1;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3;;;     The data in this file contains enhancments.                    ;;;;;
4;;;                                                                    ;;;;;
5;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
6;;;     All rights reserved                                            ;;;;;
7;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8;;;     (c) Copyright 1982 Massachusetts Institute of Technology         ;;;
9;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
10
11(in-package :maxima)
12
13(macsyma-module limit)
14
15
16;;;	**************************************************************
17;;;	**							    **
18;;;	**			   LIMIT PACKAGE		    **
19;;;	**							    **
20;;;	**************************************************************
21
22;;; I believe a large portion of this file is described in Paul
23;;; Wang's thesis, "Evaluation of Definite Integrals by Symbolic
24;;; Integration," MIT/LCS/TR-92, Oct. 1971.  This can be found at
25;;; http://www.lcs.mit.edu/publications/specpub.php?id=660, but some
26;;; important pages are black.
27
28;;; TOP LEVEL FUNCTION(S): $LIMIT $LDEFINT
29
30(declare-top (special errorsw origval $lhospitallim low*
31		      *indicator half%pi nn* dn* numer denom exp var val varlist
32		      *zexptsimp? $tlimswitch $logarc taylored logcombed
33		      $exponentialize lhp? lhcount $ratfac genvar
34		      loginprod? $limsubst $logabs a context limit-assumptions
35		      limit-top limitp integer-info old-integer-info $keepfloat $logexpand))
36
37(defconstant +behavior-count+ 4)
38(defvar *behavior-count-now*)
39(defvar *getsignl-asksign-ok* nil)
40
41(load-macsyma-macros rzmac)
42
43(defmvar infinities '($inf $minf $infinity)
44  "The types of infinities recognized by Maxima.
45   INFINITY is complex infinity")
46
47(defmvar real-infinities '($inf $minf)
48  "The real infinities, `inf' is positive infinity, `minf' negative infinity")
49
50(defmvar infinitesimals '($zeroa $zerob)
51  "The infinitesimals recognized by Maxima. ZEROA zero from above,
52   ZEROB zero from below")
53
54(defmvar simplimplus-problems ()
55  "A list of all problems in the stack of recursive calls to simplimplus.")
56
57(defmvar limit-answers ()
58  "An association list for storing limit answers.")
59
60(defmvar limit-using-taylor ()
61  "Is the current limit computation using taylor expansion?")
62
63(defmvar preserve-direction () "Makes `limit' return Direction info.")
64
65(unless (boundp 'integer-info) (setq integer-info ()))
66
67;; This should be made to give more information about the error.
68;;(DEFun DISCONT ()
69;;       (cond (errorsw (throw 'errorsw t))
70;;	     (t (merror "Discontinuity Encountered"))))
71
72;;(DEFUN PUTLIMVAL (E V)
73;;  (let ((exp (cons '(%limit) (list e var val))))
74;;    (cond ((not (assolike exp limit-answers))
75;;	   (setq limit-answers (cons (cons exp v) limit-answers))
76;;	   v)
77;;	  (t ()))))
78
79(defun putlimval (e v &aux exp)
80  (setq exp `((%limit) ,e ,var ,val))
81  (unless (assolike exp limit-answers)
82    (push (cons exp v) limit-answers))
83  v)
84
85(defun getlimval (e)
86  (let ((exp (cons '(%limit) (list e var val))))
87    (assolike exp limit-answers)))
88
89(defmacro limit-catch (exp var val)
90  `(let ((errorsw t))
91    (let ((ans (catch 'errorsw
92		 (catch 'limit (limit ,exp ,var ,val 'think)))))
93      (if (or (null ans) (eq ans t))
94	  ()
95	  ans))))
96
97(defmfun $limit (&rest args)
98  (let ((first-try (apply #'toplevel-$limit args)))
99    (if (and (consp first-try) (eq (caar first-try) '%limit))
100      (let ((*getsignl-asksign-ok* t))
101        (apply #'toplevel-$limit args))
102      first-try)))
103
104(defun toplevel-$limit (&rest args)
105  (let ((limit-assumptions ())
106	(old-integer-info ())
107	($keepfloat t)
108	(limit-top t))
109    (declare (special limit-assumptions old-integer-info
110		      $keepfloat limit-top))
111    (unless limitp
112      (setq old-integer-info integer-info)
113      (setq integer-info ()))
114
115    (unwind-protect
116	 (let ((exp1 ()) (lhcount $lhospitallim) (*behavior-count-now* 0)
117	       (exp ()) (var ()) (val ()) (dr ())
118	       (*indicator ()) (taylored ()) (origval ())
119	       (logcombed ()) (lhp? ())
120	       (varlist ()) (ans ()) (genvar ()) (loginprod? ())
121	       (limit-answers ()) (limitp t) (simplimplus-problems ())
122	       (lenargs (length args))
123	       (genfoo ()))
124	   (declare (special lhcount *behavior-count-now* exp var val *indicator
125			     taylored origval logcombed lhp?
126			     varlist genvar loginprod? limitp))
127	   (prog ()
128	      (unless (or (= lenargs 3) (= lenargs 4) (= lenargs 1))
129		(wna-err '$limit))
130	      ;; Is it a LIST of Things?
131	      (when (setq ans (apply #'limit-list args))
132		(return ans))
133	      (setq exp1 (specrepcheck (first args)))
134              (when (and (atom exp1)
135                         (member exp1 '(nil t)))
136                ;; The expression is 'T or 'NIL. Return immediately.
137                (return exp1))
138	      (cond ((= lenargs 1)
139		     (setq var (setq genfoo (gensym)) ; Use a gensym. Not foo.
140		           val 0))
141		    (t
142		     (setq var (second args))
143		       (when ($constantp var)
144			 (merror (intl:gettext "limit: second argument must be a variable, not a constant; found: ~M") var))
145		       (unless (or ($subvarp var) (atom var))
146			 (merror (intl:gettext "limit: variable must be a symbol or subscripted symbol; found: ~M") var))
147		       (setq val (infsimp (third args)))
148		       ;; infsimp converts -inf to minf.  it also converts -infinity to
149		       ;; infinity, although perhaps this should generate the error below.
150		       (when (and (not (atom val))
151				  (some #'(lambda (x) (not (freeof x val)))
152					infinities))
153			 (merror (intl:gettext "limit: third argument must be a finite value or one of: inf, minf, infinity; found: ~M") val))
154		       (when (eq val '$zeroa) (setq dr '$plus))
155		       (when (eq val '$zerob) (setq dr '$minus))))
156	      (cond ((= lenargs 4)
157		     (unless (member (fourth args) '($plus $minus) :test #'eq)
158		       (merror (intl:gettext "limit: direction must be either 'plus' or 'minus'; found: ~M") (fourth args)))
159		     (setq dr (fourth args))))
160	      (if (and (atom var) (not (among var val)))
161		  (setq exp exp1)
162		  (let ((realvar var)) ;; Var is funny so make it a gensym.
163		    (setq var (gensym))
164		    (setq exp (maxima-substitute var realvar exp1))
165		    (putprop var realvar 'limitsub)))
166	      (unless (or $limsubst (eq var genfoo))
167		(when (limunknown exp)
168		  (return `((%limit) ,@(cons exp1 (cdr args))))))
169	      (setq varlist (ncons var) genvar nil origval val)
170	      ;; Transform limits to minf to limits to inf by
171	      ;; replacing var with -var everywhere.
172	      (when (eq val '$minf)
173		(setq val '$inf
174		      origval '$inf
175		      exp (subin (m* -1 var) exp)))
176
177              ;; Hide noun form of %derivative, %integrate.
178	      (setq exp (hide exp))
179
180	      ;; Transform the limit value.
181	      (unless (infinityp val)
182		(unless (zerop2 val)
183		  (let ((*atp* t) (realvar var))
184		    ;; *atp* prevents substitution from applying to vars
185		    ;; bound by %sum, %product, %integrate, %limit
186		    (setq var (gensym))
187		    (putprop var t 'internal)
188		    (setq exp (maxima-substitute (m+ val var) realvar exp))))
189		(setq val (cond ((eq dr '$plus) '$zeroa)
190				((eq dr '$minus) '$zerob)
191				(t 0)))
192		(setq origval 0))
193
194	      ;; Make assumptions about limit var being very small or very large.
195	      ;; Assumptions are forgotten upon exit.
196	      (unless (= lenargs 1)
197		(limit-context var val dr))
198
199              ;; Resimplify in light of new assumptions.
200              (setq exp (resimplify
201                          (factosimp
202                            (tansc
203                              (lfibtophi
204                                (limitsimp ($expand exp 1 0) var))))))
205
206	      (if (not (or (real-epsilonp val)		;; if direction of limit not specified
207			   (infinityp val)))
208		  (setq ans (both-side exp var val))	;; compute from both sides
209		(let ((d (catch 'mabs (mabs-subst exp var val))))
210		  (cond 				;; otherwise try to remove absolute value
211		   ((eq d '$und) (return '$und))
212		   ((eq d 'retn) )
213		   (t (setq exp d)))
214		  (setq ans (limit-catch exp var val));; and find limit from one side
215
216		  ;; try gruntz
217		  (if (not ans)
218		      (setq ans (catch 'taylor-catch
219				  (let ((silent-taylor-flag t))
220				    (declare (special silent-taylor-flag))
221				    (gruntz1 exp var val)))))
222
223		  ;; try taylor series expansion if simple limit didn't work
224		  (if (and (null ans)		;; if no limit found and
225			   $tlimswitch		;; user says ok to use taylor and
226			   (not limit-using-taylor));; not already doing taylor
227		      (let ((limit-using-taylor t))
228			(declare (special limit-using-taylor))
229			(setq ans (limit-catch exp var val))))))
230
231	      (if ans
232		  (return (clean-limit-exp ans))
233                  (return (cons '(%limit) args)))))	;; failure: return nounform
234      (restore-assumptions))))
235
236(defun clean-limit-exp (exp)
237  (setq exp (restorelim exp))
238  (if preserve-direction exp (ridofab exp)))
239
240(defun limit-list (exp1 &rest rest)
241  (if (mbagp exp1)
242      `(,(car exp1) ,@(mapcar #'(lambda (x) (apply #'toplevel-$limit `(,x ,@rest))) (cdr exp1)))
243      ()))
244
245(defun limit-context (var val direction) ;Only works on entry!
246  (cond (limit-top
247	 (assume '((mgreaterp) lim-epsilon 0))
248	 (assume '((mgreaterp) prin-inf 100000000))
249	 (setq limit-assumptions (make-limit-assumptions var val direction))
250	 (setq limit-top ()))
251	(t ()))
252  limit-assumptions)
253
254(defun make-limit-assumptions (var val direction)
255  (let ((new-assumptions))
256    (cond ((or (null var) (null val))
257	   ())
258	  ((and (not (infinityp val)) (null direction))
259	   ())
260	  ((eq val '$inf)
261	   `(,(assume `((mgreaterp) ,var 100000000)) ,@new-assumptions))
262	  ((eq val '$minf)
263	   `(,(assume `((mgreaterp) -100000000 ,var)) ,@new-assumptions))
264	  ((eq direction '$plus)
265	   `(,(assume `((mgreaterp) ,var 0)) ,@new-assumptions)) ;All limits around 0
266	  ((eq direction '$minus)
267	   `(,(assume `((mgreaterp) 0 ,var)) ,@new-assumptions))
268	  (t
269	   ()))))
270
271(defun restore-assumptions ()
272;;;Hackery until assume and forget take reliable args. Nov. 9 1979.
273;;;JIM.
274  (do ((assumption-list limit-assumptions (cdr assumption-list)))
275      ((null assumption-list) t)
276    (forget (car assumption-list)))
277  (forget '((mgreaterp) lim-epsilon 0))
278  (forget '((mgreaterp) prin-inf 100000000))
279  (cond ((and (not (null integer-info))
280	      (not limitp))
281	 (do ((list integer-info (cdr list)))
282	     ((null list) t)
283	   (i-$remove `(,(cadar list) ,(caddar list))))
284	 (setq integer-info old-integer-info))))
285
286;; The optional arg allows the caller to decide on the value of
287;; preserve-direction.  Default is T, like it used to be.
288(defun both-side (exp var val &optional (preserve t))
289  (let* ((preserve-direction preserve)
290         (la (toplevel-$limit exp var val '$plus)) lb)
291    (when (eq la '$und) (return-from both-side '$und))
292    (setf lb (toplevel-$limit exp var val '$minus))
293    (let ((ra (ridofab la))
294          (rb (ridofab lb)))
295      (cond ((eq t (meqp ra rb))
296             ra)
297            ((and (eq ra '$ind)
298                  (eq rb '$ind))
299             ; Maxima does not consider equal(ind,ind) to be true, but
300             ; if both one-sided limits are ind then we want to call
301             ; the two-sided limit ind (e.g., limit(sin(1/x),x,0)).
302             '$ind)
303            ((or (not (free la '%limit))
304                 (not (free lb '%limit)))
305             ())
306            ((and (infinityp la) (infinityp lb))
307             ; inf + minf => infinity
308             '$infinity)
309            (t
310             '$und)))))
311
312(defun limunknown (f)
313  (catch 'limunknown (limunknown1 (specrepcheck f))))
314
315(defun limunknown1 (f)
316  (cond ((mapatom f) nil)
317	((or (not (safe-get (caar f) 'operators))
318	     (member (caar f) '(%sum %product mncexpt) :test #'eq)
319	     ;;Special function code here i.e. for li[2](x).
320	     (and (eq (caar f) 'mqapply)
321		  (not (get (subfunname f) 'specsimp))))
322	 (if (not (free f var)) (throw 'limunknown t)))
323	(t (mapc #'limunknown1 (cdr f)) nil)))
324
325(defun factosimp(e)
326  (if (involve e '(%gamma)) (setq e ($makefact e)))
327  (cond ((involve e '(mfactorial))
328	 (setq e (simplify ($minfactorial e))))
329	(t e)))
330
331;; returns 1, 0, -1
332;; or nil if sign unknown or complex
333(defun getsignl (z)
334  (let ((z (ridofab z)))
335    (if (not (free z var)) (setq z (toplevel-$limit z var val)))
336    (let ((*complexsign* t))
337      (let ((sign (if *getsignl-asksign-ok* ($asksign z) ($sign z))))
338        (cond ((eq sign '$pos) 1)
339              ((eq sign '$neg) -1)
340              ((eq sign '$zero) 0))))))
341
342(defun restorelim (exp)
343  (cond ((null exp) nil)
344	((atom exp) (or (and (symbolp exp) (get exp 'limitsub)) exp))
345	((and (consp (car exp)) (eq (caar exp) 'mrat))
346	 (cons (car exp)
347	       (cons (restorelim (cadr exp))
348		     (restorelim (cddr exp)))))
349	(t (cons (car exp) (mapcar #'restorelim (cdr exp))))))
350
351
352(defun mabs-subst (exp var val)	; RETURNS EXP WITH MABS REMOVED, OR THROWS.
353  (let ((d (involve exp '(mabs)))
354        arglim)
355    (cond ((null d) exp)
356	  (t (cond
357	       ((not (and (equal ($imagpart (let ((v (limit-catch d var val)))
358					      ;; The above call might
359					      ;; throw 'limit, so we
360					      ;; need to catch it.  If
361					      ;; we can't find the
362					      ;; limit without ABS, we
363					      ;; assume the limit is
364					      ;; undefined.  Is this
365					      ;; right?  Anyway, this
366					      ;; fixes Bug 1548643.
367					      (unless v
368						(throw 'mabs '$und))
369					      (setq arglim v)))
370				 0)
371			  (equal ($imagpart var) 0)))
372                (cond ((eq arglim '$infinity)
373                       ;; Check for $infinity as limit of argument.
374                       '$inf)
375                      (t
376                       (throw 'mabs 'retn))))
377	       (t (do ((ans d (involve exp '(mabs))) (a () ()))
378		      ((null ans) exp)
379		    (setq a (mabs-subst ans var val))
380		    (setq d (limit a var val t))
381		    (cond
382		      ((and a d)
383		       (cond ((zerop1 d)
384			      (setq d (behavior a var val))
385			      (if (zerop1 d) (throw 'mabs 'retn))))
386		       (if (eq d '$und)
387			   (throw 'mabs d))
388		       (cond ((or (eq d '$zeroa) (eq d '$inf)
389				  (eq d '$ind)
390				  ;; fails on limit(abs(sin(x))/sin(x), x, inf)
391				  (eq ($sign d) '$pos))
392			      (setq exp (maxima-substitute a `((mabs) ,ans) exp)))
393			     ((or (eq d '$zerob) (eq d '$minf)
394				  (eq ($sign d) '$neg))
395			      (setq exp (maxima-substitute (m* -1 a) `((mabs) ,ans) exp)))
396			     (t (throw 'mabs 'retn))))
397		      (t (throw 'mabs 'retn))))))))))
398
399;; Called on an expression that might contain $INF, $MINF, $ZEROA, $ZEROB. Tries
400;; to simplify it to sort out things like inf^inf or inf+1.
401(defun simpinf (exp)
402  (simpinf-ic exp (count-general-inf exp)))
403
404(defun count-general-inf (expr)
405  (count-atoms-matching
406   (lambda (x) (or (infinityp x) (real-epsilonp x))) expr))
407
408(defun count-atoms-matching (predicate expr)
409  "Count the number of atoms in the Maxima expression EXPR matching PREDICATE,
410ignoring dummy variables and array indices."
411  (cond
412    ((atom expr) (if (funcall predicate expr) 1 0))
413    ;; Don't count atoms that occur as a limit of %integrate, %sum, %product,
414    ;; %limit etc.
415    ((member (caar expr) dummy-variable-operators)
416     (count-atoms-matching predicate (cadr expr)))
417    ;; Ignore array indices
418    ((member 'array (car expr)) 0)
419    (t (loop
420          for arg in (cdr expr)
421          summing (count-atoms-matching predicate arg)))))
422
423(defun simpinf-ic (exp &optional infinity-count)
424  (case infinity-count
425    ;; A very slow identity transformation...
426    (0 exp)
427
428    ;; If there's only one infinity, we replace it by a variable and take the
429    ;; limit as that variable goes to infinity. Use $gensym in case we can't
430    ;; compute the answer and the limit leaks out.
431    (1 (let* ((val (or (inf-typep exp) (epsilon-typep exp)))
432              (var ($gensym))
433              (expr (subst var val exp))
434              (limit (toplevel-$limit expr var val)))
435         (cond
436           ;; Now we look to see whether the computed limit is any simpler than
437           ;; what we shoved in (which we'll define as "doesn't contain EXPR as a
438           ;; subtree"). If so, return it.
439           ((not (subtree-p expr limit :test #'equal))
440            limit)
441
442           ;; Otherwise, return the original form: apparently, we can't compute
443           ;; the limit we needed, and it's uglier than what we started with.
444           (t exp))))
445
446    ;; If more than one infinity, we have to be a bit more careful.
447    (otherwise
448     (let* ((arguments (mapcar 'simpinf (cdr exp)))
449            (new-expression (cons (list (caar exp)) arguments))
450            infinities-left)
451       (cond
452         ;; If any of the arguments are undefined, we are too.
