1 /*
2 * QEMU Executable loader
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 *
24 * Gunzip functionality in this file is derived from u-boot:
25 *
26 * (C) Copyright 2008 Semihalf
27 *
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
35 *
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
43 */
44
45 #include "qemu/osdep.h"
46 #include "qemu/datadir.h"
47 #include "qemu/error-report.h"
48 #include "qapi/error.h"
49 #include "qapi/qapi-commands-machine.h"
50 #include "qapi/type-helpers.h"
51 #include "trace.h"
52 #include "hw/hw.h"
53 #include "disas/disas.h"
54 #include "migration/vmstate.h"
55 #include "monitor/monitor.h"
56 #include "sysemu/reset.h"
57 #include "sysemu/sysemu.h"
58 #include "uboot_image.h"
59 #include "hw/loader.h"
60 #include "hw/nvram/fw_cfg.h"
61 #include "exec/memory.h"
62 #include "hw/boards.h"
63 #include "qemu/cutils.h"
64 #include "sysemu/runstate.h"
65 #include "tcg/debuginfo.h"
66
67 #include <zlib.h>
68
69 static int roms_loaded;
70
71 /* return the size or -1 if error */
get_image_size(const char * filename)72 int64_t get_image_size(const char *filename)
73 {
74 int fd;
75 int64_t size;
76 fd = open(filename, O_RDONLY | O_BINARY);
77 if (fd < 0)
78 return -1;
79 size = lseek(fd, 0, SEEK_END);
80 close(fd);
81 return size;
82 }
83
84 /* return the size or -1 if error */
load_image_size(const char * filename,void * addr,size_t size)85 ssize_t load_image_size(const char *filename, void *addr, size_t size)
86 {
87 int fd;
88 ssize_t actsize, l = 0;
89
90 fd = open(filename, O_RDONLY | O_BINARY);
91 if (fd < 0) {
92 return -1;
93 }
94
95 while ((actsize = read(fd, addr + l, size - l)) > 0) {
96 l += actsize;
97 }
98
99 close(fd);
100
101 return actsize < 0 ? -1 : l;
102 }
103
104 /* read()-like version */
read_targphys(const char * name,int fd,hwaddr dst_addr,size_t nbytes)105 ssize_t read_targphys(const char *name,
106 int fd, hwaddr dst_addr, size_t nbytes)
107 {
108 uint8_t *buf;
109 ssize_t did;
110
111 buf = g_malloc(nbytes);
112 did = read(fd, buf, nbytes);
113 if (did > 0)
114 rom_add_blob_fixed("read", buf, did, dst_addr);
115 g_free(buf);
116 return did;
117 }
118
load_image_targphys(const char * filename,hwaddr addr,uint64_t max_sz)119 ssize_t load_image_targphys(const char *filename,
120 hwaddr addr, uint64_t max_sz)
121 {
122 return load_image_targphys_as(filename, addr, max_sz, NULL);
123 }
124
125 /* return the size or -1 if error */
load_image_targphys_as(const char * filename,hwaddr addr,uint64_t max_sz,AddressSpace * as)126 ssize_t load_image_targphys_as(const char *filename,
127 hwaddr addr, uint64_t max_sz, AddressSpace *as)
128 {
129 ssize_t size;
130
131 size = get_image_size(filename);
132 if (size < 0 || size > max_sz) {
133 return -1;
134 }
135 if (size > 0) {
136 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
137 return -1;
138 }
139 }
140 return size;
141 }
142
load_image_mr(const char * filename,MemoryRegion * mr)143 ssize_t load_image_mr(const char *filename, MemoryRegion *mr)
144 {
145 ssize_t size;
146
147 if (!memory_access_is_direct(mr, false)) {
148 /* Can only load an image into RAM or ROM */
149 return -1;
150 }
151
152 size = get_image_size(filename);
153
154 if (size < 0 || size > memory_region_size(mr)) {
155 return -1;
156 }
157 if (size > 0) {
158 if (rom_add_file_mr(filename, mr, -1) < 0) {
159 return -1;
160 }
161 }
162 return size;
163 }
164
pstrcpy_targphys(const char * name,hwaddr dest,int buf_size,const char * source)165 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
166 const char *source)
167 {
168 const char *nulp;
169 char *ptr;
170
171 if (buf_size <= 0) return;
172 nulp = memchr(source, 0, buf_size);
173 if (nulp) {
174 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
175 } else {
176 rom_add_blob_fixed(name, source, buf_size, dest);
177 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
178 *ptr = 0;
179 }
180 }
181
182 /* A.OUT loader */
183
184 struct exec
185 {
186 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
187 uint32_t a_text; /* length of text, in bytes */
188 uint32_t a_data; /* length of data, in bytes */
189 uint32_t a_bss; /* length of uninitialized data area, in bytes */
190 uint32_t a_syms; /* length of symbol table data in file, in bytes */
191 uint32_t a_entry; /* start address */
192 uint32_t a_trsize; /* length of relocation info for text, in bytes */
193 uint32_t a_drsize; /* length of relocation info for data, in bytes */
194 };
195
bswap_ahdr(struct exec * e)196 static void bswap_ahdr(struct exec *e)
197 {
198 bswap32s(&e->a_info);
199 bswap32s(&e->a_text);
200 bswap32s(&e->a_data);
201 bswap32s(&e->a_bss);
202 bswap32s(&e->a_syms);
203 bswap32s(&e->a_entry);
204 bswap32s(&e->a_trsize);
205 bswap32s(&e->a_drsize);
206 }
207
208 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
209 #define OMAGIC 0407
210 #define NMAGIC 0410
211 #define ZMAGIC 0413
212 #define QMAGIC 0314
213 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
214 #define N_TXTOFF(x) \
215 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
216 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
217 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
218 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
219
220 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
221
222 #define N_DATADDR(x, target_page_size) \
223 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
224 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
225
226
load_aout(const char * filename,hwaddr addr,int max_sz,int bswap_needed,hwaddr target_page_size)227 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz,
228 int bswap_needed, hwaddr target_page_size)
229 {
230 int fd;
231 ssize_t size, ret;
232 struct exec e;
233 uint32_t magic;
234
235 fd = open(filename, O_RDONLY | O_BINARY);
236 if (fd < 0)
237 return -1;
238
239 size = read(fd, &e, sizeof(e));
240 if (size < 0)
241 goto fail;
242
243 if (bswap_needed) {
244 bswap_ahdr(&e);
245 }
246
247 magic = N_MAGIC(e);
248 switch (magic) {
249 case ZMAGIC:
250 case QMAGIC:
251 case OMAGIC:
252 if (e.a_text + e.a_data > max_sz)
253 goto fail;
254 lseek(fd, N_TXTOFF(e), SEEK_SET);
255 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
256 if (size < 0)
257 goto fail;
258 break;
259 case NMAGIC:
260 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
261 goto fail;
262 lseek(fd, N_TXTOFF(e), SEEK_SET);
263 size = read_targphys(filename, fd, addr, e.a_text);
264 if (size < 0)
265 goto fail;
