Active, while OPP2 blend tree is responsible for processing right
1064 * half.
1065 *
1066 * The plane has two MPC slices. However since the right MPC slice goes
1067 * across ODM boundary, two DPP pipes are needed one for each OPP blend
1068 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
1069 *
1070 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
1071 * working on processing the plane in the diagram. We want to know the
1072 * width and height of the shaded rectangle and its relative position
1073 * with respect to the ODM slice0. This is called the recout of the pipe
1074 * context.
1075 *
1076 * Planes can be at arbitrary size and position and there could be an
1077 * arbitrary number of MPC and ODM slices. The algorithm needs to take
1078 * all scenarios into account.
1079 *
1080 * Timing Active Space (3840 x 2160)
1081 * ---------------------------------
1082 *
1083 * Timing Active
1084 * __________________________________________________
1085 * |OPP0(ODM slice0)^ |OPP2(ODM slice1) |
1086 * | y | |
1087 * | | <- w -> |
1088 * | _____V________|____ |
1089 * | |DPP0 ^ |DPP1 |DPP2| |
1090 * |<------ x |-----|->|/////| | |
1091 * | | | |/////| | |
1092 * | | h |/////| | |
1093 * | | | |/////| | |
1094 * | |_____V__|/////|____| |
1095 * | | |
1096 * | | |
1097 * | | |
1098 * |_________________________|________________________|
1099 *
1100 *
1101 */
1102 struct rect plane_clip;
1103 struct rect mpc_slice_of_plane_clip;
1104 struct rect odm_slice_src;
1105 struct rect overlapping_area;
1106
1107 plane_clip = calculate_plane_rec_in_timing_active(pipe_ctx,
1108 &pipe_ctx->plane_state->clip_rect);
1109 /* guard plane clip from drawing beyond stream dst here */
1110 plane_clip = intersect_rec(&plane_clip,
1111 &pipe_ctx->stream->dst);
1112 mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
1113 pipe_ctx, &plane_clip);
1114 odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
1115 overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice_src);
1116 if (overlapping_area.height > 0 &&
1117 overlapping_area.width > 0) {
1118 /* shift the overlapping area so it is with respect to current
1119 * ODM slice source's position
1120 */
1121 pipe_ctx->plane_res.scl_data.recout = shift_rec(
1122 &overlapping_area,
1123 -odm_slice_src.x, -odm_slice_src.y);
1124 adjust_recout_for_visual_confirm(
1125 &pipe_ctx->plane_res.scl_data.recout,
1126 pipe_ctx);
1127 } else {
1128 /* if there is no overlap, zero recout */
1129 memset(&pipe_ctx->plane_res.scl_data.recout, 0,
1130 sizeof(struct rect));
1131 }
1132
1133 }
1134
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)1135 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
1136 {
1137 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1138 const struct dc_stream_state *stream = pipe_ctx->stream;
1139 struct rect surf_src = plane_state->src_rect;
1140 const int in_w = stream->src.width;
1141 const int in_h = stream->src.height;
1142 const int out_w = stream->dst.width;
1143 const int out_h = stream->dst.height;
1144
1145 /*Swap surf_src height and width since scaling ratios are in recout rotation*/
1146 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
1147 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
1148 swap(surf_src.height, surf_src.width);
1149
1150 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
1151 surf_src.width,
1152 plane_state->dst_rect.width);
1153 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
1154 surf_src.height,
1155 plane_state->dst_rect.height);
1156
1157 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1158 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
1159 else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1160 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
1161
1162 pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
1163 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
1164 pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
1165 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
1166
1167 pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
1168 pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
1169
1170 if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
1171 || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
1172 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
1173 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
1174 }
1175 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
1176 pipe_ctx->plane_res.scl_data.ratios.horz, 19);
1177 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
1178 pipe_ctx->plane_res.scl_data.ratios.vert, 19);
1179 pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
1180 pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
1181 pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
1182 pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
1183 }
1184
1185
1186 /*
1187 * We completely calculate vp offset, size and inits here based entirely on scaling
1188 * ratios and recout for pixel perfect pipe combine.
1189 */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)1190 static void calculate_init_and_vp(
1191 bool flip_scan_dir,
1192 int recout_offset_within_recout_full,
1193 int recout_size,
1194 int src_size,
1195 int taps,
1196 struct fixed31_32 ratio,
1197 struct fixed31_32 *init,
1198 int *vp_offset,
1199 int *vp_size)
1200 {
1201 struct fixed31_32 temp;
1202 int int_part;
1203
1204 /*
1205 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
1206 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
1207 * All following calculations are based on this logic.
1208 *
1209 * Init calculated according to formula:
1210 * init = (scaling_ratio + number_of_taps + 1) / 2
1211 * init_bot = init + scaling_ratio
1212 * to get pixel perfect combine add the fraction from calculating vp offset
1213 */
1214 temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
1215 *vp_offset = dc_fixpt_floor(temp);
1216 temp.value &= 0xffffffff;
1217 *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
1218 dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
1219 /*
1220 * If viewport has non 0 offset and there are more taps than covered by init then
1221 * we should decrease the offset and increase init so we are never sampling
1222 * outside of viewport.
1223 */
1224 int_part = dc_fixpt_floor(*init);
1225 if (int_part < taps) {
1226 int_part = taps - int_part;
1227 if (int_part > *vp_offset)
1228 int_part = *vp_offset;
1229 *vp_offset -= int_part;
1230 *init = dc_fixpt_add_int(*init, int_part);
1231 }
1232 /*
1233 * If taps are sampling outside of viewport at end of recout and there are more pixels
1234 * available in the surface we should increase the viewport size, regardless set vp to
1235 * only what is used.
1236 */
1237 temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
1238 *vp_size = dc_fixpt_floor(temp);
1239 if (*vp_size + *vp_offset > src_size)
1240 *vp_size = src_size - *vp_offset;
1241
1242 /* We did all the math assuming we are scanning same direction as display does,
1243 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
1244 * is flipped we simply need to calculate offset from the other side of plane.
1245 * Note that outside of viewport all scaling hardware works in recout space.
1246 */
1247 if (flip_scan_dir)
1248 *vp_offset = src_size - *vp_offset - *vp_size;
1249 }
1250
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)1251 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
1252 {
1253 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1254 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1255 struct rect src = plane_state->src_rect;
1256 struct rect recout_dst_in_active_timing;
1257 struct rect recout_clip_in_active_timing;
1258 struct rect recout_clip_in_recout_dst;
1259 struct rect overlap_in_active_timing;
1260 struct rect odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
1261 int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1262 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1263 bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1264
1265 recout_clip_in_active_timing = shift_rec(
1266 &data->recout, odm_slice_src.x, odm_slice_src.y);
1267 recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
1268 pipe_ctx, &plane_state->dst_rect);
1269 overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
1270 &recout_dst_in_active_timing);
1271 if (overlap_in_active_timing.width > 0 &&
1272 overlap_in_active_timing.height > 0)
1273 recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
1274 -recout_dst_in_active_timing.x,
1275 -recout_dst_in_active_timing.y);
1276 else
1277 memset(&recout_clip_in_recout_dst, 0, sizeof(struct rect));
1278
1279 /*
1280 * Work in recout rotation since that requires less transformations
1281 */
1282 get_vp_scan_direction(
1283 plane_state->rotation,
1284 plane_state->horizontal_mirror,
1285 &orthogonal_rotation,
1286 &flip_vert_scan_dir,
1287 &flip_horz_scan_dir);
1288
1289 if (orthogonal_rotation) {
1290 swap(src.width, src.height);
1291 swap(flip_vert_scan_dir, flip_horz_scan_dir);
1292 }
1293
1294 calculate_init_and_vp(
1295 flip_horz_scan_dir,
1296 recout_clip_in_recout_dst.x,
1297 data->recout.width,
1298 src.width,
1299 data->taps.h_taps,
1300 data->ratios.horz,
1301 &data->inits.h,
1302 &data->viewport.x,
1303 &data->viewport.width);
1304 calculate_init_and_vp(
1305 flip_horz_scan_dir,
1306 recout_clip_in_recout_dst.x,
1307 data->recout.width,
1308 src.width / vpc_div,
1309 data->taps.h_taps_c,
1310 data->ratios.horz_c,
1311 &data->inits.h_c,
1312 &data->viewport_c.x,
1313 &data->viewport_c.width);
1314 calculate_init_and_vp(
1315 flip_vert_scan_dir,
1316 recout_clip_in_recout_dst.y,
1317 data->recout.height,
1318 src.height,
1319 data->taps.v_taps,
1320 data->ratios.vert,
1321 &data->inits.v,
1322 &data->viewport.y,
1323 &data->viewport.height);
1324 calculate_init_and_vp(
1325 flip_vert_scan_dir,
1326 recout_clip_in_recout_dst.y,
1327 data->recout.height,
1328 src.height / vpc_div,
1329 data->taps.v_taps_c,
1330 data->ratios.vert_c,
1331 &data->inits.v_c,
1332 &data->viewport_c.y,
1333 &data->viewport_c.height);
1334 if (orthogonal_rotation) {
1335 swap(data->viewport.x, data->viewport.y);
1336 swap(data->viewport.width, data->viewport.height);
1337 swap(data->viewport_c.x, data->viewport_c.y);
1338 swap(data->viewport_c.width, data->viewport_c.height);
1339 }
1340 data->viewport.x += src.x;
1341 data->viewport.y += src.y;
1342 ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1343 data->viewport_c.x += src.x / vpc_div;
1344 data->viewport_c.y += src.y / vpc_div;
1345 }
1346
is_subvp_high_refresh_candidate(struct dc_stream_state * stream)1347 static bool is_subvp_high_refresh_candidate(struct dc_stream_state *stream)
1348 {
1349 uint32_t refresh_rate;
1350 struct dc *dc = stream->ctx->dc;
1351
1352 refresh_rate = (stream->timing.pix_clk_100hz * (uint64_t)100 +
1353 stream->timing.v_total * stream->timing.h_total - (uint64_t)1);
1354 refresh_rate = div_u64(refresh_rate, stream->timing.v_total);
1355 refresh_rate = div_u64(refresh_rate, stream->timing.h_total);
1356
1357 /* If there's any stream that fits the SubVP high refresh criteria,
1358 * we must return true. This is because cursor updates are asynchronous
1359 * with full updates, so we could transition into a SubVP config and
1360 * remain in HW cursor mode if there's no cursor update which will
1361 * then cause corruption.
1362 */
1363 if ((refresh_rate >= 120 && refresh_rate <= 175 &&
1364 stream->timing.v_addressable >= 1080 &&
1365 stream->timing.v_addressable <= 2160) &&
1366 (dc->current_state->stream_count > 1 ||
1367 (dc->current_state->stream_count == 1 && !stream->allow_freesync)))
1368 return true;
1369
1370 return false;
1371 }
1372
convert_dp_to_controller_test_pattern(enum dp_test_pattern test_pattern)1373 static enum controller_dp_test_pattern convert_dp_to_controller_test_pattern(
1374 enum dp_test_pattern test_pattern)
1375 {
1376 enum controller_dp_test_pattern controller_test_pattern;
1377
1378 switch (test_pattern) {
1379 case DP_TEST_PATTERN_COLOR_SQUARES:
1380 controller_test_pattern =
1381 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
1382 break;
1383 case DP_TEST_PATTERN_COLOR_SQUARES_CEA:
1384 controller_test_pattern =
1385 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA;
1386 break;
1387 case DP_TEST_PATTERN_VERTICAL_BARS:
1388 controller_test_pattern =
1389 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS;
1390 break;
1391 case DP_TEST_PATTERN_HORIZONTAL_BARS:
1392 controller_test_pattern =
1393 CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS;
1394 break;
1395 case DP_TEST_PATTERN_COLOR_RAMP:
1396 controller_test_pattern =
1397 CONTROLLER_DP_TEST_PATTERN_COLORRAMP;
1398 break;
1399 default:
1400 controller_test_pattern =
1401 CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
1402 break;
1403 }
1404
1405 return controller_test_pattern;
1406 }
1407
convert_dp_to_controller_color_space(enum dp_test_pattern_color_space color_space)1408 static enum controller_dp_color_space convert_dp_to_controller_color_space(
1409 enum dp_test_pattern_color_space color_space)
1410 {
1411 enum controller_dp_color_space controller_color_space;
1412
1413 switch (color_space) {
1414 case DP_TEST_PATTERN_COLOR_SPACE_RGB:
1415 controller_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
1416 break;
1417 case DP_TEST_PATTERN_COLOR_SPACE_YCBCR601:
1418 controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR601;
1419 break;
1420 case DP_TEST_PATTERN_COLOR_SPACE_YCBCR709:
1421 controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR709;
1422 break;
1423 case DP_TEST_PATTERN_COLOR_SPACE_UNDEFINED:
1424 default:
1425 controller_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
1426 break;
1427 }
1428
1429 return controller_color_space;
1430 }
1431
resource_build_test_pattern_params(struct resource_context * res_ctx,struct pipe_ctx * otg_master)1432 void resource_build_test_pattern_params(struct resource_context *res_ctx,
1433 struct pipe_ctx *otg_master)
1434 {
1435 struct pipe_ctx *opp_heads[MAX_PIPES];
1436 struct test_pattern_params *params;
1437 int odm_cnt;
1438 enum controller_dp_test_pattern controller_test_pattern;
1439 enum controller_dp_color_space controller_color_space;
1440 enum dc_color_depth color_depth = otg_master->stream->timing.display_color_depth;
1441 struct rect odm_slice_src;
1442 int i;
1443
1444 controller_test_pattern = convert_dp_to_controller_test_pattern(
1445 otg_master->stream->test_pattern.type);
1446 controller_color_space = convert_dp_to_controller_color_space(
1447 otg_master->stream->test_pattern.color_space);
1448
1449 if (controller_test_pattern == CONTROLLER_DP_TEST_PATTERN_VIDEOMODE)
1450 return;
1451
1452 odm_cnt = resource_get_opp_heads_for_otg_master(otg_master, res_ctx, opp_heads);
1453
1454 for (i = 0; i < odm_cnt; i++) {
1455 odm_slice_src = resource_get_odm_slice_src_rect(opp_heads[i]);
1456 params = &opp_heads[i]->stream_res.test_pattern_params;
1457 params->test_pattern = controller_test_pattern;
1458 params->color_space = controller_color_space;
1459 params->color_depth = color_depth;
1460 params->height = odm_slice_src.height;
1461 params->offset = odm_slice_src.x;
1462 params->width = odm_slice_src.width;
1463 }
1464 }
1465
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1466 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1467 {
1468 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1469 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1470 const struct rect odm_slice_src = resource_get_odm_slice_src_rect(pipe_ctx);
1471 bool res = false;
1472
1473 DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1474
1475 /* Invalid input */
1476 if (!plane_state->dst_rect.width ||
1477 !plane_state->dst_rect.height ||
1478 !plane_state->src_rect.width ||
1479 !plane_state->src_rect.height) {
1480 ASSERT(0);
1481 return false;
1482 }
1483
1484 /* Timing borders are part of vactive that we are also supposed to skip in addition
1485 * to any stream dst offset. Since dm logic assumes dst is in addressable
1486 * space we need to add the left and top borders to dst offsets temporarily.
1487 * TODO: fix in DM, stream dst is supposed to be in vactive
1488 */
1489 pipe_ctx->stream->dst.x += timing->h_border_left;
1490 pipe_ctx->stream->dst.y += timing->v_border_top;
1491
1492 /* Calculate H and V active size */
1493 pipe_ctx->plane_res.scl_data.h_active = odm_slice_src.width;
1494 pipe_ctx->plane_res.scl_data.v_active = odm_slice_src.height;
1495 pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1496 pipe_ctx->plane_state->format);
1497
1498 #if defined(CONFIG_DRM_AMD_DC_FP)
1499 if ((pipe_ctx->stream->ctx->dc->config.use_spl) && (!pipe_ctx->stream->ctx->dc->debug.disable_spl)) {
1500 struct spl_in *spl_in = &pipe_ctx->plane_res.spl_in;
1501 struct spl_out *spl_out = &pipe_ctx->plane_res.spl_out;
1502
1503 if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1504 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1505 else
1506 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1507
1508 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1509
1510 // Convert pipe_ctx to respective input params for SPL
1511 translate_SPL_in_params_from_pipe_ctx(pipe_ctx, spl_in);
1512 /* Pass visual confirm debug information */
1513 calculate_adjust_recout_for_visual_confirm(pipe_ctx,
1514 &spl_in->debug.visual_confirm_base_offset,
1515 &spl_in->debug.visual_confirm_dpp_offset);
1516 // Set SPL output parameters to dscl_prog_data to be used for hw registers
1517 spl_out->dscl_prog_data = resource_get_dscl_prog_data(pipe_ctx);
1518 // Calculate scaler parameters from SPL
1519 res = spl_calculate_scaler_params(spl_in, spl_out);
1520 // Convert respective out params from SPL to scaler data
1521 translate_SPL_out_params_to_pipe_ctx(pipe_ctx, spl_out);
1522 } else {
1523 #endif
1524 /* depends on h_active */
1525 calculate_recout(pipe_ctx);
1526 /* depends on pixel format */
1527 calculate_scaling_ratios(pipe_ctx);
1528 /* depends on scaling ratios and recout, does not calculate offset yet */
1529 calculate_viewport_size(pipe_ctx);
1530
1531 /*
1532 * LB calculations depend on vp size, h/v_active and scaling ratios
1533 * Setting line buffer pixel depth to 24bpp yields banding
1534 * on certain displays, such as the Sharp 4k. 36bpp is needed
1535 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1536 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1537 * precision on DCN display engines, but apparently not for DCE, as
1538 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1539 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1540 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1541 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1542 */
1543 if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1544 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1545 else
1546 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1547
1548 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1549
1550 if (pipe_ctx->plane_res.xfm != NULL)
1551 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1552 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1553
1554 if (pipe_ctx->plane_res.dpp != NULL)
1555 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1556 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1557
1558
1559 if (!res) {
1560 /* Try 24 bpp linebuffer */
1561 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1562
1563 if (pipe_ctx->plane_res.xfm != NULL)
1564 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1565 pipe_ctx->plane_res.xfm,
1566 &pipe_ctx->plane_res.scl_data,
1567 &plane_state->scaling_quality);
1568
1569 if (pipe_ctx->plane_res.dpp != NULL)
1570 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1571 pipe_ctx->plane_res.dpp,
1572 &pipe_ctx->plane_res.scl_data,
1573 &plane_state->scaling_quality);
1574 }
1575
1576 /*
1577 * Depends on recout, scaling ratios, h_active and taps
1578 * May need to re-check lb size after this in some obscure scenario
1579 */
1580 if (res)
1581 calculate_inits_and_viewports(pipe_ctx);
1582
1583 /*
1584 * Handle side by side and top bottom 3d recout offsets after vp calculation
1585 * since 3d is special and needs to calculate vp as if there is no recout offset
1586 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1587 */
1588 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1589 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1590 (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1591 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1592 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1593 pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1594 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1595 pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1596 }
1597
1598 /* Clamp minimum viewport size */
1599 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1600 pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1601 if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1602 pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1603 #ifdef CONFIG_DRM_AMD_DC_FP
1604 }
1605 #endif
1606 DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
1607 "src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
1608 __func__,
1609 pipe_ctx->pipe_idx,
1610 pipe_ctx->plane_res.scl_data.viewport.height,
1611 pipe_ctx->plane_res.scl_data.viewport.width,
1612 pipe_ctx->plane_res.scl_data.viewport.x,
1613 pipe_ctx->plane_res.scl_data.viewport.y,
1614 pipe_ctx->plane_res.scl_data.recout.height,
1615 pipe_ctx->plane_res.scl_data.recout.width,
1616 pipe_ctx->plane_res.scl_data.recout.x,
1617 pipe_ctx->plane_res.scl_data.recout.y,
1618 pipe_ctx->plane_res.scl_data.h_active,
1619 pipe_ctx->plane_res.scl_data.v_active,
1620 plane_state->src_rect.height,
1621 plane_state->src_rect.width,
1622 plane_state->src_rect.x,
1623 plane_state->src_rect.y,
1624 plane_state->dst_rect.height,
1625 plane_state->dst_rect.width,
1626 plane_state->dst_rect.x,
1627 plane_state->dst_rect.y,
1628 plane_state->clip_rect.height,
1629 plane_state->clip_rect.width,
1630 plane_state->clip_rect.x,
1631 plane_state->clip_rect.y);
1632
1633 pipe_ctx->stream->dst.x -= timing->h_border_left;
1634 pipe_ctx->stream->dst.y -= timing->v_border_top;
1635
1636 return res;
1637 }
1638
1639
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1640 enum dc_status resource_build_scaling_params_for_context(
1641 const struct dc *dc,
1642 struct dc_state *context)
1643 {
1644 int i;
1645
1646 for (i = 0; i < MAX_PIPES; i++) {
1647 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1648 context->res_ctx.pipe_ctx[i].stream != NULL)
1649 if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1650 return DC_FAIL_SCALING;
1651 }
1652
1653 return DC_OK;
1654 }
1655
resource_find_free_secondary_pipe_legacy(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1656 struct pipe_ctx *resource_find_free_secondary_pipe_legacy(
1657 struct resource_context *res_ctx,
1658 const struct resource_pool *pool,
1659 const struct pipe_ctx *primary_pipe)
1660 {
1661 int i;
1662 struct pipe_ctx *secondary_pipe = NULL;
1663
1664 /*
1665 * We add a preferred pipe mapping to avoid the chance that
1666 * MPCCs already in use will need to be reassigned to other trees.