453         ((among '$und arguments) '$und)
454         ;; If we ended up with something indeterminate, we punt and just return
455         ;; the input.
456         ((amongl '(%limit $ind) arguments) exp)
457
458         ;; Exponentiation & multiplication
459         ((mexptp exp) (simpinf-expt (first arguments) (second arguments)))
460         ((mtimesp exp) (simpinf-times arguments))
461
462         ;; Down to at most one infinity? We do this after exponentiation to
463         ;; avoid zeroa^zeroa => 0^0, which will raise an error rather than just
464         ;; returning und. We do it after multiplication to avoid zeroa * inf =>
465         ;; 0 * inf => 0.
466         ((<= (setf infinities-left (count-general-inf new-expression)) 1)
467          (simpinf-ic new-expression infinities-left))
468
469         ;; Addition
470	 ((mplusp exp) (simpinf-plus arguments))
471
472         ;; Give up!
473	 (t new-expression))))))
474
475(defun simpinf-times (arguments)
476  (declare (special exp var val))
477  ;; When we have a product, we need to spot that zeroa * zerob = zerob, zeroa *
478  ;; inf = und etc. Note that (SIMPINF '$ZEROA) => 0, so a nonzero atom is not
479  ;; an infinitesimal. Moreover, we can assume that each of ARGUMENTS is either
480  ;; a number, computed successfully by the recursive SIMPINF call, or maybe a
481  ;; %LIMIT noun-form (in which case, we aren't going to be able to tell the
482  ;; answer).
483  (cond
484    ((member 0 arguments)
485     (cond
486       ((find-if #'infinityp arguments) '$und)
487       ((every #'atom arguments) 0)
488       (t exp)))
489
490    ((member '$infinity arguments)
491     (if (every #'atom arguments)
492         '$infinity
493         exp))
494
495    (t (simplimit (cons '(mtimes) arguments) var val))))
496
497(defun simpinf-expt (base exponent)
498  ;; In the comments below, zero* represents one of 0, zeroa, zerob.
499  ;;
500  ;; TODO: In some cases we give up too early. E.g. inf^(2 + 1/inf) => inf^2
501  ;;       (which should simplify to inf)
502  (case base
503    ;; inf^inf = inf
504    ;; inf^minf = 0
505    ;; inf^zero* = und
506    ;; inf^foo = inf^foo
507    ($inf
508     (case exponent
509       ($inf '$inf)
510       ($minf 0)
511       ((0 $zeroa $zerob) '$und)
512       (t (list '(mexpt) base exponent))))
513    ;; minf^inf = infinity  <== Or should it be und?
514    ;; minf^minf = 0
515    ;; minf^zero* = und
516    ;; minf^foo = minf^foo
517    ($minf
518     (case exponent
519       ($inf '$infinity)
520       ($minf 0)
521       ((0 $zeroa $zerob) '$und)
522       (t (list '(mexpt) base exponent))))
523    ;; zero*^inf = 0
524    ;; zero*^minf = und
525    ;; zero*^zero* = und
526    ;; zero*^foo = zero*^foo
527    ((0 $zeroa $zerob)
528     (case exponent
529       ($inf 0)
530       ($minf '$und)
531       ((0 $zeroa $zerob) '$und)
532       (t (list '(mexpt) base exponent))))
533    ;; a^b where a is pretty much anything except for a naked
534    ;; inf,minf,zeroa,zerob or 0.
535    (t
536     (cond
537       ;; When a isn't crazy, try a^b = e^(b log(a))
538       ((not (amongl (append infinitesimals infinities) base))
539        (simpinf (m^ '$%e (m* exponent `((%log) ,base)))))
540
541       ;; No idea. Just return what we've found so far.
542       (t (list '(mexpt) base exponent))))))
543
544(defun simpinf-plus (arguments)
545  ;; We know that none of the arguments are infinitesimals, since SIMPINF never
546  ;; returns one of them. As such, we partition our arguments into infinities
547  ;; and everything else. The latter won't have any "hidden" infinities like
548  ;; lim(x,x,inf), since SIMPINF gave up on anything containing a %lim already.
549  (let ((bigs) (others))
550    (dolist (arg arguments)
551      (cond ((infinityp arg) (push arg bigs))
552            (t (push arg others))))
553    (cond
554      ;; inf + minf or the like
555      ((cdr (setf bigs (delete-duplicates bigs))) '$und)
556      ;; inf + smaller + stuff
557      (bigs (car bigs))
558      ;; I don't think this can happen, since SIMPINF goes back to the start if
559      ;; there are fewer than two infinities in the arguments, but let's be
560      ;; careful.
561      (t (cons '(mplus) others)))))
562
563;; Simplify expression with zeroa or zerob.
564(defun simpab (small)
565  (cond ((null small) ())
566	((member small '($zeroa $zerob $inf $minf $infinity) :test #'eq) small)
567	((not (free small '$ind)) '$ind) ;Not exactly right but not
568	((not (free small '$und)) '$und) ;causing trouble now.
569	((mapatom small)  small)
570	(t (let ((preserve-direction t)
571		  (new-small (subst (m^ '$inf -1) '$zeroa
572				       (subst (m^ '$minf -1) '$zerob small))))
573	          (simpinf new-small)))))
574
575
576;;;*I* INDICATES: T => USE LIMIT1,THINK, NIL => USE SIMPLIMIT.
577(defun limit (exp var val *i*)
578  (cond
579    ((among '$und exp)  '$und)
580    ((eq var exp)  val)
581    ((atom exp)  exp)
582    ((not (among var exp))
583     (cond ((amongl '($inf $minf $infinity $ind) exp)
584	    (simpinf exp))
585           ((amongl '($zeroa $zerob) exp)
586            ;; Simplify expression with zeroa or zerob.
587            (simpab exp))
588	   (t exp)))
589    ((getlimval exp))
590    (t (putlimval exp (cond ((and limit-using-taylor
591				  (null taylored)
592				  (tlimp exp))
593			     (taylim exp var val *i*))
594			    ((ratp exp var) (ratlim exp))
595			    ((or (eq *i* t) (radicalp exp var))
596			     (limit1 exp var val))
597			    ((eq *i* 'think)
598			     (cond ((or (mtimesp exp) (mexptp exp))
599				    (limit1 exp var val))
600				   (t (simplimit exp var val))))
601			    (t (simplimit exp var val)))))))
602
603(defun limitsimp (exp var)
604  (limitsimp-expt (sin-sq-cos-sq-sub exp) var))
605;;Hack for sin(x)^2+cos(x)^2.
606
607;; if var appears in base and power of expt,
608;; push var into power of of expt
609(defun limitsimp-expt (exp var)
610  (cond ((or (atom exp)
611	     (mnump exp)
612	     (freeof var exp))   exp)
613	((and (mexptp exp)
614	      (not (freeof var (cadr exp)))
615	      (not (freeof var (caddr exp))))
616	 (m^ '$%e (simplify `((%log) ,exp))))
617	(t (subst0 (cons (cons (caar exp) ())
618			 (mapcar #'(lambda (x)
619				     (limitsimp-expt x var))
620				 (cdr exp)))
621		   exp))))
622
623(defun sin-sq-cos-sq-sub (exp)		;Hack ... Hack
624  (let ((arg (involve exp '(%sin %cos))))
625    (cond
626      ((null arg) exp)
627      (t (let ((new-exp ($substitute (m+t 1 (m- (m^t `((%sin simp) ,arg) 2)))
628                                     (m^t `((%cos simp) ,arg) 2)
629                                     ($substitute
630                                      (m+t 1 (m- (m^t `((%cos simp) ,arg) 2)))
631                                      (m^t `((%sin simp) ,arg) 2)
632                                      exp))))
633	   (cond ((not (involve new-exp '(%sin %cos)))  new-exp)
634		 (t exp)))))))
635
636(defun expand-trigs (x var)
637  (cond ((atom x) x)
638	((mnump x) x)
639	((and (or (eq (caar x) '%sin)
640		  (eq (caar x) '%cos))
641	      (not (free (cadr x) var)))
642	 ($trigexpand x))
643	((member 'array (car x))
644	 ;; Some kind of array reference.  Return it.
645	 x)
646	(t (simplify (cons (ncons (caar x))
647			   (mapcar #'(lambda (x)
648				       (expand-trigs x var))
649				   (cdr x)))))))
650
651
652(defun tansc (e)
653  (cond ((not (involve e
654		       '(%cot %csc %binomial
655			 %sec %coth %sech %csch
656			 %acot %acsc %asec %acoth
657			 %asech %acsch
658			 %jacobi_ns %jacobi_nc %jacobi_cs
659			 %jacobi_ds %jacobi_dc)))
660	 e)
661	(t ($ratsimp (tansc1 e)))))
662
663(defun tansc1 (e &aux tem)
664  (cond ((atom e) e)
665	((and (setq e (cons (car e) (mapcar 'tansc1 (cdr e))))  ()))
666	((setq tem (assoc (caar e) '((%cot . %tan) (%coth . %tanh)
667				    (%sec . %cos) (%sech . %cosh)
668				    (%csc . %sin) (%csch . %sinh)) :test #'eq))
669	 (tansc1 (m^ (list (ncons (cdr tem)) (cadr e)) -1.)))
670	((setq tem (assoc (caar e) '((%jacobi_nc . %jacobi_cn)
671				    (%jacobi_ns . %jacobi_sn)
672				    (%jacobi_cs . %jacobi_sc)
673				    (%jacobi_ds . %jacobi_sd)
674				    (%jacobi_dc . %jacobi_cd)) :test #'eq))
675	 ;; Converts Jacobi elliptic function to its reciprocal
676	 ;; function.
677	 (tansc1 (m^ (list (ncons (cdr tem)) (cadr e) (third e)) -1.)))
678	((setq tem (member (caar e) '(%sinh %cosh %tanh) :test #'eq))
679	 (let (($exponentialize t))
680	   (resimplify e)))
681	((setq tem (assoc (caar e) '((%acsc . %asin) (%asec . %acos)
682				    (%acot . %atan) (%acsch . %asinh)
683				    (%asech . %acosh) (%acoth . %atanh)) :test #'eq))
684	 (list (ncons (cdr tem)) (m^t (cadr e) -1.)))
685	((and (eq (caar e) '%binomial) (among var (cdr e)))
686	 (m//  `((mfactorial) ,(cadr e))
687	       (m* `((mfactorial) ,(m+t (cadr e) (m- (caddr e))))
688		   `((mfactorial) ,(caddr e)))))
689	(t e)))
690
691(defun hyperex (ex)
692  (cond ((not (involve ex '(%sin %cos %tan %asin %acos %atan
693			    %sinh %cosh %tanh %asinh %acosh %atanh)))
694	 ex)
695	(t (hyperex0 ex))))
696
697(defun hyperex0 (ex)
698  (cond ((atom ex) ex)
699	((eq (caar ex) '%sinh)
700	 (m// (m+ (m^ '$%e (cadr ex)) (m- (m^ '$%e (m- (cadr ex)))))
701	      2))
702	((eq (caar ex) '%cosh)
703	 (m// (m+ (m^ '$%e (cadr ex)) (m^ '$%e (m- (cadr ex))))
704	      2))
705	((and (member (caar ex)
706		    '(%sin %cos %tan %asin %acos %atan %sinh
707		      %cosh %tanh %asinh %acosh %atanh) :test #'eq)
708	      (among var ex))
709	 (hyperex1 ex))
710	(t (cons (car ex) (mapcar #'hyperex0 (cdr ex))))))
711
712(defun hyperex1 (ex)
713  (resimplify ex))
714
715;;Used by tlimit also.
716(defun limit1 (exp var val)
717  (prog ()
718     (let ((lhprogress? lhp?)
719           (lhp? ())
720           (ans ()))
721       (cond ((setq ans (and (not (atom exp)) (getlimval exp)))
722	      (return ans))
723	     ((and (not (infinityp val)) (setq ans (simplimsubst val exp)))
724	      (return ans))
725	     (t nil))
726;;;NUMDEN* => (values numerator denominator)
727       (multiple-value-bind (n dn)
728           (numden* exp)
729         (cond ((not (among var dn))
730                (return (simplimit (m// (simplimit n var val) dn) var val)))
731               ((not (among var n))
732                (return (simplimit (m* n (simplimexpt dn -1 (simplimit dn var val) -1)) var val)))
733               ((and lhprogress?
734                   (/#alike n (car lhprogress?))
735                   (/#alike dn (cdr lhprogress?)))
736                (throw 'lhospital nil)))
737         (return (limit2 n dn var val))))))
738
739(defun /#alike (e f)
740  (if (alike1 e f)
741      t
742      (let ((deriv (sdiff (m// e f) var)))
743        (cond ((=0 deriv) t)
744              ((=0 ($ratsimp deriv)) t)
745              (t nil)))))
746
747(defun limit2 (n dn var val)
748  (prog (n1 d1 lim-sign gcp sheur-ans)
749     (setq n (hyperex n) dn (hyperex dn))
750;;;Change to uniform limit call.
751     (cond ((infinityp val)
752	    (setq d1 (limit dn var val nil))
753	    (setq n1 (limit n var val nil)))
754	   (t (cond ((setq n1 (simplimsubst val n)) nil)
755		    (t (setq n1 (limit n var val nil))))
756	      (cond ((setq d1 (simplimsubst val dn)) nil)
757		    (t (setq d1 (limit dn var val nil))))))
758     (cond ((or (null n1) (null d1)) (return nil))
759	   (t (setq n1 (sratsimp n1) d1 (sratsimp d1))))
760     (cond ((or (involve n '(mfactorial)) (involve dn '(mfactorial)))
761	    (let ((ans (limfact2 n dn var val)))
762	      (cond (ans (return ans))))))
763     (cond ((and (zerop2 n1) (zerop2 d1))
764	    (cond  ((not (equal (setq gcp (gcpower n dn)) 1))
765		    (return (colexpt n dn gcp)))
766		   ((and (real-epsilonp val)
767			 (not (free n '%log))
768			 (not (free dn '%log)))
769		    (return (liminv (m// n dn))))
770		   ((setq n1 (try-lhospital-quit n dn nil))
771		    (return n1))))
772	   ((and (zerop2 n1) (not (member d1 '($ind $und) :test #'eq))) (return 0))
773	   ((zerop2 d1)
774	    (setq n1 (ridofab n1))
775	    (return (simplimtimes `(,n1 ,(simplimexpt dn -1 d1 -1))))))
776     (setq n1 (ridofab n1))
777     (setq d1 (ridofab d1))
778     (cond ((or (eq d1 '$und)
779		(and (eq n1 '$und) (not (real-infinityp d1))))
780	    (return '$und))
781           ((eq d1 '$ind)
782	    ;; At this point we have n1/$ind. Look if n1 is one of the
783	    ;; infinities or zero.
784	    (cond ((and (infinityp n1) (eq ($sign dn) '$pos))
785		   (return n1))
786		  ((and (infinityp n1) (eq ($sign dn) '$neg))
787		   (return (simpinf (m* -1 n1))))
788		  ((and (not (eq n1 '$ind))
789			(eq ($csign n1) '$zero))
790		   (return 0))
791		  (t (return '$und))))
792	   ((eq n1 '$ind) (return (cond ((infinityp d1) 0)
793					((equal d1 0) '$und)
794					(t '$ind)))) ;SET LB
795	   ((and (real-infinityp d1) (member n1 '($inf $und $minf) :test #'eq))
796	    (cond ((and (not (atom dn)) (not (atom n))
797			(cond ((not (equal (setq gcp (gcpower n dn)) 1))
798			       (return (colexpt n dn gcp)))
799			      ((and (eq '$inf val)
800				    (or (involve dn '(mfactorial %gamma))
801					(involve n '(mfactorial %gamma))))
802			       (return (limfact n dn))))))
803		  ((eq n1 d1) (setq lim-sign 1) (go cp))
804		  (t (setq lim-sign -1) (go cp))))
805	   ((and (infinityp d1) (infinityp n1))
806	    (setq lim-sign (if (or (eq d1 '$minf) (eq n1 '$minf)) -1 1))
807	    (go cp))
808	   (t (return (simplimtimes `(,n1 ,(m^ d1 -1))))))
809     cp   (setq n ($expand n) dn ($expand dn))
810     (cond ((mplusp n)
811	    (let ((new-n (m+l (maxi (cdr n)))))
812	      (cond ((not (alike1 new-n n))
813		     (return (limit (m// new-n dn) var val 'think))))
814	      (setq n1 new-n)))
815	   (t (setq n1 n)))
816     (cond ((mplusp dn)
817	    (let ((new-dn (m+l (maxi (cdr dn)))))
818	      (cond ((not (alike1 new-dn dn))
819		     (return (limit (m// n new-dn) var val 'think))))
820	      (setq d1 new-dn)))
821	   (t (setq d1 dn)))
822     (setq sheur-ans (sheur0 n1 d1))
823     (cond ((or (member sheur-ans '($inf $zeroa) :test #'eq)
824		(free sheur-ans var))
825	    (return (simplimtimes `(,lim-sign ,sheur-ans))))
826	   ((and (alike1 sheur-ans dn)
827		 (not (mplusp n))))
828	   ((member (setq n1 (cond ((expfactorp n1 d1)  (expfactor n1 d1 var))
829				 (t ())))
830		  '($inf $zeroa) :test #'eq)
831	    (return n1))
832	   ((not (null (setq n1 (cond ((expfactorp n dn)  (expfactor n dn var))
833				      (t ())))))
834	    (return n1))
835	   ((and (alike1 sheur-ans dn) (not (mplusp n))))
836	   ((not (alike1 sheur-ans (m// n dn)))
837	    (return (simplimit (m// ($expand (m// n sheur-ans))
838				    ($expand (m// dn sheur-ans)))
839			       var
840			       val))))
841     (cond ((and (not (and (eq val '$inf) (expp n) (expp dn)))
842		 (setq n1 (try-lhospital-quit n dn nil))
843		 (not (eq n1 '$und)))
844	    (return n1)))
845     (throw 'limit t)))
846
847;; Test whether both n and dn have form
848;; product of poly^poly
849(defun expfactorp (n dn)
850  (do ((llist (append (cond ((mtimesp n) (cdr n))
851			    (t (ncons n)))
852		      (cond ((mtimesp dn) (cdr dn))
853			    (t (ncons dn))))
854	      (cdr llist))
855       (exp? t)		  ;IS EVERY ELEMENT SO FAR
856       (factor nil))			;A POLY^POLY?
857      ((or (null llist)
858	   (not exp?))
859       exp?)
860    (setq factor (car llist))
861    (setq exp? (or (polyinx factor var ())
862		   (and (mexptp factor)
863			(polyinx (cadr factor) var ())
864			(polyinx (caddr factor) var ()))))))
865
866(defun expfactor (n dn var)	;Attempts to evaluate limit by grouping
867  (prog (highest-deg)		       ; terms with similar exponents.
868     (let ((new-exp (exppoly n)))	;exppoly unrats expon
869       (setq n (car new-exp)		;and rtns deg of expons
870	     highest-deg (cdr new-exp)))
871     (cond ((null n) (return nil)))	;nil means expon is not
872     (let ((new-exp (exppoly dn)))	;a rat func.