266 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
267 e.a_data);
268 if (ret < 0)
269 goto fail;
270 size += ret;
271 break;
272 default:
273 goto fail;
274 }
275 close(fd);
276 return size;
277 fail:
278 close(fd);
279 return -1;
280 }
281
282 /* ELF loader */
283
load_at(int fd,off_t offset,size_t size)284 static void *load_at(int fd, off_t offset, size_t size)
285 {
286 void *ptr;
287 if (lseek(fd, offset, SEEK_SET) < 0)
288 return NULL;
289 ptr = g_malloc(size);
290 if (read(fd, ptr, size) != size) {
291 g_free(ptr);
292 return NULL;
293 }
294 return ptr;
295 }
296
297 #ifdef ELF_CLASS
298 #undef ELF_CLASS
299 #endif
300
301 #define ELF_CLASS ELFCLASS32
302 #include "elf.h"
303
304 #define SZ 32
305 #define elf_word uint32_t
306 #define elf_sword int32_t
307 #define bswapSZs bswap32s
308 #include "hw/elf_ops.h.inc"
309
310 #undef elfhdr
311 #undef elf_phdr
312 #undef elf_shdr
313 #undef elf_sym
314 #undef elf_rela
315 #undef elf_note
316 #undef elf_word
317 #undef elf_sword
318 #undef bswapSZs
319 #undef SZ
320 #define elfhdr elf64_hdr
321 #define elf_phdr elf64_phdr
322 #define elf_note elf64_note
323 #define elf_shdr elf64_shdr
324 #define elf_sym elf64_sym
325 #define elf_rela elf64_rela
326 #define elf_word uint64_t
327 #define elf_sword int64_t
328 #define bswapSZs bswap64s
329 #define SZ 64
330 #include "hw/elf_ops.h.inc"
331
load_elf_strerror(ssize_t error)332 const char *load_elf_strerror(ssize_t error)
333 {
334 switch (error) {
335 case 0:
336 return "No error";
337 case ELF_LOAD_FAILED:
338 return "Failed to load ELF";
339 case ELF_LOAD_NOT_ELF:
340 return "The image is not ELF";
341 case ELF_LOAD_WRONG_ARCH:
342 return "The image is from incompatible architecture";
343 case ELF_LOAD_WRONG_ENDIAN:
344 return "The image has incorrect endianness";
345 case ELF_LOAD_TOO_BIG:
346 return "The image segments are too big to load";
347 default:
348 return "Unknown error";
349 }
350 }
351
load_elf_hdr(const char * filename,void * hdr,bool * is64,Error ** errp)352 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
353 {
354 int fd;
355 uint8_t e_ident_local[EI_NIDENT];
356 uint8_t *e_ident;
357 size_t hdr_size, off;
358 bool is64l;
359
360 if (!hdr) {
361 hdr = e_ident_local;
362 }
363 e_ident = hdr;
364
365 fd = open(filename, O_RDONLY | O_BINARY);
366 if (fd < 0) {
367 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
368 return;
369 }
370 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
371 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
372 goto fail;
373 }
374 if (e_ident[0] != ELFMAG0 ||
375 e_ident[1] != ELFMAG1 ||
376 e_ident[2] != ELFMAG2 ||
377 e_ident[3] != ELFMAG3) {
378 error_setg(errp, "Bad ELF magic");
379 goto fail;
380 }
381
382 is64l = e_ident[EI_CLASS] == ELFCLASS64;
383 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
384 if (is64) {
385 *is64 = is64l;
386 }
387
388 off = EI_NIDENT;
389 while (hdr != e_ident_local && off < hdr_size) {
390 size_t br = read(fd, hdr + off, hdr_size - off);
391 switch (br) {
392 case 0:
393 error_setg(errp, "File too short: %s", filename);
394 goto fail;
395 case -1:
396 error_setg_errno(errp, errno, "Failed to read file: %s",
397 filename);
398 goto fail;
399 }
400 off += br;
401 }
402
403 fail:
404 close(fd);
405 }
406
407 /* return < 0 if error, otherwise the number of bytes loaded in memory */
load_elf(const char * filename,uint64_t (* elf_note_fn)(void *,void *,bool),uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque,uint64_t * pentry,uint64_t * lowaddr,uint64_t * highaddr,uint32_t * pflags,int big_endian,int elf_machine,int clear_lsb,int data_swab)408 ssize_t load_elf(const char *filename,
409 uint64_t (*elf_note_fn)(void *, void *, bool),
410 uint64_t (*translate_fn)(void *, uint64_t),
411 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
412 uint64_t *highaddr, uint32_t *pflags, int big_endian,
413 int elf_machine, int clear_lsb, int data_swab)
414 {
415 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
416 pentry, lowaddr, highaddr, pflags, big_endian,
417 elf_machine, clear_lsb, data_swab, NULL);
418 }
419
420 /* return < 0 if error, otherwise the number of bytes loaded in memory */
load_elf_as(const char * filename,uint64_t (* elf_note_fn)(void *,void *,bool),uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque,uint64_t * pentry,uint64_t * lowaddr,uint64_t * highaddr,uint32_t * pflags,int big_endian,int elf_machine,int clear_lsb,int data_swab,AddressSpace * as)421 ssize_t load_elf_as(const char *filename,
422 uint64_t (*elf_note_fn)(void *, void *, bool),
423 uint64_t (*translate_fn)(void *, uint64_t),
424 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
425 uint64_t *highaddr, uint32_t *pflags, int big_endian,
426 int elf_machine, int clear_lsb, int data_swab,
427 AddressSpace *as)
428 {
429 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
430 pentry, lowaddr, highaddr, pflags, big_endian,
431 elf_machine, clear_lsb, data_swab, as, true);
432 }
433
434 /* return < 0 if error, otherwise the number of bytes loaded in memory */
load_elf_ram(const char * filename,uint64_t (* elf_note_fn)(void *,void *,bool),uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque,uint64_t * pentry,uint64_t * lowaddr,uint64_t * highaddr,uint32_t * pflags,int big_endian,int elf_machine,int clear_lsb,int data_swab,AddressSpace * as,bool load_rom)435 ssize_t load_elf_ram(const char *filename,
436 uint64_t (*elf_note_fn)(void *, void *, bool),
437 uint64_t (*translate_fn)(void *, uint64_t),
438 void *translate_opaque, uint64_t *pentry,
439 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
440 int big_endian, int elf_machine, int clear_lsb,
441 int data_swab, AddressSpace *as, bool load_rom)
442 {
443 return load_elf_ram_sym(filename, elf_note_fn,
444 translate_fn, translate_opaque,
445 pentry, lowaddr, highaddr, pflags, big_endian,
446 elf_machine, clear_lsb, data_swab, as,
447 load_rom, NULL);
448 }
449
450 /* return < 0 if error, otherwise the number of bytes loaded in memory */
load_elf_ram_sym(const char * filename,uint64_t (* elf_note_fn)(void *,void *,bool),uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque,uint64_t * pentry,uint64_t * lowaddr,uint64_t * highaddr,uint32_t * pflags,int big_endian,int elf_machine,int clear_lsb,int data_swab,AddressSpace * as,bool load_rom,symbol_fn_t sym_cb)451 ssize_t load_elf_ram_sym(const char *filename,
452 uint64_t (*elf_note_fn)(void *, void *, bool),
453 uint64_t (*translate_fn)(void *, uint64_t),
