1 /*
2  *	BIRD -- Route Attribute Cache
3  *
4  *	(c) 1998--2000 Martin Mares <mj@ucw.cz>
5  *
6  *	Can be freely distributed and used under the terms of the GNU GPL.
7  */
8 
9 /**
10  * DOC: Route attribute cache
11  *
12  * Each route entry carries a set of route attributes. Several of them
13  * vary from route to route, but most attributes are usually common
14  * for a large number of routes. To conserve memory, we've decided to
15  * store only the varying ones directly in the &rte and hold the rest
16  * in a special structure called &rta which is shared among all the
17  * &rte's with these attributes.
18  *
19  * Each &rta contains all the static attributes of the route (i.e.,
20  * those which are always present) as structure members and a list of
21  * dynamic attributes represented by a linked list of &ea_list
22  * structures, each of them consisting of an array of &eattr's containing
23  * the individual attributes. An attribute can be specified more than once
24  * in the &ea_list chain and in such case the first occurrence overrides
25  * the others. This semantics is used especially when someone (for example
26  * a filter) wishes to alter values of several dynamic attributes, but
27  * it wants to preserve the original attribute lists maintained by
28  * another module.
29  *
30  * Each &eattr contains an attribute identifier (split to protocol ID and
31  * per-protocol attribute ID), protocol dependent flags, a type code (consisting
32  * of several bit fields describing attribute characteristics) and either an
33  * embedded 32-bit value or a pointer to a &adata structure holding attribute
34  * contents.
35  *
36  * There exist two variants of &rta's -- cached and un-cached ones. Un-cached
37  * &rta's can have arbitrarily complex structure of &ea_list's and they
38  * can be modified by any module in the route processing chain. Cached
39  * &rta's have their attribute lists normalized (that means at most one
40  * &ea_list is present and its values are sorted in order to speed up
41  * searching), they are stored in a hash table to make fast lookup possible
42  * and they are provided with a use count to allow sharing.
43  *
44  * Routing tables always contain only cached &rta's.
45  */
46 
47 #include "nest/bird.h"
48 #include "nest/route.h"
49 #include "nest/protocol.h"
50 #include "nest/iface.h"
51 #include "nest/cli.h"
52 #include "nest/attrs.h"
53 #include "lib/alloca.h"
54 #include "lib/hash.h"
55 #include "lib/idm.h"
56 #include "lib/resource.h"
57 #include "lib/string.h"
58 
59 #include <stddef.h>
60 
61 const adata null_adata;		/* adata of length 0 */
62 
63 const char * const rta_src_names[RTS_MAX] = {
64   [RTS_DUMMY]		= "",
65   [RTS_STATIC]		= "static",
66   [RTS_INHERIT]		= "inherit",
67   [RTS_DEVICE]		= "device",
68   [RTS_STATIC_DEVICE]	= "static-device",
69   [RTS_REDIRECT]	= "redirect",
70   [RTS_RIP]		= "RIP",
71   [RTS_OSPF]		= "OSPF",
72   [RTS_OSPF_IA]		= "OSPF-IA",
73   [RTS_OSPF_EXT1]	= "OSPF-E1",
74   [RTS_OSPF_EXT2]	= "OSPF-E2",
75   [RTS_BGP]		= "BGP",
76   [RTS_PIPE]		= "pipe",
77   [RTS_BABEL]		= "Babel",
78   [RTS_RPKI]		= "RPKI",
79 };
80 
81 const char * rta_dest_names[RTD_MAX] = {
82   [RTD_NONE]		= "",
83   [RTD_UNICAST]		= "unicast",
84   [RTD_BLACKHOLE]	= "blackhole",
85   [RTD_UNREACHABLE]	= "unreachable",
86   [RTD_PROHIBIT]	= "prohibited",
87 };
88 
89 pool *rta_pool;
90 
91 static slab *rta_slab_[4];
92 static slab *nexthop_slab_[4];
93 static slab *rte_src_slab;
94 
95 static struct idm src_ids;
96 #define SRC_ID_INIT_SIZE 4
97 
98 /* rte source hash */
99 
100 #define RSH_KEY(n)		n->proto, n->private_id
101 #define RSH_NEXT(n)		n->next
102 #define RSH_EQ(p1,n1,p2,n2)	p1 == p2 && n1 == n2
103 #define RSH_FN(p,n)		p->hash_key ^ u32_hash(n)
104 
105 #define RSH_REHASH		rte_src_rehash
106 #define RSH_PARAMS		/2, *2, 1, 1, 8, 20
107 #define RSH_INIT_ORDER		6
108 