1667 * For example, if we went with the strict, assign backwards logic:
1668 *
1669 * (State 1)
1670 * Display A on, no surface, top pipe = 0
1671 * Display B on, no surface, top pipe = 1
1672 *
1673 * (State 2)
1674 * Display A on, no surface, top pipe = 0
1675 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1676 *
1677 * (State 3)
1678 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1679 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1680 *
1681 * The state 2->3 transition requires remapping MPCC 5 from display B
1682 * to display A.
1683 *
1684 * However, with the preferred pipe logic, state 2 would look like:
1685 *
1686 * (State 2)
1687 * Display A on, no surface, top pipe = 0
1688 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1689 *
1690 * This would then cause 2->3 to not require remapping any MPCCs.
1691 */
1692 if (primary_pipe) {
1693 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1694 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1695 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1696 secondary_pipe->pipe_idx = preferred_pipe_idx;
1697 }
1698 }
1699
1700 /*
1701 * search backwards for the second pipe to keep pipe
1702 * assignment more consistent
1703 */
1704 if (!secondary_pipe)
1705 for (i = pool->pipe_count - 1; i >= 0; i--) {
1706 if (res_ctx->pipe_ctx[i].stream == NULL) {
1707 secondary_pipe = &res_ctx->pipe_ctx[i];
1708 secondary_pipe->pipe_idx = i;
1709 break;
1710 }
1711 }
1712
1713 return secondary_pipe;
1714 }
1715
resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct pipe_ctx * cur_otg_master)1716 int resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
1717 const struct resource_context *cur_res_ctx,
1718 struct resource_context *new_res_ctx,
1719 const struct pipe_ctx *cur_otg_master)
1720 {
1721 const struct pipe_ctx *cur_sec_opp_head = cur_otg_master->next_odm_pipe;
1722 struct pipe_ctx *new_pipe;
1723 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1724
1725 while (cur_sec_opp_head) {
1726 new_pipe = &new_res_ctx->pipe_ctx[cur_sec_opp_head->pipe_idx];
1727 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1728 free_pipe_idx = cur_sec_opp_head->pipe_idx;
1729 break;
1730 }
1731 cur_sec_opp_head = cur_sec_opp_head->next_odm_pipe;
1732 }
1733
1734 return free_pipe_idx;
1735 }
1736
resource_find_free_pipe_used_in_cur_mpc_blending_tree(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct pipe_ctx * cur_opp_head)1737 int resource_find_free_pipe_used_in_cur_mpc_blending_tree(
1738 const struct resource_context *cur_res_ctx,
1739 struct resource_context *new_res_ctx,
1740 const struct pipe_ctx *cur_opp_head)
1741 {
1742 const struct pipe_ctx *cur_sec_dpp = cur_opp_head->bottom_pipe;
1743 struct pipe_ctx *new_pipe;
1744 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1745
1746 while (cur_sec_dpp) {
1747 /* find a free pipe used in current opp blend tree,
1748 * this is to avoid MPO pipe switching to different opp blending
1749 * tree
1750 */
1751 new_pipe = &new_res_ctx->pipe_ctx[cur_sec_dpp->pipe_idx];
1752 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1753 free_pipe_idx = cur_sec_dpp->pipe_idx;
1754 break;
1755 }
1756 cur_sec_dpp = cur_sec_dpp->bottom_pipe;
1757 }
1758
1759 return free_pipe_idx;
1760 }
1761
recource_find_free_pipe_not_used_in_cur_res_ctx(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1762 int recource_find_free_pipe_not_used_in_cur_res_ctx(
1763 const struct resource_context *cur_res_ctx,
1764 struct resource_context *new_res_ctx,
1765 const struct resource_pool *pool)
1766 {
1767 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1768 const struct pipe_ctx *new_pipe, *cur_pipe;
1769 int i;
1770
1771 for (i = 0; i < pool->pipe_count; i++) {
1772 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1773 new_pipe = &new_res_ctx->pipe_ctx[i];
1774
1775 if (resource_is_pipe_type(cur_pipe, FREE_PIPE) &&
1776 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1777 free_pipe_idx = i;
1778 break;
1779 }
1780 }
1781
1782 return free_pipe_idx;
1783 }
1784
recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1785 int recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
1786 const struct resource_context *cur_res_ctx,
1787 struct resource_context *new_res_ctx,
1788 const struct resource_pool *pool)
1789 {
1790 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1791 const struct pipe_ctx *new_pipe, *cur_pipe;
1792 int i;
1793
1794 for (i = 0; i < pool->pipe_count; i++) {
1795 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1796 new_pipe = &new_res_ctx->pipe_ctx[i];
1797
1798 if (resource_is_pipe_type(cur_pipe, OTG_MASTER) &&
1799 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1800 free_pipe_idx = i;
1801 break;
1802 }
1803 }
1804
1805 return free_pipe_idx;
1806 }
1807
resource_find_free_pipe_used_as_cur_sec_dpp(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1808 int resource_find_free_pipe_used_as_cur_sec_dpp(
1809 const struct resource_context *cur_res_ctx,
1810 struct resource_context *new_res_ctx,
1811 const struct resource_pool *pool)
1812 {
1813 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1814 const struct pipe_ctx *new_pipe, *cur_pipe;
1815 int i;
1816
1817 for (i = 0; i < pool->pipe_count; i++) {
1818 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1819 new_pipe = &new_res_ctx->pipe_ctx[i];
1820
1821 if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1822 !resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1823 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1824 free_pipe_idx = i;
1825 break;
1826 }
1827 }
1828
1829 return free_pipe_idx;
1830 }
1831
resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1832 int resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
1833 const struct resource_context *cur_res_ctx,
1834 struct resource_context *new_res_ctx,
1835 const struct resource_pool *pool)
1836 {
1837 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1838 const struct pipe_ctx *new_pipe, *cur_pipe;
1839 int i;
1840
1841 for (i = 0; i < pool->pipe_count; i++) {
1842 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1843 new_pipe = &new_res_ctx->pipe_ctx[i];
1844
1845 if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1846 !resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1847 resource_get_mpc_slice_index(cur_pipe) > 0 &&
1848 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1849 free_pipe_idx = i;
1850 break;
1851 }
1852 }
1853
1854 return free_pipe_idx;
1855 }
1856
resource_find_any_free_pipe(struct resource_context * new_res_ctx,const struct resource_pool * pool)1857 int resource_find_any_free_pipe(struct resource_context *new_res_ctx,
1858 const struct resource_pool *pool)
1859 {
1860 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1861 const struct pipe_ctx *new_pipe;
1862 int i;
1863
1864 for (i = 0; i < pool->pipe_count; i++) {
1865 new_pipe = &new_res_ctx->pipe_ctx[i];
1866
1867 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1868 free_pipe_idx = i;
1869 break;
1870 }
1871 }
1872
1873 return free_pipe_idx;
1874 }
1875
resource_is_pipe_type(const struct pipe_ctx * pipe_ctx,enum pipe_type type)1876 bool resource_is_pipe_type(const struct pipe_ctx *pipe_ctx, enum pipe_type type)
1877 {
1878 switch (type) {
1879 case OTG_MASTER:
1880 return !pipe_ctx->prev_odm_pipe &&
1881 !pipe_ctx->top_pipe &&
1882 pipe_ctx->stream;
1883 case OPP_HEAD:
1884 return !pipe_ctx->top_pipe && pipe_ctx->stream;
1885 case DPP_PIPE:
1886 return pipe_ctx->plane_state && pipe_ctx->stream;
1887 case FREE_PIPE:
1888 return !pipe_ctx->plane_state && !pipe_ctx->stream;
1889 default:
1890 return false;
1891 }
1892 }
1893
resource_get_otg_master_for_stream(struct resource_context * res_ctx,const struct dc_stream_state * stream)1894 struct pipe_ctx *resource_get_otg_master_for_stream(
1895 struct resource_context *res_ctx,
1896 const struct dc_stream_state *stream)
1897 {
1898 int i;
1899
1900 for (i = 0; i < MAX_PIPES; i++) {
1901 if (res_ctx->pipe_ctx[i].stream == stream &&
1902 resource_is_pipe_type(&res_ctx->pipe_ctx[i], OTG_MASTER))
1903 return &res_ctx->pipe_ctx[i];
1904 }
1905 return NULL;
1906 }
1907
resource_get_opp_heads_for_otg_master(const struct pipe_ctx * otg_master,struct resource_context * res_ctx,struct pipe_ctx * opp_heads[MAX_PIPES])1908 int resource_get_opp_heads_for_otg_master(const struct pipe_ctx *otg_master,
1909 struct resource_context *res_ctx,
1910 struct pipe_ctx *opp_heads[MAX_PIPES])
1911 {
1912 struct pipe_ctx *opp_head = &res_ctx->pipe_ctx[otg_master->pipe_idx];
1913 struct dc *dc = otg_master->stream->ctx->dc;
1914 int i = 0;
1915
1916 DC_LOGGER_INIT(dc->ctx->logger);
1917
1918 if (!resource_is_pipe_type(otg_master, OTG_MASTER)) {
1919 DC_LOG_WARNING("%s called from a non OTG master, something "
1920 "is wrong in the pipe configuration",
1921 __func__);
1922 ASSERT(0);
1923 return 0;
1924 }
1925 while (opp_head) {
1926 ASSERT(i < MAX_PIPES);
1927 opp_heads[i++] = opp_head;
1928 opp_head = opp_head->next_odm_pipe;
1929 }
1930 return i;
1931 }
1932
resource_get_dpp_pipes_for_opp_head(const struct pipe_ctx * opp_head,struct resource_context * res_ctx,struct pipe_ctx * dpp_pipes[MAX_PIPES])1933 int resource_get_dpp_pipes_for_opp_head(const struct pipe_ctx *opp_head,
1934 struct resource_context *res_ctx,
1935 struct pipe_ctx *dpp_pipes[MAX_PIPES])
1936 {
1937 struct pipe_ctx *pipe = &res_ctx->pipe_ctx[opp_head->pipe_idx];
1938 int i = 0;
1939
1940 if (!resource_is_pipe_type(opp_head, OPP_HEAD)) {
1941 ASSERT(0);
1942 return 0;
1943 }
1944 while (pipe && resource_is_pipe_type(pipe, DPP_PIPE)) {
1945 ASSERT(i < MAX_PIPES);
1946 dpp_pipes[i++] = pipe;
1947 pipe = pipe->bottom_pipe;
1948 }
1949 return i;
1950 }
1951
resource_get_dpp_pipes_for_plane(const struct dc_plane_state * plane,struct resource_context * res_ctx,struct pipe_ctx * dpp_pipes[MAX_PIPES])1952 int resource_get_dpp_pipes_for_plane(const struct dc_plane_state *plane,
1953 struct resource_context *res_ctx,
1954 struct pipe_ctx *dpp_pipes[MAX_PIPES])
1955 {
1956 int i = 0, j;
1957 struct pipe_ctx *pipe;
1958
1959 for (j = 0; j < MAX_PIPES; j++) {
1960 pipe = &res_ctx->pipe_ctx[j];
1961 if (pipe->plane_state == plane && pipe->prev_odm_pipe == NULL) {
1962 if (resource_is_pipe_type(pipe, OPP_HEAD) ||
1963 pipe->top_pipe->plane_state != plane)
1964 break;
1965 }
1966 }
1967
1968 if (j < MAX_PIPES) {
1969 if (pipe->next_odm_pipe)
1970 while (pipe) {
1971 dpp_pipes[i++] = pipe;
1972 pipe = pipe->next_odm_pipe;
1973 }
1974 else
1975 while (pipe && pipe->plane_state == plane) {
1976 dpp_pipes[i++] = pipe;
1977 pipe = pipe->bottom_pipe;
1978 }
1979 }
1980 return i;
1981 }
1982
resource_get_otg_master(const struct pipe_ctx * pipe_ctx)1983 struct pipe_ctx *resource_get_otg_master(const struct pipe_ctx *pipe_ctx)
1984 {
1985 struct pipe_ctx *otg_master = resource_get_opp_head(pipe_ctx);
1986
1987 while (otg_master->prev_odm_pipe)
1988 otg_master = otg_master->prev_odm_pipe;
1989 return otg_master;
1990 }
1991
resource_get_opp_head(const struct pipe_ctx * pipe_ctx)1992 struct pipe_ctx *resource_get_opp_head(const struct pipe_ctx *pipe_ctx)
1993 {
1994 struct pipe_ctx *opp_head = (struct pipe_ctx *) pipe_ctx;
1995
1996 ASSERT(!resource_is_pipe_type(opp_head, FREE_PIPE));
1997 while (opp_head->top_pipe)
1998 opp_head = opp_head->top_pipe;
1999 return opp_head;
2000 }
2001
resource_get_primary_dpp_pipe(const struct pipe_ctx * dpp_pipe)2002 struct pipe_ctx *resource_get_primary_dpp_pipe(const struct pipe_ctx *dpp_pipe)
2003 {
2004 struct pipe_ctx *pri_dpp_pipe = (struct pipe_ctx *) dpp_pipe;
2005
2006 ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
2007 while (pri_dpp_pipe->prev_odm_pipe)
2008 pri_dpp_pipe = pri_dpp_pipe->prev_odm_pipe;
2009 while (pri_dpp_pipe->top_pipe &&
2010 pri_dpp_pipe->top_pipe->plane_state == pri_dpp_pipe->plane_state)
2011 pri_dpp_pipe = pri_dpp_pipe->top_pipe;
2012 return pri_dpp_pipe;
2013 }
2014
2015
resource_get_mpc_slice_index(const struct pipe_ctx * pipe_ctx)2016 int resource_get_mpc_slice_index(const struct pipe_ctx *pipe_ctx)
2017 {
2018 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
2019 int index = 0;
2020
2021 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
2022 index++;
2023 split_pipe = split_pipe->top_pipe;
2024 }
2025
2026 return index;
2027 }
2028
resource_get_mpc_slice_count(const struct pipe_ctx * pipe)2029 int resource_get_mpc_slice_count(const struct pipe_ctx *pipe)
2030 {
2031 int mpc_split_count = 1;
2032 const struct pipe_ctx *other_pipe = pipe->bottom_pipe;
2033
2034 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
2035 mpc_split_count++;
2036 other_pipe = other_pipe->bottom_pipe;
2037 }
2038 other_pipe = pipe->top_pipe;
2039 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
2040 mpc_split_count++;
2041 other_pipe = other_pipe->top_pipe;
2042 }
2043
2044 return mpc_split_count;
2045 }
2046
resource_get_odm_slice_count(const struct pipe_ctx * pipe)2047 int resource_get_odm_slice_count(const struct pipe_ctx *pipe)
2048 {
2049 int odm_split_count = 1;
2050
2051 pipe = resource_get_otg_master(pipe);
2052
2053 while (pipe->next_odm_pipe) {
2054 odm_split_count++;
2055 pipe = pipe->next_odm_pipe;
2056 }
2057 return odm_split_count;
2058 }
2059
resource_get_odm_slice_index(const struct pipe_ctx * pipe_ctx)2060 int resource_get_odm_slice_index(const struct pipe_ctx *pipe_ctx)
2061 {
2062 int index = 0;
2063
2064 pipe_ctx = resource_get_opp_head(pipe_ctx);
2065 if (!pipe_ctx)
2066 return 0;
2067
2068 while (pipe_ctx->prev_odm_pipe) {
2069 index++;
2070 pipe_ctx = pipe_ctx->prev_odm_pipe;
2071 }
2072
2073 return index;
2074 }
2075
resource_get_odm_slice_dst_width(struct pipe_ctx * otg_master,bool is_last_segment)2076 int resource_get_odm_slice_dst_width(struct pipe_ctx *otg_master,
2077 bool is_last_segment)
2078 {
2079 const struct dc_crtc_timing *timing;
2080 int count;
2081 int h_active;
2082 int width;
2083 bool two_pixel_alignment_required = false;
2084
2085 if (!otg_master || !otg_master->stream)
2086 return 0;
2087
2088 timing = &otg_master->stream->timing;
2089 count = resource_get_odm_slice_count(otg_master);
2090 h_active = timing->h_addressable +
2091 timing->h_border_left +
2092 timing->h_border_right;
2093 width = h_active / count;
2094
2095 if (otg_master->stream_res.tg)
2096 two_pixel_alignment_required =
2097 otg_master->stream_res.tg->funcs->is_two_pixels_per_container(timing) ||
2098 /*
2099 * 422 is sub-sampled horizontally. 1 set of chromas
2100 * (Cb/Cr) is shared for 2 lumas (i.e 2 Y values).
2101 * Therefore even if 422 is still 1 pixel per container,
2102 * ODM segment width still needs to be 2 pixel aligned.
2103 */
2104 timing->pixel_encoding == PIXEL_ENCODING_YCBCR422;
2105 if ((width % 2) && two_pixel_alignment_required)
2106 width++;
2107
2108 return is_last_segment ?