454 void *translate_opaque, uint64_t *pentry,
455 uint64_t *lowaddr, uint64_t *highaddr,
456 uint32_t *pflags, int big_endian, int elf_machine,
457 int clear_lsb, int data_swab,
458 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
459 {
460 int fd, data_order, target_data_order, must_swab;
461 ssize_t ret = ELF_LOAD_FAILED;
462 uint8_t e_ident[EI_NIDENT];
463
464 fd = open(filename, O_RDONLY | O_BINARY);
465 if (fd < 0) {
466 perror(filename);
467 return -1;
468 }
469 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
470 goto fail;
471 if (e_ident[0] != ELFMAG0 ||
472 e_ident[1] != ELFMAG1 ||
473 e_ident[2] != ELFMAG2 ||
474 e_ident[3] != ELFMAG3) {
475 ret = ELF_LOAD_NOT_ELF;
476 goto fail;
477 }
478 #if HOST_BIG_ENDIAN
479 data_order = ELFDATA2MSB;
480 #else
481 data_order = ELFDATA2LSB;
482 #endif
483 must_swab = data_order != e_ident[EI_DATA];
484 if (big_endian) {
485 target_data_order = ELFDATA2MSB;
486 } else {
487 target_data_order = ELFDATA2LSB;
488 }
489
490 if (target_data_order != e_ident[EI_DATA]) {
491 ret = ELF_LOAD_WRONG_ENDIAN;
492 goto fail;
493 }
494
495 lseek(fd, 0, SEEK_SET);
496 if (e_ident[EI_CLASS] == ELFCLASS64) {
497 ret = load_elf64(filename, fd, elf_note_fn,
498 translate_fn, translate_opaque, must_swab,
499 pentry, lowaddr, highaddr, pflags, elf_machine,
500 clear_lsb, data_swab, as, load_rom, sym_cb);
501 } else {
502 ret = load_elf32(filename, fd, elf_note_fn,
503 translate_fn, translate_opaque, must_swab,
504 pentry, lowaddr, highaddr, pflags, elf_machine,
505 clear_lsb, data_swab, as, load_rom, sym_cb);
506 }
507
508 if (ret > 0) {
509 debuginfo_report_elf(filename, fd, 0);
510 }
511
512 fail:
513 close(fd);
514 return ret;
515 }
516
bswap_uboot_header(uboot_image_header_t * hdr)517 static void bswap_uboot_header(uboot_image_header_t *hdr)
518 {
519 #if !HOST_BIG_ENDIAN
520 bswap32s(&hdr->ih_magic);
521 bswap32s(&hdr->ih_hcrc);
522 bswap32s(&hdr->ih_time);
523 bswap32s(&hdr->ih_size);
524 bswap32s(&hdr->ih_load);
525 bswap32s(&hdr->ih_ep);
526 bswap32s(&hdr->ih_dcrc);
527 #endif
528 }
529
530
531 #define ZALLOC_ALIGNMENT 16
532
zalloc(void * x,unsigned items,unsigned size)533 static void *zalloc(void *x, unsigned items, unsigned size)
534 {
535 void *p;
536
537 size *= items;
538 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
539
540 p = g_malloc(size);
541
542 return (p);
543 }
544
zfree(void * x,void * addr)545 static void zfree(void *x, void *addr)
546 {
547 g_free(addr);
548 }
549
550
551 #define HEAD_CRC 2
552 #define EXTRA_FIELD 4
553 #define ORIG_NAME 8
554 #define COMMENT 0x10
555 #define RESERVED 0xe0
556
557 #define DEFLATED 8
558
gunzip(void * dst,size_t dstlen,uint8_t * src,size_t srclen)559 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
560 {
561 z_stream s = {};
562 ssize_t dstbytes;
563 int r, i, flags;
564
565 /* skip header */
566 i = 10;
567 if (srclen < 4) {
568 goto toosmall;
569 }
570 flags = src[3];
571 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
572 puts ("Error: Bad gzipped data\n");
573 return -1;
574 }
575 if ((flags & EXTRA_FIELD) != 0) {
576 if (srclen < 12) {
577 goto toosmall;
578 }
579 i = 12 + src[10] + (src[11] << 8);
580 }
581 if ((flags & ORIG_NAME) != 0) {
582 while (i < srclen && src[i++] != 0) {
583 /* do nothing */
584 }
585 }
586 if ((flags & COMMENT) != 0) {
587 while (i < srclen && src[i++] != 0) {
588 /* do nothing */
589 }
590 }
591 if ((flags & HEAD_CRC) != 0) {
592 i += 2;
593 }
594 if (i >= srclen) {
595 goto toosmall;
596 }
597
598 s.zalloc = zalloc;
599 s.zfree = zfree;
600
601 r = inflateInit2(&s, -MAX_WBITS);
602 if (r != Z_OK) {
603 printf ("Error: inflateInit2() returned %d\n", r);
604 return (-1);
605 }
606 s.next_in = src + i;
607 s.avail_in = srclen - i;
608 s.next_out = dst;
609 s.avail_out = dstlen;
610 r = inflate(&s, Z_FINISH);
611 if (r != Z_OK && r != Z_STREAM_END) {
612 printf ("Error: inflate() returned %d\n", r);
613 inflateEnd(&s);
614 return -1;
615 }
616 dstbytes = s.next_out - (unsigned char *) dst;
617 inflateEnd(&s);
618
619 return dstbytes;
620
621 toosmall:
622 puts("Error: gunzip out of data in header\n");
623 return -1;
624 }
625
626 /* Load a U-Boot image. */
load_uboot_image(const char * filename,hwaddr * ep,hwaddr * loadaddr,int * is_linux,uint8_t image_type,uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque,AddressSpace * as)627 static ssize_t load_uboot_image(const char *filename, hwaddr *ep,
628 hwaddr *loadaddr, int *is_linux,
629 uint8_t image_type,
630 uint64_t (*translate_fn)(void *, uint64_t),
631 void *translate_opaque, AddressSpace *as)
632 {
633 int fd;
634 ssize_t size;
635 hwaddr address;
636 uboot_image_header_t h;
637 uboot_image_header_t *hdr = &h;
638 uint8_t *data = NULL;
639 int ret = -1;
640 int do_uncompress = 0;
641
642 fd = open(filename, O_RDONLY | O_BINARY);
643 if (fd < 0)
644 return -1;
645
646 size = read(fd, hdr, sizeof(uboot_image_header_t));
647 if (size < sizeof(uboot_image_header_t)) {
648 goto out;
649 }
650
651 bswap_uboot_header(hdr);
652
653 if (hdr->ih_magic != IH_MAGIC)
654 goto out;
655
656 if (hdr->ih_type != image_type) {
657 if (!(image_type == IH_TYPE_KERNEL &&
658 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
659 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
660 image_type);
661 goto out;
662 }
663 }
664
665 /* TODO: Implement other image types. */
666 switch (hdr->ih_type) {
667 case IH_TYPE_KERNEL_NOLOAD:
668 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
669 fprintf(stderr, "this image format (kernel_noload) cannot be "
670 "loaded on this machine type");
671 goto out;
672 }
673
674 hdr->ih_load = *loadaddr + sizeof(*hdr);
675 hdr->ih_ep += hdr->ih_load;
676 /* fall through */
677 case IH_TYPE_KERNEL:
678 address = hdr->ih_load;
679 if (translate_fn) {
680 address = translate_fn(translate_opaque, address);
681 }
682 if (loadaddr) {
683 *loadaddr = hdr->ih_load;
684 }
685
686 switch (hdr->ih_comp) {
687 case IH_COMP_NONE:
688 break;
689 case IH_COMP_GZIP:
690 do_uncompress = 1;
691 break;
692 default:
693 fprintf(stderr,
694 "Unable to load u-boot images with compression type %d\n",
695 hdr->ih_comp);
696 goto out;
697 }
698
699 if (ep) {
700 *ep = hdr->ih_ep;
701 }
702
703 /* TODO: Check CPU type. */
704 if (is_linux) {
705 if (hdr->ih_os == IH_OS_LINUX) {
706 *is_linux = 1;
707 } else if (hdr->ih_os == IH_OS_VXWORKS) {
708 /*
709 * VxWorks 7 uses the same boot interface as the Linux kernel
710 * on Arm (64-bit only), PowerPC and RISC-V architectures.
