1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32
33 #include "internal.h"
34
35 /*
36 * New pipe buffers will be restricted to this size while the user is exceeding
37 * their pipe buffer quota. The general pipe use case needs at least two
38 * buffers: one for data yet to be read, and one for new data. If this is less
39 * than two, then a write to a non-empty pipe may block even if the pipe is not
40 * full. This can occur with GNU make jobserver or similar uses of pipes as
41 * semaphores: multiple processes may be waiting to write tokens back to the
42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43 *
44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46 * emptied.
47 */
48 #define PIPE_MIN_DEF_BUFFERS 2
49
50 /*
51 * The max size that a non-root user is allowed to grow the pipe. Can
52 * be set by root in /proc/sys/fs/pipe-max-size
53 */
54 static unsigned int pipe_max_size = 1048576;
55
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57 * matches default values.
58 */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62 /*
63 * We use head and tail indices that aren't masked off, except at the point of
64 * dereference, but rather they're allowed to wrap naturally. This means there
65 * isn't a dead spot in the buffer, but the ring has to be a power of two and
66 * <= 2^31.
67 * -- David Howells 2019-09-23.
68 *
69 * Reads with count = 0 should always return 0.
70 * -- Julian Bradfield 1999-06-07.
71 *
72 * FIFOs and Pipes now generate SIGIO for both readers and writers.
73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74 *
75 * pipe_read & write cleanup
76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77 */
78
79 #define cmp_int(l, r) ((l > r) - (l < r))
80
81 #ifdef CONFIG_PROVE_LOCKING
pipe_lock_cmp_fn(const struct lockdep_map * a,const struct lockdep_map * b)82 static int pipe_lock_cmp_fn(const struct lockdep_map *a,
83 const struct lockdep_map *b)
84 {
85 return cmp_int((unsigned long) a, (unsigned long) b);
86 }
87 #endif
88
pipe_lock(struct pipe_inode_info * pipe)89 void pipe_lock(struct pipe_inode_info *pipe)
90 {
91 if (pipe->files)
92 mutex_lock(&pipe->mutex);
93 }
94 EXPORT_SYMBOL(pipe_lock);
95
pipe_unlock(struct pipe_inode_info * pipe)96 void pipe_unlock(struct pipe_inode_info *pipe)
97 {
98 if (pipe->files)
99 mutex_unlock(&pipe->mutex);
100 }
101 EXPORT_SYMBOL(pipe_unlock);
102
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)103 void pipe_double_lock(struct pipe_inode_info *pipe1,
104 struct pipe_inode_info *pipe2)
105 {
106 BUG_ON(pipe1 == pipe2);
107
108 if (pipe1 > pipe2)
109 swap(pipe1, pipe2);
110
111 pipe_lock(pipe1);
112 pipe_lock(pipe2);
113 }
114
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)115 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
116 struct pipe_buffer *buf)
117 {
118 struct page *page = buf->page;
119
120 /*
121 * If nobody else uses this page, and we don't already have a
122 * temporary page, let's keep track of it as a one-deep
123 * allocation cache. (Otherwise just release our reference to it)
124 */
125 if (page_count(page) == 1 && !pipe->tmp_page)
126 pipe->tmp_page = page;
127 else
128 put_page(page);
129 }
130
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)131 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
132 struct pipe_buffer *buf)
133 {
134 struct page *page = buf->page;
135
136 if (page_count(page) != 1)
137 return false;
138 memcg_kmem_uncharge_page(page, 0);
139 __SetPageLocked(page);
140 return true;
141 }
142
143 /**
144 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
145 * @pipe: the pipe that the buffer belongs to
146 * @buf: the buffer to attempt to steal
147 *
148 * Description:
149 * This function attempts to steal the &struct page attached to
150 * @buf. If successful, this function returns 0 and returns with
151 * the page locked. The caller may then reuse the page for whatever
152 * he wishes; the typical use is insertion into a different file
153 * page cache.
154 */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)155 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
156 struct pipe_buffer *buf)
157 {
158 struct page *page = buf->page;
159
160 /*
161 * A reference of one is golden, that means that the owner of this
162 * page is the only one holding a reference to it. lock the page
163 * and return OK.
164 */
165 if (page_count(page) == 1) {
166 lock_page(page);
167 return true;
168 }
169 return false;
170 }
171 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
172
173 /**
174 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
175 * @pipe: the pipe that the buffer belongs to
176 * @buf: the buffer to get a reference to
177 *
178 * Description:
179 * This function grabs an extra reference to @buf. It's used in
180 * the tee() system call, when we duplicate the buffers in one
181 * pipe into another.
182 */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)183 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
184 {
185 return try_get_page(buf->page);
186 }
187 EXPORT_SYMBOL(generic_pipe_buf_get);
188
189 /**
190 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
191 * @pipe: the pipe that the buffer belongs to
192 * @buf: the buffer to put a reference to
193 *
194 * Description:
195 * This function releases a reference to @buf.