2109 h_active - width * (count - 1) :
2110 width;
2111 }
2112
resource_get_odm_slice_dst_rect(struct pipe_ctx * pipe_ctx)2113 struct rect resource_get_odm_slice_dst_rect(struct pipe_ctx *pipe_ctx)
2114 {
2115 const struct dc_stream_state *stream = pipe_ctx->stream;
2116 bool is_last_odm_slice = pipe_ctx->next_odm_pipe == NULL;
2117 struct pipe_ctx *otg_master = resource_get_otg_master(pipe_ctx);
2118 int odm_slice_idx = resource_get_odm_slice_index(pipe_ctx);
2119 int odm_segment_offset = resource_get_odm_slice_dst_width(otg_master, false);
2120 struct rect odm_slice_dst;
2121
2122 odm_slice_dst.x = odm_segment_offset * odm_slice_idx;
2123 odm_slice_dst.width = resource_get_odm_slice_dst_width(otg_master, is_last_odm_slice);
2124 odm_slice_dst.y = 0;
2125 odm_slice_dst.height = stream->timing.v_addressable +
2126 stream->timing.v_border_bottom +
2127 stream->timing.v_border_top;
2128
2129 return odm_slice_dst;
2130 }
2131
resource_get_odm_slice_src_rect(struct pipe_ctx * pipe_ctx)2132 struct rect resource_get_odm_slice_src_rect(struct pipe_ctx *pipe_ctx)
2133 {
2134 struct rect odm_slice_dst;
2135 struct rect odm_slice_src;
2136 struct pipe_ctx *opp_head = resource_get_opp_head(pipe_ctx);
2137 struct output_pixel_processor *opp = opp_head->stream_res.opp;
2138 uint32_t left_edge_extra_pixel_count;
2139
2140 odm_slice_dst = resource_get_odm_slice_dst_rect(opp_head);
2141 odm_slice_src = odm_slice_dst;
2142
2143 if (opp && opp->funcs->opp_get_left_edge_extra_pixel_count)
2144 left_edge_extra_pixel_count =
2145 opp->funcs->opp_get_left_edge_extra_pixel_count(
2146 opp, pipe_ctx->stream->timing.pixel_encoding,
2147 resource_is_pipe_type(opp_head, OTG_MASTER));
2148 else
2149 left_edge_extra_pixel_count = 0;
2150
2151 odm_slice_src.x -= left_edge_extra_pixel_count;
2152 odm_slice_src.width += left_edge_extra_pixel_count;
2153
2154 return odm_slice_src;
2155 }
2156
resource_is_pipe_topology_changed(const struct dc_state * state_a,const struct dc_state * state_b)2157 bool resource_is_pipe_topology_changed(const struct dc_state *state_a,
2158 const struct dc_state *state_b)
2159 {
2160 int i;
2161 const struct pipe_ctx *pipe_a, *pipe_b;
2162
2163 if (state_a->stream_count != state_b->stream_count)
2164 return true;
2165
2166 for (i = 0; i < MAX_PIPES; i++) {
2167 pipe_a = &state_a->res_ctx.pipe_ctx[i];
2168 pipe_b = &state_b->res_ctx.pipe_ctx[i];
2169
2170 if (pipe_a->stream && !pipe_b->stream)
2171 return true;
2172 else if (!pipe_a->stream && pipe_b->stream)
2173 return true;
2174
2175 if (pipe_a->plane_state && !pipe_b->plane_state)
2176 return true;
2177 else if (!pipe_a->plane_state && pipe_b->plane_state)
2178 return true;
2179
2180 if (pipe_a->bottom_pipe && pipe_b->bottom_pipe) {
2181 if (pipe_a->bottom_pipe->pipe_idx != pipe_b->bottom_pipe->pipe_idx)
2182 return true;
2183 if ((pipe_a->bottom_pipe->plane_state == pipe_a->plane_state) &&
2184 (pipe_b->bottom_pipe->plane_state != pipe_b->plane_state))
2185 return true;
2186 else if ((pipe_a->bottom_pipe->plane_state != pipe_a->plane_state) &&
2187 (pipe_b->bottom_pipe->plane_state == pipe_b->plane_state))
2188 return true;
2189 } else if (pipe_a->bottom_pipe || pipe_b->bottom_pipe) {
2190 return true;
2191 }
2192
2193 if (pipe_a->next_odm_pipe && pipe_b->next_odm_pipe) {
2194 if (pipe_a->next_odm_pipe->pipe_idx != pipe_b->next_odm_pipe->pipe_idx)
2195 return true;
2196 } else if (pipe_a->next_odm_pipe || pipe_b->next_odm_pipe) {
2197 return true;
2198 }
2199 }
2200 return false;
2201 }
2202
resource_is_odm_topology_changed(const struct pipe_ctx * otg_master_a,const struct pipe_ctx * otg_master_b)2203 bool resource_is_odm_topology_changed(const struct pipe_ctx *otg_master_a,
2204 const struct pipe_ctx *otg_master_b)
2205 {
2206 const struct pipe_ctx *opp_head_a = otg_master_a;
2207 const struct pipe_ctx *opp_head_b = otg_master_b;
2208
2209 if (!resource_is_pipe_type(otg_master_a, OTG_MASTER) ||
2210 !resource_is_pipe_type(otg_master_b, OTG_MASTER))
2211 return true;
2212
2213 while (opp_head_a && opp_head_b) {
2214 if (opp_head_a->stream_res.opp != opp_head_b->stream_res.opp)
2215 return true;
2216 if ((opp_head_a->next_odm_pipe && !opp_head_b->next_odm_pipe) ||
2217 (!opp_head_a->next_odm_pipe && opp_head_b->next_odm_pipe))
2218 return true;
2219 opp_head_a = opp_head_a->next_odm_pipe;
2220 opp_head_b = opp_head_b->next_odm_pipe;
2221 }
2222
2223 return false;
2224 }
2225
2226 /*
2227 * Sample log:
2228 * pipe topology update
2229 * ________________________
2230 * | plane0 slice0 stream0|
2231 * |DPP0----OPP0----OTG0----| <--- case 0 (OTG master pipe with plane)
2232 * | plane1 | | |
2233 * |DPP1----| | | <--- case 5 (DPP pipe not in last slice)
2234 * | plane0 slice1 | |
2235 * |DPP2----OPP2----| | <--- case 2 (OPP head pipe with plane)
2236 * | plane1 | |
2237 * |DPP3----| | <--- case 4 (DPP pipe in last slice)
2238 * | slice0 stream1|
2239 * |DPG4----OPP4----OTG4----| <--- case 1 (OTG master pipe without plane)
2240 * | slice1 | |
2241 * |DPG5----OPP5----| | <--- case 3 (OPP head pipe without plane)
2242 * |________________________|
2243 */
2244
resource_log_pipe(struct dc * dc,struct pipe_ctx * pipe,int stream_idx,int slice_idx,int plane_idx,int slice_count,bool is_primary)2245 static void resource_log_pipe(struct dc *dc, struct pipe_ctx *pipe,
2246 int stream_idx, int slice_idx, int plane_idx, int slice_count,
2247 bool is_primary)
2248 {
2249 DC_LOGGER_INIT(dc->ctx->logger);
2250
2251 if (slice_idx == 0 && plane_idx == 0 && is_primary) {
2252 /* case 0 (OTG master pipe with plane) */
2253 DC_LOG_DC(" | plane%d slice%d stream%d|",
2254 plane_idx, slice_idx, stream_idx);
2255 DC_LOG_DC(" |DPP%d----OPP%d----OTG%d----|",
2256 pipe->plane_res.dpp->inst,
2257 pipe->stream_res.opp->inst,
2258 pipe->stream_res.tg->inst);
2259 } else if (slice_idx == 0 && plane_idx == -1) {
2260 /* case 1 (OTG master pipe without plane) */
2261 DC_LOG_DC(" | slice%d stream%d|",
2262 slice_idx, stream_idx);
2263 DC_LOG_DC(" |DPG%d----OPP%d----OTG%d----|",
2264 pipe->stream_res.opp->inst,
2265 pipe->stream_res.opp->inst,
2266 pipe->stream_res.tg->inst);
2267 } else if (slice_idx != 0 && plane_idx == 0 && is_primary) {
2268 /* case 2 (OPP head pipe with plane) */
2269 DC_LOG_DC(" | plane%d slice%d | |",
2270 plane_idx, slice_idx);
2271 DC_LOG_DC(" |DPP%d----OPP%d----| |",
2272 pipe->plane_res.dpp->inst,
2273 pipe->stream_res.opp->inst);
2274 } else if (slice_idx != 0 && plane_idx == -1) {
2275 /* case 3 (OPP head pipe without plane) */
2276 DC_LOG_DC(" | slice%d | |", slice_idx);
2277 DC_LOG_DC(" |DPG%d----OPP%d----| |",
2278 pipe->plane_res.dpp->inst,
2279 pipe->stream_res.opp->inst);
2280 } else if (slice_idx == slice_count - 1) {
2281 /* case 4 (DPP pipe in last slice) */
2282 DC_LOG_DC(" | plane%d | |", plane_idx);
2283 DC_LOG_DC(" |DPP%d----| |",
2284 pipe->plane_res.dpp->inst);
2285 } else {
2286 /* case 5 (DPP pipe not in last slice) */
2287 DC_LOG_DC(" | plane%d | | |", plane_idx);
2288 DC_LOG_DC(" |DPP%d----| | |",
2289 pipe->plane_res.dpp->inst);
2290 }
2291 }
2292
resource_log_pipe_for_stream(struct dc * dc,struct dc_state * state,struct pipe_ctx * otg_master,int stream_idx)2293 static void resource_log_pipe_for_stream(struct dc *dc, struct dc_state *state,
2294 struct pipe_ctx *otg_master, int stream_idx)
2295 {
2296 struct pipe_ctx *opp_heads[MAX_PIPES];
2297 struct pipe_ctx *dpp_pipes[MAX_PIPES];
2298
2299 int slice_idx, dpp_idx, plane_idx, slice_count, dpp_count;
2300 bool is_primary;
2301 DC_LOGGER_INIT(dc->ctx->logger);
2302
2303 slice_count = resource_get_opp_heads_for_otg_master(otg_master,
2304 &state->res_ctx, opp_heads);
2305 for (slice_idx = 0; slice_idx < slice_count; slice_idx++) {
2306 plane_idx = -1;
2307 if (opp_heads[slice_idx]->plane_state) {
2308 dpp_count = resource_get_dpp_pipes_for_opp_head(
2309 opp_heads[slice_idx],
2310 &state->res_ctx,
2311 dpp_pipes);
2312 for (dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++) {
2313 is_primary = !dpp_pipes[dpp_idx]->top_pipe ||
2314 dpp_pipes[dpp_idx]->top_pipe->plane_state != dpp_pipes[dpp_idx]->plane_state;
2315 if (is_primary)
2316 plane_idx++;
2317 resource_log_pipe(dc, dpp_pipes[dpp_idx],
2318 stream_idx, slice_idx,
2319 plane_idx, slice_count,
2320 is_primary);
2321 }
2322 } else {
2323 resource_log_pipe(dc, opp_heads[slice_idx],
2324 stream_idx, slice_idx, plane_idx,
2325 slice_count, true);
2326 }
2327
2328 }
2329 }
2330
resource_stream_to_stream_idx(struct dc_state * state,struct dc_stream_state * stream)2331 static int resource_stream_to_stream_idx(struct dc_state *state,
2332 struct dc_stream_state *stream)
2333 {
2334 int i, stream_idx = -1;
2335
2336 for (i = 0; i < state->stream_count; i++)
2337 if (state->streams[i] == stream) {
2338 stream_idx = i;
2339 break;
2340 }
2341
2342 /* never return negative array index */
2343 if (stream_idx == -1) {
2344 ASSERT(0);
2345 return 0;
2346 }
2347
2348 return stream_idx;
2349 }
2350
resource_log_pipe_topology_update(struct dc * dc,struct dc_state * state)2351 void resource_log_pipe_topology_update(struct dc *dc, struct dc_state *state)
2352 {
2353 struct pipe_ctx *otg_master;
2354 int stream_idx, phantom_stream_idx;
2355 DC_LOGGER_INIT(dc->ctx->logger);
2356
2357 DC_LOG_DC(" pipe topology update");
2358 DC_LOG_DC(" ________________________");
2359 for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
2360 if (state->streams[stream_idx]->is_phantom)
2361 continue;
2362
2363 otg_master = resource_get_otg_master_for_stream(
2364 &state->res_ctx, state->streams[stream_idx]);
2365
2366 if (!otg_master)
2367 continue;
2368
2369 resource_log_pipe_for_stream(dc, state, otg_master, stream_idx);
2370 }
2371 if (state->phantom_stream_count > 0) {
2372 DC_LOG_DC(" | (phantom pipes) |");
2373 for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
2374 if (state->stream_status[stream_idx].mall_stream_config.type != SUBVP_MAIN)
2375 continue;
2376
2377 phantom_stream_idx = resource_stream_to_stream_idx(state,
2378 state->stream_status[stream_idx].mall_stream_config.paired_stream);
2379 otg_master = resource_get_otg_master_for_stream(
2380 &state->res_ctx, state->streams[phantom_stream_idx]);
2381 if (!otg_master)
2382 continue;
2383
2384 resource_log_pipe_for_stream(dc, state, otg_master, stream_idx);
2385 }
2386 }
2387 DC_LOG_DC(" |________________________|\n");
2388 }
2389
get_tail_pipe(struct pipe_ctx * head_pipe)2390 static struct pipe_ctx *get_tail_pipe(
2391 struct pipe_ctx *head_pipe)
2392 {
2393 struct pipe_ctx *tail_pipe = head_pipe->bottom_pipe;
2394
2395 while (tail_pipe) {
2396 head_pipe = tail_pipe;
2397 tail_pipe = tail_pipe->bottom_pipe;
2398 }
2399
2400 return head_pipe;
2401 }
2402
get_last_opp_head(struct pipe_ctx * opp_head)2403 static struct pipe_ctx *get_last_opp_head(
2404 struct pipe_ctx *opp_head)
2405 {
2406 ASSERT(resource_is_pipe_type(opp_head, OPP_HEAD));
2407 while (opp_head->next_odm_pipe)
2408 opp_head = opp_head->next_odm_pipe;
2409 return opp_head;
2410 }
2411
get_last_dpp_pipe_in_mpcc_combine(struct pipe_ctx * dpp_pipe)2412 static struct pipe_ctx *get_last_dpp_pipe_in_mpcc_combine(
2413 struct pipe_ctx *dpp_pipe)
2414 {
2415 ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
2416 while (dpp_pipe->bottom_pipe &&
2417 dpp_pipe->plane_state == dpp_pipe->bottom_pipe->plane_state)
2418 dpp_pipe = dpp_pipe->bottom_pipe;
2419 return dpp_pipe;
2420 }
2421
update_pipe_params_after_odm_slice_count_change(struct pipe_ctx * otg_master,struct dc_state * context,const struct resource_pool * pool)2422 static bool update_pipe_params_after_odm_slice_count_change(
2423 struct pipe_ctx *otg_master,
2424 struct dc_state *context,
2425 const struct resource_pool *pool)
2426 {
2427 int i;
2428 struct pipe_ctx *pipe;
2429 bool result = true;
2430
2431 for (i = 0; i < pool->pipe_count && result; i++) {
2432 pipe = &context->res_ctx.pipe_ctx[i];
2433 if (pipe->stream == otg_master->stream && pipe->plane_state)
2434 result = resource_build_scaling_params(pipe);
2435 }
2436
2437 if (pool->funcs->build_pipe_pix_clk_params)
2438 pool->funcs->build_pipe_pix_clk_params(otg_master);
2439
2440 resource_build_test_pattern_params(&context->res_ctx, otg_master);
2441
2442 return result;
2443 }
2444
update_pipe_params_after_mpc_slice_count_change(const struct dc_plane_state * plane,struct dc_state * context,const struct resource_pool * pool)2445 static bool update_pipe_params_after_mpc_slice_count_change(
2446 const struct dc_plane_state *plane,
2447 struct dc_state *context,
2448 const struct resource_pool *pool)
2449 {
2450 int i;
2451 struct pipe_ctx *pipe;
2452 bool result = true;
2453
2454 for (i = 0; i < pool->pipe_count && result; i++) {
2455 pipe = &context->res_ctx.pipe_ctx[i];
2456 if (pipe->plane_state == plane)
2457 result = resource_build_scaling_params(pipe);
2458 }
2459 return result;
2460 }
2461
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2462 static int acquire_first_split_pipe(
2463 struct resource_context *res_ctx,
2464 const struct resource_pool *pool,
2465 struct dc_stream_state *stream)
2466 {
2467 int i;
2468
2469 for (i = 0; i < pool->pipe_count; i++) {
2470 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
2471
2472 if (split_pipe->top_pipe &&
2473 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
2474 split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
2475 if (split_pipe->bottom_pipe)
2476 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
2477
2478 if (split_pipe->top_pipe->plane_state)
2479 resource_build_scaling_params(split_pipe->top_pipe);
2480
2481 memset(split_pipe, 0, sizeof(*split_pipe));
2482 split_pipe->stream_res.tg = pool->timing_generators[i];
2483 split_pipe->plane_res.hubp = pool->hubps[i];
2484 split_pipe->plane_res.ipp = pool->ipps[i];
2485 split_pipe->plane_res.dpp = pool->dpps[i];
2486 split_pipe->stream_res.opp = pool->opps[i];
2487 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
2488 split_pipe->pipe_idx = i;
2489
2490 split_pipe->stream = stream;
2491 return i;
2492 }
2493 }
2494 return FREE_PIPE_INDEX_NOT_FOUND;
2495 }
2496
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)2497 static void update_stream_engine_usage(
2498 struct resource_context *res_ctx,
2499 const struct resource_pool *pool,
2500 struct stream_encoder *stream_enc,
2501 bool acquired)
2502 {
2503 int i;
2504
2505 for (i = 0; i < pool->stream_enc_count; i++) {
2506 if (pool->stream_enc[i] == stream_enc)
2507 res_ctx->is_stream_enc_acquired[i] = acquired;
2508 }
2509 }
2510
update_hpo_dp_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct hpo_dp_stream_encoder * hpo_dp_stream_enc,bool acquired)2511 static void update_hpo_dp_stream_engine_usage(
2512 struct resource_context *res_ctx,
2513 const struct resource_pool *pool,
2514 struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
2515 bool acquired)
2516 {
2517 int i;
2518
2519 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2520 if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
2521 res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
2522 }
2523 }
2524
find_acquired_hpo_dp_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)2525 static inline int find_acquired_hpo_dp_link_enc_for_link(
2526 const struct resource_context *res_ctx,
2527 const struct dc_link *link)
2528 {
2529 int i;
2530
2531 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
2532 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
2533 res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
2534 return i;
2535
2536 return -1;
2537 }
2538
find_free_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * pool)2539 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2540 const struct resource_pool *pool)
2541 {
2542 int i;
2543
2544 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2545 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2546 break;
2547
2548 return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2549 i < pool->hpo_dp_link_enc_count) ? i : -1;
2550 }
2551
acquire_hpo_dp_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)2552 static inline void acquire_hpo_dp_link_enc(
2553 struct resource_context *res_ctx,
2554 unsigned int link_index,
2555 int enc_index)
2556 {
2557 res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2558 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2559 }
2560
retain_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2561 static inline void retain_hpo_dp_link_enc(
2562 struct resource_context *res_ctx,
2563 int enc_index)
2564 {
2565 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2566 }
2567
release_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2568 static inline void release_hpo_dp_link_enc(
2569 struct resource_context *res_ctx,
2570 int enc_index)
2571 {
2572 ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2573 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2574 }
2575
add_hpo_dp_link_enc_to_ctx(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2576 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2577 const struct resource_pool *pool,
2578 struct pipe_ctx *pipe_ctx,
2579 struct dc_stream_state *stream)
2580 {
2581 int enc_index;
2582
2583 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2584
2585 if (enc_index >= 0) {
2586 retain_hpo_dp_link_enc(res_ctx, enc_index);
2587 } else {
2588 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2589 if (enc_index >= 0)
2590 acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2591 }
2592
2593 if (enc_index >= 0)
2594 pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2595
2596 return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2597 }
2598
remove_hpo_dp_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2599 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2600 struct pipe_ctx *pipe_ctx,
2601 struct dc_stream_state *stream)
2602 {
2603 int enc_index;
2604
2605 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2606
2607 if (enc_index >= 0) {
2608 release_hpo_dp_link_enc(res_ctx, enc_index);
2609 pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2610 }
2611 }
2612
get_num_of_free_pipes(const struct resource_pool * pool,const struct dc_state * context)2613 static int get_num_of_free_pipes(const struct resource_pool *pool, const struct dc_state *context)
2614 {
2615 int i;
2616 int count = 0;
2617
2618 for (i = 0; i < pool->pipe_count; i++)
2619 if (resource_is_pipe_type(&context->res_ctx.pipe_ctx[i], FREE_PIPE))
2620 count++;
2621 return count;
2622 }
2623
resource_add_otg_master_for_stream_output(struct dc_state * new_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2624 enum dc_status resource_add_otg_master_for_stream_output(struct dc_state *new_ctx,
2625 const struct resource_pool *pool,
2626 struct dc_stream_state *stream)
2627 {
2628 struct dc *dc = stream->ctx->dc;
2629
2630 return dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2631 }
2632
resource_remove_otg_master_for_stream_output(struct dc_state * context,const struct resource_pool * pool,struct dc_stream_state * stream)2633 void resource_remove_otg_master_for_stream_output(struct dc_state *context,
2634 const struct resource_pool *pool,
2635 struct dc_stream_state *stream)
2636 {
2637 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
2638 &context->res_ctx, stream);
2639
2640 if (!otg_master)
2641 return;
2642
2643 ASSERT(resource_get_odm_slice_count(otg_master) == 1);
2644 ASSERT(otg_master->plane_state == NULL);
2645 ASSERT(otg_master->stream_res.stream_enc);
2646 update_stream_engine_usage(
2647 &context->res_ctx,
2648 pool,
2649 otg_master->stream_res.stream_enc,
2650 false);
2651
2652 if (stream->ctx->dc->link_srv->dp_is_128b_132b_signal(otg_master)) {
2653 update_hpo_dp_stream_engine_usage(
2654 &context->res_ctx, pool,
2655 otg_master->stream_res.hpo_dp_stream_enc,
2656 false);
2657 remove_hpo_dp_link_enc_from_ctx(
2658 &context->res_ctx, otg_master, stream);
2659 }
2660 if (otg_master->stream_res.audio)
2661 update_audio_usage(
2662 &context->res_ctx,
2663 pool,
2664 otg_master->stream_res.audio,
2665 false);
2666
2667 resource_unreference_clock_source(&context->res_ctx,
2668 pool,
2669 otg_master->clock_source);
2670
2671 if (pool->funcs->remove_stream_from_ctx)
2672 pool->funcs->remove_stream_from_ctx(
2673 stream->ctx->dc, context, stream);
2674 memset(otg_master, 0, sizeof(*otg_master));
2675 }
2676
2677 /* For each OPP head of an OTG master, add top plane at plane index 0.