711 */
712 switch (hdr->ih_arch) {
713 case IH_ARCH_ARM64:
714 case IH_ARCH_PPC:
715 case IH_ARCH_RISCV:
716 *is_linux = 1;
717 break;
718 default:
719 *is_linux = 0;
720 break;
721 }
722 } else {
723 *is_linux = 0;
724 }
725 }
726
727 break;
728 case IH_TYPE_RAMDISK:
729 address = *loadaddr;
730 break;
731 default:
732 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
733 goto out;
734 }
735
736 data = g_malloc(hdr->ih_size);
737
738 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
739 fprintf(stderr, "Error reading file\n");
740 goto out;
741 }
742
743 if (do_uncompress) {
744 uint8_t *compressed_data;
745 size_t max_bytes;
746 ssize_t bytes;
747
748 compressed_data = data;
749 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
750 data = g_malloc(max_bytes);
751
752 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
753 g_free(compressed_data);
754 if (bytes < 0) {
755 fprintf(stderr, "Unable to decompress gzipped image!\n");
756 goto out;
757 }
758 hdr->ih_size = bytes;
759 }
760
761 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
762
763 ret = hdr->ih_size;
764
765 out:
766 g_free(data);
767 close(fd);
768 return ret;
769 }
770
load_uimage(const char * filename,hwaddr * ep,hwaddr * loadaddr,int * is_linux,uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque)771 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
772 int *is_linux,
773 uint64_t (*translate_fn)(void *, uint64_t),
774 void *translate_opaque)
775 {
776 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
777 translate_fn, translate_opaque, NULL);
778 }
779
load_uimage_as(const char * filename,hwaddr * ep,hwaddr * loadaddr,int * is_linux,uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque,AddressSpace * as)780 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
781 int *is_linux,
782 uint64_t (*translate_fn)(void *, uint64_t),
783 void *translate_opaque, AddressSpace *as)
784 {
785 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
786 translate_fn, translate_opaque, as);
787 }
788
789 /* Load a ramdisk. */
load_ramdisk(const char * filename,hwaddr addr,uint64_t max_sz)790 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
791 {
792 return load_ramdisk_as(filename, addr, max_sz, NULL);
793 }
794
load_ramdisk_as(const char * filename,hwaddr addr,uint64_t max_sz,AddressSpace * as)795 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
796 AddressSpace *as)
797 {
798 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
799 NULL, NULL, as);
800 }
801
802 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
load_image_gzipped_buffer(const char * filename,uint64_t max_sz,uint8_t ** buffer)803 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
804 uint8_t **buffer)
805 {
806 uint8_t *compressed_data = NULL;
807 uint8_t *data = NULL;
808 gsize len;
809 ssize_t bytes;
810 int ret = -1;
811
812 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
813 NULL)) {
814 goto out;
815 }
816
817 /* Is it a gzip-compressed file? */
818 if (len < 2 ||
819 compressed_data[0] != 0x1f ||
820 compressed_data[1] != 0x8b) {
821 goto out;
822 }
823
824 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
825 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
826 }
827
828 data = g_malloc(max_sz);
829 bytes = gunzip(data, max_sz, compressed_data, len);
830 if (bytes < 0) {
831 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
832 filename);
833 goto out;
834 }
835
836 /* trim to actual size and return to caller */
837 *buffer = g_realloc(data, bytes);
838 ret = bytes;
839 /* ownership has been transferred to caller */
840 data = NULL;
841
842 out:
843 g_free(compressed_data);
844 g_free(data);
845 return ret;
846 }
847
848
849 /* The PE/COFF MS-DOS stub magic number */
850 #define EFI_PE_MSDOS_MAGIC "MZ"
851
852 /*
853 * The Linux header magic number for a EFI PE/COFF
854 * image targeting an unspecified architecture.
855 */
856 #define EFI_PE_LINUX_MAGIC "\xcd\x23\x82\x81"
857
858 /*
859 * Bootable Linux kernel images may be packaged as EFI zboot images, which are
860 * self-decompressing executables when loaded via EFI. The compressed payload
861 * can also be extracted from the image and decompressed by a non-EFI loader.
862 *
863 * The de facto specification for this format is at the following URL:
864 *
865 * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S
866 *
867 * This definition is based on Linux upstream commit 29636a5ce87beba.
868 */
869 struct linux_efi_zboot_header {
870 uint8_t msdos_magic[2]; /* PE/COFF 'MZ' magic number */
871 uint8_t reserved0[2];
872 uint8_t zimg[4]; /* "zimg" for Linux EFI zboot images */
873 uint32_t payload_offset; /* LE offset to compressed payload */
874 uint32_t payload_size; /* LE size of the compressed payload */
875 uint8_t reserved1[8];
876 char compression_type[32]; /* Compression type, NUL terminated */
877 uint8_t linux_magic[4]; /* Linux header magic */
878 uint32_t pe_header_offset; /* LE offset to the PE header */
879 };
880
881 /*
882 * Check whether *buffer points to a Linux EFI zboot image in memory.
883 *
884 * If it does, attempt to decompress it to a new buffer, and free the old one.
885 * If any of this fails, return an error to the caller.
886 *
887 * If the image is not a Linux EFI zboot image, do nothing and return success.
888 */
unpack_efi_zboot_image(uint8_t ** buffer,int * size)889 ssize_t unpack_efi_zboot_image(uint8_t **buffer, int *size)
890 {
891 const struct linux_efi_zboot_header *header;
892 uint8_t *data = NULL;
893 int ploff, plsize;
894 ssize_t bytes;
895
896 /* ignore if this is too small to be a EFI zboot image */
897 if (*size < sizeof(*header)) {
898 return 0;
899 }
900
901 header = (struct linux_efi_zboot_header *)*buffer;
902
903 /* ignore if this is not a Linux EFI zboot image */
904 if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 ||
905 memcmp(&header->zimg, "zimg", 4) != 0 ||
906 memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) {
907 return 0;
908 }
909
910 if (strcmp(header->compression_type, "gzip") != 0) {
911 fprintf(stderr,
912 "unable to handle EFI zboot image with \"%.*s\" compression\n",
913 (int)sizeof(header->compression_type) - 1,
914 header->compression_type);
915 return -1;
916 }
917
918 ploff = ldl_le_p(&header->payload_offset);
919 plsize = ldl_le_p(&header->payload_size);
920
921 if (ploff < 0 || plsize < 0 || ploff + plsize > *size) {
922 fprintf(stderr, "unable to handle corrupt EFI zboot image\n");
923 return -1;
924 }
925
926 data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES);
927 bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize);
928 if (bytes < 0) {
929 fprintf(stderr, "failed to decompress EFI zboot image\n");
930 g_free(data);
931 return -1;
932 }
933
934 g_free(*buffer);
935 *buffer = g_realloc(data, bytes);
936 *size = bytes;
937 return bytes;
938 }
939
940 /*
941 * Functions for reboot-persistent memory regions.
942 * - used for vga bios and option roms.
943 * - also linux kernel (-kernel / -initrd).
944 */
945
946 typedef struct Rom Rom;
947
948 struct Rom {
949 char *name;
950 char *path;
951
952 /* datasize is the amount of memory allocated in "data". If datasize is less
953 * than romsize, it means that the area from datasize to romsize is filled
954 * with zeros.