873       (setq dn (car new-exp)
874	     highest-deg (max highest-deg (cdr new-exp))))
875     (cond ((or (null dn)
876		(= highest-deg 0))	; prevent infinite recursion
877	    (return nil)))
878     (return
879       (do ((answer 1)
880	    (degree highest-deg (1- degree))
881	    (numerator n)
882	    (denominator dn)
883	    (numfactors nil)
884	    (denfactors nil))
885	   ((= degree -1)
886	    (m* answer
887		(limit (m// numerator denominator)
888		       var
889		       val
890		       'think)))
891	 (let ((newnumer-factor (get-newexp&factors
892				 numerator
893				 degree
894				 var)))
895	   (setq numerator (car newnumer-factor)
896		 numfactors (cdr newnumer-factor)))
897	 (let ((newdenom-factor (get-newexp&factors
898				 denominator
899				 degree
900				 var)))
901	   (setq denominator (car newdenom-factor)
902		 denfactors (cdr newdenom-factor)))
903	 (setq answer (simplimit (list '(mexpt)
904				       (m* answer
905					   (m// numfactors denfactors))
906				       (cond ((> degree 0) var)
907					     (t 1)))
908				 var
909				 val))
910	 (cond ((member answer '($ind $und) :test #'equal)
911		;; cannot handle limit(exp(x*%i)*x, x, inf);
912		(return nil))
913	       ((member answer '($inf $minf) :test #'equal)
914		;; 0, zeroa, zerob are passed through to next iteration
915		(return (simplimtimes (list (m// numerator denominator) answer)))))))))
916
917(defun exppoly (exp)	   ;RETURNS EXPRESSION WITH UNRATTED EXPONENTS
918  (do ((factor nil)
919       (highest-deg 0)
920       (new-exp 1)
921       (exp (cond ((mtimesp exp)
922		   (cdr exp))
923		  (t (ncons exp)))
924	    (cdr exp)))
925      ((null exp) (cons new-exp highest-deg))
926    (setq factor (car exp))
927    (setq new-exp
928	  (m* (cond ((or (not (mexptp factor))
929			 (not (ratp (caddr factor) var)))
930		     factor)
931		    (t (setq highest-deg
932			     (max highest-deg
933				  (ratdegree (caddr factor))))
934		       (m^ (cadr factor) (unrat (caddr factor)))))
935	      new-exp))))
936
937(defun unrat (exp)			;RETURNS UNRATTED EXPRESION
938  (multiple-value-bind (n d)
939      (numden* exp)
940    (let ((tem ($divide n d)))
941      (m+ (cadr tem)
942	  (m// (caddr tem) d)))))
943
944(defun get-newexp&factors (exp degree var) ;RETURNS (CONS NEWEXP FACTORS)
945  (do ((terms (cond ((mtimesp exp)(cdr exp)) ; SUCH THAT
946		    (t (ncons exp)))	; NEWEXP*FACTORS^(VAR^DEGREE)
947	      (cdr terms))		; IS EQUAL TO EXP.
948       (factors 1)
949       (newexp 1)
950       (factor nil))
951      ((null terms)
952       (cons newexp
953	     factors))
954    (setq factor (car terms))
955    (cond ((not (mexptp factor))
956	   (cond ((= degree 0)
957		  (setq factors (m* factor factors)))
958		 (t (setq newexp (m* factor newexp)))))
959	  ((or (= degree -1)
960	       (= (ratdegree (caddr factor))
961		  degree))
962	   (setq factors (m* (m^ (cadr factor)
963				 (leading-coef (caddr factor)))
964			     factors)
965		 newexp (m* (m^ (cadr factor)
966				(m- (caddr factor)
967				    (m* (leading-coef (caddr factor))
968					(m^ var degree))))
969			    newexp)))
970	  (t (setq newexp (m* factor newexp))))))
971
972(defun leading-coef (rat)
973  (ratlim (m// rat (m^ var (ratdegree rat)))))
974
975(defun ratdegree (rat)
976  (multiple-value-bind (n d)
977      (numden* rat)
978    (- (deg n) (deg d))))
979
980(defun limfact2 (n d var val)
981  (let ((n1 (reflect0 n var val))
982	(d1 (reflect0 d var val)))
983    (cond ((and (alike1 n n1)
984		(alike1 d d1))
985	   nil)
986	  (t (limit (m// n1 d1) var val 'think)))))
987
988;; takes expression and returns operator at front with all flags removed
989;; except array flag.
990;; array flag must match for alike1 to consider two things to be the same.
991;;   ((MTIMES SIMP) ... ) => (MTIMES)
992;;   ((PSI SIMP ARRAY) 0) => (PSI ARRAY)
993(defun operator-with-array-flag (exp)
994  (cond ((member 'array (car exp) :test #'eq)
995	 (list (caar exp) 'array))
996	(t (list (caar exp)))))
997
998(defun reflect0 (exp var val)
999  (cond ((atom exp) exp)
1000	((and (eq (caar exp) 'mfactorial)
1001	      (let ((argval (limit (cadr exp) var val 'think)))
1002		(or (eq argval '$minf)
1003		    (and (numberp argval)
1004			 (> 0 argval)))))
1005	 (reflect (cadr exp)))
1006	(t (cons (operator-with-array-flag exp)
1007		 (mapcar (function
1008			  (lambda (term)
1009			   (reflect0 term var val)))
1010			 (cdr exp))))))
1011
1012(defun reflect (arg)
1013  (m* -1
1014      '$%pi
1015      (m^ (list (ncons 'mfactorial)
1016		(m+ -1
1017		    (m* -1 arg)))
1018	  -1)
1019      (m^ (list (ncons '%sin)
1020		(m* '$%pi arg))
1021	  -1)))
1022
1023(defun limfact (n d)
1024  (let ((ans ()))
1025    (setq n (stirling0 n)
1026	  d (stirling0 d))
1027    (setq ans (toplevel-$limit (m// n d) var '$inf))
1028    (cond ((and (atom ans)
1029		(not (member ans '(und ind ) :test #'eq)))  ans)
1030	  ((eq (caar ans) '%limit)  ())
1031	  (t ans))))
1032
1033;; substitute asymptotic approximations for gamma, factorial, and
1034;; polylogarithm
1035(defun stirling0 (e)
1036  (cond ((atom e) e)
1037	((and (setq e (cons (car e) (mapcar 'stirling0 (cdr e))))
1038	      nil))
1039	((and (eq (caar e) '%gamma)
1040	      (eq (limit (cadr e) var val 'think) '$inf))
1041	 (stirling (cadr e)))
1042	((and (eq (caar e) 'mfactorial)
1043	      (eq (limit (cadr e) var val 'think) '$inf))
1044	 (m* (cadr e) (stirling (cadr e))))
1045	((and (eq (caar e) 'mqapply)		;; polylogarithm
1046	      (eq (subfunname e) '$li)
1047	      (integerp (car (subfunsubs e))))
1048	 (li-asymptotic-expansion (m- (car (subfunsubs e)) 1)
1049				   (car (subfunsubs e))
1050				   (car (subfunargs e))))
1051	(t e)))
1052
1053(defun stirling (x)
1054  (maxima-substitute x '$z
1055		     '((mtimes simp)
1056		       ((mexpt simp) 2 ((rat simp) 1 2))
1057		       ((mexpt simp) $%pi ((rat simp) 1 2))
1058		       ((mexpt simp) $z ((mplus simp) ((rat simp) -1 2) $z))
1059		       ((mexpt simp) $%e ((mtimes simp) -1 $z)))))
1060
1061(defun no-err-sub (v e &aux ans)
1062  (let ((errorsw t) (*zexptsimp? t)
1063	(errcatch t)
1064	;; Don't print any error messages
1065	($errormsg nil))
1066    (declare (special errcatch))
1067    ;; Should we just use IGNORE-ERRORS instead HANDLER-CASE here?  I
1068    ;; (rtoy) am choosing the latter so that unexpected errors will
1069    ;; actually show up instead of being silently discarded.
1070    (handler-case
1071	(setq ans (catch 'errorsw
1072                    (ignore-rat-err
1073                      (sratsimp (subin v e)))))
1074      (maxima-$error ()
1075	(setq ans nil)))
1076    (cond ((null ans) t)     ; Ratfun package returns NIL for failure.
1077	  (t ans))))
1078
1079;; substitute value v for var into expression e.
1080;; if result is defined and e is continuous, we have the limit.
1081(defun simplimsubst (v e)
1082  (let (ans)
1083    (cond ((involve e '(mfactorial)) nil)
1084
1085	  ;; functions that are defined at their discontinuities
1086	  ((amongl '($atan2 $floor %round $ceiling %signum %integrate
1087			    %gamma_incomplete)
1088		   e) nil)
1089
1090	  ;; substitute value into expression
1091	  ((eq (setq ans (no-err-sub (ridofab v) e)) t)
1092	   nil)
1093
1094	  ((and (member v '($zeroa $zerob) :test #'eq) (=0 ($radcan ans)))
1095	   (setq ans (behavior e var v))
1096	   (cond ((equal ans 1) '$zeroa)
1097		 ((equal ans -1) '$zerob)
1098		 (t nil)))	; behavior can't find direction
1099	  (t ans))))
1100
1101;;;returns (cons numerator denominator)
1102(defun numden* (e)
1103  (let ((e (factor (simplify e)))
1104	(numer ())
1105        (denom ()))
1106    (cond ((atom e)
1107	   (push e numer))
1108	  ((mtimesp e)
1109	   (mapc #'forq (cdr e)))
1110	  (t
1111           (forq e)))
1112    (cond ((null numer)
1113	   (setq numer 1))
1114	  ((null (cdr numer))
1115	   (setq numer (car numer)))
1116	  (t
1117           (setq numer (m*l numer))))
1118    (cond ((null denom)
1119	   (setq denom 1))
1120	  ((null (cdr denom))
1121	   (setq denom (car denom)))
1122	  (t
1123           (setq denom (m*l denom))))
1124    (values (factor numer) (factor denom))))
1125
1126;;;FACTOR OR QUOTIENT
1127;;;Setq's the special vars numer and denom from numden*
1128(defun forq (e)
1129  (cond ((and (mexptp e)
1130	      (not (freeof var e))
1131	      (null (pos-neg-p (caddr e))))
1132	 (push (m^ (cadr e) (m* -1. (caddr e))) denom))
1133	(t (push e numer))))
1134
1135;;;Predicate to tell whether an expression is pos,zero or neg as var -> val.
1136;;;returns T if pos,zero. () if negative or don't know.
1137(defun pos-neg-p (exp)
1138  (let ((ans (limit exp var val 'think)))
1139    (cond ((and (not (member ans '($und $ind $infinity) :test #'eq))
1140		(equal ($imagpart ans) 0))
1141	   (let ((sign (getsignl ans)))
1142	     (cond ((or (equal sign 1)
1143			(equal sign 0))
1144		    t)
1145		   ((equal sign -1)  nil))))
1146	  (t 'unknown))))
1147
1148(declare-top (unspecial n dn))
1149
1150(defun expp (e)
1151  (cond ((radicalp e var) nil)
1152	((member (caar e) '(%log %sin %cos %tan %sinh %cosh %tanh mfactorial
1153			    %asin %acos %atan %asinh %acosh %atanh) :test #'eq) nil)
1154	((simplexp e) t)
1155	((do ((e (cdr e) (cdr e)))
1156	     ((null e) nil)
1157	   (and (expp (car e)) (return t))))))
1158
1159(defun simplexp (e)
1160  (and (mexptp e)
1161       (radicalp (cadr e) var)
1162       (among var (caddr e))
1163       (radicalp (caddr e) var)))
1164
1165
1166(defun gcpower (a b)
1167  ($gcd (getexp a) (getexp b)))
1168
1169(defun getexp (exp)
1170  (cond ((and (mexptp exp)
1171	      (free (caddr exp) var)
1172	      (eq (ask-integer (caddr exp) '$integer) '$yes))
1173	 (caddr exp))
1174	((mtimesp exp) (getexplist (cdr exp)))
1175	(t 1)))
1176
1177(defun getexplist (list)
1178  (cond ((null (cdr list))
1179	 (getexp (car list)))
1180	(t ($gcd (getexp (car list))
1181		 (getexplist (cdr list))))))
1182
1183(defun limroot (exp power)
1184  (cond ((or (atom exp) (not (member (caar exp) '(mtimes mexpt) :test #'eq)))
1185	 (limroot (list '(mexpt) exp 1) power)) ;This is strange-JIM.
1186	((mexptp exp)  (m^ (cadr exp)
1187			   (sratsimp (m* (caddr exp) (m^ power -1.)))))
1188	(t (m*l (mapcar #'(lambda (x)
1189			    (limroot x power))
1190			(cdr exp))))))
1191
1192;;NUMERATOR AND DENOMINATOR HAVE EXPONENTS WITH GCD OF GCP.
1193;;; Used to call simplimit but some of the transformations used here
1194;;; were not stable w.r.t. the simplifier, so try keeping exponent separate
1195;;; from bas.
1196
1197(defun colexpt (n dn gcp)
1198  (let ((bas (m* (limroot n gcp) (limroot dn (m* -1 gcp))))
1199	(expo gcp)
1200	baslim expolim)
1201    (setq baslim (limit bas var val 'think))
1202    (setq expolim (limit expo var val 'think))
1203    (simplimexpt bas expo baslim expolim)))
1204
1205;;; This function will transform an expression such that either all logarithms
1206;;; contain arguments not becoming infinite or are of the form
1207;;; LOG(LOG( ... LOG(VAR))) This reduction takes place only over the operators
1208;;; MPLUS, MTIMES, MEXPT, and %LOG.
1209
1210(defun log-red-contract (facs)
1211  (do ((l facs (cdr l))
1212       (consts ())
1213       (log ()))
1214      ((null l)
1215       (if log (cons (cadr log) (m*l consts))
1216	   ()))
1217    (cond ((freeof var (car l)) (push (car l) consts))
1218	  ((mlogp (car l))
1219	   (if (null log) (setq log (car l))
1220	       (return ())))
1221	  (t (return ())))))
1222
1223(defun log-reduce (x)
1224  (cond ((atom x) x)
1225	((freeof var x) x)
1226	((mplusp x)
1227	 (do ((l (cdr x) (cdr l))
1228	      (sum ())
1229	      (weak-logs ())
1230	      (strong-logs ())
1231	      (temp))
1232	     ((null l) (m+l `(((%log) ,(m*l strong-logs))
1233			      ((%log) ,(m*l weak-logs))
1234			      ,@sum)))
1235	   (setq x (log-reduce (car l)))
1236	   (cond ((mlogp x)
1237		  (if (infinityp (limit (cadr x) var val 'think))
1238		      (push (cadr x) strong-logs)
1239		      (push (cadr x) weak-logs)))
1240		 ((and (mtimesp x) (setq temp (log-red-contract (cdr x))))
1241		  (if (infinityp (limit (car temp) var val 'think))
1242		      (push (m^ (car temp) (cdr temp)) strong-logs)
1243		      (push (m^ (car temp) (cdr temp)) weak-logs)))
1244		 (t (push x sum)))))
1245	((mtimesp x)
1246	 (do ((l (cdr x) (cdr l))
1247	      (ans 1))
1248	     ((null l) ans)
1249	   (setq ans ($expand (m* (log-reduce (car l)) ans)))))
1250	((mexptp x) (m^t (log-reduce (cadr x)) (caddr x)))
1251	((mlogp x)
1252	 (cond ((not (infinityp (limit (cadr x) var val 'think))) x)
1253	       (t
1254		(cond ((eq (cadr x) var) x)
1255		      ((mplusp (cadr x))
1256		       (let ((strongl (maxi (cdadr x))))
1257			 (m+ (log-reduce `((%log) ,(car strongl))) `((%log) ,(m// (cadr x) (car strongl))))))
1258		      ((mtimesp (cadr x))
1259		       (do ((l (cdadr x) (cdr l)) (ans 0)) ((null l) ans)
1260			 (setq ans (m+ (log-reduce (simplify `((%log) ,(log-reduce (car l))))) ans))))
1261		      (t
1262		       (let ((red-log (simplify `((%log) ,(log-reduce (cadr x))))))
1263			 (if (alike1 red-log x) x (log-reduce red-log))))))))
1264	(t x)))
1265
1266;; this function is responsible for the following bug:
1267;; limit(x^2 + %i*x, x, inf)  -> inf	(should be infinity)
1268(defun ratlim (e)
1269  (cond ((member val '($inf $infinity) :test #'eq)
1270	 (setq e (maxima-substitute (m^t 'x -1) var e)))
1271	((eq val '$minf)
1272	 (setq e (maxima-substitute (m^t -1 (m^t 'x -1)) var e)))
1273	((eq val '$zerob)
1274	 (setq e (maxima-substitute (m- 'x) var e)))
1275	((eq val '$zeroa)
1276	 (setq e (maxima-substitute 'x var e)))
1277	((setq e (maxima-substitute (m+t 'x val) var e))))
1278  (destructuring-let* ((e (let (($ratfac ()))
1279			    ($rat (sratsimp e) 'x)))
1280		       ((h n . d) e)
1281		       (g (genfind h 'x))
1282		       (nd (lodeg n g))
1283		       (dd (lodeg d g)))
1284		      (cond ((and (setq e
1285					(subst var
1286					       'x
1287					       (sratsimp (m// ($ratdisrep `(,h ,(locoef n g) . 1))
1288							      ($ratdisrep `(,h ,(locoef d g) . 1))))))
1289				  (> nd dd))
1290			     (cond ((not (member val '($zerob $zeroa $inf $minf) :test #'eq))
1291				    0)
1292				   ((not (equal ($imagpart e) 0))
1293				    0)
1294				   ((null (setq e (getsignl ($realpart e))))
1295				    0)
1296				   ((equal e 1) '$zeroa)
1297				   ((equal e -1) '$zerob)
1298				   (t 0)))
1299			    ((equal nd dd) e)
1300			    ((not (member val '($zerob $zeroa $infinity $inf $minf) :test #'eq))
1301			     (throw 'limit t))
1302			    ((eq val '$infinity)  '$infinity)
1303			    ((not (equal ($imagpart e) 0)) '$infinity)
1304			    ((null (setq e (getsignl ($realpart e))))
1305			     (throw 'limit t))
1306			    ((equal e 1) '$inf)
1307			    ((equal e -1) '$minf)
1308			    (t 0))))
1309
1310(defun lodeg (n x)
1311  (if (or (atom n) (not (eq (car n) x)))
1312      0
1313      (lowdeg (cdr n))))
1314
1315(defun locoef (n x)
1316  (if (or (atom n) (not (eq (car n) x)))
1317      n
1318      (car (last n))))
1319
1320(defun behavior (exp var val)		; returns either -1, 0, 1.
1321  (if (= *behavior-count-now* +behavior-count+)
1322      0
1323      (let ((*behavior-count-now* (1+ *behavior-count-now*)) pair sign)
1324	(cond ((real-infinityp val)
1325	       (setq val (cond ((eq val '$inf) '$zeroa)
1326			       ((eq val '$minf) '$zerob)))
1327	       (setq exp (sratsimp (subin (m^ var -1) exp)))))
1328	(cond ((eq val '$infinity) 0) ; Needs more hacking for complex.