2678 *
2679 * In the following example, the stream has 2 ODM slices without a top plane.
2680 * By adding a plane 0 to OPP heads, we are configuring our hardware to render
2681 * plane 0 by using each OPP head's DPP.
2682 *
2683 * Inter-pipe Relation (Before Adding Plane)
2684 * __________________________________________________
2685 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2686 * | | | slice 0 | |
2687 * | 0 | |blank ----ODM----------- |
2688 * | | | slice 1 | | |
2689 * | 1 | |blank ---- | |
2690 * |________|_______________|___________|_____________|
2691 *
2692 * Inter-pipe Relation (After Adding Plane)
2693 * __________________________________________________
2694 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2695 * | | plane 0 | slice 0 | |
2696 * | 0 | -------------------------ODM----------- |
2697 * | | plane 0 | slice 1 | | |
2698 * | 1 | ------------------------- | |
2699 * |________|_______________|___________|_____________|
2700 */
add_plane_to_opp_head_pipes(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * context)2701 static bool add_plane_to_opp_head_pipes(struct pipe_ctx *otg_master_pipe,
2702 struct dc_plane_state *plane_state,
2703 struct dc_state *context)
2704 {
2705 struct pipe_ctx *opp_head_pipe = otg_master_pipe;
2706
2707 while (opp_head_pipe) {
2708 if (opp_head_pipe->plane_state) {
2709 ASSERT(0);
2710 return false;
2711 }
2712 opp_head_pipe->plane_state = plane_state;
2713 opp_head_pipe = opp_head_pipe->next_odm_pipe;
2714 }
2715
2716 return true;
2717 }
2718
2719 /* For each OPP head of an OTG master, acquire a secondary DPP pipe and add
2720 * the plane. So the plane is added to all ODM slices associated with the OTG
2721 * master pipe in the bottom layer.
2722 *
2723 * In the following example, the stream has 2 ODM slices and a top plane 0.
2724 * By acquiring secondary DPP pipes and adding a plane 1, we are configuring our
2725 * hardware to render the plane 1 by acquiring a new pipe for each ODM slice and
2726 * render plane 1 using new pipes' DPP in the Z axis below plane 0.
2727 *
2728 * Inter-pipe Relation (Before Adding Plane)
2729 * __________________________________________________
2730 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2731 * | | plane 0 | slice 0 | |
2732 * | 0 | -------------------------ODM----------- |
2733 * | | plane 0 | slice 1 | | |
2734 * | 1 | ------------------------- | |
2735 * |________|_______________|___________|_____________|
2736 *
2737 * Inter-pipe Relation (After Acquiring and Adding Plane)
2738 * __________________________________________________
2739 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2740 * | | plane 0 | slice 0 | |
2741 * | 0 | -------------MPC---------ODM----------- |
2742 * | | plane 1 | | | | |
2743 * | 2 | ------------- | | | |
2744 * | | plane 0 | slice 1 | | |
2745 * | 1 | -------------MPC--------- | |
2746 * | | plane 1 | | | |
2747 * | 3 | ------------- | | |
2748 * |________|_______________|___________|_____________|
2749 */
acquire_secondary_dpp_pipes_and_add_plane(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * new_ctx,struct dc_state * cur_ctx,struct resource_pool * pool)2750 static bool acquire_secondary_dpp_pipes_and_add_plane(
2751 struct pipe_ctx *otg_master_pipe,
2752 struct dc_plane_state *plane_state,
2753 struct dc_state *new_ctx,
2754 struct dc_state *cur_ctx,
2755 struct resource_pool *pool)
2756 {
2757 struct pipe_ctx *sec_pipe, *tail_pipe;
2758 struct pipe_ctx *opp_heads[MAX_PIPES];
2759 int opp_head_count;
2760 int i;
2761
2762 if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
2763 ASSERT(0);
2764 return false;
2765 }
2766
2767 opp_head_count = resource_get_opp_heads_for_otg_master(otg_master_pipe,
2768 &new_ctx->res_ctx, opp_heads);
2769 if (get_num_of_free_pipes(pool, new_ctx) < opp_head_count)
2770 /* not enough free pipes */
2771 return false;
2772
2773 for (i = 0; i < opp_head_count; i++) {
2774 sec_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
2775 cur_ctx,
2776 new_ctx,
2777 pool,
2778 opp_heads[i]);
2779 ASSERT(sec_pipe);
2780 sec_pipe->plane_state = plane_state;
2781
2782 /* establish pipe relationship */
2783 tail_pipe = get_tail_pipe(opp_heads[i]);
2784 tail_pipe->bottom_pipe = sec_pipe;
2785 sec_pipe->top_pipe = tail_pipe;
2786 sec_pipe->bottom_pipe = NULL;
2787 if (tail_pipe->prev_odm_pipe) {
2788 ASSERT(tail_pipe->prev_odm_pipe->bottom_pipe);
2789 sec_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
2790 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = sec_pipe;
2791 } else {
2792 sec_pipe->prev_odm_pipe = NULL;
2793 }
2794 }
2795 return true;
2796 }
2797
resource_append_dpp_pipes_for_plane_composition(struct dc_state * new_ctx,struct dc_state * cur_ctx,struct resource_pool * pool,struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state)2798 bool resource_append_dpp_pipes_for_plane_composition(
2799 struct dc_state *new_ctx,
2800 struct dc_state *cur_ctx,
2801 struct resource_pool *pool,
2802 struct pipe_ctx *otg_master_pipe,
2803 struct dc_plane_state *plane_state)
2804 {
2805 bool success;
2806
2807 if (otg_master_pipe->plane_state == NULL)
2808 success = add_plane_to_opp_head_pipes(otg_master_pipe,
2809 plane_state, new_ctx);
2810 else
2811 success = acquire_secondary_dpp_pipes_and_add_plane(
2812 otg_master_pipe, plane_state, new_ctx,
2813 cur_ctx, pool);
2814 if (success) {
2815 /* when appending a plane mpc slice count changes from 0 to 1 */
2816 success = update_pipe_params_after_mpc_slice_count_change(
2817 plane_state, new_ctx, pool);
2818 if (!success)
2819 resource_remove_dpp_pipes_for_plane_composition(new_ctx,
2820 pool, plane_state);
2821 }
2822
2823 return success;
2824 }
2825
resource_remove_dpp_pipes_for_plane_composition(struct dc_state * context,const struct resource_pool * pool,const struct dc_plane_state * plane_state)2826 void resource_remove_dpp_pipes_for_plane_composition(
2827 struct dc_state *context,
2828 const struct resource_pool *pool,
2829 const struct dc_plane_state *plane_state)
2830 {
2831 int i;
2832
2833 for (i = pool->pipe_count - 1; i >= 0; i--) {
2834 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2835
2836 if (pipe_ctx->plane_state == plane_state) {
2837 if (pipe_ctx->top_pipe)
2838 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
2839
2840 /* Second condition is to avoid setting NULL to top pipe
2841 * of tail pipe making it look like head pipe in subsequent
2842 * deletes
2843 */
2844 if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
2845 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
2846
2847 /*
2848 * For head pipe detach surfaces from pipe for tail
2849 * pipe just zero it out
2850 */
2851 if (!pipe_ctx->top_pipe)
2852 pipe_ctx->plane_state = NULL;
2853 else
2854 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
2855 }
2856 }
2857 }
2858
2859 /*
2860 * Increase ODM slice count by 1 by acquiring pipes and adding a new ODM slice
2861 * at the last index.
2862 * return - true if a new ODM slice is added and required pipes are acquired.
2863 * false if new_ctx is no longer a valid state after new ODM slice is added.
2864 *
2865 * This is achieved by duplicating MPC blending tree from previous ODM slice.
2866 * In the following example, we have a single MPC tree and 1 ODM slice 0. We
2867 * want to add a new odm slice by duplicating the MPC blending tree and add
2868 * ODM slice 1.
2869 *
2870 * Inter-pipe Relation (Before Acquiring and Adding ODM Slice)
2871 * __________________________________________________
2872 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2873 * | | plane 0 | slice 0 | |
2874 * | 0 | -------------MPC---------ODM----------- |
2875 * | | plane 1 | | | |
2876 * | 1 | ------------- | | |
2877 * |________|_______________|___________|_____________|
2878 *
2879 * Inter-pipe Relation (After Acquiring and Adding ODM Slice)
2880 * __________________________________________________
2881 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2882 * | | plane 0 | slice 0 | |
2883 * | 0 | -------------MPC---------ODM----------- |
2884 * | | plane 1 | | | | |
2885 * | 1 | ------------- | | | |
2886 * | | plane 0 | slice 1 | | |
2887 * | 2 | -------------MPC--------- | |
2888 * | | plane 1 | | | |
2889 * | 3 | ------------- | | |
2890 * |________|_______________|___________|_____________|
2891 */
acquire_pipes_and_add_odm_slice(struct pipe_ctx * otg_master_pipe,struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool)2892 static bool acquire_pipes_and_add_odm_slice(
2893 struct pipe_ctx *otg_master_pipe,
2894 struct dc_state *new_ctx,
2895 const struct dc_state *cur_ctx,
2896 const struct resource_pool *pool)
2897 {
2898 struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
2899 struct pipe_ctx *new_opp_head;
2900 struct pipe_ctx *last_top_dpp_pipe, *last_bottom_dpp_pipe,
2901 *new_top_dpp_pipe, *new_bottom_dpp_pipe;
2902
2903 if (!pool->funcs->acquire_free_pipe_as_secondary_opp_head) {
2904 ASSERT(0);
2905 return false;
2906 }
2907 new_opp_head = pool->funcs->acquire_free_pipe_as_secondary_opp_head(
2908 cur_ctx, new_ctx, pool,
2909 otg_master_pipe);
2910 if (!new_opp_head)
2911 return false;
2912
2913 last_opp_head->next_odm_pipe = new_opp_head;
2914 new_opp_head->prev_odm_pipe = last_opp_head;
2915 new_opp_head->next_odm_pipe = NULL;
2916 new_opp_head->plane_state = last_opp_head->plane_state;
2917 last_top_dpp_pipe = last_opp_head;
2918 new_top_dpp_pipe = new_opp_head;
2919
2920 while (last_top_dpp_pipe->bottom_pipe) {
2921 last_bottom_dpp_pipe = last_top_dpp_pipe->bottom_pipe;
2922 new_bottom_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
2923 cur_ctx, new_ctx, pool,
2924 new_opp_head);
2925 if (!new_bottom_dpp_pipe)
2926 return false;
2927
2928 new_bottom_dpp_pipe->plane_state = last_bottom_dpp_pipe->plane_state;
2929 new_top_dpp_pipe->bottom_pipe = new_bottom_dpp_pipe;
2930 new_bottom_dpp_pipe->top_pipe = new_top_dpp_pipe;
2931 last_bottom_dpp_pipe->next_odm_pipe = new_bottom_dpp_pipe;
2932 new_bottom_dpp_pipe->prev_odm_pipe = last_bottom_dpp_pipe;
2933 new_bottom_dpp_pipe->next_odm_pipe = NULL;
2934 last_top_dpp_pipe = last_bottom_dpp_pipe;
2935 }
2936
2937 return true;
2938 }
2939
2940 /*
2941 * Decrease ODM slice count by 1 by releasing pipes and removing the ODM slice
2942 * at the last index.
2943 * return - true if the last ODM slice is removed and related pipes are
2944 * released. false if there is no removable ODM slice.
2945 *
2946 * In the following example, we have 2 MPC trees and ODM slice 0 and slice 1.
2947 * We want to remove the last ODM i.e slice 1. We are releasing secondary DPP
2948 * pipe 3 and OPP head pipe 2.
2949 *
2950 * Inter-pipe Relation (Before Releasing and Removing ODM Slice)
2951 * __________________________________________________
2952 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2953 * | | plane 0 | slice 0 | |
2954 * | 0 | -------------MPC---------ODM----------- |
2955 * | | plane 1 | | | | |
2956 * | 1 | ------------- | | | |
2957 * | | plane 0 | slice 1 | | |
2958 * | 2 | -------------MPC--------- | |
2959 * | | plane 1 | | | |
2960 * | 3 | ------------- | | |
2961 * |________|_______________|___________|_____________|
2962 *
2963 * Inter-pipe Relation (After Releasing and Removing ODM Slice)
2964 * __________________________________________________
2965 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2966 * | | plane 0 | slice 0 | |
2967 * | 0 | -------------MPC---------ODM----------- |
2968 * | | plane 1 | | | |
2969 * | 1 | ------------- | | |
2970 * |________|_______________|___________|_____________|
2971 */
release_pipes_and_remove_odm_slice(struct pipe_ctx * otg_master_pipe,struct dc_state * context,const struct resource_pool * pool)2972 static bool release_pipes_and_remove_odm_slice(
2973 struct pipe_ctx *otg_master_pipe,
2974 struct dc_state *context,
2975 const struct resource_pool *pool)
2976 {
2977 struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
2978 struct pipe_ctx *tail_pipe = get_tail_pipe(last_opp_head);
2979
2980 if (!pool->funcs->release_pipe) {
2981 ASSERT(0);
2982 return false;
2983 }
2984
2985 if (resource_is_pipe_type(last_opp_head, OTG_MASTER))
2986 return false;
2987
2988 while (tail_pipe->top_pipe) {
2989 tail_pipe->prev_odm_pipe->next_odm_pipe = NULL;
2990 tail_pipe = tail_pipe->top_pipe;
2991 pool->funcs->release_pipe(context, tail_pipe->bottom_pipe, pool);
2992 tail_pipe->bottom_pipe = NULL;
2993 }
2994 last_opp_head->prev_odm_pipe->next_odm_pipe = NULL;
2995 pool->funcs->release_pipe(context, last_opp_head, pool);
2996
2997 return true;
2998 }
2999
3000 /*
3001 * Increase MPC slice count by 1 by acquiring a new DPP pipe and add it as the
3002 * last MPC slice of the plane associated with dpp_pipe.
3003 *
3004 * return - true if a new MPC slice is added and required pipes are acquired.
3005 * false if new_ctx is no longer a valid state after new MPC slice is added.
3006 *
3007 * In the following example, we add a new MPC slice for plane 0 into the
3008 * new_ctx. To do so we pass pipe 0 as dpp_pipe. The function acquires a new DPP
3009 * pipe 2 for plane 0 as the bottom most pipe for plane 0.
3010 *
3011 * Inter-pipe Relation (Before Acquiring and Adding MPC Slice)
3012 * __________________________________________________
3013 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3014 * | | plane 0 | | |
3015 * | 0 | -------------MPC----------------------- |
3016 * | | plane 1 | | | |
3017 * | 1 | ------------- | | |
3018 * |________|_______________|___________|_____________|
3019 *
3020 * Inter-pipe Relation (After Acquiring and Adding MPC Slice)
3021 * __________________________________________________
3022 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3023 * | | plane 0 | | |
3024 * | 0 | -------------MPC----------------------- |
3025 * | | plane 0 | | | |
3026 * | 2 | ------------- | | |
3027 * | | plane 1 | | | |
3028 * | 1 | ------------- | | |
3029 * |________|_______________|___________|_____________|
3030 */
acquire_dpp_pipe_and_add_mpc_slice(struct pipe_ctx * dpp_pipe,struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool)3031 static bool acquire_dpp_pipe_and_add_mpc_slice(
3032 struct pipe_ctx *dpp_pipe,
3033 struct dc_state *new_ctx,
3034 const struct dc_state *cur_ctx,
3035 const struct resource_pool *pool)
3036 {
3037 struct pipe_ctx *last_dpp_pipe =
3038 get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
3039 struct pipe_ctx *opp_head = resource_get_opp_head(dpp_pipe);
3040 struct pipe_ctx *new_dpp_pipe;
3041
3042 if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
3043 ASSERT(0);
3044 return false;
3045 }
3046 new_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
3047 cur_ctx, new_ctx, pool, opp_head);
3048 if (!new_dpp_pipe || resource_get_odm_slice_count(dpp_pipe) > 1)
3049 return false;
3050
3051 new_dpp_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
3052 if (new_dpp_pipe->bottom_pipe)
3053 new_dpp_pipe->bottom_pipe->top_pipe = new_dpp_pipe;
3054 new_dpp_pipe->top_pipe = last_dpp_pipe;
3055 last_dpp_pipe->bottom_pipe = new_dpp_pipe;
3056 new_dpp_pipe->plane_state = last_dpp_pipe->plane_state;
3057
3058 return true;
3059 }
3060
3061 /*
3062 * Reduce MPC slice count by 1 by releasing the bottom DPP pipe in MPCC combine
3063 * with dpp_pipe and removing last MPC slice of the plane associated with
3064 * dpp_pipe.