196 */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)197 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
198 struct pipe_buffer *buf)
199 {
200 put_page(buf->page);
201 }
202 EXPORT_SYMBOL(generic_pipe_buf_release);
203
204 static const struct pipe_buf_operations anon_pipe_buf_ops = {
205 .release = anon_pipe_buf_release,
206 .try_steal = anon_pipe_buf_try_steal,
207 .get = generic_pipe_buf_get,
208 };
209
210 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)211 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
212 {
213 unsigned int head = READ_ONCE(pipe->head);
214 unsigned int tail = READ_ONCE(pipe->tail);
215 unsigned int writers = READ_ONCE(pipe->writers);
216
217 return !pipe_empty(head, tail) || !writers;
218 }
219
pipe_update_tail(struct pipe_inode_info * pipe,struct pipe_buffer * buf,unsigned int tail)220 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
221 struct pipe_buffer *buf,
222 unsigned int tail)
223 {
224 pipe_buf_release(pipe, buf);
225
226 /*
227 * If the pipe has a watch_queue, we need additional protection
228 * by the spinlock because notifications get posted with only
229 * this spinlock, no mutex
230 */
231 if (pipe_has_watch_queue(pipe)) {
232 spin_lock_irq(&pipe->rd_wait.lock);
233 #ifdef CONFIG_WATCH_QUEUE
234 if (buf->flags & PIPE_BUF_FLAG_LOSS)
235 pipe->note_loss = true;
236 #endif
237 pipe->tail = ++tail;
238 spin_unlock_irq(&pipe->rd_wait.lock);
239 return tail;
240 }
241
242 /*
243 * Without a watch_queue, we can simply increment the tail
244 * without the spinlock - the mutex is enough.
245 */
246 pipe->tail = ++tail;
247 return tail;
248 }
249
250 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)251 pipe_read(struct kiocb *iocb, struct iov_iter *to)
252 {
253 size_t total_len = iov_iter_count(to);
254 struct file *filp = iocb->ki_filp;
255 struct pipe_inode_info *pipe = filp->private_data;
256 bool was_full, wake_next_reader = false;
257 ssize_t ret;
258
259 /* Null read succeeds. */
260 if (unlikely(total_len == 0))
261 return 0;
262
263 ret = 0;
264 mutex_lock(&pipe->mutex);
265
266 /*
267 * We only wake up writers if the pipe was full when we started
268 * reading in order to avoid unnecessary wakeups.
269 *
270 * But when we do wake up writers, we do so using a sync wakeup
271 * (WF_SYNC), because we want them to get going and generate more
272 * data for us.
273 */
274 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
275 for (;;) {
276 /* Read ->head with a barrier vs post_one_notification() */
277 unsigned int head = smp_load_acquire(&pipe->head);
278 unsigned int tail = pipe->tail;
279 unsigned int mask = pipe->ring_size - 1;
280
281 #ifdef CONFIG_WATCH_QUEUE
282 if (pipe->note_loss) {
283 struct watch_notification n;
284
285 if (total_len < 8) {
286 if (ret == 0)
287 ret = -ENOBUFS;
288 break;
289 }
290
291 n.type = WATCH_TYPE_META;
292 n.subtype = WATCH_META_LOSS_NOTIFICATION;
293 n.info = watch_sizeof(n);
294 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
295 if (ret == 0)
296 ret = -EFAULT;
297 break;
298 }
299 ret += sizeof(n);
300 total_len -= sizeof(n);
301 pipe->note_loss = false;
302 }
303 #endif
304
305 if (!pipe_empty(head, tail)) {
306 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
307 size_t chars = buf->len;
308 size_t written;
309 int error;
310
311 if (chars > total_len) {
312 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
313 if (ret == 0)
314 ret = -ENOBUFS;
315 break;
316 }
317 chars = total_len;
318 }
319
320 error = pipe_buf_confirm(pipe, buf);
321 if (error) {
322 if (!ret)
323 ret = error;
324 break;
325 }
326
327 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
328 if (unlikely(written < chars)) {
329 if (!ret)
330 ret = -EFAULT;
331 break;
332 }
333 ret += chars;
334 buf->offset += chars;
335 buf->len -= chars;
336
337 /* Was it a packet buffer? Clean up and exit */
338 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
339 total_len = chars;
340 buf->len = 0;
341 }
342
343 if (!buf->len)
344 tail = pipe_update_tail(pipe, buf, tail);
345 total_len -= chars;
346 if (!total_len)
347 break; /* common path: read succeeded */
348 if (!pipe_empty(head, tail)) /* More to do? */
349 continue;
350 }
351
352 if (!pipe->writers)
353 break;
354 if (ret)
355 break;
356 if ((filp->f_flags & O_NONBLOCK) ||
357 (iocb->ki_flags & IOCB_NOWAIT)) {
358 ret = -EAGAIN;
359 break;
360 }
361 mutex_unlock(&pipe->mutex);
362
363 /*
364 * We only get here if we didn't actually read anything.
365 *
366 * However, we could have seen (and removed) a zero-sized
367 * pipe buffer, and might have made space in the buffers
368 * that way.
369 *
370 * You can't make zero-sized pipe buffers by doing an empty
371 * write (not even in packet mode), but they can happen if
372 * the writer gets an EFAULT when trying to fill a buffer
373 * that already got allocated and inserted in the buffer
374 * array.
375 *
376 * So we still need to wake up any pending writers in the
377 * _very_ unlikely case that the pipe was full, but we got
378 * no data.
379 */
380 if (unlikely(was_full))
381 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
382 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
383
384 /*
385 * But because we didn't read anything, at this point we can
386 * just return directly with -ERESTARTSYS if we're interrupted,
387 * since we've done any required wakeups and there's no need
388 * to mark anything accessed. And we've dropped the lock.