109 static HASH(struct rte_src) src_hash;
110 
111 static void
rte_src_init(void)112 rte_src_init(void)
113 {
114   rte_src_slab = sl_new(rta_pool, sizeof(struct rte_src));
115 
116   idm_init(&src_ids, rta_pool, SRC_ID_INIT_SIZE);
117 
118   HASH_INIT(src_hash, rta_pool, RSH_INIT_ORDER);
119 }
120 
121 
HASH_DEFINE_REHASH_FN(RSH,struct rte_src)122 HASH_DEFINE_REHASH_FN(RSH, struct rte_src)
123 
124 struct rte_src *
125 rt_find_source(struct proto *p, u32 id)
126 {
127   return HASH_FIND(src_hash, RSH, p, id);
128 }
129 
130 struct rte_src *
rt_get_source(struct proto * p,u32 id)131 rt_get_source(struct proto *p, u32 id)
132 {
133   struct rte_src *src = rt_find_source(p, id);
134 
135   if (src)
136     return src;
137 
138   src = sl_allocz(rte_src_slab);
139   src->proto = p;
140   src->private_id = id;
141   src->global_id = idm_alloc(&src_ids);
142   src->uc = 0;
143 
144   HASH_INSERT2(src_hash, RSH, rta_pool, src);
145 
146   return src;
147 }
148 
149 void
rt_prune_sources(void)150 rt_prune_sources(void)
151 {
152   HASH_WALK_FILTER(src_hash, next, src, sp)
153   {
154     if (src->uc == 0)
155     {
156       HASH_DO_REMOVE(src_hash, RSH, sp);
157       idm_free(&src_ids, src->global_id);
158       sl_free(rte_src_slab, src);
159     }
160   }
161   HASH_WALK_FILTER_END;
162 
163   HASH_MAY_RESIZE_DOWN(src_hash, RSH, rta_pool);
164 }
165 
166 
167 /*
168  *	Multipath Next Hop
169  */
170 
171 static inline u32
nexthop_hash(struct nexthop * x)172 nexthop_hash(struct nexthop *x)
173 {
174   u32 h = 0;
175   for (; x; x = x->next)
176   {
177     h ^= ipa_hash(x->gw) ^ (h << 5) ^ (h >> 9);
178 
179     for (int i = 0; i < x->labels; i++)
180       h ^= x->label[i] ^ (h << 6) ^ (h >> 7);
181   }
182 
183   return h;
184 }
185 
186 int
nexthop__same(struct nexthop * x,struct nexthop * y)187 nexthop__same(struct nexthop *x, struct nexthop *y)
188 {
189   for (; x && y; x = x->next, y = y->next)
190   {
191     if (!ipa_equal(x->gw, y->gw) || (x->iface != y->iface) ||
192 	(x->flags != y->flags) || (x->weight != y->weight) ||
193 	(x->labels_orig != y->labels_orig) || (x->labels != y->labels))
194       return 0;
195 
196     for (int i = 0; i < x->labels; i++)
197       if (x->label[i] != y->label[i])
198 	return 0;
199   }
200 
201   return x == y;
202 }
203 
204 static int
nexthop_compare_node(const struct nexthop * x,const struct nexthop * y)205 nexthop_compare_node(const struct nexthop *x, const struct nexthop *y)
206 {
207   int r;
208 
209   if (!x)
210     return 1;
211 
212   if (!y)
213     return -1;
214 
215   /* Should we also compare flags ? */
216 
217   r = ((int) y->weight) - ((int) x->weight);
218   if (r)
219     return r;
220 
221   r = ipa_compare(x->gw, y->gw);
222   if (r)
223     return r;
224 
225   r = ((int) y->labels) - ((int) x->labels);
226   if (r)
227     return r;
228 
229   for (int i = 0; i < y->labels; i++)
230   {
231     r = ((int) y->label[i]) - ((int) x->label[i]);
232     if (r)
233       return r;
234   }
235 
236   return ((int) x->iface->index) - ((int) y->iface->index);
237 }
238 
239 static inline struct nexthop *
nexthop_copy_node(const struct nexthop * src,linpool * lp)240 nexthop_copy_node(const struct nexthop *src, linpool *lp)
241 {
242   struct nexthop *n = lp_alloc(lp, nexthop_size(src));
243 
244   memcpy(n, src, nexthop_size(src));
245   n->next = NULL;
246 
247   return n;
248 }
249 
250 /**
251  * nexthop_merge - merge nexthop lists
252  * @x: list 1
253  * @y: list 2
254  * @rx: reusability of list @x
255  * @ry: reusability of list @y
256  * @max: max number of nexthops
257  * @lp: linpool for allocating nexthops
258  *
259  * The nexthop_merge() function takes two nexthop lists @x and @y and merges them,
260  * eliminating possible duplicates. The input lists must be sorted and the
261  * result is sorted too. The number of nexthops in result is limited by @max.