1329	      ((and (mtimesp exp)
1330		    (prog2 (setq pair (partition exp var 1))
1331			(not (mtimesp (cdr pair)))))
1332	       (setq sign (getsignl (car pair)))
1333	       (if (not (fixnump sign))
1334		   0
1335		   (mul sign (behavior (cdr pair) var val))))
1336	      ((and (=0 (no-err-sub (ridofab val) exp))
1337		    (mexptp exp)
1338		    (free (caddr exp) var)
1339		    (equal (getsignl (caddr exp)) 1))
1340	       (let ((bas (cadr exp)) (expo (caddr exp)))
1341		 (behavior-expt bas expo)))
1342	      (t (behavior-by-diff exp var val))))))
1343
1344(defun behavior-expt (bas expo)
1345  (let ((behavior (behavior bas var val)))
1346    (cond ((= behavior 1) 1)
1347	  ((= behavior 0) 0)
1348	  ((eq (ask-integer expo '$integer) '$yes)
1349	   (cond ((eq (ask-integer expo '$even) '$yes) 1)
1350		 (t behavior)))
1351	  ((ratnump expo)
1352	   (cond ((evenp (cadr expo)) 1)
1353		 ((oddp (caddr expo)) behavior)
1354		 (t 0)))
1355	  (t 0))))
1356
1357(defun behavior-by-diff (exp var val)
1358  (cond ((not (or (eq val '$zeroa) (eq val '$zerob))) 0)
1359	(t (let ((old-val val) (old-exp exp))
1360	     (setq val (ridofab val))
1361	     (do ((ct 0 (1+ ct))
1362		  (exp (sratsimp (sdiff exp var)) (sratsimp (sdiff exp var)))
1363		  (n () (not n))
1364		  (ans ()))	; This do wins by a return.
1365		 ((> ct 0) 0)	; This loop used to run up to 5 times,
1366		 ;; but the size of some expressions would blow up.
1367	       (setq ans (no-err-sub val exp)) ;Why not do an EVENFN and ODDFN
1368					;test here.
1369	       (cond ((eq ans t)
1370		      (return (behavior-numden old-exp var old-val)))
1371		     ((=0 ans) ())	;Do it again.
1372		     (t (setq ans (getsignl ans))
1373			(cond (n (return ans))
1374			      ((equal ans 1)
1375			       (return (if (eq old-val '$zeroa) 1 -1)))
1376			      ((equal ans -1)
1377			       (return (if (eq old-val '$zeroa) -1 1)))
1378			      (t (return 0))))))))))
1379
1380(defun behavior-numden (exp var val)
1381  (let ((num ($num exp)) (denom ($denom exp)))
1382    (cond ((equal denom 1) 0)	      ;Could be hacked more from here.
1383	  (t (let ((num-behav (behavior num var val))
1384		   (denom-behav (behavior denom var val)))
1385	       (cond ((or (= num-behav 0) (= denom-behav 0)) 0)
1386		     ((= num-behav denom-behav) 1)
1387		     (t -1)))))))
1388
1389(defun try-lhospital (n d ind)
1390  ;;Make one catch for the whole bunch of lhospital trials.
1391  (let ((ans (lhospital-catch n d ind)))
1392    (cond ((null ans) ())
1393	  ((not (free-infp ans)) (simpinf ans))
1394	  ((not (free-epsilonp ans)) (simpab ans))
1395	  (t ans))))
1396
1397(defun try-lhospital-quit (n d ind)
1398  (let ((ans (or (lhospital-catch n d ind)
1399		 (lhospital-catch (m^ d -1) (m^ n -1) ind))))
1400    (cond ((null ans) (throw 'limit t))
1401	  ((not (free-infp ans)) (simpinf ans))
1402	  ((not (free-epsilonp ans)) (simpab ans))
1403	  (t ans))))
1404
1405(defun lhospital-catch (n d ind)
1406  (cond ((> 0 lhcount)
1407	 (setq lhcount $lhospitallim)
1408	 (throw 'lhospital nil))
1409	((equal lhcount $lhospitallim)
1410	 (let ((lhcount (m+ lhcount -1)))
1411	   (catch 'lhospital (lhospital n d ind))))
1412	(t (setq lhcount (m+ lhcount -1))
1413	   (prog1 (lhospital n d ind)
1414	     (setq lhcount (m+ lhcount 1))))))
1415;;If this succeeds then raise LHCOUNT.
1416
1417
1418(defun lhospital (n d ind)
1419  (declare (special val lhp?))
1420  (when (mtimesp n)
1421    (setq n (m*l (mapcar #'(lambda (term) (lhsimp term var val)) (cdr n)))))
1422  (when (mtimesp d)
1423    (setq d (m*l (mapcar #'(lambda (term) (lhsimp term var val)) (cdr d)))))
1424  (multiple-value-bind (n d)
1425      (lhop-numden n d)
1426    (let (const nconst dconst)
1427      (setq lhp? (and (null ind) (cons n d)))
1428      (multiple-value-setq (nconst n) (var-or-const n))
1429      (multiple-value-setq (dconst d) (var-or-const d))
1430
1431      (setq n (stirling0 n))	;; replace factorial and %gamma
1432      (setq d (stirling0 d))  	;;  with approximations
1433
1434      (setq n (sdiff n var)	;; take derivatives for l'hospital
1435            d (sdiff d var))
1436
1437      (if (or (not (free n '%derivative)) (not (free d '%derivative)))
1438          (throw 'lhospital ()))
1439      (setq n (expand-trigs (tansc n) var))
1440      (setq d (expand-trigs (tansc d) var))
1441
1442      (multiple-value-setq (const n d) (remove-singularities n d))
1443      (setq const (m* const (m// nconst dconst)))
1444      (simpinf (let ((ans (if ind
1445                              (limit2 n d var val)
1446                              (limit-numden n d val))))
1447                 ;; When the limit function returns, it's possible that it will return NIL
1448                 ;; (gave up without finding a limit). It's also possible that it will
1449                 ;; return something containing UND. We treat that as a failure too.
1450                 (when (and ans (freeof '$und ans))
1451                   (m* const ans)))))))
1452
1453;; Try to compute the limit of a quotient NUM/DEN, trying to massage the input
1454;; into a convenient form for LIMIT on the way.
1455(defun limit-numden (n d val)
1456  (let ((expr (cond
1457                ;; For general arguments, the best approach seems to be to use
1458                ;; sratsimp to simplify the quotient as much as we can, then
1459                ;; $multthru, which splits it up into a sum (presumably useful
1460                ;; because limit(a+b) = limit(a) + limit(b) if the limits exist, and
1461                ;; the right hand side might be easier to calculate)
1462                ((not (mplusp n))
1463                 ($multthru (sratsimp (m// n d))))
1464
1465                ;; If we've already got a sum in the numerator, it seems to be
1466                ;; better not to recombine it. Call LIMIT on the whole lot, though,
1467                ;; because terms with infinite limits might cancel to give a finite
1468                ;; result.
1469                (t
1470                 (m+l (mapcar #'(lambda (x)
1471                                  (sratsimp (m// x d)))
1472                              (cdr n)))))))
1473
1474    (limit expr var val 'think)))
1475
1476;; Heuristics for picking the right way to express a LHOSPITAL problem.
1477(defun lhop-numden (num denom)
1478  (declare (special var))
1479  (cond ((let ((log-num (involve num '(%log))))
1480	   (cond ((null log-num) ())
1481		 ((lessthan (num-of-logs (factor (sratsimp (sdiff (m^ num -1) var))))
1482			    (num-of-logs (factor (sratsimp (sdiff num var)))))
1483		  (psetq num (m^ denom -1) denom (m^ num -1))
1484		  t)
1485		 (t t))))
1486	((let ((log-denom (involve denom '(%log))))
1487	   (cond ((null log-denom) ())
1488		 ((lessthan (num-of-logs (sratsimp (sdiff (m^ denom -1) var)))
1489			    (num-of-logs (sratsimp (sdiff denom var))))
1490		  (psetq denom (m^ num -1) num (m^ denom -1))
1491		  t)
1492		 (t t))))
1493	((let ((exp-num (%einvolve num)))
1494	   (cond (exp-num
1495		  (cond ((%e-right-placep exp-num)
1496			 t)
1497			(t (psetq num (m^ denom -1)
1498				  denom (m^ num -1)) t)))
1499		 (t ()))))
1500	((let ((exp-den (%einvolve denom)))
1501	   (cond (exp-den
1502		  (cond ((%e-right-placep exp-den)
1503			 t)
1504			(t (psetq num (m^ denom -1)
1505				  denom (m^ num -1)) t)))
1506		 (t ()))))
1507	((let ((scnum (involve num '(%sin))))
1508	   (cond (scnum (cond ((trig-right-placep '%sin scnum) t)
1509			      (t (psetq num (m^ denom -1)
1510					denom (m^ num -1)) t)))
1511		 (t ()))))
1512	((let ((scden (involve denom '(%sin))))
1513	   (cond (scden (cond ((trig-right-placep '%sin scden) t)
1514			      (t (psetq num (m^ denom -1)
1515					denom (m^ num -1)) t)))
1516		 (t ()))))
1517	((let ((scnum (involve num '(%asin %acos %atan))))
1518	   ;; If the numerator contains an inverse trig and the
1519	   ;; denominator or reciprocal of denominator is polynomial,
1520	   ;; leave everything as is.  If the inverse trig is moved to
1521	   ;; the denominator, things get messy, even if the numerator
1522	   ;; becomes a polynomial.  This is not perfect.
1523	   (cond ((and scnum (or (polyinx denom var ())
1524				 (polyinx (m^ denom -1) var ())))
1525		  t)
1526		 (t nil))))
1527	((or (oscip num) (oscip denom)))
1528	((frac num)
1529	 (psetq num (m^ denom -1) denom (m^ num -1))))
1530  (values num denom))
1531
1532;;i don't know what to do here for some cases, may have to be refined.
1533(defun num-of-logs (exp)
1534  (cond ((mapatom exp) 0)
1535	((equal (caar exp) '%log)
1536	 (m+ 1 (num-of-log-l (cdr exp))))
1537	((and (mexptp exp) (mnump (caddr exp)))
1538	 (m* (simplify `((mabs) ,(caddr exp)))
1539	     (num-of-logs (cadr exp))))
1540	(t (num-of-log-l (cdr exp)))))
1541
1542(defun num-of-log-l (llist)
1543  (do ((temp llist (cdr temp)) (ans 0))
1544      ((null temp) ans)
1545    (setq ans (m+ ans (num-of-logs (car temp))))))
1546
1547(defun %e-right-placep (%e-arg)
1548  (let ((%e-arg-diff (sdiff %e-arg var)))
1549    (cond
1550      ((free %e-arg-diff var))		;simple cases
1551      ((or (and (mexptp denom)
1552		(equal (cadr denom) -1))
1553	   (polyinx (m^ denom -1) var ()))  ())
1554      ((let ((%e-arg-diff-lim (ridofab (limit %e-arg-diff var val 'think)))
1555	     (%e-arg-exp-lim (ridofab (limit (m^ '$%e %e-arg) var val 'think))))
1556	 #+nil
1557	 (progn
1558	   (format t "%e-arg-dif-lim = ~A~%" %e-arg-diff-lim)
1559	   (format t "%e-arg-exp-lim = ~A~%" %e-arg-exp-lim))
1560	 (cond ((equal %e-arg-diff-lim %e-arg-exp-lim)
1561		t)
1562	       ((and (mnump %e-arg-diff-lim) (mnump %e-arg-exp-lim))
1563		t)
1564	       ((and (mnump %e-arg-diff-lim) (infinityp %e-arg-exp-lim))
1565		;; This is meant to make maxima handle bug 1469411
1566		;; correctly.  Undoubtedly, this needs work.
1567		t)
1568	       (t ())))))))
1569
1570(defun trig-right-placep (trig-type arg)
1571  (let ((arglim (ridofab (limit arg var val 'think)))
1572	(triglim (ridofab (limit `((,trig-type) ,arg) var val 'think))))
1573    (cond ((and (equal arglim 0) (equal triglim 0))  t)
1574	  ((and (infinityp arglim)  (infinityp triglim))  t)
1575	  (t ()))))
1576
1577;;Takes a numerator and a denominator. If they tries all combinations of
1578;;products to try and make a simpler set of subproblems for LHOSPITAL.
1579(defun remove-singularities (numer denom)
1580  (cond ((or (null numer) (null denom)
1581            (atom numer) (atom denom)
1582            (not (mtimesp numer))		;Leave this here for a while.
1583            (not (mtimesp denom)))
1584         (values 1 numer denom))
1585        (t
1586         (let ((const 1))
1587           (multiple-value-bind (num-consts num-vars)
1588               (var-or-const numer)
1589             (multiple-value-bind (denom-consts denom-vars)
1590                 (var-or-const denom)
1591               (if (not (mtimesp num-vars))
1592                   (setq num-vars (list num-vars))
1593                   (setq num-vars (cdr num-vars)))
1594               (if (not (mtimesp denom-vars))
1595                   (setq denom-vars (list denom-vars))
1596                   (setq denom-vars (cdr denom-vars)))
1597               (do ((nl num-vars (cdr nl))
1598                    (num-list (copy-list num-vars ))
1599                    (den-list denom-vars den-list-temp)
1600                    (den-list-temp (copy-list denom-vars)))
1601                   ((null nl) (values (m* const (m// num-consts denom-consts))
1602                                      (m*l num-list)
1603                                      (m*l den-list-temp)))
1604                 (do ((dl den-list (cdr dl)))
1605                     ((null dl) t)
1606                   (if (or (%einvolve (car nl)) (%einvolve (car nl)))
1607                       t
1608                       (let ((lim (catch 'limit (simpinf (simpab (limit (m// (car nl) (car dl))
1609                                                                        var val 'think))))))
1610                         (cond ((or (eq lim t)
1611                                   (eq lim ())
1612                                   (equal (ridofab lim) 0)
1613                                   (infinityp lim)
1614                                   (not (free lim '$inf))
1615                                   (not (free lim '$minf))
1616                                   (not (free lim '$infinity))
1617                                   (not (free lim '$ind))
1618                                   (not (free lim '$und)))
1619                                ())
1620                               (t
1621                                (setq const (m* lim const))
1622                                (setq num-list (delete (car nl) num-list :count 1 :test #'equal))
1623                                (setq den-list-temp (delete (car dl) den-list-temp :count 1 :test #'equal))
1624                                (return t)))))))))))))
1625
1626;; separate terms that contain var from constant terms
1627;; returns (const-terms . var-terms)
1628(defun var-or-const (expr)
1629  (setq expr ($factor expr))
1630  (cond ((atom expr)
1631	 (if (eq expr var)
1632             (values 1 expr)
1633             (values expr 1)))
1634	((free expr var)
1635         (values expr 1))
1636	((mtimesp expr)
1637	 (do ((l (cdr expr) (cdr l))
1638	      (const 1)
1639              (varl 1))
1640	     ((null l) (values const varl))
1641	   (if (free (car l) var)
1642               (setq const (m* (car l) const))
1643               (setq varl (m* (car l) varl)))))
1644	(t
1645         (values 1 expr))))
1646
1647;; if term goes to non-zero constant, replace with constant
1648(defun lhsimp (term var val)
1649  (cond ((atom term)  term)
1650	(t
1651	 (let ((term-value (ridofab (limit term var val 'think))))
1652	   (cond ((not (member term-value
1653			       '($inf $minf $und $ind $infinity 0)))
1654		  term-value)
1655		 (t term))))))
1656
1657(defun bylog (expo bas)
1658  (simplimexpt '$%e
1659	       (setq bas
1660		     (try-lhospital-quit (simplify `((%log) ,(tansc bas)))
1661					 (m^ expo -1)
1662					 nil))
1663	       '$%e bas))
1664
1665(defun simplimexpt (bas expo bl el)
1666  (cond ((or (eq bl '$und) (eq el '$und)) '$und)
1667        ((zerop2 bl)
1668         (cond ((eq el '$inf) (if (eq bl '$zeroa) bl 0))
1669               ((eq el '$minf) (if (eq bl '$zeroa) '$inf '$infinity))
1670               ((eq el '$ind) '$ind)
1671               ((eq el '$infinity) '$und)
1672               ((zerop2 el)  (bylog expo bas))
1673               (t (cond ((equal (getsignl el) -1)
1674                         (cond ((eq bl '$zeroa) '$inf)
1675                               ((eq bl '$zerob)
1676                                (cond ((even1 el) '$inf)
1677                                      ((eq (ask-integer el '$integer) '$yes)
1678                                       (if (eq (ask-integer el '$even) '$yes)
1679                                           '$inf
1680                                           '$minf)))) ;Gotta be ODD.
1681                               (t (setq bas (behavior bas var val))
1682                                  (cond ((equal bas 1) '$inf)
1683                                        ((equal bas -1) '$minf)
1684                                        (t (throw 'limit t))))))
1685                        ((and (mnump el)
1686                            (member bl '($zeroa $zerob) :test #'eq))
1687                         (cond ((even1 el) '$zeroa)
1688                               ((and (eq bl '$zerob)
1689                                   (ratnump el)
1690                                   (evenp (caddr el))) 0)
1691                               (t bl)))
1692                        ((and (equal (getsignl el) 1)
1693                            (eq bl '$zeroa)) bl)
1694                        ((equal (getsignl el) 0)
1695                         1)
1696                        (t 0)))))
1697        ((eq bl '$infinity)
1698         (cond ((zerop2 el) (bylog expo bas))
1699               ((eq el '$minf) 0)
1700               ((eq el '$inf) '$infinity)
1701               ((member el '($infinity $ind) :test #'eq) '$und)
1702               ((equal (setq el (getsignl el)) 1) '$infinity)
1703               ((equal el 0) 1)
1704	       ((equal el -1) 0)
1705	       (t (throw 'limit t))))
1706	((eq bl '$inf)
1707         (cond ((eq el '$inf) '$inf)
1708               ((equal el '$minf) 0)
1709               ((zerop2 el) (bylog expo bas))
1710               ((member el '($infinity $ind) :test #'eq) '$und)
1711               (t (cond ((eql 0 (getsignl el)) 1)
1712                        ((ratgreaterp 0 el) '$zeroa)
1713                        ((ratgreaterp el 0) '$inf)
1714			(t (throw 'limit t))))))
1715        ((eq bl '$minf)
1716         (cond ((zerop2 el) (bylog expo bas))
1717               ((eq el '$inf) '$und)
1718               ((equal el '$minf) 0)
1719;;;Why not generalize this. We can ask about the number. -Jim 2/23/81
1720               ((mnump el)  (cond ((mnegp el)
1721                                   (if (even1 el)
1722                                       '$zeroa
1723                                       (if (eq (ask-integer el '$integer) '$yes)
1724                                           (if (eq (ask-integer el '$even) '$yes)
1725                                               '$zeroa
1726                                               '$zerob)
1727                                           0)))
1728                                  (t (cond ((even1 el) '$inf)
1729                                           ((eq (ask-integer el '$integer) '$yes)
1730                                            (if (eq (ask-integer el '$even) '$yes)
1731                                                '$inf
1732                                                '$minf))
1733                                           (t '$infinity)))))
1734               (loginprod? (throw 'lip? 'lip!))