389 */
390 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
391 return -ERESTARTSYS;
392
393 mutex_lock(&pipe->mutex);
394 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
395 wake_next_reader = true;
396 }
397 if (pipe_empty(pipe->head, pipe->tail))
398 wake_next_reader = false;
399 mutex_unlock(&pipe->mutex);
400
401 if (was_full)
402 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
403 if (wake_next_reader)
404 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
405 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
406 if (ret > 0)
407 file_accessed(filp);
408 return ret;
409 }
410
is_packetized(struct file * file)411 static inline int is_packetized(struct file *file)
412 {
413 return (file->f_flags & O_DIRECT) != 0;
414 }
415
416 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)417 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
418 {
419 unsigned int head = READ_ONCE(pipe->head);
420 unsigned int tail = READ_ONCE(pipe->tail);
421 unsigned int max_usage = READ_ONCE(pipe->max_usage);
422
423 return !pipe_full(head, tail, max_usage) ||
424 !READ_ONCE(pipe->readers);
425 }
426
427 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)428 pipe_write(struct kiocb *iocb, struct iov_iter *from)
429 {
430 struct file *filp = iocb->ki_filp;
431 struct pipe_inode_info *pipe = filp->private_data;
432 unsigned int head;
433 ssize_t ret = 0;
434 size_t total_len = iov_iter_count(from);
435 ssize_t chars;
436 bool was_empty = false;
437 bool wake_next_writer = false;
438
439 /*
440 * Reject writing to watch queue pipes before the point where we lock
441 * the pipe.
442 * Otherwise, lockdep would be unhappy if the caller already has another
443 * pipe locked.
444 * If we had to support locking a normal pipe and a notification pipe at
445 * the same time, we could set up lockdep annotations for that, but
446 * since we don't actually need that, it's simpler to just bail here.
447 */
448 if (pipe_has_watch_queue(pipe))
449 return -EXDEV;
450
451 /* Null write succeeds. */
452 if (unlikely(total_len == 0))
453 return 0;
454
455 mutex_lock(&pipe->mutex);
456
457 if (!pipe->readers) {
458 send_sig(SIGPIPE, current, 0);
459 ret = -EPIPE;
460 goto out;
461 }
462
463 /*
464 * If it wasn't empty we try to merge new data into
465 * the last buffer.
466 *
467 * That naturally merges small writes, but it also
468 * page-aligns the rest of the writes for large writes
469 * spanning multiple pages.
470 */
471 head = pipe->head;
472 was_empty = pipe_empty(head, pipe->tail);
473 chars = total_len & (PAGE_SIZE-1);
474 if (chars && !was_empty) {
475 unsigned int mask = pipe->ring_size - 1;
476 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
477 int offset = buf->offset + buf->len;
478
479 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
480 offset + chars <= PAGE_SIZE) {
481 ret = pipe_buf_confirm(pipe, buf);
482 if (ret)
483 goto out;
484
485 ret = copy_page_from_iter(buf->page, offset, chars, from);
486 if (unlikely(ret < chars)) {
487 ret = -EFAULT;
488 goto out;
489 }
490
491 buf->len += ret;
492 if (!iov_iter_count(from))
493 goto out;
494 }
495 }
496
497 for (;;) {
498 if (!pipe->readers) {
499 send_sig(SIGPIPE, current, 0);
500 if (!ret)
501 ret = -EPIPE;
502 break;
503 }
504
505 head = pipe->head;
506 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
507 unsigned int mask = pipe->ring_size - 1;
508 struct pipe_buffer *buf;
509 struct page *page = pipe->tmp_page;
510 int copied;
511
512 if (!page) {
513 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
514 if (unlikely(!page)) {
515 ret = ret ? : -ENOMEM;
516 break;
517 }
518 pipe->tmp_page = page;
519 }
520
521 /* Allocate a slot in the ring in advance and attach an
522 * empty buffer. If we fault or otherwise fail to use
523 * it, either the reader will consume it or it'll still
524 * be there for the next write.
525 */
526 pipe->head = head + 1;
527
528 /* Insert it into the buffer array */
529 buf = &pipe->bufs[head & mask];
530 buf->page = page;
531 buf->ops = &anon_pipe_buf_ops;
532 buf->offset = 0;
533 buf->len = 0;
534 if (is_packetized(filp))
535 buf->flags = PIPE_BUF_FLAG_PACKET;
536 else
537 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
538 pipe->tmp_page = NULL;
539
540 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
541 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
542 if (!ret)
543 ret = -EFAULT;
544 break;
545 }
546 ret += copied;
547 buf->len = copied;
548
549 if (!iov_iter_count(from))
550 break;
551 }
552
553 if (!pipe_full(head, pipe->tail, pipe->max_usage))
554 continue;
555
556 /* Wait for buffer space to become available. */
557 if ((filp->f_flags & O_NONBLOCK) ||
558 (iocb->ki_flags & IOCB_NOWAIT)) {
559 if (!ret)
560 ret = -EAGAIN;
561 break;
562 }
563 if (signal_pending(current)) {
564 if (!ret)
565 ret = -ERESTARTSYS;
566 break;
567 }
568
569 /*
570 * We're going to release the pipe lock and wait for more
571 * space. We wake up any readers if necessary, and then
572 * after waiting we need to re-check whether the pipe
573 * become empty while we dropped the lock.
574 */
575 mutex_unlock(&pipe->mutex);
576 if (was_empty)
577 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
578 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
579 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
580 mutex_lock(&pipe->mutex);
581 was_empty = pipe_empty(pipe->head, pipe->tail);
582 wake_next_writer = true;
583 }
584 out:
585 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
586 wake_next_writer = false;
587 mutex_unlock(&pipe->mutex);
588
589 /*
590 * If we do do a wakeup event, we do a 'sync' wakeup, because we
591 * want the reader to start processing things asap, rather than
592 * leave the data pending.
593 *
594 * This is particularly important for small writes, because of
595 * how (for example) the GNU make jobserver uses small writes to
596 * wake up pending jobs
597 *
598 * Epoll nonsensically wants a wakeup whether the pipe
599 * was already empty or not.