262  * New nodes are allocated from linpool @lp.
263  *
264  * The arguments @rx and @ry specify whether corresponding input lists may be
265  * consumed by the function (i.e. their nodes reused in the resulting list), in
266  * that case the caller should not access these lists after that. To eliminate
267  * issues with deallocation of these lists, the caller should use some form of
268  * bulk deallocation (e.g. stack or linpool) to free these nodes when the
269  * resulting list is no longer needed. When reusability is not set, the
270  * corresponding lists are not modified nor linked from the resulting list.
271  */
272 struct nexthop *
nexthop_merge(struct nexthop * x,struct nexthop * y,int rx,int ry,int max,linpool * lp)273 nexthop_merge(struct nexthop *x, struct nexthop *y, int rx, int ry, int max, linpool *lp)
274 {
275   struct nexthop *root = NULL;
276   struct nexthop **n = &root;
277 
278   while ((x || y) && max--)
279   {
280     int cmp = nexthop_compare_node(x, y);
281 
282     if (cmp < 0)
283     {
284       ASSUME(x);
285       *n = rx ? x : nexthop_copy_node(x, lp);
286       x = x->next;
287     }
288     else if (cmp > 0)
289     {
290       ASSUME(y);
291       *n = ry ? y : nexthop_copy_node(y, lp);
292       y = y->next;
293     }
294     else
295     {
296       ASSUME(x && y);
297       *n = rx ? x : (ry ? y : nexthop_copy_node(x, lp));
298       x = x->next;
299       y = y->next;
300     }
301     n = &((*n)->next);
302   }
303   *n = NULL;
304 
305   return root;
306 }
307 
308 void
nexthop_insert(struct nexthop ** n,struct nexthop * x)309 nexthop_insert(struct nexthop **n, struct nexthop *x)
310 {
311   for (; *n; n = &((*n)->next))
312   {
313     int cmp = nexthop_compare_node(*n, x);
314 
315     if (cmp < 0)
316       continue;
317     else if (cmp > 0)
318       break;
319     else
320       return;
321   }
322 
323   x->next = *n;
324   *n = x;
325 }
326 
327 struct nexthop *
nexthop_sort(struct nexthop * x)328 nexthop_sort(struct nexthop *x)
329 {
330   struct nexthop *s = NULL;
331 
332   /* Simple insert-sort */
333   while (x)
334   {
335     struct nexthop *n = x;
336     x = n->next;
337     n->next = NULL;
338 
339     nexthop_insert(&s, n);
340   }
341 
342   return s;
343 }
344 
345 int
nexthop_is_sorted(struct nexthop * x)346 nexthop_is_sorted(struct nexthop *x)
347 {
348   for (; x && x->next; x = x->next)
349     if (nexthop_compare_node(x, x->next) >= 0)
350       return 0;
351 
352   return 1;
353 }
354 
355 static inline slab *
nexthop_slab(struct nexthop * nh)356 nexthop_slab(struct nexthop *nh)
357 {
358   return nexthop_slab_[MIN(nh->labels, 3)];
359 }
360 
361 static struct nexthop *
nexthop_copy(struct nexthop * o)362 nexthop_copy(struct nexthop *o)
363 {
364   struct nexthop *first = NULL;
365   struct nexthop **last = &first;
366 
367   for (; o; o = o->next)
368     {
369       struct nexthop *n = sl_allocz(nexthop_slab(o));
370       n->gw = o->gw;
371       n->iface = o->iface;
372       n->next = NULL;
373       n->flags = o->flags;
374       n->weight = o->weight;
375       n->labels_orig = o->labels_orig;
376       n->labels = o->labels;
377       for (int i=0; i<o->labels; i++)
378 	n->label[i] = o->label[i];
379 
380       *last = n;
381       last = &(n->next);
382     }
383 
384   return first;
385 }
386 
387 static void
nexthop_free(struct nexthop * o)388 nexthop_free(struct nexthop *o)
389 {
390   struct nexthop *n;
391 
392   while (o)
393     {
394       n = o->next;
395       sl_free(nexthop_slab(o), o);
396       o = n;
397     }
398 }
399 
400 
401 /*
402  *	Extended Attributes
403  */
404 
405 static inline eattr *
ea__find(ea_list * e,unsigned id)406 ea__find(ea_list *e, unsigned id)
407 {
408   eattr *a;
409   int l, r, m;
410 
411   while (e)
412     {
413       if (e->flags & EALF_BISECT)
414 	{
415 	  l = 0;
416 	  r = e->count - 1;
417 	  while (l <= r)
418 	    {
419 	      m = (l+r) / 2;
420 	      a = &e->attrs[m];
421 	      if (a->id == id)
422 		return a;
423 	      else if (a->id < id)
424 		l = m+1;
425 	      else
426 		r = m-1;
427 	    }
428 	}
429       else
430 	for(m=0; m<e->count; m++)
431 	  if (e->attrs[m].id == id)
432 	    return &e->attrs[m];
433       e = e->next;
434     }
435   return NULL;
436 }
437 
438 /**
439  * ea_find - find an extended attribute
440  * @e: attribute list to search in
441  * @id: attribute ID to search for
442  *
443  * Given an extended attribute list, ea_find() searches for a first
444  * occurrence of an attribute with specified ID, returning either a pointer
445  * to its &eattr structure or %NULL if no such attribute exists.