1735               (t '$und)))
1736        ((equal (simplify (ratdisrep (ridofab bl))) 1)
1737         (if (infinityp el) (bylog expo bas) 1))
1738        ((and (equal (ridofab bl) -1)
1739            (infinityp el))  '$ind)	;LB
1740        ((eq bl '$ind)  (cond ((or (zerop2 el) (infinityp el)) '$und)
1741                              ((not (equal (getsignl el) -1)) '$ind)
1742                              (t '$und)))
1743        ((eq el '$inf)  (cond ((abeq1 bl)
1744                               (if (equal (getsignl bl) 1) 1 '$ind))
1745                              ((abless1 bl)
1746                               (if (equal (getsignl bl) 1) '$zeroa 0))
1747                              ((equal (getsignl (m1- bl)) 1) '$inf)
1748                              ((equal (getsignl (m1- `((mabs) ,bl))) 1) '$infinity)
1749                              (t (throw 'limit t))))
1750        ((eq el '$minf)  (cond ((abeq1 bl)
1751                                (if (equal (getsignl bl) 1) 1 '$ind))
1752                               ((not (abless1 bl))
1753                                (if (equal (getsignl bl) 1) '$zeroa 0))
1754                               ((ratgreaterp 0 bl)  '$infinity)
1755                               (t '$inf)))
1756        ((eq el '$infinity)
1757         (if (equal val '$infinity)
1758             '$und			      ;Not enough info to do anything.
1759             (destructuring-bind (real-el . imag-el)
1760                 (trisplit expo)
1761               (setq real-el (limit real-el var origval nil))
1762               (cond ((eq real-el '$minf)
1763                      0)
1764                     ((and (eq real-el '$inf)
1765                         (not (equal (ridofab (limit imag-el var origval nil)) 0)))
1766                      '$infinity)
1767                     ((eq real-el '$infinity)
1768                      (throw 'limit t))	;; don't really know real component
1769                     (t
1770                      '$ind)))))
1771
1772        ((eq el '$ind)  '$ind)
1773        ((zerop2 el) 1)
1774        (t (m^ bl el))))
1775
1776(defun even1 (x)
1777  (cond ((numberp x) (and (integerp x) (evenp x)))
1778	((and (mnump x) (evenp (cadr x))))))
1779
1780;; is absolute value less than one?
1781(defun abless1 (bl)
1782  (setq bl (nmr bl))
1783  (cond ((mnump bl)
1784	 (and (ratgreaterp 1. bl) (ratgreaterp bl -1.)))
1785	(t (equal (getsignl (m1- `((mabs) ,bl))) -1.))))
1786
1787;; is absolute value equal to one?
1788(defun abeq1 (bl)
1789  (setq bl (nmr bl))
1790  (cond ((mnump bl)
1791	 (or (equal 1. bl) (equal bl -1.)))
1792	(t (equal (getsignl (m1- `((mabs) ,bl))) 0))))
1793
1794(defun simplimit (exp var val &aux op)
1795  (cond
1796    ((eq var exp) val)
1797    ((or (atom exp) (mnump exp)) exp)
1798    ((and (not (infinityp val))
1799	  (not (amongl '(%sin %cos %atanh %cosh %sinh %tanh mfactorial %log)
1800		       exp))
1801	  (not (inf-typep exp))
1802	  (simplimsubst val exp)))
1803    ((eq (caar exp) '%limit) (throw 'limit t))
1804    ((mplusp exp)  (simplimplus exp))
1805    ((mtimesp exp)  (simplimtimes (cdr exp)))
1806    ((mexptp exp)  (simplimexpt (cadr exp) (caddr exp)
1807				(limit (cadr exp) var val 'think)
1808				(limit (caddr exp) var val 'think)))
1809    ((mlogp exp)  (simplimln exp var val))
1810    ((member (caar exp) '(%sin %cos) :test #'eq)
1811     (simplimsc exp (caar exp) (limit (cadr exp) var val 'think)))
1812    ((eq (caar exp) '%tan) (simplim%tan (cadr exp)))
1813    ((eq (caar exp) '%atan) (simplim%atan (limit (cadr exp) var val 'think)))
1814    ((eq (caar exp) '$atan2) (simplim%atan2 exp))
1815    ((member (caar exp) '(%sinh %cosh) :test #'eq)
1816     (simplimsch (caar exp) (limit (cadr exp) var val 'think)))
1817    ((eq (caar exp) 'mfactorial)
1818     (simplimfact exp var val))
1819    ((member (caar exp) '(%erf %tanh) :test #'eq)
1820     (simplim%erf-%tanh (caar exp) (cadr exp)))
1821    ((member (caar exp) '(%acos %asin) :test #'eq)
1822     (simplim%asin-%acos (caar exp) (limit (cadr exp) var val 'think)))
1823    ((eq (caar exp) '%atanh)
1824     (simplim%atanh (limit (cadr exp) var val 'think) val))
1825    ((eq (caar exp) '%acosh)
1826     (simplim%acosh (limit (cadr exp) var val 'think)))
1827    ((eq (caar exp) '%asinh)
1828     (simplim%asinh (limit (cadr exp) var val 'think)))
1829    ((eq (caar exp) '%inverse_jacobi_ns)
1830     (simplim%inverse_jacobi_ns (limit (cadr exp) var val 'think) (third exp)))
1831    ((eq (caar exp) '%inverse_jacobi_nc)
1832     (simplim%inverse_jacobi_nc (limit (cadr exp) var val 'think) (third exp)))
1833    ((eq (caar exp) '%inverse_jacobi_sc)
1834     (simplim%inverse_jacobi_sc (limit (cadr exp) var val 'think) (third exp)))
1835    ((eq (caar exp) '%inverse_jacobi_cs)
1836     (simplim%inverse_jacobi_cs (limit (cadr exp) var val 'think) (third exp)))
1837    ((eq (caar exp) '%inverse_jacobi_dc)
1838     (simplim%inverse_jacobi_dc (limit (cadr exp) var val 'think) (third exp)))
1839    ((eq (caar exp) '%inverse_jacobi_ds)
1840     (simplim%inverse_jacobi_ds (limit (cadr exp) var val 'think) (third exp)))
1841    ((and (eq (caar exp) 'mqapply)
1842	  (eq (subfunname exp) '$li))
1843     (simplim$li (subfunsubs exp) (subfunargs exp) val))
1844    ((and (eq (caar exp) 'mqapply)
1845	  (eq (subfunname exp) '$psi))
1846     (simplim$psi (subfunsubs exp) (subfunargs exp) val))
1847    ((and (eq (caar exp) var)
1848	  (member 'array (car exp) :test #'eq)
1849	  (every #'(lambda (sub-exp)
1850		       (free sub-exp var))
1851		   (cdr exp)))
1852     exp)				;LIMIT(B[I],B,INF); -> B[I]
1853    ((setq op (safe-get (mop exp) 'simplim%function))
1854     ;; Lookup a simplim%function from the property list
1855     (funcall op exp var val))
1856    (t (if $limsubst
1857	   (simplify (cons (operator-with-array-flag exp)
1858			   (mapcar #'(lambda (a)
1859				       (limit a var val 'think))
1860				   (cdr exp))))
1861	   (throw 'limit t)))))
1862
1863(defun liminv (e)
1864  (setq e (resimplify (subst (m// 1 var) var e)))
1865  (let ((new-val (cond ((eq val '$zeroa)  '$inf)
1866		       ((eq val '$zerob)  '$minf))))
1867    (if new-val (let ((preserve-direction t))
1868		  (toplevel-$limit e var new-val)) (throw 'limit t))))
1869
1870(defun simplimtimes (exp)
1871  ;; The following test
1872  ;; handles         (-1)^x * 2^x => (-2)^x => $infinity
1873  ;; wants to avoid  (-1)^x * 2^x => $ind * $inf => $und
1874  (let ((try
1875         (and (expfactorp (cons '(mtimes) exp) 1)
1876              (expfactor (cons '(mtimes) exp) 1 var))))
1877    (when try (return-from simplimtimes try)))
1878
1879  (let ((prod 1) (num 1) (denom 1)
1880        (zf nil) (ind-flag nil) (inf-type nil)
1881        (constant-zero nil) (constant-infty nil))
1882    (dolist (term exp)
1883      (let* ((loginprod? (involve term '(%log)))
1884             (y (catch 'lip? (limit term var val 'think))))
1885        (cond
1886          ;; limit failed due to log in product
1887          ((eq y 'lip!)
1888           (return-from simplimtimes (liminv (cons '(mtimes simp) exp))))
1889
1890          ;; If the limit is infinitesimal or zero
1891          ((zerop2 y)
1892           (setf num (m* num term)
1893                 constant-zero (or constant-zero (not (among var term))))
1894           (case y
1895             ($zeroa
1896              (unless zf (setf zf 1)))
1897             ($zerob
1898              (setf zf (* -1 (or zf 1))))))
1899
1900          ;; If the limit is not some form of infinity or
1901          ;; undefined/indeterminate.
1902          ((not (member y '($inf $minf $infinity $ind $und) :test #'eq))
1903           (setq prod (m* prod y)))
1904
1905          ((eq y '$und) (return-from simplimtimes '$und))
1906          ((eq y '$ind) (setq ind-flag t))
1907
1908          ;; Some form of infinity
1909          (t
1910           (setf denom (m* denom term)
1911                 constant-infty (or constant-infty (not (among var term))))
1912           (unless (eq inf-type '$infinity)
1913             (cond
1914               ((eq y '$infinity) (setq inf-type '$infinity))
1915               ((null inf-type) (setf inf-type y))
1916               ;; minf * minf or inf * inf
1917               ((eq y inf-type) (setf inf-type '$inf))
1918               ;; minf * inf
1919               (t (setf inf-type '$minf))))))))
1920
1921    (cond
1922      ;; If there are zeros and infinities among the terms that are free of
1923      ;; VAR, then we have an expression like "inf * zeroa * f(x)" or
1924      ;; similar. That gives an undefined result. Note that we don't
1925      ;; necessarily have something undefined if only the zeros have a term
1926      ;; free of VAR. For example "zeroa * exp(-1/x) * 1/x" as x -> 0. And
1927      ;; similarly for the infinities.
1928      ((and constant-zero constant-infty) '$und)
1929
1930      ;; If num=denom=1, we didn't find any explicit infinities or zeros, so we
1931      ;; either return the simplified product or ind
1932      ((and (eql num 1) (eql denom 1))
1933       (if ind-flag '$ind prod))
1934      ;; If denom=1 (and so num != 1), we have some form of zero
1935      ((equal denom 1)
1936       (if (null zf)
1937           0
1938           (let ((sign (getsignl prod)))
1939             (if (or (not sign) (eq sign 'complex))
1940                 0
1941                 (ecase (* zf sign)
1942                   (0 0)
1943                   (1  '$zeroa)
1944                   (-1 '$zerob))))))
1945      ;; If num=1 (and so denom != 1), we have some form of infinity
1946      ((equal num 1)
1947       (let ((sign ($csign prod)))
1948         (cond
1949           (ind-flag '$und)
1950           ((eq sign '$pos) inf-type)
1951           ((eq sign '$neg) (case inf-type
1952                              ($inf '$minf)
1953                              ($minf '$inf)
1954                              (t '$infinity)))
1955           ((member sign '($complex $imaginary)) '$infinity)
1956           ; sign is '$zero, $pnz, $pz, etc
1957           (t (throw 'limit t)))))
1958      ;; Both zeros and infinities
1959      (t
1960       ;; All bets off if there are some infinities or some zeros, but it
1961       ;; needn't be undefined (see above)
1962       (when (or constant-zero constant-infty) (throw 'limit t))
1963
1964       (let ((ans (limit2 num (m^ denom -1) var val)))
1965         (if ans
1966             (simplimtimes (list prod ans))
1967             (throw 'limit t)))))))
1968
1969;;;PUT CODE HERE TO ELIMINATE FAKE SINGULARITIES??
1970
1971(defun simplimplus (exp)
1972  (cond ((memalike exp simplimplus-problems)
1973	 (throw 'limit t))
1974	(t (unwind-protect
1975		(progn (push exp simplimplus-problems)
1976		       (let ((ans (catch 'limit (simplimplus1 exp))))
1977			 (cond ((or (eq ans ())
1978				    (eq ans t)
1979				    (among '%limit ans))
1980				(let ((new-exp (sratsimp exp)))
1981				  (cond ((not (alike1 exp new-exp))
1982					 (setq ans
1983					       (limit new-exp var val 'think))))
1984				  (cond ((or (eq ans ())
1985					     (eq ans t))
1986					 (throw 'limit t))
1987					(t ans))))
1988			       (t ans))))
1989	     (pop simplimplus-problems)))))
1990
1991(defun simplimplus1 (exp)
1992  (prog (sum y infl infinityl minfl indl)
1993     (setq sum 0.)
1994     (do ((exp (cdr exp) (cdr exp)) (f))
1995	 ((or y (null exp)) nil)
1996       (setq f (limit (car exp) var val 'think))
1997       (cond ((null f)
1998	      (throw 'limit t))
1999	     ((eq f '$und) (setq y t))
2000	     ((not (member f '($inf $minf $infinity $ind) :test #'eq))
2001	      (setq sum (m+ sum f)))
2002	     ((eq f '$ind)  (push (car exp) indl))
2003	     (infinityl (throw 'limit t))
2004;;;Don't know what to do with an '$infinity and an $inf or $minf
2005	     ((eq f '$inf)  (push (car exp) infl))
2006	     ((eq f '$minf)  (push (car exp) minfl))
2007	     ((eq f '$infinity)
2008	      (cond ((or infl minfl)
2009		     (throw 'limit t))
2010		    (t (push (car exp) infinityl))))))
2011     (cond ((not (or infl minfl indl infinityl))
2012	    (return (cond ((atom sum)  sum)
2013			  ((or (not (free sum '$zeroa))
2014			       (not (free sum '$zerob)))
2015			   (simpab sum))
2016			  (t sum))))
2017	   (t (cond ((null infinityl)
2018		     (cond (infl (cond ((null minfl) (return '$inf))
2019				       (t (go oon))))
2020			   (minfl (return '$minf))
2021                           ((> (length indl) 1)
2022                            ;; At this point we have a sum of '$ind. We factor
2023                            ;; the sum and try again. This way we get the limit
2024                            ;; of expressions like (a-b)*ind, where (a-b)--> 0.
2025                            (cond ((not (alike1 (setq y ($factorsum exp)) exp))
2026                                   (return (limit y var val 'think)))
2027                                  (t
2028                                   (return '$ind))))
2029			   (t (return '$ind))))
2030		    (t (setq infl (append infl infinityl))))))
2031
2032     oon  (setq y (m+l (append minfl infl)))
2033     (cond ((alike1 exp (setq y (sratsimp (log-reduce (hyperex y)))))
2034	    (cond ((not (infinityp val))
2035		   (setq infl (cnv infl val)) ;THIS IS HORRIBLE!!!!
2036		   (setq minfl (cnv minfl val))))
2037	    (let ((val '$inf))
2038	      (cond ((every #'(lambda (j) (radicalp j var))
2039			    (append infl minfl))
2040		     (setq y (rheur infl minfl)))
2041		    (t (setq y (sheur infl minfl))))))
2042	   (t (setq y (limit y var val 'think))))
2043     (cond ((or (eq y ())
2044		(eq y t))  (return ()))
2045	   ((infinityp y)  (return y))
2046	   (t (return (m+ sum y))))))
2047
2048;; Limit n/d, using heuristics on the order of growth.
2049(defun sheur0 (n d)
2050  (let ((orig-n n))
2051    (cond ((and (free n var)
2052		(free d var))
2053	   (m// n d))
2054	  (t (setq n (cpa n d nil))
2055	     (cond ((equal n 1)
2056		    (cond ((oscip orig-n)  '$und)
2057			  (t '$inf)))
2058		   ((equal n -1)  '$zeroa)
2059		   ((equal n 0)  (m// orig-n d)))))))
2060
2061
2062;;;L1 is a list of INF's and L2 is a list of MINF's. Added together
2063;;;it is indeterminate.
2064(defun sheur (l1 l2)
2065  (let ((term (sheur1 l1 l2)))
2066    (cond ((equal term '$inf)  '$inf)
2067	  ((equal term '$minf)   '$minf)
2068	  (t (let ((new-num (m+l (mapcar #'(lambda (num-term)
2069					     (m// num-term (car l1)))
2070					 (append l1 l2)))))
2071	       (cond ((limit2 new-num (m// 1 (car l1)) var val))))))))
2072
2073(defun frac (exp)
2074  (cond ((atom exp) nil)
2075	(t (setq exp (nformat exp))
2076	   (cond ((and (eq (caar exp) 'mquotient)
2077		       (among var (caddr exp)))
2078		  t)))))
2079
2080(defun zerop2 (z) (=0 (ridofab z)))
2081
2082(defun raise (a) (m+ a '$zeroa))
2083
2084(defun lower (a) (m+ a '$zerob))
2085
2086(defun sincoshk (exp1 l sc)
2087  (cond ((equal l 1) (lower l))
2088	((equal l -1) (raise l))
2089	((among sc l) l)
2090	((member val '($zeroa $zerob) :test #'eq) (spangside exp1 l))
2091	(t l)))
2092
2093(defun spangside (e l)
2094  (setq e (behavior e var val))
2095  (cond ((equal e 1) (raise l))
2096	((equal e -1) (lower l))
2097	(t l)))
2098
2099;; get rid of zeroa and zerob
2100(defun ridofab (e)
2101  (if (among '$zeroa e) (setq e (maxima-substitute 0 '$zeroa e)))
2102  (if (among '$zerob e) (setq e (maxima-substitute 0 '$zerob e)))
2103  e)
2104
2105;; simple radical
2106;; returns true if exp is a polynomial raised to a numeric power
2107(defun simplerd (exp)
2108  (and (mexptp exp)
2109       (mnump (caddr exp))	;; exponent must be a number - no variables
2110       (polyp (cadr exp))))
2111
2112(defun branch1 (exp val)
2113  (cond ((polyp exp) nil)
2114	((simplerd exp) (zerop2 (subin val (cadr exp))))
2115	(t
2116	 (loop for v on (cdr exp)
2117		when (branch1 (car v) val)
2118		do (return v)))))
2119
2120(defun branch (exp val)
2121  (cond ((polyp exp) nil)
2122	((or (simplerd exp) (mtimesp exp))
2123	 (branch1 exp val))
2124	((mplusp exp)
2125	 (every #'(lambda (j) (branch j val)) (the list (cdr exp))))))
2126
2127(defun ser0 (e n d val)
2128  (cond ((and (branch n val) (branch d val))
2129	 (setq nn* nil)
2130	 (setq n (ser1 n))
2131	 (setq d (ser1 d))
2132;;;NN* gets set by POFX, called by SER1, to get a list of exponents.
2133	 (setq nn* (ratmin nn*))
2134	 (setq n (sratsimp (m^ n (m^ var nn*))))
2135	 (setq d (sratsimp (m^ d (m^ var nn*))))
2136	 (cond ((member val '($zeroa $zerob) :test #'eq) nil)
2137	       (t (setq val 0.)))