3065 *
3066 * return - true if the last MPC slice of the plane associated with dpp_pipe is
3067 * removed and last DPP pipe in MPCC combine with dpp_pipe is released.
3068 * false if there is no removable MPC slice.
3069 *
3070 * In the following example, we remove an MPC slice for plane 0 from the
3071 * context. To do so we pass pipe 0 as dpp_pipe. The function releases pipe 1 as
3072 * it is the last pipe for plane 0.
3073 *
3074 * Inter-pipe Relation (Before Releasing and Removing MPC Slice)
3075 * __________________________________________________
3076 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3077 * | | plane 0 | | |
3078 * | 0 | -------------MPC----------------------- |
3079 * | | plane 0 | | | |
3080 * | 1 | ------------- | | |
3081 * | | plane 1 | | | |
3082 * | 2 | ------------- | | |
3083 * |________|_______________|___________|_____________|
3084 *
3085 * Inter-pipe Relation (After Releasing and Removing MPC Slice)
3086 * __________________________________________________
3087 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3088 * | | plane 0 | | |
3089 * | 0 | -------------MPC----------------------- |
3090 * | | plane 1 | | | |
3091 * | 2 | ------------- | | |
3092 * |________|_______________|___________|_____________|
3093 */
release_dpp_pipe_and_remove_mpc_slice(struct pipe_ctx * dpp_pipe,struct dc_state * context,const struct resource_pool * pool)3094 static bool release_dpp_pipe_and_remove_mpc_slice(
3095 struct pipe_ctx *dpp_pipe,
3096 struct dc_state *context,
3097 const struct resource_pool *pool)
3098 {
3099 struct pipe_ctx *last_dpp_pipe =
3100 get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
3101
3102 if (!pool->funcs->release_pipe) {
3103 ASSERT(0);
3104 return false;
3105 }
3106
3107 if (resource_is_pipe_type(last_dpp_pipe, OPP_HEAD) ||
3108 resource_get_odm_slice_count(dpp_pipe) > 1)
3109 return false;
3110
3111 last_dpp_pipe->top_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
3112 if (last_dpp_pipe->bottom_pipe)
3113 last_dpp_pipe->bottom_pipe->top_pipe = last_dpp_pipe->top_pipe;
3114 pool->funcs->release_pipe(context, last_dpp_pipe, pool);
3115
3116 return true;
3117 }
3118
resource_update_pipes_for_stream_with_slice_count(struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool,const struct dc_stream_state * stream,int new_slice_count)3119 bool resource_update_pipes_for_stream_with_slice_count(
3120 struct dc_state *new_ctx,
3121 const struct dc_state *cur_ctx,
3122 const struct resource_pool *pool,
3123 const struct dc_stream_state *stream,
3124 int new_slice_count)
3125 {
3126 int i;
3127 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
3128 &new_ctx->res_ctx, stream);
3129 int cur_slice_count;
3130 bool result = true;
3131
3132 if (!otg_master)
3133 return false;
3134
3135 cur_slice_count = resource_get_odm_slice_count(otg_master);
3136
3137 if (new_slice_count == cur_slice_count)
3138 return result;
3139
3140 if (new_slice_count > cur_slice_count)
3141 for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
3142 result = acquire_pipes_and_add_odm_slice(
3143 otg_master, new_ctx, cur_ctx, pool);
3144 else
3145 for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
3146 result = release_pipes_and_remove_odm_slice(
3147 otg_master, new_ctx, pool);
3148 if (result)
3149 result = update_pipe_params_after_odm_slice_count_change(
3150 otg_master, new_ctx, pool);
3151 return result;
3152 }
3153
resource_update_pipes_for_plane_with_slice_count(struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool,const struct dc_plane_state * plane,int new_slice_count)3154 bool resource_update_pipes_for_plane_with_slice_count(
3155 struct dc_state *new_ctx,
3156 const struct dc_state *cur_ctx,
3157 const struct resource_pool *pool,
3158 const struct dc_plane_state *plane,
3159 int new_slice_count)
3160 {
3161 int i;
3162 int dpp_pipe_count;
3163 int cur_slice_count;
3164 struct pipe_ctx *dpp_pipes[MAX_PIPES] = {0};
3165 bool result = true;
3166
3167 dpp_pipe_count = resource_get_dpp_pipes_for_plane(plane,
3168 &new_ctx->res_ctx, dpp_pipes);
3169 ASSERT(dpp_pipe_count > 0);
3170 cur_slice_count = resource_get_mpc_slice_count(dpp_pipes[0]);
3171
3172 if (new_slice_count == cur_slice_count)
3173 return result;
3174
3175 if (new_slice_count > cur_slice_count)
3176 for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
3177 result = acquire_dpp_pipe_and_add_mpc_slice(
3178 dpp_pipes[0], new_ctx, cur_ctx, pool);
3179 else
3180 for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
3181 result = release_dpp_pipe_and_remove_mpc_slice(
3182 dpp_pipes[0], new_ctx, pool);
3183 if (result)
3184 result = update_pipe_params_after_mpc_slice_count_change(
3185 dpp_pipes[0]->plane_state, new_ctx, pool);
3186 return result;
3187 }
3188
dc_is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)3189 bool dc_is_timing_changed(struct dc_stream_state *cur_stream,
3190 struct dc_stream_state *new_stream)
3191 {
3192 if (cur_stream == NULL)
3193 return true;
3194
3195 /* If output color space is changed, need to reprogram info frames */
3196 if (cur_stream->output_color_space != new_stream->output_color_space)
3197 return true;
3198
3199 return memcmp(
3200 &cur_stream->timing,
3201 &new_stream->timing,
3202 sizeof(struct dc_crtc_timing)) != 0;
3203 }
3204
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)3205 static bool are_stream_backends_same(
3206 struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
3207 {
3208 if (stream_a == stream_b)
3209 return true;
3210
3211 if (stream_a == NULL || stream_b == NULL)
3212 return false;
3213
3214 if (dc_is_timing_changed(stream_a, stream_b))
3215 return false;
3216
3217 if (stream_a->signal != stream_b->signal)
3218 return false;
3219
3220 if (stream_a->dpms_off != stream_b->dpms_off)
3221 return false;
3222
3223 return true;
3224 }
3225
3226 /*
3227 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
3228 *
3229 * Checks if there a difference between the two states
3230 * that would require a mode change.
3231 *
3232 * Does not compare cursor position or attributes.
3233 */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)3234 bool dc_is_stream_unchanged(
3235 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
3236 {
3237 if (!old_stream || !stream)
3238 return false;
3239
3240 if (!are_stream_backends_same(old_stream, stream))
3241 return false;
3242
3243 if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
3244 return false;
3245
3246 /*compare audio info*/
3247 if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
3248 return false;
3249
3250 return true;
3251 }
3252
3253 /*
3254 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
3255 */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)3256 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
3257 struct dc_stream_state *stream)
3258 {
3259 if (old_stream == stream)
3260 return true;
3261
3262 if (old_stream == NULL || stream == NULL)
3263 return false;
3264
3265 if (memcmp(&old_stream->src,
3266 &stream->src,
3267 sizeof(struct rect)) != 0)
3268 return false;
3269
3270 if (memcmp(&old_stream->dst,
3271 &stream->dst,
3272 sizeof(struct rect)) != 0)
3273 return false;
3274
3275 return true;
3276 }
3277
3278 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)3279 void update_audio_usage(
3280 struct resource_context *res_ctx,
3281 const struct resource_pool *pool,
3282 struct audio *audio,
3283 bool acquired)
3284 {
3285 int i;
3286 for (i = 0; i < pool->audio_count; i++) {
3287 if (pool->audios[i] == audio)
3288 res_ctx->is_audio_acquired[i] = acquired;
3289 }
3290 }
3291
find_first_free_match_hpo_dp_stream_enc_for_link(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3292 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
3293 struct resource_context *res_ctx,
3294 const struct resource_pool *pool,
3295 struct dc_stream_state *stream)
3296 {
3297 int i;
3298
3299 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
3300 if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
3301 pool->hpo_dp_stream_enc[i]) {
3302
3303 return pool->hpo_dp_stream_enc[i];
3304 }
3305 }
3306
3307 return NULL;
3308 }
3309
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)3310 static struct audio *find_first_free_audio(
3311 struct resource_context *res_ctx,
3312 const struct resource_pool *pool,
3313 enum engine_id id,
3314 enum dce_version dc_version)
3315 {
3316 int i, available_audio_count;
3317
3318 if (id == ENGINE_ID_UNKNOWN)
3319 return NULL;
3320
3321 available_audio_count = pool->audio_count;
3322
3323 for (i = 0; i < available_audio_count; i++) {
3324 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
3325 /*we have enough audio endpoint, find the matching inst*/
3326 if (id != i)
3327 continue;
3328 return pool->audios[i];
3329 }
3330 }
3331
3332 /* use engine id to find free audio */
3333 if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
3334 return pool->audios[id];
3335 }
3336 /*not found the matching one, first come first serve*/
3337 for (i = 0; i < available_audio_count; i++) {
3338 if (res_ctx->is_audio_acquired[i] == false) {
3339 return pool->audios[i];
3340 }
3341 }
3342 return NULL;
3343 }
3344
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)3345 static struct dc_stream_state *find_pll_sharable_stream(
3346 struct dc_stream_state *stream_needs_pll,
3347 struct dc_state *context)
3348 {
3349 int i;
3350
3351 for (i = 0; i < context->stream_count; i++) {
3352 struct dc_stream_state *stream_has_pll = context->streams[i];
3353
3354 /* We are looking for non dp, non virtual stream */
3355 if (resource_are_streams_timing_synchronizable(
3356 stream_needs_pll, stream_has_pll)
3357 && !dc_is_dp_signal(stream_has_pll->signal)
3358 && stream_has_pll->link->connector_signal
3359 != SIGNAL_TYPE_VIRTUAL)
3360 return stream_has_pll;
3361
3362 }
3363
3364 return NULL;
3365 }
3366
get_norm_pix_clk(const struct dc_crtc_timing * timing)3367 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
3368 {
3369 uint32_t pix_clk = timing->pix_clk_100hz;
3370 uint32_t normalized_pix_clk = pix_clk;
3371
3372 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
3373 pix_clk /= 2;
3374 if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
3375 switch (timing->display_color_depth) {
3376 case COLOR_DEPTH_666:
3377 case COLOR_DEPTH_888:
3378 normalized_pix_clk = pix_clk;
3379 break;
3380 case COLOR_DEPTH_101010:
3381 normalized_pix_clk = (pix_clk * 30) / 24;
3382 break;
3383 case COLOR_DEPTH_121212:
3384 normalized_pix_clk = (pix_clk * 36) / 24;
3385 break;
3386 case COLOR_DEPTH_161616:
3387 normalized_pix_clk = (pix_clk * 48) / 24;
3388 break;
3389 default:
3390 ASSERT(0);
3391 break;
3392 }
3393 }
3394 return normalized_pix_clk;
3395 }
3396
calculate_phy_pix_clks(struct dc_stream_state * stream)3397 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
3398 {
3399 /* update actual pixel clock on all streams */
3400 if (dc_is_hdmi_signal(stream->signal))
3401 stream->phy_pix_clk = get_norm_pix_clk(
3402 &stream->timing) / 10;
3403 else
3404 stream->phy_pix_clk =
3405 stream->timing.pix_clk_100hz / 10;
3406
3407 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
3408 stream->phy_pix_clk *= 2;
3409 }
3410
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3411 static int acquire_resource_from_hw_enabled_state(
3412 struct resource_context *res_ctx,
3413 const struct resource_pool *pool,
3414 struct dc_stream_state *stream)
3415 {
3416 struct dc_link *link = stream->link;
3417 unsigned int i, inst, tg_inst = 0;
3418 uint32_t numPipes = 1;
3419 uint32_t id_src[4] = {0};
3420
3421 /* Check for enabled DIG to identify enabled display */
3422 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
3423 return -1;
3424
3425 inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
3426
3427 if (inst == ENGINE_ID_UNKNOWN)
3428 return -1;
3429
3430 for (i = 0; i < pool->stream_enc_count; i++) {
3431 if (pool->stream_enc[i]->id == inst) {
3432 tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
3433 pool->stream_enc[i]);
3434 break;
3435 }
3436 }
3437
3438 // tg_inst not found
3439 if (i == pool->stream_enc_count)
3440 return -1;
3441
3442 if (tg_inst >= pool->timing_generator_count)
3443 return -1;
3444
3445 if (!res_ctx->pipe_ctx[tg_inst].stream) {
3446 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
3447
3448 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3449 id_src[0] = tg_inst;
3450
3451 if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
3452 pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
3453 &numPipes, &id_src[0], &id_src[1]);
3454
3455 if (id_src[0] == 0xf && id_src[1] == 0xf) {
3456 id_src[0] = tg_inst;
3457 numPipes = 1;
3458 }
3459
3460 for (i = 0; i < numPipes; i++) {
3461 //Check if src id invalid
3462 if (id_src[i] == 0xf)
3463 return -1;
3464
3465 pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
3466
3467 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3468 pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
3469 pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
3470 pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
3471 pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
3472 pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
3473 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3474
3475 if (pool->dpps[id_src[i]]) {
3476 pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
3477
3478 if (pool->mpc->funcs->read_mpcc_state) {
3479 struct mpcc_state s = {0};
3480
3481 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
3482
3483 if (s.dpp_id < MAX_MPCC)
3484 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
3485 s.dpp_id;
3486
3487 if (s.bot_mpcc_id < MAX_MPCC)
3488 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
3489 &pool->mpc->mpcc_array[s.bot_mpcc_id];
3490
3491 if (s.opp_id < MAX_OPP)
3492 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
3493 }
3494 }
3495 pipe_ctx->pipe_idx = id_src[i];
3496
3497 if (id_src[i] >= pool->timing_generator_count) {
3498 id_src[i] = pool->timing_generator_count - 1;
3499
3500 pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
3501 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3502 }
3503
3504 pipe_ctx->stream = stream;
3505 }
3506
3507 if (numPipes == 2) {
3508 stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
3509 res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
3510 res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
3511 res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
3512 res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
3513 } else
3514 stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
3515
3516 return id_src[0];
3517 }
3518
3519 return -1;
3520 }
3521
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)3522 static void mark_seamless_boot_stream(
3523 const struct dc *dc,
3524 struct dc_stream_state *stream)
3525 {
3526 struct dc_bios *dcb = dc->ctx->dc_bios;
3527
3528 if (dc->config.allow_seamless_boot_optimization &&
3529 !dcb->funcs->is_accelerated_mode(dcb)) {
3530 if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
3531 stream->apply_seamless_boot_optimization = true;
3532 }
3533 }
3534
3535 /*
3536 * Acquire a pipe as OTG master and assign to the stream in new dc context.
3537 * return - true if OTG master pipe is acquired and new dc context is updated.
3538 * false if it fails to acquire an OTG master pipe for this stream.
3539 *
3540 * In the example below, we acquired pipe 0 as OTG master pipe for the stream.
3541 * After the function its Inter-pipe Relation is represented by the diagram
3542 * below.
3543 *
3544 * Inter-pipe Relation
3545 * __________________________________________________
3546 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3547 * | | | | |
3548 * | 0 | |blank ------------------ |
3549 * |________|_______________|___________|_____________|
3550 */
acquire_otg_master_pipe_for_stream(const struct dc_state * cur_ctx,struct dc_state * new_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3551 static bool acquire_otg_master_pipe_for_stream(
3552 const struct dc_state *cur_ctx,
3553 struct dc_state *new_ctx,
3554 const struct resource_pool *pool,
3555 struct dc_stream_state *stream)
3556 {
3557 /* TODO: Move this function to DCN specific resource file and acquire
3558 * DSC resource here. The reason is that the function should have the
3559 * same level of responsibility as when we acquire secondary OPP head.
3560 * We acquire DSC when we acquire secondary OPP head, so we should
3561 * acquire DSC when we acquire OTG master.
3562 */
3563 int pipe_idx;
3564 struct pipe_ctx *pipe_ctx = NULL;
3565
3566 /*
3567 * Upper level code is responsible to optimize unnecessary addition and
3568 * removal for unchanged streams. So unchanged stream will keep the same
3569 * OTG master instance allocated. When current stream is removed and a
3570 * new stream is added, we want to reuse the OTG instance made available
3571 * by the removed stream first. If not found, we try to avoid of using
3572 * any free pipes already used in current context as this could tear
3573 * down exiting ODM/MPC/MPO configuration unnecessarily.
3574 */
3575
3576 /*
3577 * Try to acquire the same OTG master already in use. This is not
3578 * optimal because resetting an enabled OTG master pipe for a new stream
3579 * requires an extra frame of wait. However there are test automation
3580 * and eDP assumptions that rely on reusing the same OTG master pipe
3581 * during mode change. We have to keep this logic as is for now.
3582 */
3583 pipe_idx = recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
3584 &cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3585 /*
3586 * Try to acquire a pipe not used in current resource context to avoid
3587 * pipe swapping.
3588 */
3589 if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3590 pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
3591 &cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3592 /*
3593 * If pipe swapping is unavoidable, try to acquire pipe used as
3594 * secondary DPP pipe in current state as we prioritize to support more
3595 * streams over supporting MPO planes.