446  */
447 eattr *
ea_find(ea_list * e,unsigned id)448 ea_find(ea_list *e, unsigned id)
449 {
450   eattr *a = ea__find(e, id & EA_CODE_MASK);
451 
452   if (a && (a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF &&
453       !(id & EA_ALLOW_UNDEF))
454     return NULL;
455   return a;
456 }
457 
458 /**
459  * ea_walk - walk through extended attributes
460  * @s: walk state structure
461  * @id: start of attribute ID interval
462  * @max: length of attribute ID interval
463  *
464  * Given an extended attribute list, ea_walk() walks through the list looking
465  * for first occurrences of attributes with ID in specified interval from @id to
466  * (@id + @max - 1), returning pointers to found &eattr structures, storing its
467  * walk state in @s for subsequent calls.
468  *
469  * The function ea_walk() is supposed to be called in a loop, with initially
470  * zeroed walk state structure @s with filled the initial extended attribute
471  * list, returning one found attribute in each call or %NULL when no other
472  * attribute exists. The extended attribute list or the arguments should not be
473  * modified between calls. The maximum value of @max is 128.
474  */
475 eattr *
ea_walk(struct ea_walk_state * s,uint id,uint max)476 ea_walk(struct ea_walk_state *s, uint id, uint max)
477 {
478   ea_list *e = s->eattrs;
479   eattr *a = s->ea;
480   eattr *a_max;
481 
482   max = id + max;
483 
484   if (a)
485     goto step;
486 
487   for (; e; e = e->next)
488   {
489     if (e->flags & EALF_BISECT)
490     {
491       int l, r, m;
492 
493       l = 0;
494       r = e->count - 1;
495       while (l < r)
496       {
497 	m = (l+r) / 2;
498 	if (e->attrs[m].id < id)
499 	  l = m + 1;
500 	else
501 	  r = m;
502       }
503       a = e->attrs + l;
504     }
505     else
506       a = e->attrs;
507 
508   step:
509     a_max = e->attrs + e->count;
510     for (; a < a_max; a++)
511       if ((a->id >= id) && (a->id < max))
512       {
513 	int n = a->id - id;
514 
515 	if (BIT32_TEST(s->visited, n))
516 	  continue;
517 
518 	BIT32_SET(s->visited, n);
519 
520 	if ((a->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
521 	  continue;
522 
523 	s->eattrs = e;
524 	s->ea = a;
525 	return a;
526       }
527       else if (e->flags & EALF_BISECT)
528 	break;
529   }
530 
531   return NULL;
532 }
533 
534 /**
535  * ea_get_int - fetch an integer attribute
536  * @e: attribute list
537  * @id: attribute ID
538  * @def: default value
539  *
540  * This function is a shortcut for retrieving a value of an integer attribute
541  * by calling ea_find() to find the attribute, extracting its value or returning
542  * a provided default if no such attribute is present.