600 */
601 if (was_empty || pipe->poll_usage)
602 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
603 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
604 if (wake_next_writer)
605 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
606 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
607 int err = file_update_time(filp);
608 if (err)
609 ret = err;
610 sb_end_write(file_inode(filp)->i_sb);
611 }
612 return ret;
613 }
614
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)615 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
616 {
617 struct pipe_inode_info *pipe = filp->private_data;
618 unsigned int count, head, tail, mask;
619
620 switch (cmd) {
621 case FIONREAD:
622 mutex_lock(&pipe->mutex);
623 count = 0;
624 head = pipe->head;
625 tail = pipe->tail;
626 mask = pipe->ring_size - 1;
627
628 while (tail != head) {
629 count += pipe->bufs[tail & mask].len;
630 tail++;
631 }
632 mutex_unlock(&pipe->mutex);
633
634 return put_user(count, (int __user *)arg);
635
636 #ifdef CONFIG_WATCH_QUEUE
637 case IOC_WATCH_QUEUE_SET_SIZE: {
638 int ret;
639 mutex_lock(&pipe->mutex);
640 ret = watch_queue_set_size(pipe, arg);
641 mutex_unlock(&pipe->mutex);
642 return ret;
643 }
644
645 case IOC_WATCH_QUEUE_SET_FILTER:
646 return watch_queue_set_filter(
647 pipe, (struct watch_notification_filter __user *)arg);
648 #endif
649
650 default:
651 return -ENOIOCTLCMD;
652 }
653 }
654
655 /* No kernel lock held - fine */
656 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)657 pipe_poll(struct file *filp, poll_table *wait)
658 {
659 __poll_t mask;
660 struct pipe_inode_info *pipe = filp->private_data;
661 unsigned int head, tail;
662
663 /* Epoll has some historical nasty semantics, this enables them */
664 WRITE_ONCE(pipe->poll_usage, true);
665
666 /*
667 * Reading pipe state only -- no need for acquiring the semaphore.
668 *
669 * But because this is racy, the code has to add the
670 * entry to the poll table _first_ ..
671 */
672 if (filp->f_mode & FMODE_READ)
673 poll_wait(filp, &pipe->rd_wait, wait);
674 if (filp->f_mode & FMODE_WRITE)
675 poll_wait(filp, &pipe->wr_wait, wait);
676
677 /*
678 * .. and only then can you do the racy tests. That way,
679 * if something changes and you got it wrong, the poll
680 * table entry will wake you up and fix it.
681 */
682 head = READ_ONCE(pipe->head);
683 tail = READ_ONCE(pipe->tail);
684
685 mask = 0;
686 if (filp->f_mode & FMODE_READ) {
687 if (!pipe_empty(head, tail))
688 mask |= EPOLLIN | EPOLLRDNORM;
689 if (!pipe->writers && filp->f_pipe != pipe->w_counter)
690 mask |= EPOLLHUP;
691 }
692
693 if (filp->f_mode & FMODE_WRITE) {
694 if (!pipe_full(head, tail, pipe->max_usage))
695 mask |= EPOLLOUT | EPOLLWRNORM;
696 /*
697 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
698 * behave exactly like pipes for poll().
699 */
700 if (!pipe->readers)
701 mask |= EPOLLERR;
702 }
703
704 return mask;
705 }
706
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)707 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
708 {
709 int kill = 0;
710
711 spin_lock(&inode->i_lock);
712 if (!--pipe->files) {
713 inode->i_pipe = NULL;
714 kill = 1;
715 }
716 spin_unlock(&inode->i_lock);
717
718 if (kill)
719 free_pipe_info(pipe);
720 }
721
722 static int
pipe_release(struct inode * inode,struct file * file)723 pipe_release(struct inode *inode, struct file *file)
724 {
725 struct pipe_inode_info *pipe = file->private_data;
726
727 mutex_lock(&pipe->mutex);
728 if (file->f_mode & FMODE_READ)
729 pipe->readers--;
730 if (file->f_mode & FMODE_WRITE)
731 pipe->writers--;
732
733 /* Was that the last reader or writer, but not the other side? */
734 if (!pipe->readers != !pipe->writers) {
735 wake_up_interruptible_all(&pipe->rd_wait);
736 wake_up_interruptible_all(&pipe->wr_wait);
737 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
738 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
739 }
740 mutex_unlock(&pipe->mutex);
741
742 put_pipe_info(inode, pipe);
743 return 0;
744 }
745
746 static int
pipe_fasync(int fd,struct file * filp,int on)747 pipe_fasync(int fd, struct file *filp, int on)
748 {
749 struct pipe_inode_info *pipe = filp->private_data;
750 int retval = 0;
751
752 mutex_lock(&pipe->mutex);
753 if (filp->f_mode & FMODE_READ)
754 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
755 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
756 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
757 if (retval < 0 && (filp->f_mode & FMODE_READ))
758 /* this can happen only if on == T */
759 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
760 }
761 mutex_unlock(&pipe->mutex);
762 return retval;
763 }
764
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)765 unsigned long account_pipe_buffers(struct user_struct *user,
766 unsigned long old, unsigned long new)
767 {
768 return atomic_long_add_return(new - old, &user->pipe_bufs);
769 }
770
too_many_pipe_buffers_soft(unsigned long user_bufs)771 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
772 {
773 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
774
775 return soft_limit && user_bufs > soft_limit;
776 }
777
too_many_pipe_buffers_hard(unsigned long user_bufs)778 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
779 {
780 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
781
782 return hard_limit && user_bufs > hard_limit;
783 }
784
pipe_is_unprivileged_user(void)785 bool pipe_is_unprivileged_user(void)
786 {
787 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
788 }
789
alloc_pipe_info(void)790 struct pipe_inode_info *alloc_pipe_info(void)
791 {
792 struct pipe_inode_info *pipe;
793 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
794 struct user_struct *user = get_current_user();