2138	 (radlim e n d))
2139	(t (try-lhospital-quit n d nil))))
2140
2141(defun rheur (l1 l2)
2142  (prog (ans m1 m2)
2143     (setq m1 (mapcar (function asymredu) l1))
2144     (setq m2 (mapcar (function asymredu) l2))
2145     (setq ans (m+l (append m1 m2)))
2146     (cond ((rptrouble (m+l (append l1 l2)))
2147	    (return (limit (simplify (rdsget (m+l (append l1 l2))))
2148			   var
2149			   val
2150			   nil)))
2151	   ((mplusp ans)  (return (sheur m1 m2)))
2152	   (t (return (limit ans var val t))))))
2153
2154(defun rptrouble (rp)
2155  (not (equal (rddeg rp nil) (rddeg (asymredu rp) nil))))
2156
2157(defun radicalp (exp var)
2158  (cond ((polyinx exp var ()))
2159	((mexptp exp)  (cond ((equal (caddr exp) -1.)
2160			      (radicalp (cadr exp) var))
2161			     ((simplerd exp))))
2162	((member (caar exp) '(mplus mtimes) :test #'eq)
2163	 (every #'(lambda (j) (radicalp j var))
2164		(cdr exp)))))
2165
2166(defun involve (e nn*)
2167  (declare (special var))
2168  (cond ((atom e) nil)
2169	((mnump e) nil)
2170	((and (member (caar e) nn* :test #'eq) (among var (cdr e))) (cadr e))
2171	(t (some #'(lambda (j) (involve j nn*)) (cdr e)))))
2172
2173(defun notinvolve (exp nn*)
2174  (cond ((atom exp) t)
2175	((mnump exp) t)
2176	((member (caar exp) nn* :test #'eq) (not (among var (cdr exp))))
2177	((every #'(lambda (j) (notinvolve j nn*))
2178		(cdr exp)))))
2179
2180(defun sheur1 (l1 l2)
2181  (prog (ans)
2182     (setq l1 (m+l (maxi l1)))
2183     (setq l2 (m+l (maxi l2)))
2184     (setq ans (cpa l1 l2 t))
2185     (return (cond ((=0 ans)  (m+  l1 l2))
2186		   ((equal ans 1.) '$inf)
2187		   (t '$minf)))))
2188
2189(defun zero-lim (cpa-list)
2190  (do ((l cpa-list (cdr l)))
2191      ((null l) ())
2192    (and (eq (caar l) 'gen)
2193	 (zerop2 (limit (cadar l) var val 'think))
2194	 (return t))))
2195
2196;; Compare order of growth for R1 and R2.  The result is 0, -1, +1
2197;; depending on the relative order of growth.  0 is returned if R1 and
2198;; R2 have the same growth; -1 if R1 grows much more slowly than R2;
2199;; +1 if R1 grows much more quickly than R2.
2200(defun cpa (r1 r2 flag)
2201  (let ((t1 r1)
2202	(t2 r2))
2203    (cond ((alike1 t1 t2)   0.)
2204	  ((free t1 var)
2205	   (cond ((free t2 var)  0.)
2206		 (t (let ((lim-ans (limit1 t2 var val)))
2207		      (cond ((not (member lim-ans '($inf $minf $und $ind) :test #'eq))  0.)
2208			    (t  -1.))))))
2209	  ((free t2 var)
2210	   (let ((lim-ans (limit1 t1 var val)))
2211	     (cond ((not (member lim-ans '($inf $minf $und $ind) :test #'eq))  0.)
2212		   (t  1.))))
2213	  (t
2214	   ;; Make T1 and T2 be a list of terms that are multiplied
2215	   ;; together.
2216	   (cond ((mtimesp t1)  (setq t1 (cdr t1)))
2217		 (t (setq t1 (list t1))))
2218	     (cond ((mtimesp t2)  (setq t2 (cdr t2)))
2219		   (t (setq t2 (list t2))))
2220	     ;; Find the strengths of each term of T1 and T2
2221	     (setq t1 (mapcar (function istrength) t1))
2222	     (setq t2 (mapcar (function istrength) t2))
2223	     ;; Compute the max of the strengths of the terms.
2224	     (let ((ans (ismax t1))
2225		   (d (ismax t2)))
2226	       (cond ((or (null ans) (null d)
2227			  (eq (car ans) 'gen) (eq (car d) 'gen))  0.))
2228	       (if (eq (car ans) 'var)  (setq ans (add-up-deg t1)))
2229	       (if (eq (car d) 'var)  (setq d (add-up-deg t2)))
2230	       ;; Can't just just compare dominating terms if there are
2231	       ;; indeterm-inates present; e.g. X-X^2*LOG(1+1/X). So
2232	       ;; check for this.
2233	       (cond ((or (zero-lim t1)
2234			  (zero-lim t2))
2235		      (cpa-indeterm ans d t1 t2 flag))
2236		     ((isgreaterp ans d)  1.)
2237		     ((isgreaterp d ans)  -1.)
2238		     (t  0)))))))
2239
2240(defun cpa-indeterm (ans d t1 t2 flag)
2241  (cond ((not (eq (car ans) 'var))
2242	 (setq ans (gather ans t1)  d (gather d t2))))
2243  (let ((*indicator (and (eq (car ans) 'exp)
2244			 flag))
2245	(test ()))
2246    (setq test (cpa1 ans d))
2247    (cond ((and (zerop1 test)
2248		(or (equal ($radcan (m// (cadr ans) (cadr d))) 1.)
2249		    (and (polyp (cadr ans))
2250			 (polyp (cadr d))
2251			 (equal (limit (m// (cadr ans) (cadr d)) var val 'think)
2252				1.))))
2253	   (let ((new-term1 (m// t1 (cadr ans)))
2254		 (new-term2 (m// t2 (cadr d))))
2255	     (cpa new-term1 new-term2 flag)))
2256	  (t 0))))
2257
2258(defun add-up-deg (strengthl)
2259  (do ((stl strengthl (cdr stl))
2260       (poxl)
2261       (degl))
2262      ((null stl) (list 'var (m*l poxl) (m+l degl)))
2263    (cond ((eq (caar stl) 'var)
2264	   (push (cadar stl) poxl)
2265	   (push (caddar stl) degl)))))
2266
2267(defun cpa1 (p1 p2)
2268  (prog (flag s1 s2)
2269     (cond ((eq (car p1) 'gen) (return 0.)))
2270     (setq flag (car p1))
2271     (setq p1 (cadr p1))
2272     (setq p2 (cadr p2))
2273     (cond
2274       ((eq flag 'var)
2275	(setq s1 (istrength p1))
2276	(setq s2 (istrength p2))
2277	(return
2278	  (cond
2279	    ((isgreaterp s1 s2) 1.)
2280	    ((isgreaterp s2 s1) -1.)
2281	    (*indicator
2282	     (setq *indicator nil)
2283	     (cond
2284	       ((and (poly? p1 var) (poly? p2 var))
2285		(setq p1 (m- p1 p2))
2286		(cond ((zerop1 p1) 0.)
2287		      (t (getsignl (hot-coef p1)))))
2288	       (t
2289		(setq s1
2290		      (rheur (list p1)
2291			     (list (m*t -1 p2))))
2292		(cond ((zerop2 s1) 0.)
2293		      ((ratgreaterp s1 0.) 1.)
2294		      (t -1.)))))
2295	    (t 0.))))
2296       ((eq flag 'exp)
2297	(setq p1 (caddr p1))
2298	(setq p2 (caddr p2))
2299	(cond ((and (poly? p1 var) (poly? p2 var))
2300	       (setq p1 (m- p1 p2))
2301	       (return (cond ((or (zerop1 p1)
2302				  (not (among var p1)))
2303			      0.)
2304			     (t (getsignl (hot-coef p1))))))
2305	      ((and (radicalp p1 var) (radicalp p2 var))
2306	       (setq s1
2307		     (rheur (list p1)
2308			    (list (m*t -1 p2))))
2309	       (return (cond ((eq s1 '$inf) 1.)
2310			     ((eq s1 '$minf) -1.)
2311			     ((mnump s1)
2312			      (cond ((ratgreaterp s1 0.) 1.)
2313				    ((ratgreaterp 0. s1) -1.)
2314				    (t 0.)))
2315			     (t 0.))))
2316	      (t (return (cpa p1 p2 t)))))
2317       ((eq flag 'log)
2318	(setq p1 (try-lhospital (asymredu p1) (asymredu p2) nil))
2319	(return (cond ((zerop2 p1) -1.)
2320		      ((real-infinityp p1) 1.)
2321		      (t 0.)))))))
2322
2323;;;EXPRESSIONS TO ISGREATERP ARE OF THE FOLLOWING FORMS
2324;;;	("VAR" POLY DEG)
2325;;;	("EXP" %E^EXP)
2326;;;	("LOG" LOG(EXP))
2327;;;	("FACT"	<A FACTORIAL EXPRESSION>)
2328;;;	("GEN" <ANY OTHER TYPE OF EXPRESSION>)
2329
2330(defun isgreaterp (a b)
2331  (let ((ta (car a))
2332	(tb (car b)))
2333    (cond ((or (eq ta 'gen)
2334	       (eq tb 'gen))  ())
2335	  ((and (eq ta tb) (eq ta 'var))
2336	   (ratgreaterp (caddr a) (caddr b)))
2337	  ((and (eq ta tb) (eq ta 'exp))
2338	   ;; Both are exponential order of infinity.  Check the
2339	   ;; exponents to determine which exponent is bigger.
2340	   (eq (limit (m- `((%log) ,(second a)) `((%log) ,(second b)))
2341		      var val 'think)
2342	       '$inf))
2343	  ((member ta (cdr (member tb '(num log var exp fact gen) :test #'eq)) :test #'eq)))))
2344
2345(defun ismax (l)
2346  ;; Preprocess the list of products.  Separate the terms that
2347  ;; exponentials and those that don't.  Actually multiply the
2348  ;; exponential terms together to form a single term.  Pass this and
2349  ;; the rest to ismax-core to find the max.
2350  (let (exp-terms non-exp-terms)
2351    (dolist (term l)
2352      (if (eq 'exp (car term))
2353	  (push term exp-terms)
2354	  (push term non-exp-terms)))
2355    ;; Multiply the exp-terms together
2356    (if exp-terms
2357	(let ((product 1))
2358	  ;;(format t "exp-terms = ~A~%" exp-terms)
2359	  (dolist (term exp-terms)
2360	    (setf product (simplify (mul product (second term)))))
2361	  ;;(format t "product = ~A~%" product)
2362	  (setf product `(exp ,($logcontract product)))
2363	  ;;(format t "product = ~A~%" product)
2364	  (ismax-core (cons product non-exp-terms)))
2365	(ismax-core l))))
2366
2367(defun ismax-core (l)
2368  (cond ((null l)  ())
2369	((atom l)   ())
2370	((= (length l) 1)  (car l)) ;If there is only 1 thing give it back.
2371	((every #'(lambda (x)
2372		      (not (eq (car x) 'gen))) l)
2373
2374	 (do ((l1 (cdr l) (cdr l1))
2375	      (temp-ans (car l))
2376	      (ans ()))
2377	     ((null l1) ans)
2378	   (cond ((isgreaterp temp-ans (car l1))
2379		  (setq ans temp-ans))
2380		 ((isgreaterp (car l1) temp-ans)
2381		  (setq temp-ans (car l1))
2382		  (setq ans temp-ans))
2383		 (t (setq ans ())))))
2384	(t ())))
2385
2386;RETURNS LIST OF HIGH TERMS
2387(defun maxi (all)
2388  (cond ((atom all)  nil)
2389	(t (do ((l (cdr all) (cdr l))
2390		(hi-term (car all))
2391		(total 1)		; running total constant factor of hi-term
2392		(hi-terms (ncons (car all)))
2393		(compare nil))
2394	       ((null l) (if (zerop2 total)  ; if high-order terms cancel each other
2395			     all	     ; keep everything
2396			   hi-terms))        ; otherwise return list of high terms
2397	     (setq compare (limit (m// (car l) hi-term) var val 'think))
2398	     (cond
2399	       ((or (infinityp compare)
2400		    (and (eq compare '$und)
2401			 (zerop2 (limit (m// hi-term (car l)) var val 'think))))
2402		(setq total 1)	; have found new high term
2403		(setq hi-terms (ncons (setq hi-term (car l)))))
2404	       ((zerop2 compare)  nil)
2405	       ;; COMPARE IS IND, FINITE-VALUED, or und in both directions
2406	       (t		; add to list of high terms
2407		(setq total (m+ total compare))
2408		(setq hi-terms (append hi-terms (ncons (car l))))))))))
2409
2410(defun ratmax (l)
2411  (prog (ans)
2412     (cond ((atom l) (return nil)))
2413     l1   (setq ans (car l))
2414     l2   (setq l (cdr l))
2415     (cond ((null l) (return ans))
2416	   ((ratgreaterp ans (car l)) (go l2))
2417	   (t (go l1)))))
2418
2419(defun ratmin (l)
2420  (prog (ans)
2421     (cond ((atom l) (return nil)))
2422     l1   (setq ans (car l))
2423     l2   (setq l (cdr l))
2424     (cond ((null l) (return ans))
2425	   ((ratgreaterp (car l) ans) (go l2))
2426	   (t (go l1)))))
2427
2428(defun pofx (e)
2429  (cond ((atom e)
2430	 (cond ((eq e var)
2431		(push 1 nn*))
2432	       (t ())))
2433	((or (mnump e) (not (among var e))) nil)
2434	((and (mexptp e) (eq (cadr e) var))
2435	 (push (caddr e) nn*))
2436	((simplerd e) nil)
2437	(t (mapc #'pofx (cdr e)))))
2438
2439(defun ser1 (e)
2440  (cond ((member val '($zeroa $zerob) :test #'eq) nil)
2441	(t (setq e (subin (m+ var val) e))))
2442  (setq e (rdfact e))
2443  (cond ((pofx e) e)))
2444
2445(defun gather (ind l)
2446  (prog (ans)
2447     (setq ind (car ind))
2448     loop (cond ((null l)
2449		 (return (list ind (m*l ans))))
2450		((equal (caar l) ind)
2451		 (push (cadar l) ans)))
2452     (setq l (cdr l))
2453     (go loop)))
2454
2455; returns rough class-of-growth of term
2456(defun istrength (term)
2457  (cond ((mnump term)  (list 'num term))
2458	((atom term)   (cond ((eq term var)
2459			      (list 'var var 1.))
2460			     (t (list 'num term))))
2461	((not (among var term))  (list 'num term))
2462	((mplusp term)
2463	 (let ((temp (ismax (mapcar #'istrength (cdr term)))))
2464	   (cond ((not (null temp))  temp)
2465		 (t `(gen ,term)))))
2466	((mtimesp term)
2467	 (let ((temp (mapcar #'istrength (cdr term)))
2468	       (temp1 ()))
2469	   (setq temp1 (ismax temp))
2470	   (cond ((null temp1)  `(gen ,term))
2471		 ((eq (car temp1) 'log)  `(log ,temp))
2472		 ((eq (car temp1) 'var)  (add-up-deg temp))
2473		 (t `(gen ,temp)))))
2474	((and (mexptp term)
2475	      (real-infinityp (limit term var val t)))
2476	 (let ((logterm (logred term)))
2477	   (cond ((and (among var (caddr term))
2478		       (member (car (istrength logterm))
2479			       '(var exp fact) :test #'eq)
2480		       (real-infinityp (limit logterm var val t)))
2481		  (list 'exp (m^ '$%e logterm)))
2482		 ((not (among var (caddr term)))
2483		  (let ((temp (istrength (cadr term))))
2484		    (cond ((not (alike1 temp term))
2485			   (rplaca (cdr temp) term)
2486			   (and (eq (car temp) 'var)
2487				(rplaca (cddr temp)
2488					(m* (caddr temp) (caddr term))))
2489			   temp)
2490			  (t `(gen ,term)))))
2491		 (t `(gen ,term)))))
2492	((and (eq (caar term) '%log)
2493	      (real-infinityp (limit term var val t)))
2494	 (let ((stren (istrength (cadr term))))
2495	   (cond ((member (car stren) '(log var) :test #'eq)
2496		  `(log ,term))
2497		 ((and (eq (car stren) 'exp)
2498		       (eq (caar (second stren)) 'mexpt))
2499		  (istrength (logred (second stren))))
2500		 (t `(gen ,term)))))
2501	((eq (caar term) 'mfactorial)
2502	 (list 'fact term))
2503	((let ((temp (hyperex term)))
2504	   (and (not (alike1 term temp))
2505		(istrength temp))))
2506	(t (list 'gen term))))
2507
2508;; log reduce - returns log of s1
2509(defun logred (s1)
2510  (or (and (eq (cadr s1) '$%e) (caddr s1))
2511      (m* (caddr s1) `((%log) ,(cadr s1)))))
2512
2513(defun asymredu (rd)
2514  (cond ((atom rd) rd)
2515	((mnump rd) rd)
2516	((not (among var rd)) rd)
2517	((polyinx rd var t))
2518	((simplerd rd)
2519	 (cond ((eq (cadr rd) var) rd)
2520	       (t (mabs-subst
2521		   (factor ($expand (m^ (polyinx (cadr rd) var t)
2522					(caddr rd))))
2523		   var
2524		   val))))
2525	(t (simplify (cons (list (caar rd))
2526			   (mapcar #'asymredu (cdr rd)))))))
2527
2528(defun rdfact (rd)
2529  (let ((dn** ())  (nn** ()))
2530    (cond ((atom rd) rd)
2531	  ((mnump rd) rd)
2532	  ((not (among var rd)) rd)
2533	  ((polyp rd)
2534	   (factor rd))
2535	  ((simplerd rd)
2536	   (cond ((eq (cadr rd) var) rd)
2537		 (t (setq dn** (caddr rd))
2538		    (setq nn** (factor (cadr rd)))
2539		    (cond ((mtimesp nn**)
2540			   (m*l (mapcar #'(lambda (j) (m^ j dn**))
2541					(cdr nn**))))
2542			  (t rd)))))
2543	  (t (simplify (cons (ncons (caar rd))
2544			     (mapcar #'rdfact (cdr rd))))))))
2545
2546(defun cnv (expl val)
2547  (mapcar #'(lambda (e)
2548	      (maxima-substitute (cond ((eq val '$zerob)
2549					(m* -1 (m^ var -1)))
2550				       ((eq val '$zeroa)
2551					(m^ var -1))
2552				       ((eq val '$minf)
2553					(m* -1 var))
2554				       (t (m^ (m+ var (m* -1 val)) -1.)))
2555				 var
2556				 e))
2557	  expl))
2558
2559(defun pwtaylor (exp var l terms)
2560  (prog (coef ans c mc)
2561     (cond ((=0 terms) (return nil)) ((=0 l) (setq mc t)))
2562     (setq c 0.)