3596 */
3597 if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3598 pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp(
3599 &cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3600 if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3601 pipe_idx = resource_find_any_free_pipe(&new_ctx->res_ctx, pool);
3602 if (pipe_idx != FREE_PIPE_INDEX_NOT_FOUND) {
3603 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
3604 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
3605 pipe_ctx->pipe_idx = pipe_idx;
3606 pipe_ctx->stream_res.tg = pool->timing_generators[pipe_idx];
3607 pipe_ctx->plane_res.mi = pool->mis[pipe_idx];
3608 pipe_ctx->plane_res.hubp = pool->hubps[pipe_idx];
3609 pipe_ctx->plane_res.ipp = pool->ipps[pipe_idx];
3610 pipe_ctx->plane_res.xfm = pool->transforms[pipe_idx];
3611 pipe_ctx->plane_res.dpp = pool->dpps[pipe_idx];
3612 pipe_ctx->stream_res.opp = pool->opps[pipe_idx];
3613 if (pool->dpps[pipe_idx])
3614 pipe_ctx->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
3615
3616 if (pipe_idx >= pool->timing_generator_count && pool->timing_generator_count != 0) {
3617 int tg_inst = pool->timing_generator_count - 1;
3618
3619 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3620 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
3621 }
3622
3623 pipe_ctx->stream = stream;
3624 } else {
3625 pipe_idx = acquire_first_split_pipe(&new_ctx->res_ctx, pool, stream);
3626 }
3627
3628 return pipe_idx != FREE_PIPE_INDEX_NOT_FOUND;
3629 }
3630
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)3631 enum dc_status resource_map_pool_resources(
3632 const struct dc *dc,
3633 struct dc_state *context,
3634 struct dc_stream_state *stream)
3635 {
3636 const struct resource_pool *pool = dc->res_pool;
3637 int i;
3638 struct dc_context *dc_ctx = dc->ctx;
3639 struct pipe_ctx *pipe_ctx = NULL;
3640 int pipe_idx = -1;
3641 bool acquired = false;
3642
3643 calculate_phy_pix_clks(stream);
3644
3645 mark_seamless_boot_stream(dc, stream);
3646
3647 if (stream->apply_seamless_boot_optimization) {
3648 pipe_idx = acquire_resource_from_hw_enabled_state(
3649 &context->res_ctx,
3650 pool,
3651 stream);
3652 if (pipe_idx < 0)
3653 /* hw resource was assigned to other stream */
3654 stream->apply_seamless_boot_optimization = false;
3655 else
3656 acquired = true;
3657 }
3658
3659 if (!acquired)
3660 /* acquire new resources */
3661 acquired = acquire_otg_master_pipe_for_stream(dc->current_state,
3662 context, pool, stream);
3663
3664 pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
3665
3666 if (!pipe_ctx || pipe_ctx->stream_res.tg == NULL)
3667 return DC_NO_CONTROLLER_RESOURCE;
3668
3669 pipe_ctx->stream_res.stream_enc =
3670 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
3671 &context->res_ctx, pool, stream);
3672
3673 if (!pipe_ctx->stream_res.stream_enc)
3674 return DC_NO_STREAM_ENC_RESOURCE;
3675
3676 update_stream_engine_usage(
3677 &context->res_ctx, pool,
3678 pipe_ctx->stream_res.stream_enc,
3679 true);
3680
3681 /* Allocate DP HPO Stream Encoder based on signal, hw capabilities
3682 * and link settings
3683 */
3684 if (dc_is_dp_signal(stream->signal) ||
3685 dc_is_virtual_signal(stream->signal)) {
3686 if (!dc->link_srv->dp_decide_link_settings(stream,
3687 &pipe_ctx->link_config.dp_link_settings))
3688 return DC_FAIL_DP_LINK_BANDWIDTH;
3689 if (dc->link_srv->dp_get_encoding_format(
3690 &pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
3691 pipe_ctx->stream_res.hpo_dp_stream_enc =
3692 find_first_free_match_hpo_dp_stream_enc_for_link(
3693 &context->res_ctx, pool, stream);
3694
3695 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
3696 return DC_NO_STREAM_ENC_RESOURCE;
3697
3698 update_hpo_dp_stream_engine_usage(
3699 &context->res_ctx, pool,
3700 pipe_ctx->stream_res.hpo_dp_stream_enc,
3701 true);
3702 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
3703 return DC_NO_LINK_ENC_RESOURCE;
3704 }
3705 }
3706
3707 /* TODO: Add check if ASIC support and EDID audio */
3708 if (!stream->converter_disable_audio &&
3709 dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
3710 stream->audio_info.mode_count && stream->audio_info.flags.all) {
3711 pipe_ctx->stream_res.audio = find_first_free_audio(
3712 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
3713
3714 /*
3715 * Audio assigned in order first come first get.
3716 * There are asics which has number of audio
3717 * resources less then number of pipes
3718 */
3719 if (pipe_ctx->stream_res.audio)
3720 update_audio_usage(&context->res_ctx, pool,
3721 pipe_ctx->stream_res.audio, true);
3722 }
3723
3724 /* Add ABM to the resource if on EDP */
3725 if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
3726 if (pool->abm)
3727 pipe_ctx->stream_res.abm = pool->abm;
3728 else
3729 pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
3730 }
3731
3732 for (i = 0; i < context->stream_count; i++)
3733 if (context->streams[i] == stream) {
3734 context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
3735 context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
3736 context->stream_status[i].audio_inst =
3737 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
3738
3739 return DC_OK;
3740 }
3741
3742 DC_ERROR("Stream %p not found in new ctx!\n", stream);
3743 return DC_ERROR_UNEXPECTED;
3744 }
3745
dc_resource_is_dsc_encoding_supported(const struct dc * dc)3746 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
3747 {
3748 if (dc->res_pool == NULL)
3749 return false;
3750
3751 return dc->res_pool->res_cap->num_dsc > 0;
3752 }
3753
planes_changed_for_existing_stream(struct dc_state * context,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count)3754 static bool planes_changed_for_existing_stream(struct dc_state *context,
3755 struct dc_stream_state *stream,
3756 const struct dc_validation_set set[],
3757 int set_count)
3758 {
3759 int i, j;
3760 struct dc_stream_status *stream_status = NULL;
3761
3762 for (i = 0; i < context->stream_count; i++) {
3763 if (context->streams[i] == stream) {
3764 stream_status = &context->stream_status[i];
3765 break;
3766 }
3767 }
3768
3769 if (!stream_status) {
3770 ASSERT(0);
3771 return false;
3772 }
3773
3774 for (i = 0; i < set_count; i++)
3775 if (set[i].stream == stream)
3776 break;
3777
3778 if (i == set_count)
3779 ASSERT(0);
3780
3781 if (set[i].plane_count != stream_status->plane_count)
3782 return true;
3783
3784 for (j = 0; j < set[i].plane_count; j++)
3785 if (set[i].plane_states[j] != stream_status->plane_states[j])
3786 return true;
3787
3788 return false;
3789 }
3790
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * state)3791 static bool add_all_planes_for_stream(
3792 const struct dc *dc,
3793 struct dc_stream_state *stream,
3794 const struct dc_validation_set set[],
3795 int set_count,
3796 struct dc_state *state)
3797 {
3798 int i, j;
3799
3800 for (i = 0; i < set_count; i++)
3801 if (set[i].stream == stream)
3802 break;
3803
3804 if (i == set_count) {
3805 dm_error("Stream %p not found in set!\n", stream);
3806 return false;
3807 }
3808
3809 for (j = 0; j < set[i].plane_count; j++)
3810 if (!dc_state_add_plane(dc, stream, set[i].plane_states[j], state))
3811 return false;
3812
3813 return true;
3814 }
3815
3816 /**
3817 * dc_validate_with_context - Validate and update the potential new stream in the context object
3818 *
3819 * @dc: Used to get the current state status
3820 * @set: An array of dc_validation_set with all the current streams reference
3821 * @set_count: Total of streams
3822 * @context: New context
3823 * @fast_validate: Enable or disable fast validation
3824 *
3825 * This function updates the potential new stream in the context object. It
3826 * creates multiple lists for the add, remove, and unchanged streams. In
3827 * particular, if the unchanged streams have a plane that changed, it is
3828 * necessary to remove all planes from the unchanged streams. In summary, this
3829 * function is responsible for validating the new context.
3830 *
3831 * Return:
3832 * In case of success, return DC_OK (1), otherwise, return a DC error.
3833 */
dc_validate_with_context(struct dc * dc,const struct dc_validation_set set[],int set_count,struct dc_state * context,bool fast_validate)3834 enum dc_status dc_validate_with_context(struct dc *dc,
3835 const struct dc_validation_set set[],
3836 int set_count,
3837 struct dc_state *context,
3838 bool fast_validate)
3839 {
3840 struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
3841 struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
3842 struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
3843 int old_stream_count = context->stream_count;
3844 enum dc_status res = DC_ERROR_UNEXPECTED;
3845 int unchanged_streams_count = 0;
3846 int del_streams_count = 0;
3847 int add_streams_count = 0;
3848 bool found = false;
3849 int i, j, k;
3850
3851 DC_LOGGER_INIT(dc->ctx->logger);
3852
3853 /* First build a list of streams to be remove from current context */
3854 for (i = 0; i < old_stream_count; i++) {
3855 struct dc_stream_state *stream = context->streams[i];
3856
3857 for (j = 0; j < set_count; j++) {
3858 if (stream == set[j].stream) {
3859 found = true;
3860 break;
3861 }
3862 }
3863
3864 if (!found)
3865 del_streams[del_streams_count++] = stream;
3866
3867 found = false;
3868 }
3869
3870 /* Second, build a list of new streams */
3871 for (i = 0; i < set_count; i++) {
3872 struct dc_stream_state *stream = set[i].stream;
3873
3874 for (j = 0; j < old_stream_count; j++) {
3875 if (stream == context->streams[j]) {
3876 found = true;
3877 break;
3878 }
3879 }
3880
3881 if (!found)
3882 add_streams[add_streams_count++] = stream;
3883
3884 found = false;
3885 }
3886
3887 /* Build a list of unchanged streams which is necessary for handling
3888 * planes change such as added, removed, and updated.
3889 */
3890 for (i = 0; i < set_count; i++) {
3891 /* Check if stream is part of the delete list */
3892 for (j = 0; j < del_streams_count; j++) {
3893 if (set[i].stream == del_streams[j]) {
3894 found = true;
3895 break;
3896 }
3897 }
3898
3899 if (!found) {
3900 /* Check if stream is part of the add list */
3901 for (j = 0; j < add_streams_count; j++) {
3902 if (set[i].stream == add_streams[j]) {
3903 found = true;
3904 break;
3905 }
3906 }
3907 }
3908
3909 if (!found)
3910 unchanged_streams[unchanged_streams_count++] = set[i].stream;
3911
3912 found = false;
3913 }
3914
3915 /* Remove all planes for unchanged streams if planes changed */
3916 for (i = 0; i < unchanged_streams_count; i++) {
3917 if (planes_changed_for_existing_stream(context,
3918 unchanged_streams[i],
3919 set,
3920 set_count)) {
3921
3922 if (!dc_state_rem_all_planes_for_stream(dc,
3923 unchanged_streams[i],
3924 context)) {
3925 res = DC_FAIL_DETACH_SURFACES;
3926 goto fail;
3927 }
3928 }
3929 }
3930
3931 /* Remove all planes for removed streams and then remove the streams */
3932 for (i = 0; i < del_streams_count; i++) {
3933 /* Need to cpy the dwb data from the old stream in order to efc to work */
3934 if (del_streams[i]->num_wb_info > 0) {
3935 for (j = 0; j < add_streams_count; j++) {
3936 if (del_streams[i]->sink == add_streams[j]->sink) {
3937 add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
3938 for (k = 0; k < del_streams[i]->num_wb_info; k++)
3939 add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
3940 }
3941 }
3942 }
3943
3944 if (dc_state_get_stream_subvp_type(context, del_streams[i]) == SUBVP_PHANTOM) {
3945 /* remove phantoms specifically */
3946 if (!dc_state_rem_all_phantom_planes_for_stream(dc, del_streams[i], context, true)) {
3947 res = DC_FAIL_DETACH_SURFACES;
3948 goto fail;
3949 }
3950
3951 res = dc_state_remove_phantom_stream(dc, context, del_streams[i]);
3952 dc_state_release_phantom_stream(dc, context, del_streams[i]);
3953 } else {
3954 if (!dc_state_rem_all_planes_for_stream(dc, del_streams[i], context)) {
3955 res = DC_FAIL_DETACH_SURFACES;
3956 goto fail;
3957 }
3958
3959 res = dc_state_remove_stream(dc, context, del_streams[i]);
3960 }
3961
3962 if (res != DC_OK)
3963 goto fail;
3964 }
3965
3966 /* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
3967 * matches. This may change in the future if seamless_boot_stream can be
3968 * multiple.
3969 */
3970 for (i = 0; i < add_streams_count; i++) {
3971 mark_seamless_boot_stream(dc, add_streams[i]);
3972 if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
3973 struct dc_stream_state *temp = add_streams[0];
3974
3975 add_streams[0] = add_streams[i];
3976 add_streams[i] = temp;
3977 break;
3978 }
3979 }
3980
3981 /* Add new streams and then add all planes for the new stream */
3982 for (i = 0; i < add_streams_count; i++) {
3983 calculate_phy_pix_clks(add_streams[i]);
3984 res = dc_state_add_stream(dc, context, add_streams[i]);
3985 if (res != DC_OK)
3986 goto fail;
3987
3988 if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
3989 res = DC_FAIL_ATTACH_SURFACES;
3990 goto fail;
3991 }
3992 }
3993
3994 /* Add all planes for unchanged streams if planes changed */
3995 for (i = 0; i < unchanged_streams_count; i++) {
3996 if (planes_changed_for_existing_stream(context,
3997 unchanged_streams[i],
3998 set,
3999 set_count)) {
4000 if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
4001 res = DC_FAIL_ATTACH_SURFACES;
4002 goto fail;
4003 }
4004 }
4005 }
4006
4007 res = dc_validate_global_state(dc, context, fast_validate);
4008
4009 /* calculate pixel rate divider after deciding pxiel clock & odm combine */
4010 if ((dc->hwss.calculate_pix_rate_divider) && (res == DC_OK)) {
4011 for (i = 0; i < add_streams_count; i++)
4012 dc->hwss.calculate_pix_rate_divider(dc, context, add_streams[i]);
4013 }
4014
4015 fail:
4016 if (res != DC_OK)
4017 DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
4018 __func__,
4019 res);
4020
4021 return res;
4022 }
4023
4024 /**
4025 * dc_validate_global_state() - Determine if hardware can support a given state
4026 *
4027 * @dc: dc struct for this driver
4028 * @new_ctx: state to be validated
4029 * @fast_validate: set to true if only yes/no to support matters
4030 *
4031 * Checks hardware resource availability and bandwidth requirement.
4032 *
4033 * Return:
4034 * DC_OK if the result can be programmed. Otherwise, an error code.
4035 */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,bool fast_validate)4036 enum dc_status dc_validate_global_state(
4037 struct dc *dc,
4038 struct dc_state *new_ctx,
4039 bool fast_validate)
4040 {
4041 enum dc_status result = DC_ERROR_UNEXPECTED;
4042 int i, j;
4043
4044 if (!new_ctx)
4045 return DC_ERROR_UNEXPECTED;
4046
4047 if (dc->res_pool->funcs->validate_global) {
4048 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
4049 if (result != DC_OK)
4050 return result;
4051 }
4052
4053 for (i = 0; i < new_ctx->stream_count; i++) {
4054 struct dc_stream_state *stream = new_ctx->streams[i];
4055
4056 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4057 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
4058
4059 if (pipe_ctx->stream != stream)
4060 continue;
4061
4062 if (dc->res_pool->funcs->patch_unknown_plane_state &&
4063 pipe_ctx->plane_state &&
4064 pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
4065 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
4066 if (result != DC_OK)
4067 return result;
4068 }
4069
4070 /* Switch to dp clock source only if there is
4071 * no non dp stream that shares the same timing
4072 * with the dp stream.
4073 */
4074 if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
4075 !find_pll_sharable_stream(stream, new_ctx)) {
4076
4077 resource_unreference_clock_source(
4078 &new_ctx->res_ctx,
4079 dc->res_pool,
4080 pipe_ctx->clock_source);
4081
4082 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
4083 resource_reference_clock_source(
4084 &new_ctx->res_ctx,
4085 dc->res_pool,
4086 pipe_ctx->clock_source);
4087 }
4088 }
4089 }
4090
4091 result = resource_build_scaling_params_for_context(dc, new_ctx);
4092
4093 if (result == DC_OK)
4094 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
4095 result = DC_FAIL_BANDWIDTH_VALIDATE;
4096
4097 /*
4098 * Only update link encoder to stream assignment after bandwidth validation passed.
4099 * TODO: Split out assignment and validation.
4100 */
4101 if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
4102 dc->res_pool->funcs->link_encs_assign(
4103 dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
4104
4105 return result;
4106 }
4107
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)4108 static void patch_gamut_packet_checksum(
4109 struct dc_info_packet *gamut_packet)
4110 {
4111 /* For gamut we recalc checksum */
4112 if (gamut_packet->valid) {
4113 uint8_t chk_sum = 0;
4114 uint8_t *ptr;
4115 uint8_t i;
4116
4117 /*start of the Gamut data. */
4118 ptr = &gamut_packet->sb[3];
4119
4120 for (i = 0; i <= gamut_packet->sb[1]; i++)
4121 chk_sum += ptr[i];
4122
4123 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
4124 }
4125 }
4126
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)4127 static void set_avi_info_frame(
4128 struct dc_info_packet *info_packet,
4129 struct pipe_ctx *pipe_ctx)
4130 {
4131 struct dc_stream_state *stream = pipe_ctx->stream;
4132 enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
4133 uint32_t pixel_encoding = 0;
4134 enum scanning_type scan_type = SCANNING_TYPE_NODATA;
4135 enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
4136 uint8_t *check_sum = NULL;
4137 uint8_t byte_index = 0;
4138 union hdmi_info_packet hdmi_info;
4139 unsigned int vic = pipe_ctx->stream->timing.vic;
4140 unsigned int rid = pipe_ctx->stream->timing.rid;
4141 unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
4142 enum dc_timing_3d_format format;
4143
4144 memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
4145
4146 color_space = pipe_ctx->stream->output_color_space;
4147 if (color_space == COLOR_SPACE_UNKNOWN)
4148 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
4149 COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
4150
4151 /* Initialize header */
4152 hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
4153 /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
4154 * not be used in HDMI 2.0 (Section 10.1) */
4155 hdmi_info.bits.header.version = 2;
4156 hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
4157
4158 /*
4159 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
4160 * according to HDMI 2.0 spec (Section 10.1)
4161 */
4162
4163 switch (stream->timing.pixel_encoding) {
4164 case PIXEL_ENCODING_YCBCR422:
4165 pixel_encoding = 1;
4166 break;
4167
4168 case PIXEL_ENCODING_YCBCR444:
4169 pixel_encoding = 2;
4170 break;
4171 case PIXEL_ENCODING_YCBCR420:
4172 pixel_encoding = 3;
4173 break;
4174
4175 case PIXEL_ENCODING_RGB:
4176 default:
4177 pixel_encoding = 0;
4178 }
4179
4180 /* Y0_Y1_Y2 : The pixel encoding */
4181 /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
4182 hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
4183
4184 /* A0 = 1 Active Format Information valid */
4185 hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
4186
4187 /* B0, B1 = 3; Bar info data is valid */
4188 hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
4189
4190 hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
4191
4192 /* S0, S1 : Underscan / Overscan */
4193 /* TODO: un-hardcode scan type */
4194 scan_type = SCANNING_TYPE_UNDERSCAN;
4195 hdmi_info.bits.S0_S1 = scan_type;
4196
4197 /* C0, C1 : Colorimetry */
4198 switch (color_space) {
4199 case COLOR_SPACE_YCBCR709:
4200 case COLOR_SPACE_YCBCR709_LIMITED:
4201 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
4202 break;
4203 case COLOR_SPACE_YCBCR601:
4204 case COLOR_SPACE_YCBCR601_LIMITED:
4205 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
4206 break;
4207 case COLOR_SPACE_2020_RGB_FULLRANGE:
4208 case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
4209 case COLOR_SPACE_2020_YCBCR:
4210 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
4211 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
4212 break;
4213 case COLOR_SPACE_ADOBERGB:
4214 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
4215 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
4216 break;
4217 case COLOR_SPACE_SRGB:
4218 default:
4219 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
4220 break;
4221 }
4222
4223 if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR &&
4224 stream->out_transfer_func.tf == TRANSFER_FUNCTION_GAMMA22) {
4225 hdmi_info.bits.EC0_EC2 = 0;
4226 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
4227 }
4228
4229 /* TODO: un-hardcode aspect ratio */
4230 aspect = stream->timing.aspect_ratio;
4231
4232 switch (aspect) {
4233 case ASPECT_RATIO_4_3:
4234 case ASPECT_RATIO_16_9:
4235 hdmi_info.bits.M0_M1 = aspect;
4236 break;
4237
4238 case ASPECT_RATIO_NO_DATA:
4239 case ASPECT_RATIO_64_27:
4240 case ASPECT_RATIO_256_135:
4241 default:
4242 hdmi_info.bits.M0_M1 = 0;
4243 }
4244
4245 /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
4246 hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
4247
4248 switch (stream->content_type) {
4249 case DISPLAY_CONTENT_TYPE_NO_DATA:
4250 hdmi_info.bits.CN0_CN1 = 0;
4251 hdmi_info.bits.ITC = 1;
4252 break;
4253 case DISPLAY_CONTENT_TYPE_GRAPHICS:
4254 hdmi_info.bits.CN0_CN1 = 0;
4255 hdmi_info.bits.ITC = 1;
4256 break;
4257 case DISPLAY_CONTENT_TYPE_PHOTO:
4258 hdmi_info.bits.CN0_CN1 = 1;
4259 hdmi_info.bits.ITC = 1;
4260 break;
4261 case DISPLAY_CONTENT_TYPE_CINEMA:
4262 hdmi_info.bits.CN0_CN1 = 2;
4263 hdmi_info.bits.ITC = 1;
4264 break;
4265 case DISPLAY_CONTENT_TYPE_GAME:
4266 hdmi_info.bits.CN0_CN1 = 3;
4267 hdmi_info.bits.ITC = 1;
4268 break;
4269 }
4270
4271 if (stream->qs_bit == 1) {
4272 if (color_space == COLOR_SPACE_SRGB ||
4273 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
4274 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
4275 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
4276 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
4277 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
4278 else
4279 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
4280 } else
4281 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
4282
4283 /* TODO : We should handle YCC quantization */
4284 /* but we do not have matrix calculation */
4285 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
4286
4287 ///VIC
4288 if (pipe_ctx->stream->timing.hdmi_vic != 0)
4289 vic = 0;
4290 format = stream->timing.timing_3d_format;
4291 /*todo, add 3DStereo support*/
4292 if (format != TIMING_3D_FORMAT_NONE) {
4293 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
4294 switch (pipe_ctx->stream->timing.hdmi_vic) {
4295 case 1:
4296 vic = 95;
4297 break;
4298 case 2:
4299 vic = 94;
4300 break;
4301 case 3:
4302 vic = 93;
4303 break;
4304 case 4:
4305 vic = 98;
4306 break;
4307 default:
4308 break;
4309 }
4310 }
4311 /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
4312 hdmi_info.bits.VIC0_VIC7 = vic;
4313 if (vic >= 128)
4314 hdmi_info.bits.header.version = 3;
4315 /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
4316 * the Source shall use 20 AVI InfoFrame Version 4
4317 */
4318 if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
4319 hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
4320 hdmi_info.bits.header.version = 4;
4321 hdmi_info.bits.header.length = 14;
4322 }
4323
4324 if (rid != 0 && fr_ind != 0) {
4325 hdmi_info.bits.header.version = 4;
4326 hdmi_info.bits.header.length = 15;
4327
4328 hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
4329 hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
4330 hdmi_info.bits.RID0_RID5 = rid;
4331 }
4332
4333 /* pixel repetition
4334 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
4335 * repetition start from 1 */
4336 hdmi_info.bits.PR0_PR3 = 0;
4337
4338 /* Bar Info
4339 * barTop: Line Number of End of Top Bar.