795 unsigned long user_bufs;
796 unsigned int max_size = READ_ONCE(pipe_max_size);
797
798 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
799 if (pipe == NULL)
800 goto out_free_uid;
801
802 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
803 pipe_bufs = max_size >> PAGE_SHIFT;
804
805 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
806
807 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
808 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
809 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
810 }
811
812 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
813 goto out_revert_acct;
814
815 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
816 GFP_KERNEL_ACCOUNT);
817
818 if (pipe->bufs) {
819 init_waitqueue_head(&pipe->rd_wait);
820 init_waitqueue_head(&pipe->wr_wait);
821 pipe->r_counter = pipe->w_counter = 1;
822 pipe->max_usage = pipe_bufs;
823 pipe->ring_size = pipe_bufs;
824 pipe->nr_accounted = pipe_bufs;
825 pipe->user = user;
826 mutex_init(&pipe->mutex);
827 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL);
828 return pipe;
829 }
830
831 out_revert_acct:
832 (void) account_pipe_buffers(user, pipe_bufs, 0);
833 kfree(pipe);
834 out_free_uid:
835 free_uid(user);
836 return NULL;
837 }
838
free_pipe_info(struct pipe_inode_info * pipe)839 void free_pipe_info(struct pipe_inode_info *pipe)
840 {
841 unsigned int i;
842
843 #ifdef CONFIG_WATCH_QUEUE
844 if (pipe->watch_queue)
845 watch_queue_clear(pipe->watch_queue);
846 #endif
847
848 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
849 free_uid(pipe->user);
850 for (i = 0; i < pipe->ring_size; i++) {
851 struct pipe_buffer *buf = pipe->bufs + i;
852 if (buf->ops)
853 pipe_buf_release(pipe, buf);
854 }
855 #ifdef CONFIG_WATCH_QUEUE
856 if (pipe->watch_queue)
857 put_watch_queue(pipe->watch_queue);
858 #endif
859 if (pipe->tmp_page)
860 __free_page(pipe->tmp_page);
861 kfree(pipe->bufs);
862 kfree(pipe);
863 }
864
865 static struct vfsmount *pipe_mnt __ro_after_init;
866
867 /*
868 * pipefs_dname() is called from d_path().
869 */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)870 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
871 {
872 return dynamic_dname(buffer, buflen, "pipe:[%lu]",
873 d_inode(dentry)->i_ino);
874 }
875
876 static const struct dentry_operations pipefs_dentry_operations = {
877 .d_dname = pipefs_dname,
878 };
879
get_pipe_inode(void)880 static struct inode * get_pipe_inode(void)
881 {
882 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
883 struct pipe_inode_info *pipe;
884
885 if (!inode)
886 goto fail_inode;
887
888 inode->i_ino = get_next_ino();
889
890 pipe = alloc_pipe_info();
891 if (!pipe)
892 goto fail_iput;
893
894 inode->i_pipe = pipe;
895 pipe->files = 2;
896 pipe->readers = pipe->writers = 1;
897 inode->i_fop = &pipefifo_fops;
898
899 /*
900 * Mark the inode dirty from the very beginning,
901 * that way it will never be moved to the dirty
902 * list because "mark_inode_dirty()" will think
903 * that it already _is_ on the dirty list.
904 */
905 inode->i_state = I_DIRTY;
906 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
907 inode->i_uid = current_fsuid();
908 inode->i_gid = current_fsgid();
909 simple_inode_init_ts(inode);
910
911 return inode;
912
913 fail_iput:
914 iput(inode);
915
916 fail_inode:
917 return NULL;
918 }
919
create_pipe_files(struct file ** res,int flags)920 int create_pipe_files(struct file **res, int flags)
921 {
922 struct inode *inode = get_pipe_inode();
923 struct file *f;
924 int error;
925
926 if (!inode)
927 return -ENFILE;
928
929 if (flags & O_NOTIFICATION_PIPE) {
930 error = watch_queue_init(inode->i_pipe);
931 if (error) {
932 free_pipe_info(inode->i_pipe);
933 iput(inode);
934 return error;
935 }
936 }
937
938 f = alloc_file_pseudo(inode, pipe_mnt, "",
939 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
940 &pipefifo_fops);
941 if (IS_ERR(f)) {
942 free_pipe_info(inode->i_pipe);
943 iput(inode);
944 return PTR_ERR(f);
945 }
946
947 f->private_data = inode->i_pipe;
948 f->f_pipe = 0;
949
950 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
951 &pipefifo_fops);
952 if (IS_ERR(res[0])) {
953 put_pipe_info(inode, inode->i_pipe);
954 fput(f);
955 return PTR_ERR(res[0]);
956 }
957 res[0]->private_data = inode->i_pipe;
958 res[0]->f_pipe = 0;
959 res[1] = f;
960 stream_open(inode, res[0]);
961 stream_open(inode, res[1]);
962 return 0;
963 }
964
__do_pipe_flags(int * fd,struct file ** files,int flags)965 static int __do_pipe_flags(int *fd, struct file **files, int flags)
966 {
967 int error;
968 int fdw, fdr;
969
970 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
971 return -EINVAL;
972
973 error = create_pipe_files(files, flags);
974 if (error)
975 return error;
976
977 error = get_unused_fd_flags(flags);
978 if (error < 0)
979 goto err_read_pipe;
980 fdr = error;
981
982 error = get_unused_fd_flags(flags);
983 if (error < 0)
984 goto err_fdr;
985 fdw = error;
986
987 audit_fd_pair(fdr, fdw);
988 fd[0] = fdr;
989 fd[1] = fdw;
990 /* pipe groks IOCB_NOWAIT */
991 files[0]->f_mode |= FMODE_NOWAIT;
992 files[1]->f_mode |= FMODE_NOWAIT;
993 return 0;
994
995 err_fdr:
996 put_unused_fd(fdr);
997 err_read_pipe:
998 fput(files[0]);
999 fput(files[1]);
1000 return error;
1001 }
1002
do_pipe_flags(int * fd,int flags)1003 int do_pipe_flags(int *fd, int flags)
1004 {
1005 struct file *files[2];
1006 int error = __do_pipe_flags(fd, files, flags);
1007 if (!error) {
1008 fd_install(fd[0], files[0]);
1009 fd_install(fd[1], files[1]);
1010 }
1011 return error;
1012 }
1013
1014 /*
1015 * sys_pipe() is the normal C calling standard for creating
1016 * a pipe. It's not the way Unix traditionally does this, though.