2563     (go tag1)
2564     loop (setq c (1+ c))
2565     (cond ((or (> c 10.) (equal c terms))
2566	    (return (m+l ans)))
2567	   (t (setq exp (sdiff exp var))))
2568     tag1 (setq coef ($radcan (subin l exp)))
2569     (cond ((=0 coef) (setq terms (1+ terms)) (go loop)))
2570     (setq
2571      ans
2572      (append
2573       ans
2574       (list
2575	(m* coef
2576	    (m^ `((mfactorial) ,c) -1)
2577	    (m^ (if mc var (m+t (m*t -1 l) var)) c)))))
2578     (go loop)))
2579
2580(defun rdsget (e)
2581  (cond ((polyp e) e)
2582	((simplerd e) (rdtay e))
2583	(t (cons (list (caar e))
2584		 (mapcar #'rdsget (cdr e))))))
2585
2586(defun rdtay (rd)
2587  (cond (limit-using-taylor ($ratdisrep ($taylor rd var val 1.)))
2588	(t (lrdtay rd))))
2589
2590(defun lrdtay (rd)
2591  (prog (varlist p c e d $ratfac)
2592     (setq varlist (ncons var))
2593     (setq p (ratnumerator (cdr (ratrep* (cadr rd)))))
2594     (cond ((< (length p) 3.) (return rd)))
2595     (setq e (caddr rd))
2596     (setq d (pdegr p))
2597     (setq c (m^ var (m* d e)))
2598     (setq d ($ratsimp (varinvert (m* (pdis p) (m^ var (m- d)))
2599				  var)))
2600     (setq d (pwtaylor (m^ d e) var 0. 3.))
2601     (return (m* c (varinvert d var)))))
2602
2603(defun varinvert (e var) (subin (m^t var -1.) e))
2604
2605(defun deg (p)
2606  (prog ((varlist (list var)))
2607     (return (let (($ratfac nil))
2608	       (newvar p)
2609	       (pdegr (cadr (ratrep* p)))))))
2610
2611(defun rat-no-ratfac (e)
2612  (let (($ratfac nil))
2613    (newvar e)
2614    (ratrep* e)))
2615(setq low* nil)
2616
2617(defun rddeg (rd low*)
2618  (cond ((or (mnump rd)
2619	     (not (among var rd)))
2620	 0)
2621	((polyp rd)
2622	 (deg rd))
2623	((simplerd rd)
2624	 (m* (deg (cadr rd)) (caddr rd)))
2625	((mtimesp rd)
2626	 (addn (mapcar #'(lambda (j)
2627			   (rddeg j low*))
2628		       (cdr rd)) nil))
2629	((and (mplusp rd)
2630	      (setq rd (andmapcar #'(lambda (j) (rddeg j low*))
2631				  (cdr rd))))
2632	 (cond (low* (ratmin rd))
2633	       (t (ratmax rd))))))
2634
2635(defun pdegr (pf)
2636  (cond ((or (atom pf) (not (eq (caadr (ratf var)) (car pf))))
2637	 0)
2638	(low* (cadr (reverse pf)))
2639	(t (cadr pf))))
2640;;There is some confusion here. We need to be aware of Branch cuts etc....
2641;;when doing this section of code. It is not very carefully done so there
2642;;are bugs still lurking. Another misfortune is that LIMIT or its inferiors
2643;;sometimes decides to change the limit VAL in midstream. This must be corrected
2644;;since LIMIT's interaction with the data base environment must be maintained.
2645;;I'm not sure that this code can ever be called with VAL other than $INF but
2646;;there is a hook in the first important cond clause to cathc them anyway.
2647
2648(defun asy (n d)
2649  (let ((num-power (rddeg n nil))
2650	(den-power (rddeg d nil))
2651	(coef ())  (coef-sign ())  (power ()))
2652    (setq coef (m// ($ratcoef ($expand n) var num-power)
2653		    ($ratcoef ($expand d) var den-power)))
2654    (setq coef-sign (getsignl coef))
2655    (setq power (m// num-power den-power))
2656    (cond ((eq (ask-integer power '$integer) '$integer)
2657	   (cond ((eq (ask-integer power '$even) '$even)  '$even)
2658		 (t   '$odd))))		;Can be extended from here.
2659    (cond ((or (eq val '$minf)
2660	       (eq val '$zerob)
2661	       (eq val '$zeroa)
2662	       (equal val 0))  ()) ;Can be extended to cover some these.
2663	  ((ratgreaterp den-power num-power)
2664	   (cond ((equal coef-sign 1.)  '$zeroa)
2665		 ((equal coef-sign -1)  '$zerob)
2666		 ((equal coef-sign 0)   0)
2667		 (t 0)))
2668	  ((ratgreaterp num-power den-power)
2669	   (cond ((equal coef-sign 1.)  '$inf)
2670		 ((equal coef-sign -1)  '$minf)
2671		 ((equal coef-sign 0)   nil) ; should never be zero
2672		 ((null coef-sign)   '$infinity)))
2673	  (t coef))))
2674
2675(defun radlim (e n d)
2676  (prog (nl dl)
2677     (cond ((eq val '$infinity) (throw 'limit nil))
2678	   ((eq val '$minf)
2679	    (setq nl (m* var -1))
2680	    (setq n (subin nl n))
2681	    (setq d (subin nl d))
2682	    (setq val '$inf))) ;This is the Culprit. Doesn't tell the DATABASE.
2683     (cond ((eq val '$inf)
2684	    (setq nl (asymredu n))
2685	    (setq dl (asymredu d))
2686	    (cond
2687	      ((or (rptrouble n) (rptrouble d))
2688	       (return (limit (m* (rdsget n) (m^ (rdsget d) -1.)) var val t)))
2689	      (t (return (asy nl dl))))))
2690     (setq nl (limit n var val t))
2691     (setq dl (limit d var val t))
2692     (cond ((and (zerop2 nl) (zerop2 dl))
2693	    (cond ((or (polyp n) (polyp d))
2694		   (return (try-lhospital-quit n d t)))
2695		  (t (return (ser0 e n d val)))))
2696	   (t (return ($radcan (ratrad (m// n d) n d nl dl)))))))
2697
2698(defun ratrad (e n d nl dl)
2699  (prog (n1 d1)
2700     (cond ((equal nl 0) (return 0))
2701	   ((zerop2 dl)
2702	    (setq n1 nl)
2703	    (cond ((equal dl 0) (setq d1 '$infinity)) ;No direction Info.
2704		  ((eq dl '$zeroa)
2705		   (setq d1 '$inf))
2706		  ((equal (setq d (behavior d var val)) 1)
2707		   (setq d1 '$inf))
2708		  ((equal d -1) (setq d1 '$minf))
2709		  (t (throw 'limit nil))))
2710	   ((zerop2 nl)
2711	    (setq d1 dl)
2712	    (cond ((equal (setq n (behavior n var val)) 1)
2713		   (setq n1 '$zeroa))
2714		  ((equal n -1) (setq n1 '$zerob))
2715		  (t (setq n1 0))))
2716	   (t (return ($radcan (ridofab (subin val e))))))
2717     (return (simplimtimes (list n1 d1)))))
2718
2719;;; Limit of the Logarithm function
2720
2721(defun simplimln (expr var val)
2722  ;; We need to be careful with log because of the branch cut on the
2723  ;; negative real axis.  So we look at the imagpart of the argument.  If
2724  ;; it's not identically zero, we compute the limit of the real and
2725  ;; imaginary parts and combine them.  Otherwise, we can use the
2726  ;; original method for real limits.
2727  (let ((arglim (limit (cadr expr) var val 'think)))
2728    (cond ((eq arglim '$inf) '$inf)
2729	  ((member arglim '($minf $infinity) :test #'eq)
2730	   '$infinity)
2731	  ((member arglim '($ind $und) :test #'eq) '$und)
2732	  ((equalp ($imagpart (cadr expr)) 0)
2733           ;; argument is real.
2734	   (let* ((real-lim (ridofab arglim)))
2735	     (if (equalp real-lim 0)
2736		 (cond ((eq arglim '$zeroa)  '$minf)
2737		       ((eq arglim '$zerob)  '$infinity)
2738                       (t (let ((dir (behavior (cadr expr) var val)))
2739			    (cond ((equal dir 1) '$minf)
2740				  ((equal dir -1) '$infinity)
2741				  (t (throw 'limit t))))))
2742		 (cond ((equalp arglim 1)
2743			(let ((dir (behavior (cadr expr) var val)))
2744			  (if (equal dir 1) '$zeroa 0)))
2745		       (t  ;; Call simplifier to get value at the limit of the argument.
2746		         (simplify `((%log) ,real-lim)))))))
2747	  (t	   ;; argument is complex.
2748	   (destructuring-bind (rp . ip)
2749               (trisplit expr)
2750             (if (eq (setq rp (limit rp var val 'think)) '$minf)
2751                 ;; Realpart is minf, do not return minf+%i*ip but infinity.
2752                 '$infinity
2753                 ;; Return a complex limit value.
2754                 (add rp (mul '$%i (limit ip var val 'think)))))))))
2755
2756;;; Limit of the Factorial function
2757
2758(defun simplimfact (expr var val)
2759  (let* ((arglim (limit (cadr expr) var val 'think)) ; Limit of the argument.
2760         (arg2 arglim))
2761    (cond ((eq arglim '$inf) '$inf)
2762          ((member arglim '($minf $infinity $und $ind) :test #'eq) '$und)
2763          ((and (or (maxima-integerp arglim)
2764                    (setq arg2 (integer-representation-p arglim)))
2765                (eq ($sign arg2) '$neg))
2766           ;; A negative integer or float or bigfloat representation.
2767           (let ((dir (limit (add (cadr expr) (mul -1 arg2)) var val 'think))
2768                 (even (mevenp arg2)))
2769             (cond ((or (and even
2770                             (eq dir '$zeroa))
2771                        (and (not even)
2772                             (eq dir '$zerob)))
2773                    '$minf)
2774                   ((or (and even
2775                             (eq dir '$zerob))
2776                        (and (not even)
2777                             (eq dir '$zeroa)))
2778                    '$inf)
2779                   (t (throw 'limit nil)))))
2780          (t
2781           ;; Call simplifier to get value at the limit of the argument.
2782           (simplify (list '(mfactorial) arglim))))))
2783
2784(defun simplim%erf-%tanh (fn arg)
2785  (let ((arglim (limit arg var val 'think))
2786        (ans ())
2787        (rlim ()))
2788    (cond ((eq arglim '$inf) 1)
2789	  ((eq arglim '$minf) -1)
2790	  ((eq arglim '$infinity)
2791	   (destructuring-bind (rpart . ipart)
2792               (trisplit arg)
2793	     (setq rlim (limit rpart var origval 'think))
2794	     (cond ((eq fn '%tanh)
2795		    (cond ((equal rlim '$inf) 1)
2796			  ((equal rlim '$minf) -1)))
2797		   ((eq fn '%erf)
2798		    (setq ans (limit (m* rpart (m^t ipart -1)) var origval 'think))
2799		    (setq ans ($asksign (m+ `((mabs) ,ans) -1)))
2800		    (cond ((or (eq ans '$pos) (eq ans '$zero))
2801			   (cond ((eq rlim '$inf) 1)
2802				 ((eq rlim '$minf) -1)
2803				 (t '$und)))
2804			  (t '$und))))))
2805	  ((eq arglim '$und) '$und)
2806	  ((member arglim '($zeroa $zerob $ind) :test #'eq) arglim)
2807;;;Ignore tanh(%pi/2*%I) and multiples of the argument.
2808	  (t
2809	   ;; erf (or tanh) of a known value is just erf(arglim).
2810	   (simplify (list (ncons fn) arglim))))))
2811
2812(defun simplim%atan (exp1)
2813  (cond ((zerop2 exp1) exp1)
2814	((member exp1 '($und $infinity) :test #'eq)
2815	 (throw 'limit ()))
2816	((eq exp1 '$inf) half%pi)
2817	((eq exp1 '$minf)
2818	 (m*t -1. half%pi))
2819	(t `((%atan) ,exp1))))
2820
2821;; Most instances of atan2 are simplified to expressions in atan
2822;; by simpatan2 before we get to this point.  This routine handles
2823;; tricky cases such as limit(atan2((x^2-2), x^3-2*x), x, sqrt(2), minus).
2824;; Taylor and Gruntz cannot handle the discontinuity at atan(0, -1)
2825(defun simplim%atan2 (exp)
2826  (let* ((exp1 (cadr exp))
2827	 (exp2 (caddr exp))
2828	 (lim1 (limit (cadr exp) var val 'think))
2829	 (lim2 (limit (caddr exp) var val 'think))
2830	 (sign2 ($csign lim2)))
2831    (cond ((and (zerop2 lim1)		;; atan2( 0+, + )
2832		(eq sign2 '$pos))
2833	   lim1)	;; result is zeroa or zerob
2834	  ((and (eq lim1 '$zeroa)
2835		(eq sign2 '$neg))
2836	   '$%pi)
2837	  ((and (eq lim1 '$zerob)	;; atan2( 0-, - )
2838		(eq sign2 '$neg))
2839	   (m- '$%pi))
2840	  ((and (eq lim1 '$zeroa)	;; atan2( 0+, 0 )
2841		(zerop2 lim2))
2842	   (simplim%atan (limit (m// exp1 exp2) var val 'think)))
2843	  ((and (eq lim1 '$zerob)	;; atan2( 0-, 0 )
2844		(zerop2 lim2))
2845	   (m+ (porm (eq lim2 '$zeroa) '$%pi)
2846	       (simplim%atan (limit (m// exp1 exp2) var val 'think))))
2847	  ((member lim1 '($und $infinity) :test #'eq)
2848	   (throw 'limit ()))
2849	  ((eq lim1 '$inf) half%pi)
2850	  ((eq lim1 '$minf)
2851	   (m*t -1. half%pi))
2852	  (t (take '($atan2) lim1 lim2)))))
2853
2854(defun simplimsch (sch arg)
2855  (cond ((real-infinityp arg)
2856	 (cond ((eq sch '%sinh) arg) (t '$inf)))
2857	((eq arg '$infinity) '$infinity)
2858	((eq arg '$ind) '$ind)
2859	((eq arg '$und) '$und)
2860	(t (let (($exponentialize t))
2861	     (resimplify (list (ncons sch) (ridofab arg)))))))
2862
2863;; simple limit of sin and cos
2864(defun simplimsc (exp fn arg)
2865  (cond ((member arg '($inf $minf $ind) :test #'eq) '$ind)
2866	((member arg '($und $infinity) :test #'eq)
2867	 (throw 'limit ()))
2868	((member arg '($zeroa $zerob) :test #'eq)
2869	 (cond ((eq fn '%sin) arg)
2870	       (t (m+ 1 '$zerob))))
2871	((sincoshk exp
2872		   (simplify (list (ncons fn) (ridofab arg)))
2873		   fn))))
2874
2875(defun simplim%tan (arg)
2876  (let ((arg1 (ridofab (limit arg var val 'think))))
2877    (cond
2878      ((member arg1 '($inf $minf $infinity $ind $und) :test #'eq)  '$und)
2879      ((pip arg1)
2880       (let ((c (trigred (pip arg1))))
2881	 (cond ((not (equal ($imagpart arg1) 0)) '$infinity)
2882	       ((and (eq (caar c) 'rat)
2883		     (equal (caddr c) 2)
2884		     (> (cadr c) 0))
2885		(setq arg1 (behavior arg var val))
2886		(cond ((= arg1 1) '$inf)
2887		      ((= arg1 -1) '$minf)
2888		      (t '$und)))
2889	       ((and (eq (caar c) 'rat)
2890		     (equal (caddr c) 2)
2891		     (< (cadr c) 0))
2892		(setq arg1 (behavior arg var val))
2893		(cond ((= arg1 1) '$minf)
2894		      ((= arg1 -1) '$inf)
2895		      (t '$und)))
2896	       (t (throw 'limit ())))))
2897      ((equal arg1 0)
2898       (setq arg1 (behavior arg var val))
2899       (cond ((equal arg1 1) '$zeroa)
2900	     ((equal arg1 -1) '$zerob)
2901	     (t 0)))
2902      (t (simp-%tan (list '(%tan) arg1) 1 nil)))))
2903
2904(defun simplim%asinh (arg)
2905  (cond ((member arg '($inf $minf $zeroa $zerob $ind $und) :test #'eq)
2906	 arg)
2907	((eq arg '$infinity) '$und)
2908	(t (simplify (list '(%asinh) (ridofab arg))))))
2909
2910(defun simplim%acosh (arg)
2911  (cond ((equal (ridofab arg) 1) '$zeroa)
2912	((eq arg '$inf) arg)
2913	((eq arg '$minf) '$infinity)
2914	((member arg '($und $ind $infinity) :test #'eq) '$und)
2915	(t (simplify (list '(%acosh) (ridofab arg))))))
2916
2917(defun simplim%atanh (arg dir)
2918  ;; Compute limit(atanh(x),x,arg).  If ARG is +/-1, we need to take
2919  ;; into account which direction we're approaching ARG.
2920  (cond ((zerop2 arg) arg)
2921	((member arg '($ind $und $infinity $minf $inf) :test #'eq)
2922	 '$und)
2923	((equal (setq arg (ridofab arg)) 1.)
2924	 ;; The limit at 1 should be complex infinity because atanh(x)
2925	 ;; is complex for x > 1, but inf if we're approaching 1 from
2926	 ;; below.
2927	 (if (eq dir '$zerob)
2928	     '$inf
2929	     '$infinity))
2930	((equal arg -1.)
2931	 ;; Same as above, except for the limit is at -1.