955 */
956 size_t romsize;
957 size_t datasize;
958
959 uint8_t *data;
960 MemoryRegion *mr;
961 AddressSpace *as;
962 int isrom;
963 char *fw_dir;
964 char *fw_file;
965 GMappedFile *mapped_file;
966
967 bool committed;
968
969 hwaddr addr;
970 QTAILQ_ENTRY(Rom) next;
971 };
972
973 static FWCfgState *fw_cfg;
974 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
975
976 /*
977 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
978 * rom_add_elf_program())
979 */
rom_free_data(Rom * rom)980 static void rom_free_data(Rom *rom)
981 {
982 if (rom->mapped_file) {
983 g_mapped_file_unref(rom->mapped_file);
984 rom->mapped_file = NULL;
985 } else {
986 g_free(rom->data);
987 }
988
989 rom->data = NULL;
990 }
991
rom_free(Rom * rom)992 static void rom_free(Rom *rom)
993 {
994 rom_free_data(rom);
995 g_free(rom->path);
996 g_free(rom->name);
997 g_free(rom->fw_dir);
998 g_free(rom->fw_file);
999 g_free(rom);
1000 }
1001
rom_order_compare(Rom * rom,Rom * item)1002 static inline bool rom_order_compare(Rom *rom, Rom *item)
1003 {
1004 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
1005 (rom->as == item->as && rom->addr >= item->addr);
1006 }
1007
rom_insert(Rom * rom)1008 static void rom_insert(Rom *rom)
1009 {
1010 Rom *item;
1011
1012 if (roms_loaded) {
1013 hw_error ("ROM images must be loaded at startup\n");
1014 }
1015
1016 /* The user didn't specify an address space, this is the default */
1017 if (!rom->as) {
1018 rom->as = &address_space_memory;
1019 }
1020
1021 rom->committed = false;
1022
1023 /* List is ordered by load address in the same address space */
1024 QTAILQ_FOREACH(item, &roms, next) {
1025 if (rom_order_compare(rom, item)) {
1026 continue;
1027 }
1028 QTAILQ_INSERT_BEFORE(item, rom, next);
1029 return;
1030 }
1031 QTAILQ_INSERT_TAIL(&roms, rom, next);
1032 }
1033
fw_cfg_resized(const char * id,uint64_t length,void * host)1034 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
1035 {
1036 if (fw_cfg) {
1037 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
1038 }
1039 }
1040
rom_set_mr(Rom * rom,Object * owner,const char * name,bool ro)1041 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
1042 {
1043 void *data;
1044
1045 rom->mr = g_malloc(sizeof(*rom->mr));
1046 memory_region_init_resizeable_ram(rom->mr, owner, name,
1047 rom->datasize, rom->romsize,
1048 fw_cfg_resized,
1049 &error_fatal);
1050 memory_region_set_readonly(rom->mr, ro);
1051 vmstate_register_ram_global(rom->mr);
1052
1053 data = memory_region_get_ram_ptr(rom->mr);
1054 memcpy(data, rom->data, rom->datasize);
1055
1056 return data;
1057 }
1058
rom_add_file(const char * file,const char * fw_dir,hwaddr addr,int32_t bootindex,bool has_option_rom,MemoryRegion * mr,AddressSpace * as)1059 ssize_t rom_add_file(const char *file, const char *fw_dir,
1060 hwaddr addr, int32_t bootindex,
1061 bool has_option_rom, MemoryRegion *mr,
1062 AddressSpace *as)
1063 {
1064 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1065 Rom *rom;
1066 gsize size;
1067 g_autoptr(GError) gerr = NULL;
1068 char devpath[100];
1069
1070 if (as && mr) {
1071 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
1072 "not valid when loading a rom\n");
1073 /* We haven't allocated anything so we don't need any cleanup */
1074 return -1;
1075 }
1076
1077 rom = g_malloc0(sizeof(*rom));
1078 rom->name = g_strdup(file);
1079 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
1080 rom->as = as;
1081 if (rom->path == NULL) {
1082 rom->path = g_strdup(file);
1083 }
1084
1085 if (!g_file_get_contents(rom->path, (gchar **) &rom->data,
1086 &size, &gerr)) {
1087 fprintf(stderr, "rom: file %-20s: error %s\n",
1088 rom->name, gerr->message);
1089 goto err;
1090 }
1091
1092 if (fw_dir) {
1093 rom->fw_dir = g_strdup(fw_dir);
1094 rom->fw_file = g_strdup(file);
1095 }
1096 rom->addr = addr;
1097 rom->romsize = size;
1098 rom->datasize = rom->romsize;
1099 rom_insert(rom);
1100 if (rom->fw_file && fw_cfg) {
1101 const char *basename;
1102 char fw_file_name[FW_CFG_MAX_FILE_PATH];
1103 void *data;
1104
1105 basename = strrchr(rom->fw_file, '/');
1106 if (basename) {
1107 basename++;
1108 } else {
1109 basename = rom->fw_file;
1110 }
1111 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1112 basename);
1113 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1114
1115 if ((!has_option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1116 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1117 } else {
1118 data = rom->data;
1119 }
1120
1121 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1122 } else {
1123 if (mr) {
1124 rom->mr = mr;
1125 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1126 } else {
1127 snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr);
1128 }
1129 }
1130
1131 add_boot_device_path(bootindex, NULL, devpath);
1132 return 0;
1133
1134 err:
1135 rom_free(rom);
1136 return -1;
1137 }
1138
rom_add_blob(const char * name,const void * blob,size_t len,size_t max_len,hwaddr addr,const char * fw_file_name,FWCfgCallback fw_callback,void * callback_opaque,AddressSpace * as,bool read_only)1139 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1140 size_t max_len, hwaddr addr, const char *fw_file_name,
1141 FWCfgCallback fw_callback, void *callback_opaque,
1142 AddressSpace *as, bool read_only)
1143 {
1144 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1145 Rom *rom;
1146 MemoryRegion *mr = NULL;
1147
1148 rom = g_malloc0(sizeof(*rom));
1149 rom->name = g_strdup(name);
1150 rom->as = as;
1151 rom->addr = addr;
1152 rom->romsize = max_len ? max_len : len;
1153 rom->datasize = len;
1154 g_assert(rom->romsize >= rom->datasize);
1155 rom->data = g_malloc0(rom->datasize);
1156 memcpy(rom->data, blob, len);
1157 rom_insert(rom);
1158 if (fw_file_name && fw_cfg) {
1159 char devpath[100];
1160 void *data;
1161
1162 if (read_only) {
1163 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1164 } else {
1165 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1166 }
1167
1168 if (mc->rom_file_has_mr) {
1169 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1170 mr = rom->mr;
1171 } else {
1172 data = rom->data;
1173 }
1174
1175 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1176 fw_callback, NULL, callback_opaque,
1177 data, rom->datasize, read_only);
1178 }
1179 return mr;
1180 }
1181
1182 /* This function is specific for elf program because we don't need to allocate
1183 * all the rom. We just allocate the first part and the rest is just zeros. This
1184 * is why romsize and datasize are different. Also, this function takes its own
1185 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1186 */
rom_add_elf_program(const char * name,GMappedFile * mapped_file,void * data,size_t datasize,size_t romsize,hwaddr addr,AddressSpace * as)1187 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1188 size_t datasize, size_t romsize, hwaddr addr,
1189 AddressSpace *as)
1190 {
1191 Rom *rom;
1192
1193 rom = g_malloc0(sizeof(*rom));
1194 rom->name = g_strdup(name);
1195 rom->addr = addr;
1196 rom->datasize = datasize;
1197 rom->romsize = romsize;
1198 rom->data = data;
1199 rom->as = as;
1200
1201 if (mapped_file && data) {
1202 g_mapped_file_ref(mapped_file);
1203 rom->mapped_file = mapped_file;
1204 }
1205
1206 rom_insert(rom);
1207 return 0;
1208 }
1209
rom_add_vga(const char * file)1210 ssize_t rom_add_vga(const char *file)
1211 {
1212 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1213 }
1214
rom_add_option(const char * file,int32_t bootindex)1215 ssize_t rom_add_option(const char *file, int32_t bootindex)
1216 {
1217 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1218 }
1219
rom_reset(void * unused)1220 static void rom_reset(void *unused)
1221 {
1222 Rom *rom;
1223
1224 QTAILQ_FOREACH(rom, &roms, next) {
1225 if (rom->fw_file) {
1226 continue;
1227 }
1228 /*
1229 * We don't need to fill in the RAM with ROM data because we'll fill
1230 * the data in during the next incoming migration in all cases. Note
1231 * that some of those RAMs can actually be modified by the guest.