1017 */
do_pipe2(int __user * fildes,int flags)1018 static int do_pipe2(int __user *fildes, int flags)
1019 {
1020 struct file *files[2];
1021 int fd[2];
1022 int error;
1023
1024 error = __do_pipe_flags(fd, files, flags);
1025 if (!error) {
1026 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1027 fput(files[0]);
1028 fput(files[1]);
1029 put_unused_fd(fd[0]);
1030 put_unused_fd(fd[1]);
1031 error = -EFAULT;
1032 } else {
1033 fd_install(fd[0], files[0]);
1034 fd_install(fd[1], files[1]);
1035 }
1036 }
1037 return error;
1038 }
1039
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1040 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1041 {
1042 return do_pipe2(fildes, flags);
1043 }
1044
SYSCALL_DEFINE1(pipe,int __user *,fildes)1045 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1046 {
1047 return do_pipe2(fildes, 0);
1048 }
1049
1050 /*
1051 * This is the stupid "wait for pipe to be readable or writable"
1052 * model.
1053 *
1054 * See pipe_read/write() for the proper kind of exclusive wait,
1055 * but that requires that we wake up any other readers/writers
1056 * if we then do not end up reading everything (ie the whole
1057 * "wake_next_reader/writer" logic in pipe_read/write()).
1058 */
pipe_wait_readable(struct pipe_inode_info * pipe)1059 void pipe_wait_readable(struct pipe_inode_info *pipe)
1060 {
1061 pipe_unlock(pipe);
1062 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1063 pipe_lock(pipe);
1064 }
1065
pipe_wait_writable(struct pipe_inode_info * pipe)1066 void pipe_wait_writable(struct pipe_inode_info *pipe)
1067 {
1068 pipe_unlock(pipe);
1069 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1070 pipe_lock(pipe);
1071 }
1072
1073 /*
1074 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1075 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1076 * race with the count check and waitqueue prep.
1077 *
1078 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1079 * then check the condition you're waiting for, and only then sleep. But
1080 * because of the pipe lock, we can check the condition before being on
1081 * the wait queue.
1082 *
1083 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1084 */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1085 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1086 {
1087 DEFINE_WAIT(rdwait);
1088 int cur = *cnt;
1089
1090 while (cur == *cnt) {
1091 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1092 pipe_unlock(pipe);
1093 schedule();
1094 finish_wait(&pipe->rd_wait, &rdwait);
1095 pipe_lock(pipe);
1096 if (signal_pending(current))
1097 break;
1098 }
1099 return cur == *cnt ? -ERESTARTSYS : 0;
1100 }
1101
wake_up_partner(struct pipe_inode_info * pipe)1102 static void wake_up_partner(struct pipe_inode_info *pipe)
1103 {
1104 wake_up_interruptible_all(&pipe->rd_wait);
1105 }
1106
fifo_open(struct inode * inode,struct file * filp)1107 static int fifo_open(struct inode *inode, struct file *filp)
1108 {
1109 struct pipe_inode_info *pipe;
1110 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1111 int ret;
1112
1113 filp->f_pipe = 0;
1114
1115 spin_lock(&inode->i_lock);
1116 if (inode->i_pipe) {
1117 pipe = inode->i_pipe;
1118 pipe->files++;
1119 spin_unlock(&inode->i_lock);
1120 } else {
1121 spin_unlock(&inode->i_lock);
1122 pipe = alloc_pipe_info();
1123 if (!pipe)
1124 return -ENOMEM;
1125 pipe->files = 1;
1126 spin_lock(&inode->i_lock);
1127 if (unlikely(inode->i_pipe)) {
1128 inode->i_pipe->files++;
1129 spin_unlock(&inode->i_lock);
1130 free_pipe_info(pipe);
1131 pipe = inode->i_pipe;
1132 } else {
1133 inode->i_pipe = pipe;
1134 spin_unlock(&inode->i_lock);
1135 }
1136 }
1137 filp->private_data = pipe;
1138 /* OK, we have a pipe and it's pinned down */
1139
1140 mutex_lock(&pipe->mutex);
1141
1142 /* We can only do regular read/write on fifos */
1143 stream_open(inode, filp);
1144
1145 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1146 case FMODE_READ:
1147 /*
1148 * O_RDONLY
1149 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1150 * opened, even when there is no process writing the FIFO.
1151 */
1152 pipe->r_counter++;
1153 if (pipe->readers++ == 0)
1154 wake_up_partner(pipe);
1155
1156 if (!is_pipe && !pipe->writers) {
1157 if ((filp->f_flags & O_NONBLOCK)) {
1158 /* suppress EPOLLHUP until we have
1159 * seen a writer */
1160 filp->f_pipe = pipe->w_counter;
1161 } else {
1162 if (wait_for_partner(pipe, &pipe->w_counter))
1163 goto err_rd;
1164 }
1165 }
1166 break;
1167
1168 case FMODE_WRITE:
1169 /*
1170 * O_WRONLY
1171 * POSIX.1 says that O_NONBLOCK means return -1 with
1172 * errno=ENXIO when there is no process reading the FIFO.