4340 * barBottom: Line Number of Start of Bottom Bar.
4341 * barLeft: Pixel Number of End of Left Bar.
4342 * barRight: Pixel Number of Start of Right Bar. */
4343 hdmi_info.bits.bar_top = stream->timing.v_border_top;
4344 hdmi_info.bits.bar_bottom = (stream->timing.v_total
4345 - stream->timing.v_border_bottom + 1);
4346 hdmi_info.bits.bar_left = stream->timing.h_border_left;
4347 hdmi_info.bits.bar_right = (stream->timing.h_total
4348 - stream->timing.h_border_right + 1);
4349
4350 /* Additional Colorimetry Extension
4351 * Used in conduction with C0-C1 and EC0-EC2
4352 * 0 = DCI-P3 RGB (D65)
4353 * 1 = DCI-P3 RGB (theater)
4354 */
4355 hdmi_info.bits.ACE0_ACE3 = 0;
4356
4357 /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
4358 check_sum = &hdmi_info.packet_raw_data.sb[0];
4359
4360 *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
4361
4362 for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
4363 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
4364
4365 /* one byte complement */
4366 *check_sum = (uint8_t) (0x100 - *check_sum);
4367
4368 /* Store in hw_path_mode */
4369 info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
4370 info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
4371 info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
4372
4373 for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
4374 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
4375
4376 info_packet->valid = true;
4377 }
4378
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4379 static void set_vendor_info_packet(
4380 struct dc_info_packet *info_packet,
4381 struct dc_stream_state *stream)
4382 {
4383 /* SPD info packet for FreeSync */
4384
4385 /* Check if Freesync is supported. Return if false. If true,
4386 * set the corresponding bit in the info packet
4387 */
4388 if (!stream->vsp_infopacket.valid)
4389 return;
4390
4391 *info_packet = stream->vsp_infopacket;
4392 }
4393
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4394 static void set_spd_info_packet(
4395 struct dc_info_packet *info_packet,
4396 struct dc_stream_state *stream)
4397 {
4398 /* SPD info packet for FreeSync */
4399
4400 /* Check if Freesync is supported. Return if false. If true,
4401 * set the corresponding bit in the info packet
4402 */
4403 if (!stream->vrr_infopacket.valid)
4404 return;
4405
4406 *info_packet = stream->vrr_infopacket;
4407 }
4408
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4409 static void set_hdr_static_info_packet(
4410 struct dc_info_packet *info_packet,
4411 struct dc_stream_state *stream)
4412 {
4413 /* HDR Static Metadata info packet for HDR10 */
4414
4415 if (!stream->hdr_static_metadata.valid ||
4416 stream->use_dynamic_meta)
4417 return;
4418
4419 *info_packet = stream->hdr_static_metadata;
4420 }
4421
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4422 static void set_vsc_info_packet(
4423 struct dc_info_packet *info_packet,
4424 struct dc_stream_state *stream)
4425 {
4426 if (!stream->vsc_infopacket.valid)
4427 return;
4428
4429 *info_packet = stream->vsc_infopacket;
4430 }
set_hfvs_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4431 static void set_hfvs_info_packet(
4432 struct dc_info_packet *info_packet,
4433 struct dc_stream_state *stream)
4434 {
4435 if (!stream->hfvsif_infopacket.valid)
4436 return;
4437
4438 *info_packet = stream->hfvsif_infopacket;
4439 }
4440
adaptive_sync_override_dp_info_packets_sdp_line_num(const struct dc_crtc_timing * timing,struct enc_sdp_line_num * sdp_line_num,struct _vcs_dpi_display_pipe_dest_params_st * pipe_dlg_param)4441 static void adaptive_sync_override_dp_info_packets_sdp_line_num(
4442 const struct dc_crtc_timing *timing,
4443 struct enc_sdp_line_num *sdp_line_num,
4444 struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
4445 {
4446 uint32_t asic_blank_start = 0;
4447 uint32_t asic_blank_end = 0;
4448 uint32_t v_update = 0;
4449
4450 const struct dc_crtc_timing *tg = timing;
4451
4452 /* blank_start = frame end - front porch */
4453 asic_blank_start = tg->v_total - tg->v_front_porch;
4454
4455 /* blank_end = blank_start - active */
4456 asic_blank_end = (asic_blank_start - tg->v_border_bottom -
4457 tg->v_addressable - tg->v_border_top);
4458
4459 if (pipe_dlg_param->vstartup_start > asic_blank_end) {
4460 v_update = (tg->v_total - (pipe_dlg_param->vstartup_start - asic_blank_end));
4461 sdp_line_num->adaptive_sync_line_num_valid = true;
4462 sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
4463 } else {
4464 sdp_line_num->adaptive_sync_line_num_valid = false;
4465 sdp_line_num->adaptive_sync_line_num = 0;
4466 }
4467 }
4468
set_adaptive_sync_info_packet(struct dc_info_packet * info_packet,const struct dc_stream_state * stream,struct encoder_info_frame * info_frame,struct _vcs_dpi_display_pipe_dest_params_st * pipe_dlg_param)4469 static void set_adaptive_sync_info_packet(
4470 struct dc_info_packet *info_packet,
4471 const struct dc_stream_state *stream,
4472 struct encoder_info_frame *info_frame,
4473 struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
4474 {
4475 if (!stream->adaptive_sync_infopacket.valid)
4476 return;
4477
4478 adaptive_sync_override_dp_info_packets_sdp_line_num(
4479 &stream->timing,
4480 &info_frame->sdp_line_num,
4481 pipe_dlg_param);
4482
4483 *info_packet = stream->adaptive_sync_infopacket;
4484 }
4485
set_vtem_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4486 static void set_vtem_info_packet(
4487 struct dc_info_packet *info_packet,
4488 struct dc_stream_state *stream)
4489 {
4490 if (!stream->vtem_infopacket.valid)
4491 return;
4492
4493 *info_packet = stream->vtem_infopacket;
4494 }
4495
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)4496 struct clock_source *dc_resource_find_first_free_pll(
4497 struct resource_context *res_ctx,
4498 const struct resource_pool *pool)
4499 {
4500 int i;
4501
4502 for (i = 0; i < pool->clk_src_count; ++i) {
4503 if (res_ctx->clock_source_ref_count[i] == 0)
4504 return pool->clock_sources[i];
4505 }
4506
4507 return NULL;
4508 }
4509
resource_build_info_frame(struct pipe_ctx * pipe_ctx)4510 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
4511 {
4512 enum signal_type signal = SIGNAL_TYPE_NONE;
4513 struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
4514
4515 /* default all packets to invalid */
4516 info->avi.valid = false;
4517 info->gamut.valid = false;
4518 info->vendor.valid = false;
4519 info->spd.valid = false;
4520 info->hdrsmd.valid = false;
4521 info->vsc.valid = false;
4522 info->hfvsif.valid = false;
4523 info->vtem.valid = false;
4524 info->adaptive_sync.valid = false;
4525 signal = pipe_ctx->stream->signal;
4526
4527 /* HDMi and DP have different info packets*/
4528 if (dc_is_hdmi_signal(signal)) {
4529 set_avi_info_frame(&info->avi, pipe_ctx);
4530
4531 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
4532 set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
4533 set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
4534
4535 set_spd_info_packet(&info->spd, pipe_ctx->stream);
4536
4537 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
4538
4539 } else if (dc_is_dp_signal(signal)) {
4540 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
4541
4542 set_spd_info_packet(&info->spd, pipe_ctx->stream);
4543
4544 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
4545 set_adaptive_sync_info_packet(&info->adaptive_sync,
4546 pipe_ctx->stream,
4547 info,
4548 &pipe_ctx->pipe_dlg_param);
4549 }
4550
4551 patch_gamut_packet_checksum(&info->gamut);
4552 }
4553
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)4554 enum dc_status resource_map_clock_resources(
4555 const struct dc *dc,
4556 struct dc_state *context,
4557 struct dc_stream_state *stream)
4558 {
4559 /* acquire new resources */
4560 const struct resource_pool *pool = dc->res_pool;
4561 struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(
4562 &context->res_ctx, stream);
4563
4564 if (!pipe_ctx)
4565 return DC_ERROR_UNEXPECTED;
4566
4567 if (dc_is_dp_signal(pipe_ctx->stream->signal)
4568 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
4569 pipe_ctx->clock_source = pool->dp_clock_source;
4570 else {
4571 pipe_ctx->clock_source = NULL;
4572
4573 if (!dc->config.disable_disp_pll_sharing)
4574 pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
4575 &context->res_ctx,
4576 pipe_ctx);
4577
4578 if (pipe_ctx->clock_source == NULL)
4579 pipe_ctx->clock_source =
4580 dc_resource_find_first_free_pll(
4581 &context->res_ctx,
4582 pool);
4583 }
4584
4585 if (pipe_ctx->clock_source == NULL)
4586 return DC_NO_CLOCK_SOURCE_RESOURCE;
4587
4588 resource_reference_clock_source(
4589 &context->res_ctx, pool,
4590 pipe_ctx->clock_source);
4591
4592 return DC_OK;
4593 }
4594
4595 /*
4596 * Note: We need to disable output if clock sources change,
4597 * since bios does optimization and doesn't apply if changing
4598 * PHY when not already disabled.
4599 */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)4600 bool pipe_need_reprogram(
4601 struct pipe_ctx *pipe_ctx_old,
4602 struct pipe_ctx *pipe_ctx)
4603 {
4604 if (!pipe_ctx_old->stream)
4605 return false;
4606
4607 if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
4608 return true;
4609
4610 if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
4611 return true;
4612
4613 if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
4614 return true;
4615
4616 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
4617 && pipe_ctx_old->stream != pipe_ctx->stream)
4618 return true;
4619
4620 if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
4621 return true;
4622
4623 if (dc_is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
4624 return true;
4625
4626 if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
4627 return true;
4628
4629 if (false == pipe_ctx_old->stream->link->link_state_valid &&
4630 false == pipe_ctx_old->stream->dpms_off)
4631 return true;
4632
4633 if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
4634 return true;
4635
4636 if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
4637 return true;
4638 if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
4639 return true;
4640
4641 /* DIG link encoder resource assignment for stream changed. */
4642 if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
4643 bool need_reprogram = false;
4644 struct dc *dc = pipe_ctx_old->stream->ctx->dc;
4645 struct link_encoder *link_enc_prev =
4646 link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
4647
4648 if (link_enc_prev != pipe_ctx->stream->link_enc)
4649 need_reprogram = true;
4650
4651 return need_reprogram;
4652 }
4653
4654 return false;
4655 }
4656
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)4657 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
4658 struct bit_depth_reduction_params *fmt_bit_depth)
4659 {
4660 enum dc_dither_option option = stream->dither_option;
4661 enum dc_pixel_encoding pixel_encoding =
4662 stream->timing.pixel_encoding;
4663
4664 memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
4665
4666 if (option == DITHER_OPTION_DEFAULT) {
4667 switch (stream->timing.display_color_depth) {
4668 case COLOR_DEPTH_666:
4669 option = DITHER_OPTION_SPATIAL6;
4670 break;
4671 case COLOR_DEPTH_888:
4672 option = DITHER_OPTION_SPATIAL8;
4673 break;
4674 case COLOR_DEPTH_101010:
4675 option = DITHER_OPTION_TRUN10;
4676 break;
4677 default:
4678 option = DITHER_OPTION_DISABLE;
4679 }
4680 }
4681
4682 if (option == DITHER_OPTION_DISABLE)
4683 return;
4684
4685 if (option == DITHER_OPTION_TRUN6) {
4686 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4687 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
4688 } else if (option == DITHER_OPTION_TRUN8 ||
4689 option == DITHER_OPTION_TRUN8_SPATIAL6 ||
4690 option == DITHER_OPTION_TRUN8_FM6) {
4691 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4692 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
4693 } else if (option == DITHER_OPTION_TRUN10 ||
4694 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
4695 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
4696 option == DITHER_OPTION_TRUN10_FM8 ||
4697 option == DITHER_OPTION_TRUN10_FM6 ||
4698 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4699 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4700 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
4701 if (option == DITHER_OPTION_TRUN10)
4702 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
4703 }
4704
4705 /* special case - Formatter can only reduce by 4 bits at most.
4706 * When reducing from 12 to 6 bits,
4707 * HW recommends we use trunc with round mode
4708 * (if we did nothing, trunc to 10 bits would be used)
4709 * note that any 12->10 bit reduction is ignored prior to DCE8,
4710 * as the input was 10 bits.