1232 */
1233 if (runstate_check(RUN_STATE_INMIGRATE)) {
1234 if (rom->data && rom->isrom) {
1235 /*
1236 * Free it so that a rom_reset after migration doesn't
1237 * overwrite a potentially modified 'rom'.
1238 */
1239 rom_free_data(rom);
1240 }
1241 continue;
1242 }
1243
1244 if (rom->data == NULL) {
1245 continue;
1246 }
1247 if (rom->mr) {
1248 void *host = memory_region_get_ram_ptr(rom->mr);
1249 memcpy(host, rom->data, rom->datasize);
1250 memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1251 } else {
1252 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1253 rom->data, rom->datasize);
1254 address_space_set(rom->as, rom->addr + rom->datasize, 0,
1255 rom->romsize - rom->datasize,
1256 MEMTXATTRS_UNSPECIFIED);
1257 }
1258 if (rom->isrom) {
1259 /* rom needs to be written only once */
1260 rom_free_data(rom);
1261 }
1262 /*
1263 * The rom loader is really on the same level as firmware in the guest
1264 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1265 * that the instruction cache for that new region is clear, so that the
1266 * CPU definitely fetches its instructions from the just written data.
1267 */
1268 cpu_flush_icache_range(rom->addr, rom->datasize);
1269
1270 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1271 }
1272 }
1273
1274 /* Return true if two consecutive ROMs in the ROM list overlap */
roms_overlap(Rom * last_rom,Rom * this_rom)1275 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1276 {
1277 if (!last_rom) {
1278 return false;
1279 }
1280 return last_rom->as == this_rom->as &&
1281 last_rom->addr + last_rom->romsize > this_rom->addr;
1282 }
1283
rom_as_name(Rom * rom)1284 static const char *rom_as_name(Rom *rom)
1285 {
1286 const char *name = rom->as ? rom->as->name : NULL;
1287 return name ?: "anonymous";
1288 }
1289
rom_print_overlap_error_header(void)1290 static void rom_print_overlap_error_header(void)
1291 {
1292 error_report("Some ROM regions are overlapping");
1293 error_printf(
1294 "These ROM regions might have been loaded by "
1295 "direct user request or by default.\n"
1296 "They could be BIOS/firmware images, a guest kernel, "
1297 "initrd or some other file loaded into guest memory.\n"
1298 "Check whether you intended to load all this guest code, and "
1299 "whether it has been built to load to the correct addresses.\n");
1300 }
1301
rom_print_one_overlap_error(Rom * last_rom,Rom * rom)1302 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1303 {
1304 error_printf(
1305 "\nThe following two regions overlap (in the %s address space):\n",
1306 rom_as_name(rom));
1307 error_printf(
1308 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1309 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1310 error_printf(
1311 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1312 rom->name, rom->addr, rom->addr + rom->romsize);
1313 }
1314
rom_check_and_register_reset(void)1315 int rom_check_and_register_reset(void)
1316 {
1317 MemoryRegionSection section;
1318 Rom *rom, *last_rom = NULL;
1319 bool found_overlap = false;
1320
1321 QTAILQ_FOREACH(rom, &roms, next) {
1322 if (rom->fw_file) {
1323 continue;
1324 }
1325 if (!rom->mr) {
1326 if (roms_overlap(last_rom, rom)) {
1327 if (!found_overlap) {
1328 found_overlap = true;
1329 rom_print_overlap_error_header();
1330 }
1331 rom_print_one_overlap_error(last_rom, rom);
1332 /* Keep going through the list so we report all overlaps */
1333 }
1334 last_rom = rom;
1335 }
1336 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1337 rom->addr, 1);
1338 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1339 memory_region_unref(section.mr);
1340 }
1341 if (found_overlap) {
1342 return -1;
1343 }
1344
1345 qemu_register_reset(rom_reset, NULL);
1346 roms_loaded = 1;
1347 return 0;
1348 }
1349
rom_set_fw(FWCfgState * f)1350 void rom_set_fw(FWCfgState *f)
1351 {
1352 fw_cfg = f;
1353 }
1354
rom_set_order_override(int order)1355 void rom_set_order_override(int order)
1356 {
1357 if (!fw_cfg)
1358 return;
1359 fw_cfg_set_order_override(fw_cfg, order);
1360 }
1361
rom_reset_order_override(void)1362 void rom_reset_order_override(void)
1363 {
1364 if (!fw_cfg)
1365 return;
1366 fw_cfg_reset_order_override(fw_cfg);
1367 }
1368
rom_transaction_begin(void)1369 void rom_transaction_begin(void)
1370 {
1371 Rom *rom;
1372
1373 /* Ignore ROMs added without the transaction API */
1374 QTAILQ_FOREACH(rom, &roms, next) {
1375 rom->committed = true;
1376 }
1377 }
1378
rom_transaction_end(bool commit)1379 void rom_transaction_end(bool commit)
1380 {
1381 Rom *rom;
1382 Rom *tmp;
1383
1384 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1385 if (rom->committed) {
1386 continue;
1387 }
1388 if (commit) {
1389 rom->committed = true;
1390 } else {
1391 QTAILQ_REMOVE(&roms, rom, next);
1392 rom_free(rom);
1393 }
1394 }
1395 }
1396
find_rom(hwaddr addr,size_t size)1397 static Rom *find_rom(hwaddr addr, size_t size)
1398 {
1399 Rom *rom;
1400
1401 QTAILQ_FOREACH(rom, &roms, next) {
1402 if (rom->fw_file) {
1403 continue;
1404 }
1405 if (rom->mr) {
1406 continue;
1407 }
1408 if (rom->addr > addr) {
1409 continue;
1410 }
1411 if (rom->addr + rom->romsize < addr + size) {
1412 continue;
1413 }
1414 return rom;
1415 }
1416 return NULL;
1417 }
1418
1419 typedef struct RomSec {
1420 hwaddr base;
1421 int se; /* start/end flag */
1422 } RomSec;
1423
1424
1425 /*
1426 * Sort into address order. We break ties between rom-startpoints
1427 * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1428 * transition before the 1->0 transition. Either way round would
1429 * work, but this way saves a little work later by avoiding
1430 * dealing with "gaps" of 0 length.