1173 */
1174 ret = -ENXIO;
1175 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1176 goto err;
1177
1178 pipe->w_counter++;
1179 if (!pipe->writers++)
1180 wake_up_partner(pipe);
1181
1182 if (!is_pipe && !pipe->readers) {
1183 if (wait_for_partner(pipe, &pipe->r_counter))
1184 goto err_wr;
1185 }
1186 break;
1187
1188 case FMODE_READ | FMODE_WRITE:
1189 /*
1190 * O_RDWR
1191 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1192 * This implementation will NEVER block on a O_RDWR open, since
1193 * the process can at least talk to itself.
1194 */
1195
1196 pipe->readers++;
1197 pipe->writers++;
1198 pipe->r_counter++;
1199 pipe->w_counter++;
1200 if (pipe->readers == 1 || pipe->writers == 1)
1201 wake_up_partner(pipe);
1202 break;
1203
1204 default:
1205 ret = -EINVAL;
1206 goto err;
1207 }
1208
1209 /* Ok! */
1210 mutex_unlock(&pipe->mutex);
1211 return 0;
1212
1213 err_rd:
1214 if (!--pipe->readers)
1215 wake_up_interruptible(&pipe->wr_wait);
1216 ret = -ERESTARTSYS;
1217 goto err;
1218
1219 err_wr:
1220 if (!--pipe->writers)
1221 wake_up_interruptible_all(&pipe->rd_wait);
1222 ret = -ERESTARTSYS;
1223 goto err;
1224
1225 err:
1226 mutex_unlock(&pipe->mutex);
1227
1228 put_pipe_info(inode, pipe);
1229 return ret;
1230 }
1231
1232 const struct file_operations pipefifo_fops = {
1233 .open = fifo_open,
1234 .read_iter = pipe_read,
1235 .write_iter = pipe_write,
1236 .poll = pipe_poll,
1237 .unlocked_ioctl = pipe_ioctl,
1238 .release = pipe_release,
1239 .fasync = pipe_fasync,
1240 .splice_write = iter_file_splice_write,
1241 };
1242
1243 /*
1244 * Currently we rely on the pipe array holding a power-of-2 number
1245 * of pages. Returns 0 on error.
1246 */
round_pipe_size(unsigned int size)1247 unsigned int round_pipe_size(unsigned int size)
1248 {
1249 if (size > (1U << 31))
1250 return 0;
1251
1252 /* Minimum pipe size, as required by POSIX */
1253 if (size < PAGE_SIZE)
1254 return PAGE_SIZE;
1255
1256 return roundup_pow_of_two(size);
1257 }
1258
1259 /*
1260 * Resize the pipe ring to a number of slots.
1261 *
1262 * Note the pipe can be reduced in capacity, but only if the current
1263 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1264 * returned instead.
1265 */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1266 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1267 {
1268 struct pipe_buffer *bufs;
1269 unsigned int head, tail, mask, n;
1270
1271 bufs = kcalloc(nr_slots, sizeof(*bufs),
1272 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1273 if (unlikely(!bufs))
1274 return -ENOMEM;
1275
1276 spin_lock_irq(&pipe->rd_wait.lock);
1277 mask = pipe->ring_size - 1;
1278 head = pipe->head;
1279 tail = pipe->tail;
1280
1281 n = pipe_occupancy(head, tail);
1282 if (nr_slots < n) {
1283 spin_unlock_irq(&pipe->rd_wait.lock);
1284 kfree(bufs);
1285 return -EBUSY;
1286 }
1287
1288 /*
1289 * The pipe array wraps around, so just start the new one at zero
1290 * and adjust the indices.
1291 */
1292 if (n > 0) {
1293 unsigned int h = head & mask;
1294 unsigned int t = tail & mask;
1295 if (h > t) {
1296 memcpy(bufs, pipe->bufs + t,
1297 n * sizeof(struct pipe_buffer));
1298 } else {
1299 unsigned int tsize = pipe->ring_size - t;
1300 if (h > 0)
1301 memcpy(bufs + tsize, pipe->bufs,
1302 h * sizeof(struct pipe_buffer));
1303 memcpy(bufs, pipe->bufs + t,
1304 tsize * sizeof(struct pipe_buffer));
1305 }
1306 }
1307
1308 head = n;
1309 tail = 0;
1310
1311 kfree(pipe->bufs);
1312 pipe->bufs = bufs;
1313 pipe->ring_size = nr_slots;
1314 if (pipe->max_usage > nr_slots)
1315 pipe->max_usage = nr_slots;
1316 pipe->tail = tail;
1317 pipe->head = head;
1318
1319 if (!pipe_has_watch_queue(pipe)) {
1320 pipe->max_usage = nr_slots;
1321 pipe->nr_accounted = nr_slots;
1322 }
1323
1324 spin_unlock_irq(&pipe->rd_wait.lock);
1325
1326 /* This might have made more room for writers */
1327 wake_up_interruptible(&pipe->wr_wait);
1328 return 0;
1329 }
1330
1331 /*
1332 * Allocate a new array of pipe buffers and copy the info over. Returns the
1333 * pipe size if successful, or return -ERROR on error.
1334 */
pipe_set_size(struct pipe_inode_info * pipe,unsigned int arg)1335 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1336 {
1337 unsigned long user_bufs;
1338 unsigned int nr_slots, size;
1339 long ret = 0;
1340
1341 if (pipe_has_watch_queue(pipe))
1342 return -EBUSY;
1343
1344 size = round_pipe_size(arg);
1345 nr_slots = size >> PAGE_SHIFT;
1346
1347 if (!nr_slots)
1348 return -EINVAL;
1349
1350 /*
1351 * If trying to increase the pipe capacity, check that an
1352 * unprivileged user is not trying to exceed various limits
1353 * (soft limit check here, hard limit check just below).