2932	 (if (eq dir '$zeroa)
2933	     '$minf
2934	     '$infinity))
2935	(t (simplify (list '(%atanh) arg)))))
2936
2937(defun simplim%asin-%acos (fn arg)
2938  (cond ((member arg '($und $ind $inf $minf $infinity) :test #'eq)
2939	 '$und)
2940	((and (eq fn '%asin)
2941	      (member arg '($zeroa $zerob) :test #'eq))
2942	 arg)
2943	(t (simplify (list (ncons fn) (ridofab arg))))))
2944
2945(defun simplim$li (order arg val)
2946  (if (and (not (equal (length order) 1))
2947         (not (equal (length arg) 1)))
2948      (throw 'limit ())
2949      (setq order (car order)
2950            arg (car arg)))
2951  (if (not (equal order 2))
2952      (throw 'limit ())
2953      (destructuring-bind (rpart . ipart)
2954          (trisplit arg)
2955        (cond ((not (equal ipart 0))
2956               (throw 'limit ()))
2957              (t
2958               (setq rpart (limit rpart var val 'think))
2959               (cond ((eq rpart '$zeroa)  '$zeroa)
2960                     ((eq rpart '$zerob)  '$zerob)
2961                     ((eq rpart '$minf)  '$minf)
2962                     ((eq rpart '$inf)  '$infinity)
2963                     (t (simplify (subfunmake '$li (list order)
2964                                              (list rpart))))))))))
2965
2966(defun simplim$psi (order arg val)
2967  (if (and (not (equal (length order) 1))
2968         (not (equal (length arg) 1)))
2969      (throw 'limit ())
2970      (setq order (car order)
2971            arg (car arg)))
2972  (cond ((equal order 0)
2973	 (destructuring-bind (rpart . ipart)
2974             (trisplit arg)
2975           (cond ((not (equal ipart 0))  (throw 'limit ()))
2976                 (t (setq rpart (limit rpart var val 'think))
2977                    (cond ((eq rpart '$zeroa)  '$minf)
2978                          ((eq rpart '$zerob)  '$inf)
2979                          ((eq rpart '$inf)  '$inf)
2980                          ((eq rpart '$minf)   '$und)
2981                          ((equal (getsignl rpart) -1)  (throw 'limit ()))
2982                          (t (simplify (subfunmake '$psi (list order)
2983                                                   (list rpart)))))))))
2984	((and (integerp order) (> order 0)
2985            (equal (limit arg var val 'think) '$inf))
2986	 (cond ((mevenp order) '$zerob)
2987	       ((moddp order) '$zeroa)
2988	       (t (throw 'limit ()))))
2989	(t (throw 'limit ()))))
2990
2991(defun simplim%inverse_jacobi_ns (arg m)
2992  (if (or (eq arg '$inf) (eq arg '$minf))
2993      0
2994      `((%inverse_jacobi_ns) ,arg ,m)))
2995
2996(defun simplim%inverse_jacobi_nc (arg m)
2997  (if (or (eq arg '$inf) (eq arg '$minf))
2998      `((%elliptic_kc) ,m)
2999      `((%inverse_jacobi_nc) ,arg ,m)))
3000
3001(defun simplim%inverse_jacobi_sc (arg m)
3002  (if (or (eq arg '$inf) (eq arg '$minf))
3003      `((%elliptic_kc) ,m)
3004      `((%inverse_jacobi_sc) ,arg ,m)))
3005
3006(defun simplim%inverse_jacobi_dc (arg m)
3007  (if (or (eq arg '$inf) (eq arg '$minf))
3008      `((%elliptic_kc) ,m)
3009      `((%inverse_jacobi_dc) ,arg ,m)))
3010
3011(defun simplim%inverse_jacobi_cs (arg m)
3012  (if (or (eq arg '$inf) (eq arg '$minf))
3013      0
3014      `((%inverse_jacobi_cs) ,arg ,m)))
3015
3016(defun simplim%inverse_jacobi_ds (arg m)
3017  (if (or (eq arg '$inf) (eq arg '$minf))
3018      0
3019      `((%inverse_jacobi_ds) ,arg ,m)))
3020
3021(setf (get '%signum 'simplim%function) 'simplim%signum)
3022
3023(defun simplim%signum (e x pt)
3024  (let* ((e (limit (cadr e) x pt 'think)) (sgn (mnqp e 0)))
3025    (cond ((eq t sgn) (take '(%signum) e)) ;; limit of argument of signum is not zero
3026	  ((eq nil sgn) '$und)             ;; limit of argument of signum is zero (noncontinuous)
3027	  (t (throw 'limit nil)))))        ;; don't know
3028
3029;; more functions for limit to handle
3030
3031(defun lfibtophi (e)
3032  (cond ((not (involve e '($fib))) e)
3033	((eq (caar e) '$fib)
3034	 (let ((lnorecurse t))
3035	   ($fibtophi (list '($fib) (lfibtophi (cadr e))) lnorecurse)))
3036	(t (cons (car e)
3037		 (mapcar #'lfibtophi (cdr e))))))
3038
3039;;;     FOLLOWING CODE MAKES $LDEFINT WORK
3040
3041(defmfun $ldefint (exp var ll ul &aux $logabs ans a1 a2)
3042  (setq $logabs t ans (sinint exp var)
3043	a1 (toplevel-$limit ans var ul '$minus)
3044	a2 (toplevel-$limit ans var ll '$plus))
3045  (and (member a1 '($inf $minf $infinity $und $ind) :test #'eq)
3046       (setq a1 (nounlimit ans var ul)))
3047  (and (member a2 '($inf $minf $infinity $und $ind) :test #'eq)
3048       (setq a2 (nounlimit ans var ll)))
3049  ($expand (m- a1 a2)))
3050
3051(defun nounlimit (exp var val)
3052  (setq exp (restorelim exp))
3053  (nconc (list '(%limit) exp var (ridofab val))
3054	 (cond ((eq val '$zeroa) '($plus))
3055	       ((eq val '$zerob) '($minus)))))
3056
3057;; replace noun form of %derivative and indefinite %integrate with gensym.
3058;; prevents substitution x -> x+1 for limit('diff(x+2,x), x, 1)
3059;;
3060;; however, this doesn't work for limit('diff(x+2,x)/x, x, inf)
3061;; because the rest of the limit code thinks the gensym is const wrt x.
3062(defun hide (exp)
3063  (cond ((atom exp) exp)
3064	((or (eq '%derivative (caar exp))
3065	     (and (eq '%integrate (caar exp))	; indefinite integral
3066		  (null (cdddr exp))))
3067	 (hidelim exp (caar exp)))
3068	(t (cons (car exp) (mapcar 'hide (cdr exp))))))
3069
3070(defun hidelim (exp func)
3071  (setq func (gensym))
3072  (putprop func
3073	   (hidelima exp)
3074	   'limitsub)
3075  func)
3076
3077(defun hidelima (e)
3078  (if (among var e)
3079      (nounlimit e var val)
3080      e))
3081
3082;;;Used by Defint also.
3083(defun oscip (e)
3084  (or (involve e '(%sin %cos %tan))
3085      (among '$%i (%einvolve e))))
3086
3087(defun %einvolve (e)
3088  (when (among '$%e e) (%einvolve01 e)))
3089
3090(defun %einvolve01 (e)
3091  (cond ((atom e) nil)
3092	((mnump e) nil)
3093	((and (mexptp e)
3094	      (eq (cadr e) '$%e)
3095	      (among var (caddr e)))
3096	 (caddr e))
3097	(t (some #'%einvolve (cdr e)))))
3098
3099(declare-top (unspecial *indicator nn* dn* exp var val origval taylored
3100			$tlimswitch logcombed lhp? lhcount $ratfac))
3101
3102
3103;; GRUNTZ ALGORITHM
3104
3105;; Dominik Gruntz
3106;; "On Computing Limits in a Symbolic Manipulation System"
3107;; PhD Dissertation ETH Zurich 1996
3108
3109;; The algorithm identifies the most rapidly varying (MRV) subexpression,
3110;; replaces it with a new variable w, rewrites the expression in terms
3111;; of the new variable, and then repeats.
3112
3113;; The algorithm doesn't handle oscillating functions, so it can't do things like
3114;; limit(sin(x)/x, x, inf).
3115
3116;; To handle limits involving functions like gamma(x) and erf(x), the
3117;; gruntz algorithm requires them to be written in terms of asymptotic
3118;; expansions, which maxima cannot currently do.
3119
3120;; The algorithm assumes that everything is real, so it can't
3121;; currently handle limit((-2)^x, x, inf).
3122
3123;; This is one of the methods used by maxima's $limit.
3124;; It is also directly available to the user as $gruntz.
3125
3126
3127;; most rapidly varying subexpression of expression exp with respect to limit variable var.
3128;; returns a list of subexpressions which are in the same MRV equivalence class.
3129(defun mrv (exp var)
3130  (cond ((freeof var exp)
3131	 nil)
3132	((eq var exp)
3133	 (list var))
3134	((mtimesp exp)
3135	 (mrv-max (mrv (cadr exp) var)
3136		  (mrv (m*l (cddr exp)) var)
3137		  var))
3138	((mplusp exp)
3139	 (mrv-max (mrv (cadr exp) var)
3140		  (mrv (m+l (cddr exp)) var)
3141		  var))
3142	((mexptp exp)
3143	 (cond ((freeof var (caddr exp))
3144		(mrv (cadr exp) var))
3145	       ((member (limitinf (logred exp) var) '($inf $minf) :test #'eq)
3146		(mrv-max (list exp) (mrv (caddr exp) var) var))
3147	       (t (mrv-max (mrv (cadr exp) var) (mrv (caddr exp) var) var))))
3148	((mlogp exp)
3149	 (mrv (cadr exp) var))
3150	((equal (length (cdr exp)) 1)
3151	 (mrv (cadr exp) var))
3152	((equal (length (cdr exp)) 2)
3153	 (mrv-max (mrv (cadr exp) var)
3154		  (mrv (caddr exp) var)
3155		  var))
3156	(t (tay-error "mrv not implemented" exp))))
3157
3158;; takes two lists of expresions, f and g, and limit variable var.
3159;; members in each list are assumed to be in same MRV equivalence
3160;; class.  returns MRV set of the union of the inputs - either f or g
3161;; or the union of f and g.
3162(defun mrv-max (f g var)
3163  (prog ()
3164	(cond ((not f)
3165	       (return g))
3166	      ((not g)
3167	       (return f))
3168	      ((intersection f g)
3169	       (return (union f g))))
3170	(let ((c (mrv-compare (car f) (car g) var)))
3171	  (cond ((eq c '>)
3172		 (return f))
3173		((eq c '<)
3174		 (return g))
3175		((eq c '=)
3176		 (return (union f g)))
3177		(t (merror "MRV-MAX: expected '>' '<' or '='; found: ~M" c))))))
3178
3179(defun mrv-compare (a b var)
3180  (let ((c (limitinf (m// `((%log) ,a) `((%log) ,b)) var)))
3181    (cond ((equal c 0)
3182	   '<)
3183	  ((member c '($inf $minf) :test #'eq)
3184	   '>)
3185	  (t '=))))
3186
3187;; rewrite expression exp by replacing members of MRV set omega with
3188;; expressions in terms of new variable wsym.  return cons pair of new
3189;; version of exp and the log of the new variable wsym.
3190(defun mrv-rewrite (exp omega var wsym)
3191  (setq omega (sort omega (lambda (x y) (> (length (mrv x var))
3192					   (length (mrv y var))))))
3193  (let* ((g (car (last omega)))
3194	 (logg (logred g))
3195	 (sig (equal (mrv-sign logg var) 1))
3196	 (w (if sig (m// 1 wsym) wsym))
3197	 (logw (if sig (m* -1 logg) logg)))
3198    (mapcar (lambda (x y)
3199	      ;;(mtell "y:~M x:~M exp:~M~%" y x exp)
3200	      (setq exp (syntactic-substitute y x exp)))
3201	    omega
3202	    (mapcar (lambda (f)		;; rewrite each element of omega
3203		      (let* ((logf (logred f))
3204			     (c (mrv-leadterm (m// logf logg) var nil)))
3205			(cond ((not (equal (cadr c) 0))
3206			       (merror "MRV-REWRITE: expected leading term to be constant in ~M" c)))
3207			;;(mtell "logg: ~M  logf: ~M~%" logg logf)
3208			(m* (m^ w (car c))
3209			    (m^ '$%e (m- logf
3210					 (m* (car c) logg))))))
3211		    omega))
3212    (cons exp logw)))
3213
3214;;; if log w(x) = h(x), rewrite all subexpressions of the form
3215;;; log(f(x)) as log(w^-c f(x)) + c h(x) with c the unique constant
3216;;; such that w^-c f(x) is strictly less rapidly varying than w.
3217(defun mrv-rewrite-logs (exp wsym logw)
3218  (cond ((atom exp) exp)
3219	((and (mlogp exp)
3220	      (not (freeof wsym exp)))
3221	 (let* ((f (cadr exp))
3222		(c ($lopow (calculate-series f wsym)
3223			   wsym)))
3224	   (m+ (list (car exp)
3225		     (m* (m^ wsym (m- c))
3226			 (mrv-rewrite-logs f wsym logw)))
3227	       (m* c logw))))
3228	(t
3229	 (cons (car exp)
3230	       (mapcar (lambda (e)
3231			 (mrv-rewrite-logs e wsym logw))
3232		       (cdr exp))))))
3233
3234;; returns list of two elements: coeff and exponent of leading term of exp,
3235;; after rewriting exp in term of its MRV set omega.
3236(defun mrv-leadterm (exp var omega)
3237  (prog ((new-omega ()))
3238	(cond ((freeof var exp)
3239	       (return (list exp 0))))
3240	(dolist (term omega)
3241	  (cond ((subexp exp term)
3242		 (push term new-omega))))
3243	(setq omega new-omega)
3244	(cond ((not omega)
3245	       (setq omega (mrv exp var))))
3246	(cond ((member var omega :test #'eq)
3247	       (let* ((omega-up (mrv-moveup omega var))
3248		      (e-up (car (mrv-moveup (list exp) var)))
3249		      (mrv-leadterm-up (mrv-leadterm e-up var omega-up)))
3250		 (return (mrv-movedown mrv-leadterm-up var)))))
3251	(destructuring-let* ((wsym (gensym "w"))
3252			     lo
3253			     coef
3254			     ((f . logw) (mrv-rewrite exp omega var wsym))
3255			     (series (calculate-series (mrv-rewrite-logs f wsym logw)
3256						       wsym)))
3257			    (setq series (maxima-substitute logw `((%log) ,wsym) series))
3258			    (setq lo ($lopow series wsym))
3259			    (when (or (not ($constantp lo))
3260				      (not (free series '%derivative)))
3261				      ;; (mtell "series: ~M lo: ~M~%" series lo)
3262			      (tay-error "error in series expansion" f))
3263			    (setq coef ($coeff series wsym lo))
3264			    ;;(mtell "exp: ~M f: ~M~%" exp f)
3265			    ;;(mtell "series: ~M~%coeff: ~M~%pow: ~M~%" series coef lo)
3266			    (return (list coef lo)))))
3267
3268(defun mrv-moveup (l var)
3269  (mapcar (lambda (exp)
3270	    (simplify-log-of-exp
3271	     (syntactic-substitute `((mexpt) $%e ,var) var exp)))
3272	  l))
3273
3274(defun mrv-movedown (l var)
3275  (mapcar (lambda (exp) (syntactic-substitute `((%log simp) ,var) var exp))
3276	  l))
3277
3278;; test whether sub is a subexpression of exp
3279(defun subexp (exp sub)
3280  (not (equal (maxima-substitute 'dummy
3281				 sub
3282				 exp)
3283	      exp)))
3284
3285;; Generate $lhospitallim terms of taylor expansion.
3286;; Ideally we would use a lazy series representation that generates
3287;; more terms as higher order terms cancel.
3288(defun calculate-series (exp var)
3289  (assume `((mgreaterp) ,var 0))
3290  (putprop var t 'internal);; keep var from appearing in questions to user
3291  (let ((series ($taylor exp var 0 $lhospitallim)))
3292    (forget `((mgreaterp) ,var 0))
3293    series))
3294
3295(defun mrv-sign (exp var)
3296  (cond ((freeof var exp)
3297	 (let ((sign ($sign ($radcan exp))))
3298	   (cond ((eq sign '$zero)
3299		  0)
3300		 ((eq sign '$pos)
3301		  1)
3302		 ((eq sign '$neg)
3303		  -1)
3304		 (t (tay-error " cannot determine mrv-sign" exp)))))
3305	((eq exp var)
3306	 1)
3307	((mtimesp exp)
3308	 (* (mrv-sign (cadr exp) var)
3309	    (mrv-sign (m*l (cddr exp)) var)))
3310	((and (mexptp exp)
3311	      (equal (mrv-sign (cadr exp) var) 1))
3312	 1)
3313	((mlogp exp)
3314	 (cond ((equal (mrv-sign (cadr exp) var) -1)
3315		(tay-error " complex expression in gruntz limit" exp)))
3316	 (mrv-sign (m+ -1 (cadr exp)) var))
3317	((mplusp exp)
3318	 (mrv-sign (limitinf exp var) var))
3319	(t (tay-error " cannot determine mrv-sign" exp))))
3320
3321;; gruntz algorithm for limit of exp as var goes to positive infinity
3322(defun limitinf (exp var)
3323  (prog (($exptsubst nil))
3324	(cond ((freeof var exp)
3325	       (return exp)))
3326	(destructuring-let* ((c0-e0 (mrv-leadterm exp var nil))
3327			     (c0 (car c0-e0))
3328			     (e0 (cadr c0-e0))
3329			     (sig (mrv-sign e0 var)))
3330			    (cond ((equal sig 1)
3331				   (return 0))
3332				  ((equal sig -1)
3333				   (cond ((equal (mrv-sign c0 var) 1)
3334					  (return '$inf))
3335					 ((equal (mrv-sign c0 var) -1)
3336					  (return '$minf))))
3337				  ((equal sig 0)
3338				   (return (limitinf c0 var)))))))
3339
3340;; user-level function equivalent to $limit.
3341;; direction must be specified if limit point is not infinite
3342;; The arguments are checked and a failure of taylor is catched.
3343
3344(defmfun $gruntz (expr var val &rest rest)
3345  (let (ans dir)
3346    (when (> (length rest) 1)
3347      (merror
3348        (intl:gettext "gruntz: too many arguments; expected just 3 or 4")))
3349    (setq dir (car rest))
3350    (when (and (not (member val '($inf $minf $zeroa $zerob)))
3351               (not (member dir '($plus $minus))))
3352      (merror
3353        (intl:gettext "gruntz: direction must be 'plus' or 'minus'")))
3354    (setq ans
3355          (catch 'taylor-catch
3356            (let ((silent-taylor-flag t))
3357              (declare (special silent-taylor-flag))
3358              (gruntz1 expr var val dir))))
3359     (if (or (null ans) (eq ans t))
3360         (if dir
3361             `(($gruntz simp) ,expr ,var, val ,dir)
3362             `(($gruntz simp) ,expr ,var ,val))
3363         ans)))
3364
3365;; This function is for internal use in $limit.
3366(defun gruntz1 (exp var val &rest rest)
3367  (cond ((> (length rest) 1)
3368	 (merror (intl:gettext "gruntz: too many arguments; expected just 3 or 4"))))
3369  (let (($logexpand t) ; gruntz needs $logexpand T
3370        (newvar (gensym "w"))
3371	(dir (car rest)))
3372    (cond ((eq val '$inf)
3373	   (setq newvar var))
3374	  ((eq val '$minf)
3375	   (setq exp (maxima-substitute (m* -1 newvar) var exp)))
3376	  ((eq val '$zeroa)
3377	   (setq exp (maxima-substitute (m// 1 newvar) var exp)))
3378	  ((eq val '$zerob)
3379	   (setq exp (maxima-substitute (m// -1 newvar) var exp)))
3380	  ((eq dir '$plus)
3381	   (setq exp (maxima-substitute (m+ val (m// 1 newvar)) var exp)))
3382	  ((eq dir '$minus)
3383	   (setq exp (maxima-substitute (m+ val (m// -1 newvar)) var exp)))
3384	  (t (merror (intl:gettext "gruntz: direction must be 'plus' or 'minus'; found: ~M") dir)))
3385    (limitinf exp newvar)))
3386
3387;; substitute y for x in exp
3388;; similar to maxima-substitute but does not simplify result
3389(defun syntactic-substitute (y x exp)
3390  (cond ((alike1 x exp) y)
3391	((atom exp) exp)
3392	(t (cons (car exp)
3393		 (mapcar (lambda (exp)
3394			   (syntactic-substitute y x exp))
3395			 (cdr exp))))))
3396
3397;; log(exp(subexpr)) -> subexpr
3398;; without simplifying entire exp
3399(defun simplify-log-of-exp (exp)
3400  (cond ((atom exp) exp)
3401	((and (mlogp exp)
3402	      (mexptp (cadr exp))
3403	      (eq '$%e (cadadr exp)))
3404	 (caddr (cadr exp)))
3405	(t (cons (car exp)
3406		 (mapcar #'simplify-log-of-exp
3407			 (cdr exp))))))
3408