1431 */
sort_secs(gconstpointer a,gconstpointer b)1432 static gint sort_secs(gconstpointer a, gconstpointer b)
1433 {
1434 RomSec *ra = (RomSec *) a;
1435 RomSec *rb = (RomSec *) b;
1436
1437 if (ra->base == rb->base) {
1438 return ra->se - rb->se;
1439 }
1440 return ra->base > rb->base ? 1 : -1;
1441 }
1442
add_romsec_to_list(GList * secs,hwaddr base,int se)1443 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1444 {
1445 RomSec *cand = g_new(RomSec, 1);
1446 cand->base = base;
1447 cand->se = se;
1448 return g_list_prepend(secs, cand);
1449 }
1450
rom_find_largest_gap_between(hwaddr base,size_t size)1451 RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1452 {
1453 Rom *rom;
1454 RomSec *cand;
1455 RomGap res = {0, 0};
1456 hwaddr gapstart = base;
1457 GList *it, *secs = NULL;
1458 int count = 0;
1459
1460 QTAILQ_FOREACH(rom, &roms, next) {
1461 /* Ignore blobs being loaded to special places */
1462 if (rom->mr || rom->fw_file) {
1463 continue;
1464 }
1465 /* ignore anything finishing below base */
1466 if (rom->addr + rom->romsize <= base) {
1467 continue;
1468 }
1469 /* ignore anything starting above the region */
1470 if (rom->addr >= base + size) {
1471 continue;
1472 }
1473
1474 /* Save the start and end of each relevant ROM */
1475 secs = add_romsec_to_list(secs, rom->addr, 1);
1476
1477 if (rom->addr + rom->romsize < base + size) {
1478 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1479 }
1480 }
1481
1482 /* sentinel */
1483 secs = add_romsec_to_list(secs, base + size, 1);
1484
1485 secs = g_list_sort(secs, sort_secs);
1486
1487 for (it = g_list_first(secs); it; it = g_list_next(it)) {
1488 cand = (RomSec *) it->data;
1489 if (count == 0 && count + cand->se == 1) {
1490 size_t gap = cand->base - gapstart;
1491 if (gap > res.size) {
1492 res.base = gapstart;
1493 res.size = gap;
1494 }
1495 } else if (count == 1 && count + cand->se == 0) {
1496 gapstart = cand->base;
1497 }
1498 count += cand->se;
1499 }
1500
1501 g_list_free_full(secs, g_free);
1502 return res;
1503 }
1504
1505 /*
1506 * Copies memory from registered ROMs to dest. Any memory that is contained in
1507 * a ROM between addr and addr + size is copied. Note that this can involve
1508 * multiple ROMs, which need not start at addr and need not end at addr + size.
1509 */
rom_copy(uint8_t * dest,hwaddr addr,size_t size)1510 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1511 {
1512 hwaddr end = addr + size;
1513 uint8_t *s, *d = dest;
1514 size_t l = 0;
1515 Rom *rom;
1516
1517 QTAILQ_FOREACH(rom, &roms, next) {
1518 if (rom->fw_file) {
1519 continue;
1520 }
1521 if (rom->mr) {
1522 continue;
1523 }
1524 if (rom->addr + rom->romsize < addr) {
1525 continue;
1526 }
1527 if (rom->addr > end || rom->addr < addr) {
1528 break;
1529 }
1530
1531 d = dest + (rom->addr - addr);
1532 s = rom->data;
1533 l = rom->datasize;
1534
1535 if ((d + l) > (dest + size)) {
1536 l = dest - d;
1537 }
1538
1539 if (l > 0) {
1540 memcpy(d, s, l);
1541 }
1542
1543 if (rom->romsize > rom->datasize) {
1544 /* If datasize is less than romsize, it means that we didn't
1545 * allocate all the ROM because the trailing data are only zeros.
1546 */
1547
1548 d += l;
1549 l = rom->romsize - rom->datasize;
1550
1551 if ((d + l) > (dest + size)) {
1552 /* Rom size doesn't fit in the destination area. Adjust to avoid
1553 * overflow.
1554 */
1555 l = dest - d;
1556 }
1557
1558 if (l > 0) {
1559 memset(d, 0x0, l);
1560 }
1561 }
1562 }
1563
1564 return (d + l) - dest;
1565 }
1566
rom_ptr(hwaddr addr,size_t size)1567 void *rom_ptr(hwaddr addr, size_t size)
1568 {
1569 Rom *rom;
1570
1571 rom = find_rom(addr, size);
1572 if (!rom || !rom->data)
1573 return NULL;
1574 return rom->data + (addr - rom->addr);
1575 }
1576
1577 typedef struct FindRomCBData {
1578 size_t size; /* Amount of data we want from ROM, in bytes */
1579 MemoryRegion *mr; /* MR at the unaliased guest addr */
1580 hwaddr xlat; /* Offset of addr within mr */
1581 void *rom; /* Output: rom data pointer, if found */
1582 } FindRomCBData;
1583
find_rom_cb(Int128 start,Int128 len,const MemoryRegion * mr,hwaddr offset_in_region,void * opaque)1584 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1585 hwaddr offset_in_region, void *opaque)
1586 {
1587 FindRomCBData *cbdata = opaque;
1588 hwaddr alias_addr;
1589
1590 if (mr != cbdata->mr) {
1591 return false;
1592 }
1593
1594 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1595 cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1596 if (!cbdata->rom) {
1597 return false;
1598 }
1599 /* Found a match, stop iterating */
1600 return true;
1601 }
1602
rom_ptr_for_as(AddressSpace * as,hwaddr addr,size_t size)1603 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1604 {
1605 /*
1606 * Find any ROM data for the given guest address range. If there
1607 * is a ROM blob then return a pointer to the host memory
1608 * corresponding to 'addr'; otherwise return NULL.
1609 *
1610 * We look not only for ROM blobs that were loaded directly to
1611 * addr, but also for ROM blobs that were loaded to aliases of
1612 * that memory at other addresses within the AddressSpace.
1613 *
1614 * Note that we do not check @as against the 'as' member in the
1615 * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1616 * AddressSpace which the rom blob should be written to, whereas
1617 * our @as argument is the AddressSpace which we are (effectively)
1618 * reading from, and the same underlying RAM will often be visible
1619 * in multiple AddressSpaces. (A common example is a ROM blob
1620 * written to the 'system' address space but then read back via a
1621 * CPU's cpu->as pointer.) This does mean we might potentially
1622 * return a false-positive match if a ROM blob was loaded into an
1623 * AS which is entirely separate and distinct from the one we're
1624 * querying, but this issue exists also for rom_ptr() and hasn't
1625 * caused any problems in practice.
1626 */
1627 FlatView *fv;
1628 void *rom;
1629 hwaddr len_unused;
1630 FindRomCBData cbdata = {};
1631
1632 /* Easy case: there's data at the actual address */
1633 rom = rom_ptr(addr, size);
1634 if (rom) {
1635 return rom;
1636 }
1637
1638 RCU_READ_LOCK_GUARD();
1639
1640 fv = address_space_to_flatview(as);
1641 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1642 false, MEMTXATTRS_UNSPECIFIED);
1643 if (!cbdata.mr) {
1644 /* Nothing at this address, so there can't be any aliasing */
1645 return NULL;
1646 }
1647 cbdata.size = size;
1648 flatview_for_each_range(fv, find_rom_cb, &cbdata);
1649 return cbdata.rom;
1650 }
1651
qmp_x_query_roms(Error ** errp)1652 HumanReadableText *qmp_x_query_roms(Error **errp)
1653 {
1654 Rom *rom;
1655 g_autoptr(GString) buf = g_string_new("");
1656
1657 QTAILQ_FOREACH(rom, &roms, next) {
1658 if (rom->mr) {
1659 g_string_append_printf(buf, "%s"
1660 " size=0x%06zx name=\"%s\"\n",
1661 memory_region_name(rom->mr),
1662 rom->romsize,
1663 rom->name);
1664 } else if (!rom->fw_file) {
1665 g_string_append_printf(buf, "addr=" HWADDR_FMT_plx
1666 " size=0x%06zx mem=%s name=\"%s\"\n",
1667 rom->addr, rom->romsize,
1668 rom->isrom ? "rom" : "ram",
1669 rom->name);
1670 } else {
1671 g_string_append_printf(buf, "fw=%s/%s"
1672 " size=0x%06zx name=\"%s\"\n",
1673 rom->fw_dir,
1674 rom->fw_file,
1675 rom->romsize,
1676 rom->name);
1677 }
1678 }
1679
1680 return human_readable_text_from_str(buf);
1681 }
1682
1683 typedef enum HexRecord HexRecord;
1684 enum HexRecord {
1685 DATA_RECORD = 0,
1686 EOF_RECORD,
1687 EXT_SEG_ADDR_RECORD,
1688 START_SEG_ADDR_RECORD,
1689 EXT_LINEAR_ADDR_RECORD,
1690 START_LINEAR_ADDR_RECORD,
1691 };
1692
1693 /* Each record contains a 16-bit address which is combined with the upper 16
1694 * bits of the implicit "next address" to form a 32-bit address.