1354 * Decreasing the pipe capacity is always permitted, even
1355 * if the user is currently over a limit.
1356 */
1357 if (nr_slots > pipe->max_usage &&
1358 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1359 return -EPERM;
1360
1361 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1362
1363 if (nr_slots > pipe->max_usage &&
1364 (too_many_pipe_buffers_hard(user_bufs) ||
1365 too_many_pipe_buffers_soft(user_bufs)) &&
1366 pipe_is_unprivileged_user()) {
1367 ret = -EPERM;
1368 goto out_revert_acct;
1369 }
1370
1371 ret = pipe_resize_ring(pipe, nr_slots);
1372 if (ret < 0)
1373 goto out_revert_acct;
1374
1375 return pipe->max_usage * PAGE_SIZE;
1376
1377 out_revert_acct:
1378 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1379 return ret;
1380 }
1381
1382 /*
1383 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1384 * not enough to verify that this is a pipe.
1385 */
get_pipe_info(struct file * file,bool for_splice)1386 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1387 {
1388 struct pipe_inode_info *pipe = file->private_data;
1389
1390 if (file->f_op != &pipefifo_fops || !pipe)
1391 return NULL;
1392 if (for_splice && pipe_has_watch_queue(pipe))
1393 return NULL;
1394 return pipe;
1395 }
1396
pipe_fcntl(struct file * file,unsigned int cmd,unsigned int arg)1397 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1398 {
1399 struct pipe_inode_info *pipe;
1400 long ret;
1401
1402 pipe = get_pipe_info(file, false);
1403 if (!pipe)
1404 return -EBADF;
1405
1406 mutex_lock(&pipe->mutex);
1407
1408 switch (cmd) {
1409 case F_SETPIPE_SZ:
1410 ret = pipe_set_size(pipe, arg);
1411 break;
1412 case F_GETPIPE_SZ:
1413 ret = pipe->max_usage * PAGE_SIZE;
1414 break;
1415 default:
1416 ret = -EINVAL;
1417 break;
1418 }
1419
1420 mutex_unlock(&pipe->mutex);
1421 return ret;
1422 }
1423
1424 static const struct super_operations pipefs_ops = {
1425 .destroy_inode = free_inode_nonrcu,
1426 .statfs = simple_statfs,
1427 };
1428
1429 /*
1430 * pipefs should _never_ be mounted by userland - too much of security hassle,
1431 * no real gain from having the whole file system mounted. So we don't need
1432 * any operations on the root directory. However, we need a non-trivial
1433 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1434 */
1435
pipefs_init_fs_context(struct fs_context * fc)1436 static int pipefs_init_fs_context(struct fs_context *fc)
1437 {
1438 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1439 if (!ctx)
1440 return -ENOMEM;
1441 ctx->ops = &pipefs_ops;
1442 ctx->dops = &pipefs_dentry_operations;
1443 return 0;
1444 }
1445
1446 static struct file_system_type pipe_fs_type = {
1447 .name = "pipefs",
1448 .init_fs_context = pipefs_init_fs_context,
1449 .kill_sb = kill_anon_super,
1450 };
1451
1452 #ifdef CONFIG_SYSCTL
do_proc_dopipe_max_size_conv(unsigned long * lvalp,unsigned int * valp,int write,void * data)1453 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1454 unsigned int *valp,
1455 int write, void *data)
1456 {
1457 if (write) {
1458 unsigned int val;
1459
1460 val = round_pipe_size(*lvalp);
1461 if (val == 0)
1462 return -EINVAL;
1463
1464 *valp = val;
1465 } else {
1466 unsigned int val = *valp;
1467 *lvalp = (unsigned long) val;
1468 }
1469
1470 return 0;
1471 }
1472
proc_dopipe_max_size(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1473 static int proc_dopipe_max_size(const struct ctl_table *table, int write,
1474 void *buffer, size_t *lenp, loff_t *ppos)
1475 {
1476 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1477 do_proc_dopipe_max_size_conv, NULL);
1478 }
1479
1480 static struct ctl_table fs_pipe_sysctls[] = {
1481 {
1482 .procname = "pipe-max-size",
1483 .data = &pipe_max_size,
1484 .maxlen = sizeof(pipe_max_size),
1485 .mode = 0644,
1486 .proc_handler = proc_dopipe_max_size,
1487 },
1488 {
1489 .procname = "pipe-user-pages-hard",
1490 .data = &pipe_user_pages_hard,
1491 .maxlen = sizeof(pipe_user_pages_hard),
1492 .mode = 0644,
1493 .proc_handler = proc_doulongvec_minmax,
1494 },
1495 {
1496 .procname = "pipe-user-pages-soft",
1497 .data = &pipe_user_pages_soft,
1498 .maxlen = sizeof(pipe_user_pages_soft),
1499 .mode = 0644,
1500 .proc_handler = proc_doulongvec_minmax,
1501 },
1502 };
1503 #endif
1504
init_pipe_fs(void)1505 static int __init init_pipe_fs(void)
1506 {
1507 int err = register_filesystem(&pipe_fs_type);
1508
1509 if (!err) {
1510 pipe_mnt = kern_mount(&pipe_fs_type);
1511 if (IS_ERR(pipe_mnt)) {
1512 err = PTR_ERR(pipe_mnt);
1513 unregister_filesystem(&pipe_fs_type);
1514 }
1515 }
1516 #ifdef CONFIG_SYSCTL
1517 register_sysctl_init("fs", fs_pipe_sysctls);
1518 #endif
1519 return err;
1520 }
1521
1522 fs_initcall(init_pipe_fs);
1523