4711 */
4712 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
4713 option == DITHER_OPTION_SPATIAL6 ||
4714 option == DITHER_OPTION_FM6) {
4715 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4716 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
4717 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
4718 }
4719
4720 /* spatial dither
4721 * note that spatial modes 1-3 are never used
4722 */
4723 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
4724 option == DITHER_OPTION_SPATIAL6 ||
4725 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
4726 option == DITHER_OPTION_TRUN8_SPATIAL6) {
4727 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4728 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
4729 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4730 fmt_bit_depth->flags.RGB_RANDOM =
4731 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4732 } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
4733 option == DITHER_OPTION_SPATIAL8 ||
4734 option == DITHER_OPTION_SPATIAL8_FM6 ||
4735 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
4736 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4737 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4738 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
4739 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4740 fmt_bit_depth->flags.RGB_RANDOM =
4741 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4742 } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
4743 option == DITHER_OPTION_SPATIAL10 ||
4744 option == DITHER_OPTION_SPATIAL10_FM8 ||
4745 option == DITHER_OPTION_SPATIAL10_FM6) {
4746 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4747 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
4748 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4749 fmt_bit_depth->flags.RGB_RANDOM =
4750 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4751 }
4752
4753 if (option == DITHER_OPTION_SPATIAL6 ||
4754 option == DITHER_OPTION_SPATIAL8 ||
4755 option == DITHER_OPTION_SPATIAL10) {
4756 fmt_bit_depth->flags.FRAME_RANDOM = 0;
4757 } else {
4758 fmt_bit_depth->flags.FRAME_RANDOM = 1;
4759 }
4760
4761 //////////////////////
4762 //// temporal dither
4763 //////////////////////
4764 if (option == DITHER_OPTION_FM6 ||
4765 option == DITHER_OPTION_SPATIAL8_FM6 ||
4766 option == DITHER_OPTION_SPATIAL10_FM6 ||
4767 option == DITHER_OPTION_TRUN10_FM6 ||
4768 option == DITHER_OPTION_TRUN8_FM6 ||
4769 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4770 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4771 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
4772 } else if (option == DITHER_OPTION_FM8 ||
4773 option == DITHER_OPTION_SPATIAL10_FM8 ||
4774 option == DITHER_OPTION_TRUN10_FM8) {
4775 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4776 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
4777 } else if (option == DITHER_OPTION_FM10) {
4778 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4779 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
4780 }
4781
4782 fmt_bit_depth->pixel_encoding = pixel_encoding;
4783 }
4784
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)4785 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
4786 {
4787 if (dc == NULL || stream == NULL)
4788 return DC_ERROR_UNEXPECTED;
4789
4790 struct dc_link *link = stream->link;
4791 struct timing_generator *tg = dc->res_pool->timing_generators[0];
4792 enum dc_status res = DC_OK;
4793
4794 calculate_phy_pix_clks(stream);
4795
4796 if (!tg->funcs->validate_timing(tg, &stream->timing))
4797 res = DC_FAIL_CONTROLLER_VALIDATE;
4798
4799 if (res == DC_OK) {
4800 if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
4801 !link->link_enc->funcs->validate_output_with_stream(
4802 link->link_enc, stream))
4803 res = DC_FAIL_ENC_VALIDATE;
4804 }
4805
4806 /* TODO: validate audio ASIC caps, encoder */
4807
4808 if (res == DC_OK)
4809 res = dc->link_srv->validate_mode_timing(stream,
4810 link,
4811 &stream->timing);
4812
4813 return res;
4814 }
4815
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)4816 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
4817 {
4818 enum dc_status res = DC_OK;
4819
4820 /* check if surface has invalid dimensions */
4821 if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
4822 plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
4823 return DC_FAIL_SURFACE_VALIDATE;
4824
4825 /* TODO For now validates pixel format only */
4826 if (dc->res_pool->funcs->validate_plane)
4827 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
4828
4829 return res;
4830 }
4831
resource_pixel_format_to_bpp(enum surface_pixel_format format)4832 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
4833 {
4834 switch (format) {
4835 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
4836 return 8;
4837 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
4838 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
4839 return 12;
4840 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
4841 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
4842 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
4843 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
4844 return 16;
4845 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
4846 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
4847 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
4848 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
4849 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
4850 case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
4851 case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
4852 return 32;
4853 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
4854 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
4855 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
4856 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
4857 return 64;
4858 default:
4859 ASSERT_CRITICAL(false);
4860 return -1;
4861 }
4862 }
get_max_audio_sample_rate(struct audio_mode * modes)4863 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
4864 {
4865 if (modes) {
4866 if (modes->sample_rates.rate.RATE_192)
4867 return 192000;
4868 if (modes->sample_rates.rate.RATE_176_4)
4869 return 176400;
4870 if (modes->sample_rates.rate.RATE_96)
4871 return 96000;
4872 if (modes->sample_rates.rate.RATE_88_2)
4873 return 88200;
4874 if (modes->sample_rates.rate.RATE_48)
4875 return 48000;
4876 if (modes->sample_rates.rate.RATE_44_1)
4877 return 44100;
4878 if (modes->sample_rates.rate.RATE_32)
4879 return 32000;
4880 }
4881 /*original logic when no audio info*/
4882 return 441000;
4883 }
4884
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)4885 void get_audio_check(struct audio_info *aud_modes,
4886 struct audio_check *audio_chk)
4887 {
4888 unsigned int i;
4889 unsigned int max_sample_rate = 0;
4890
4891 if (aud_modes) {
4892 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
4893
4894 audio_chk->max_audiosample_rate = 0;
4895 for (i = 0; i < aud_modes->mode_count; i++) {
4896 max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
4897 if (audio_chk->max_audiosample_rate < max_sample_rate)
4898 audio_chk->max_audiosample_rate = max_sample_rate;
4899 /*dts takes the same as type 2: AP = 0.25*/
4900 }
4901 /*check which one take more bandwidth*/
4902 if (audio_chk->max_audiosample_rate > 192000)
4903 audio_chk->audio_packet_type = 0x9;/*AP =1*/
4904 audio_chk->acat = 0;/*not support*/
4905 }
4906 }
4907
get_temp_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)4908 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
4909 const struct resource_context *res_ctx,
4910 const struct resource_pool *const pool,
4911 const struct dc_link *link)
4912 {
4913 struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
4914 int enc_index;
4915
4916 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
4917
4918 if (enc_index < 0)
4919 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
4920
4921 if (enc_index >= 0)
4922 hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
4923
4924 return hpo_dp_link_enc;
4925 }
4926
get_temp_dp_link_res(struct dc_link * link,struct link_resource * link_res,struct dc_link_settings * link_settings)4927 bool get_temp_dp_link_res(struct dc_link *link,
4928 struct link_resource *link_res,
4929 struct dc_link_settings *link_settings)
4930 {
4931 const struct dc *dc = link->dc;
4932 const struct resource_context *res_ctx = &dc->current_state->res_ctx;
4933
4934 memset(link_res, 0, sizeof(*link_res));
4935
4936 if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
4937 link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
4938 dc->res_pool, link);
4939 if (!link_res->hpo_dp_link_enc)
4940 return false;
4941 }
4942 return true;
4943 }
4944
reset_syncd_pipes_from_disabled_pipes(struct dc * dc,struct dc_state * context)4945 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
4946 struct dc_state *context)
4947 {
4948 int i, j;
4949 struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
4950
4951 /* If pipe backend is reset, need to reset pipe syncd status */
4952 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4953 pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i];
4954 pipe_ctx = &context->res_ctx.pipe_ctx[i];
4955
4956 if (!resource_is_pipe_type(pipe_ctx_old, OTG_MASTER))
4957 continue;
4958
4959 if (!pipe_ctx->stream ||
4960 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
4961
4962 /* Reset all the syncd pipes from the disabled pipe */
4963 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4964 pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
4965 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
4966 !IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
4967 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
4968 }
4969 }
4970 }
4971 }
4972
check_syncd_pipes_for_disabled_master_pipe(struct dc * dc,struct dc_state * context,uint8_t disabled_master_pipe_idx)4973 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
4974 struct dc_state *context,
4975 uint8_t disabled_master_pipe_idx)
4976 {
4977 int i;
4978 struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
4979
4980 pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
4981 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
4982 !IS_PIPE_SYNCD_VALID(pipe_ctx))
4983 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
4984
4985 /* for the pipe disabled, check if any slave pipe exists and assert */
4986 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4987 pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
4988
4989 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
4990 IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
4991 struct pipe_ctx *first_pipe = pipe_ctx_check;
4992
4993 while (first_pipe->prev_odm_pipe)
4994 first_pipe = first_pipe->prev_odm_pipe;
4995 /* When ODM combine is enabled, this case is expected. If the disabled pipe
4996 * is part of the ODM tree, then we should not print an error.
4997 * */
4998 if (first_pipe->pipe_idx == disabled_master_pipe_idx)
4999 continue;
5000
5001 DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
5002 i, disabled_master_pipe_idx);
5003 }
5004 }
5005 }
5006
reset_sync_context_for_pipe(const struct dc * dc,struct dc_state * context,uint8_t pipe_idx)5007 void reset_sync_context_for_pipe(const struct dc *dc,
5008 struct dc_state *context,
5009 uint8_t pipe_idx)
5010 {
5011 int i;
5012 struct pipe_ctx *pipe_ctx_reset;
5013
5014 /* reset the otg sync context for the pipe and its slave pipes if any */
5015 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5016 pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
5017
5018 if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
5019 IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
5020 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
5021 }
5022 }
5023
resource_transmitter_to_phy_idx(const struct dc * dc,enum transmitter transmitter)5024 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
5025 {
5026 /* TODO - get transmitter to phy idx mapping from DMUB */
5027 uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
5028
5029 if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
5030 dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
5031 switch (transmitter) {
5032 case TRANSMITTER_UNIPHY_A:
5033 phy_idx = 0;
5034 break;
5035 case TRANSMITTER_UNIPHY_B:
5036 phy_idx = 1;
5037 break;
5038 case TRANSMITTER_UNIPHY_C:
5039 phy_idx = 5;
5040 break;
5041 case TRANSMITTER_UNIPHY_D:
5042 phy_idx = 6;
5043 break;
5044 case TRANSMITTER_UNIPHY_E:
5045 phy_idx = 4;
5046 break;
5047 default:
5048 phy_idx = 0;
5049 break;
5050 }
5051 }
5052
5053 return phy_idx;
5054 }
5055
get_link_hwss(const struct dc_link * link,const struct link_resource * link_res)5056 const struct link_hwss *get_link_hwss(const struct dc_link *link,
5057 const struct link_resource *link_res)
5058 {
5059 /* Link_hwss is only accessible by getter function instead of accessing
5060 * by pointers in dc with the intent to protect against breaking polymorphism.
5061 */
5062 if (can_use_hpo_dp_link_hwss(link, link_res))
5063 /* TODO: some assumes that if decided link settings is 128b/132b
5064 * channel coding format hpo_dp_link_enc should be used.
5065 * Others believe that if hpo_dp_link_enc is available in link
5066 * resource then hpo_dp_link_enc must be used. This bound between
5067 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
5068 * with a premise that both hpo_dp_link_enc pointer and decided link
5069 * settings are determined based on single policy function like
5070 * "decide_link_settings" from upper layer. This "convention"
5071 * cannot be maintained and enforced at current level.
5072 * Therefore a refactor is due so we can enforce a strong bound
5073 * between those two parameters at this level.
5074 *
5075 * To put it simple, we want to make enforcement at low level so that
5076 * we will not return link hwss if caller plans to do 8b/10b
5077 * with an hpo encoder. Or we can return a very dummy one that doesn't
5078 * do work for all functions
5079 */
5080 return (requires_fixed_vs_pe_retimer_hpo_link_hwss(link) ?
5081 get_hpo_fixed_vs_pe_retimer_dp_link_hwss() : get_hpo_dp_link_hwss());
5082 else if (can_use_dpia_link_hwss(link, link_res))
5083 return get_dpia_link_hwss();
5084 else if (can_use_dio_link_hwss(link, link_res))
5085 return (requires_fixed_vs_pe_retimer_dio_link_hwss(link)) ?
5086 get_dio_fixed_vs_pe_retimer_link_hwss() : get_dio_link_hwss();
5087 else
5088 return get_virtual_link_hwss();
5089 }
5090
is_h_timing_divisible_by_2(struct dc_stream_state * stream)5091 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
5092 {
5093 bool divisible = false;
5094 uint16_t h_blank_start = 0;
5095 uint16_t h_blank_end = 0;
5096
5097 if (stream) {
5098 h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
5099 h_blank_end = h_blank_start - stream->timing.h_addressable;
5100
5101 /* HTOTAL, Hblank start/end, and Hsync start/end all must be
5102 * divisible by 2 in order for the horizontal timing params
5103 * to be considered divisible by 2. Hsync start is always 0.
5104 */
5105 divisible = (stream->timing.h_total % 2 == 0) &&
5106 (h_blank_start % 2 == 0) &&
5107 (h_blank_end % 2 == 0) &&
5108 (stream->timing.h_sync_width % 2 == 0);
5109 }
5110 return divisible;
5111 }
5112
5113 /* This interface is deprecated for new DCNs. It is replaced by the following
5114 * new interfaces. These two interfaces encapsulate pipe selection priority
5115 * with DCN specific minimum hardware transition optimization algorithm. With
5116 * the new interfaces caller no longer needs to know the implementation detail
5117 * of a pipe topology.
5118 *
5119 * resource_update_pipes_with_odm_slice_count
5120 * resource_update_pipes_with_mpc_slice_count
5121 *
5122 */
dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy(const struct dc * dc,struct dc_state * state,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)5123 bool dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy(
5124 const struct dc *dc,
5125 struct dc_state *state,
5126 struct pipe_ctx *pri_pipe,
5127 struct pipe_ctx *sec_pipe,
5128 bool odm)
5129 {
5130 int pipe_idx = sec_pipe->pipe_idx;
5131 struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
5132 const struct resource_pool *pool = dc->res_pool;
5133
5134 sec_top = sec_pipe->top_pipe;
5135 sec_bottom = sec_pipe->bottom_pipe;
5136 sec_next = sec_pipe->next_odm_pipe;
5137 sec_prev = sec_pipe->prev_odm_pipe;
5138
5139 if (pri_pipe == NULL)
5140 return false;
5141
5142 *sec_pipe = *pri_pipe;
5143
5144 sec_pipe->top_pipe = sec_top;
5145 sec_pipe->bottom_pipe = sec_bottom;
5146 sec_pipe->next_odm_pipe = sec_next;
5147 sec_pipe->prev_odm_pipe = sec_prev;
5148
5149 sec_pipe->pipe_idx = pipe_idx;
5150 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
5151 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
5152 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
5153 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
5154 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
5155 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
5156 sec_pipe->stream_res.dsc = NULL;
5157 if (odm) {
5158 if (!sec_pipe->top_pipe)
5159 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
5160 else
5161 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
5162 if (sec_pipe->stream->timing.flags.DSC == 1) {
5163 #if defined(CONFIG_DRM_AMD_DC_FP)
5164 dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, sec_pipe->stream_res.opp->inst);
5165 #endif
5166 ASSERT(sec_pipe->stream_res.dsc);
5167 if (sec_pipe->stream_res.dsc == NULL)
5168 return false;
5169 }
5170 #if defined(CONFIG_DRM_AMD_DC_FP)
5171 dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
5172 #endif
5173 }
5174
5175 return true;
5176 }
5177
update_dp_encoder_resources_for_test_harness(const struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)5178 enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
5179 struct dc_state *context,
5180 struct pipe_ctx *pipe_ctx)
5181 {
5182 if (dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
5183 if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
5184 pipe_ctx->stream_res.hpo_dp_stream_enc =
5185 find_first_free_match_hpo_dp_stream_enc_for_link(
5186 &context->res_ctx, dc->res_pool, pipe_ctx->stream);
5187
5188 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
5189 return DC_NO_STREAM_ENC_RESOURCE;
5190
5191 update_hpo_dp_stream_engine_usage(
5192 &context->res_ctx, dc->res_pool,
5193 pipe_ctx->stream_res.hpo_dp_stream_enc,
5194 true);
5195 }
5196
5197 if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
5198 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, dc->res_pool, pipe_ctx, pipe_ctx->stream))
5199 return DC_NO_LINK_ENC_RESOURCE;
5200 }
5201 } else {
5202 if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
5203 update_hpo_dp_stream_engine_usage(
5204 &context->res_ctx, dc->res_pool,
5205 pipe_ctx->stream_res.hpo_dp_stream_enc,
5206 false);
5207 pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
5208 }
5209 if (pipe_ctx->link_res.hpo_dp_link_enc)
5210 remove_hpo_dp_link_enc_from_ctx(&context->res_ctx, pipe_ctx, pipe_ctx->stream);
5211 }
5212
5213 return DC_OK;
5214 }
5215
check_subvp_sw_cursor_fallback_req(const struct dc * dc,struct dc_stream_state * stream)5216 bool check_subvp_sw_cursor_fallback_req(const struct dc *dc, struct dc_stream_state *stream)
5217 {
5218 if (!dc->debug.disable_subvp_high_refresh && is_subvp_high_refresh_candidate(stream))
5219 return true;
5220 if (dc->current_state->stream_count == 1 && stream->timing.v_addressable >= 2880 &&
5221 ((stream->timing.pix_clk_100hz * 100) / stream->timing.v_total / stream->timing.h_total) < 120)
5222 return true;
5223 else if (dc->current_state->stream_count > 1 && stream->timing.v_addressable >= 1080 &&
5224 ((stream->timing.pix_clk_100hz * 100) / stream->timing.v_total / stream->timing.h_total) < 120)
5225 return true;
5226
5227 return false;
5228 }
5229
resource_get_dscl_prog_data(struct pipe_ctx * pipe_ctx)5230 struct dscl_prog_data *resource_get_dscl_prog_data(struct pipe_ctx *pipe_ctx)
5231 {
5232 return &pipe_ctx->plane_res.scl_data.dscl_prog_data;
5233 }
5234
resource_init_common_dml2_callbacks(struct dc * dc,struct dml2_configuration_options * dml2_options)5235 void resource_init_common_dml2_callbacks(struct dc *dc, struct dml2_configuration_options *dml2_options)
5236 {
5237 dml2_options->callbacks.dc = dc;
5238 dml2_options->callbacks.build_scaling_params = &resource_build_scaling_params;
5239 dml2_options->callbacks.build_test_pattern_params = &resource_build_test_pattern_params;
5240 dml2_options->callbacks.acquire_secondary_pipe_for_mpc_odm = &dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy;
5241 dml2_options->callbacks.update_pipes_for_stream_with_slice_count = &resource_update_pipes_for_stream_with_slice_count;
5242 dml2_options->callbacks.update_pipes_for_plane_with_slice_count = &resource_update_pipes_for_plane_with_slice_count;
5243 dml2_options->callbacks.get_mpc_slice_index = &resource_get_mpc_slice_index;
5244 dml2_options->callbacks.get_mpc_slice_count = &resource_get_mpc_slice_count;
5245 dml2_options->callbacks.get_odm_slice_index = &resource_get_odm_slice_index;
5246 dml2_options->callbacks.get_odm_slice_count = &resource_get_odm_slice_count;
5247 dml2_options->callbacks.get_opp_head = &resource_get_opp_head;
5248 dml2_options->callbacks.get_otg_master_for_stream = &resource_get_otg_master_for_stream;
5249 dml2_options->callbacks.get_opp_heads_for_otg_master = &resource_get_opp_heads_for_otg_master;
5250 dml2_options->callbacks.get_dpp_pipes_for_plane = &resource_get_dpp_pipes_for_plane;
5251 dml2_options->callbacks.get_stream_status = &dc_state_get_stream_status;
5252 dml2_options->callbacks.get_stream_from_id = &dc_state_get_stream_from_id;
5253 dml2_options->callbacks.get_max_flickerless_instant_vtotal_increase = &dc_stream_get_max_flickerless_instant_vtotal_increase;
5254
5255 dml2_options->svp_pstate.callbacks.dc = dc;
5256 dml2_options->svp_pstate.callbacks.add_phantom_plane = &dc_state_add_phantom_plane;
5257 dml2_options->svp_pstate.callbacks.add_phantom_stream = &dc_state_add_phantom_stream;
5258 dml2_options->svp_pstate.callbacks.build_scaling_params = &resource_build_scaling_params;
5259 dml2_options->svp_pstate.callbacks.create_phantom_plane = &dc_state_create_phantom_plane;
5260 dml2_options->svp_pstate.callbacks.remove_phantom_plane = &dc_state_remove_phantom_plane;
5261 dml2_options->svp_pstate.callbacks.remove_phantom_stream = &dc_state_remove_phantom_stream;
5262 dml2_options->svp_pstate.callbacks.create_phantom_stream = &dc_state_create_phantom_stream;
5263 dml2_options->svp_pstate.callbacks.release_phantom_plane = &dc_state_release_phantom_plane;
5264 dml2_options->svp_pstate.callbacks.release_phantom_stream = &dc_state_release_phantom_stream;
5265 dml2_options->svp_pstate.callbacks.get_pipe_subvp_type = &dc_state_get_pipe_subvp_type;
5266 dml2_options->svp_pstate.callbacks.get_stream_subvp_type = &dc_state_get_stream_subvp_type;
5267 dml2_options->svp_pstate.callbacks.get_paired_subvp_stream = &dc_state_get_paired_subvp_stream;
5268 dml2_options->svp_pstate.callbacks.remove_phantom_streams_and_planes = &dc_state_remove_phantom_streams_and_planes;
5269 dml2_options->svp_pstate.callbacks.release_phantom_streams_and_planes = &dc_state_release_phantom_streams_and_planes;
5270 }
5271
5272 /* Returns number of DET segments allocated for a given OTG_MASTER pipe */
resource_calculate_det_for_stream(struct dc_state * state,struct pipe_ctx * otg_master)5273 int resource_calculate_det_for_stream(struct dc_state *state, struct pipe_ctx *otg_master)
5274 {
5275 struct pipe_ctx *opp_heads[MAX_PIPES];
5276 struct pipe_ctx *dpp_pipes[MAX_PIPES];
5277
5278 int dpp_count = 0;
5279 int det_segments = 0;
5280
5281 if (!otg_master->stream)
5282 return 0;
5283
5284 int slice_count = resource_get_opp_heads_for_otg_master(otg_master,
5285 &state->res_ctx, opp_heads);
5286
5287 for (int slice_idx = 0; slice_idx < slice_count; slice_idx++) {
5288 if (opp_heads[slice_idx]->plane_state) {
5289 dpp_count = resource_get_dpp_pipes_for_opp_head(
5290 opp_heads[slice_idx],
5291 &state->res_ctx,
5292 dpp_pipes);
5293 for (int dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++)
5294 det_segments += dpp_pipes[dpp_idx]->hubp_regs.det_size;
5295 }
5296 }
5297 return det_segments;
5298 }
5299
resource_is_hpo_acquired(struct dc_state * context)5300 bool resource_is_hpo_acquired(struct dc_state *context)
5301 {
5302 int i;
5303
5304 for (i = 0; i < MAX_HPO_DP2_ENCODERS; i++) {
5305 if (context->res_ctx.is_hpo_dp_stream_enc_acquired[i]) {
5306 return true;
5307 }
5308 }
5309
5310 return false;
5311 }
5312