1695 */
1696 #define NEXT_ADDR_MASK 0xffff0000
1697
1698 #define DATA_FIELD_MAX_LEN 0xff
1699 #define LEN_EXCEPT_DATA 0x5
1700 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1701 * sizeof(checksum) */
1702 typedef struct {
1703 uint8_t byte_count;
1704 uint16_t address;
1705 uint8_t record_type;
1706 uint8_t data[DATA_FIELD_MAX_LEN];
1707 uint8_t checksum;
1708 } HexLine;
1709
1710 /* return 0 or -1 if error */
parse_record(HexLine * line,uint8_t * our_checksum,const uint8_t c,uint32_t * index,const bool in_process)1711 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1712 uint32_t *index, const bool in_process)
1713 {
1714 /* +-------+---------------+-------+---------------------+--------+
1715 * | byte | |record | | |
1716 * | count | address | type | data |checksum|
1717 * +-------+---------------+-------+---------------------+--------+
1718 * ^ ^ ^ ^ ^ ^
1719 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1720 */
1721 uint8_t value = 0;
1722 uint32_t idx = *index;
1723 /* ignore space */
1724 if (g_ascii_isspace(c)) {
1725 return true;
1726 }
1727 if (!g_ascii_isxdigit(c) || !in_process) {
1728 return false;
1729 }
1730 value = g_ascii_xdigit_value(c);
1731 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1732 if (idx < 2) {
1733 line->byte_count |= value;
1734 } else if (2 <= idx && idx < 6) {
1735 line->address <<= 4;
1736 line->address += g_ascii_xdigit_value(c);
1737 } else if (6 <= idx && idx < 8) {
1738 line->record_type |= value;
1739 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1740 line->data[(idx - 8) >> 1] |= value;
1741 } else if (8 + 2 * line->byte_count <= idx &&
1742 idx < 10 + 2 * line->byte_count) {
1743 line->checksum |= value;
1744 } else {
1745 return false;
1746 }
1747 *our_checksum += value;
1748 ++(*index);
1749 return true;
1750 }
1751
1752 typedef struct {
1753 const char *filename;
1754 HexLine line;
1755 uint8_t *bin_buf;
1756 hwaddr *start_addr;
1757 int total_size;
1758 uint32_t next_address_to_write;
1759 uint32_t current_address;
1760 uint32_t current_rom_index;
1761 uint32_t rom_start_address;
1762 AddressSpace *as;
1763 bool complete;
1764 } HexParser;
1765
1766 /* return size or -1 if error */
handle_record_type(HexParser * parser)1767 static int handle_record_type(HexParser *parser)
1768 {
1769 HexLine *line = &(parser->line);
1770 switch (line->record_type) {
1771 case DATA_RECORD:
1772 parser->current_address =
1773 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1774 /* verify this is a contiguous block of memory */
1775 if (parser->current_address != parser->next_address_to_write) {
1776 if (parser->current_rom_index != 0) {
1777 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1778 parser->current_rom_index,
1779 parser->rom_start_address, parser->as);
1780 }
1781 parser->rom_start_address = parser->current_address;
1782 parser->current_rom_index = 0;
1783 }
1784
1785 /* copy from line buffer to output bin_buf */
1786 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1787 line->byte_count);
1788 parser->current_rom_index += line->byte_count;
1789 parser->total_size += line->byte_count;
1790 /* save next address to write */
1791 parser->next_address_to_write =
1792 parser->current_address + line->byte_count;
1793 break;
1794
1795 case EOF_RECORD:
1796 if (parser->current_rom_index != 0) {
1797 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1798 parser->current_rom_index,
1799 parser->rom_start_address, parser->as);
1800 }
1801 parser->complete = true;
1802 return parser->total_size;
1803 case EXT_SEG_ADDR_RECORD:
1804 case EXT_LINEAR_ADDR_RECORD:
1805 if (line->byte_count != 2 && line->address != 0) {
1806 return -1;
1807 }
1808
1809 if (parser->current_rom_index != 0) {
1810 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1811 parser->current_rom_index,
1812 parser->rom_start_address, parser->as);
1813 }
1814
1815 /* save next address to write,
1816 * in case of non-contiguous block of memory */
1817 parser->next_address_to_write = (line->data[0] << 12) |
1818 (line->data[1] << 4);
1819 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1820 parser->next_address_to_write <<= 12;
1821 }
1822
1823 parser->rom_start_address = parser->next_address_to_write;
1824 parser->current_rom_index = 0;
1825 break;
1826
1827 case START_SEG_ADDR_RECORD:
1828 if (line->byte_count != 4 && line->address != 0) {
1829 return -1;
1830 }
1831
1832 /* x86 16-bit CS:IP segmented addressing */
1833 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1834 ((line->data[2] << 8) | line->data[3]);
1835 break;
1836
1837 case START_LINEAR_ADDR_RECORD:
1838 if (line->byte_count != 4 && line->address != 0) {
1839 return -1;
1840 }
1841
1842 *(parser->start_addr) = ldl_be_p(line->data);
1843 break;
1844
1845 default:
1846 return -1;
1847 }
1848
1849 return parser->total_size;
1850 }
1851
1852 /* return size or -1 if error */
parse_hex_blob(const char * filename,hwaddr * addr,uint8_t * hex_blob,size_t hex_blob_size,AddressSpace * as)1853 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1854 size_t hex_blob_size, AddressSpace *as)
1855 {
1856 bool in_process = false; /* avoid re-enter and
1857 * check whether record begin with ':' */
1858 uint8_t *end = hex_blob + hex_blob_size;
1859 uint8_t our_checksum = 0;
1860 uint32_t record_index = 0;
1861 HexParser parser = {
1862 .filename = filename,
1863 .bin_buf = g_malloc(hex_blob_size),
1864 .start_addr = addr,
1865 .as = as,
1866 .complete = false
1867 };
1868
1869 rom_transaction_begin();
1870
1871 for (; hex_blob < end && !parser.complete; ++hex_blob) {
1872 switch (*hex_blob) {
1873 case '\r':
1874 case '\n':
1875 if (!in_process) {
1876 break;
1877 }
1878
1879 in_process = false;
1880 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1881 record_index ||
1882 our_checksum != 0) {
1883 parser.total_size = -1;
1884 goto out;
1885 }
1886
1887 if (handle_record_type(&parser) == -1) {
1888 parser.total_size = -1;
1889 goto out;
1890 }
1891 break;
1892
1893 /* start of a new record. */
1894 case ':':
1895 memset(&parser.line, 0, sizeof(HexLine));
1896 in_process = true;
1897 record_index = 0;
1898 break;
1899
1900 /* decoding lines */
1901 default:
1902 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1903 &record_index, in_process)) {
1904 parser.total_size = -1;
1905 goto out;
1906 }
1907 break;
1908 }
1909 }
1910
1911 out:
1912 g_free(parser.bin_buf);
1913 rom_transaction_end(parser.total_size != -1);
1914 return parser.total_size;
1915 }
1916
1917 /* return size or -1 if error */
load_targphys_hex_as(const char * filename,hwaddr * entry,AddressSpace * as)1918 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry,
1919 AddressSpace *as)
1920 {
1921 gsize hex_blob_size;
1922 gchar *hex_blob;
1923 ssize_t total_size = 0;
1924
1925 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1926 return -1;
1927 }
1928
1929 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1930 hex_blob_size, as);
1931
1932 g_free(hex_blob);
1933 return total_size;
1934 }
1935