543  */
544 int
ea_get_int(ea_list * e,unsigned id,int def)545 ea_get_int(ea_list *e, unsigned id, int def)
546 {
547   eattr *a = ea_find(e, id);
548   if (!a)
549     return def;
550   return a->u.data;
551 }
552 
553 static inline void
ea_do_sort(ea_list * e)554 ea_do_sort(ea_list *e)
555 {
556   unsigned n = e->count;
557   eattr *a = e->attrs;
558   eattr *b = alloca(n * sizeof(eattr));
559   unsigned s, ss;
560 
561   /* We need to use a stable sorting algorithm, hence mergesort */
562   do
563     {
564       s = ss = 0;
565       while (s < n)
566 	{
567 	  eattr *p, *q, *lo, *hi;
568 	  p = b;
569 	  ss = s;
570 	  *p++ = a[s++];
571 	  while (s < n && p[-1].id <= a[s].id)
572 	    *p++ = a[s++];
573 	  if (s < n)
574 	    {
575 	      q = p;
576 	      *p++ = a[s++];
577 	      while (s < n && p[-1].id <= a[s].id)
578 		*p++ = a[s++];
579 	      lo = b;
580 	      hi = q;
581 	      s = ss;
582 	      while (lo < q && hi < p)
583 		if (lo->id <= hi->id)
584 		  a[s++] = *lo++;
585 		else
586 		  a[s++] = *hi++;
587 	      while (lo < q)
588 		a[s++] = *lo++;
589 	      while (hi < p)
590 		a[s++] = *hi++;
591 	    }
592 	}
593     }
594   while (ss);
595 }
596 
597 /**
598  * In place discard duplicates and undefs in sorted ea_list. We use stable sort
599  * for this reason.
600  **/
601 static inline void
ea_do_prune(ea_list * e)602 ea_do_prune(ea_list *e)
603 {
604   eattr *s, *d, *l, *s0;
605   int i = 0;
606 
607   s = d = e->attrs;	    /* Beginning of the list. @s is source, @d is destination. */
608   l = e->attrs + e->count;  /* End of the list */
609 
610   /* Walk from begin to end. */
611   while (s < l)
612     {
613       s0 = s++;
614       /* Find a consecutive block of the same attribute */
615       while (s < l && s->id == s[-1].id)
616 	s++;
617 
618       /* Now s0 is the most recent version, s[-1] the oldest one */
619       /* Drop undefs */
620       if ((s0->type & EAF_TYPE_MASK) == EAF_TYPE_UNDEF)
621 	continue;
622 
623       /* Copy the newest version to destination */
624       *d = *s0;
625 
626       /* Preserve info whether it originated locally */
627       d->type = (d->type & ~(EAF_ORIGINATED|EAF_FRESH)) | (s[-1].type & EAF_ORIGINATED);
628 
629       /* Next destination */
630       d++;
631       i++;
632     }
633 
634   e->count = i;
635 }
636 
637 /**
638  * ea_sort - sort an attribute list
639  * @e: list to be sorted
640  *
641  * This function takes a &ea_list chain and sorts the attributes
642  * within each of its entries.
643  *
644  * If an attribute occurs multiple times in a single &ea_list,
645  * ea_sort() leaves only the first (the only significant) occurrence.
646  */
647 void
ea_sort(ea_list * e)648 ea_sort(ea_list *e)
649 {
650   while (e)
651     {
652       if (!(e->flags & EALF_SORTED))
653 	{
654 	  ea_do_sort(e);
655 	  ea_do_prune(e);
656 	  e->flags |= EALF_SORTED;
657 	}
658       if (e->count > 5)
659 	e->flags |= EALF_BISECT;
660       e = e->next;
661     }
662 }
663 
664 /**
665  * ea_scan - estimate attribute list size
666  * @e: attribute list
667  *
668  * This function calculates an upper bound of the size of
669  * a given &ea_list after merging with ea_merge().
670  */
671 unsigned
ea_scan(ea_list * e)672 ea_scan(ea_list *e)
673 {
674   unsigned cnt = 0;
675 
676   while (e)
677     {
678       cnt += e->count;
679       e = e->next;
680     }
681   return sizeof(ea_list) + sizeof(eattr)*cnt;
682 }
683 
684 /**
685  * ea_merge - merge segments of an attribute list
686  * @e: attribute list
687  * @t: buffer to store the result to
688  *
689  * This function takes a possibly multi-segment attribute list
690  * and merges all of its segments to one.
691  *
692  * The primary use of this function is for &ea_list normalization:
693  * first call ea_scan() to determine how much memory will the result
694  * take, then allocate a buffer (usually using alloca()), merge the
695  * segments with ea_merge() and finally sort and prune the result
696  * by calling ea_sort().
697  */
698 void
ea_merge(ea_list * e,ea_list * t)699 ea_merge(ea_list *e, ea_list *t)
700 {
701   eattr *d = t->attrs;
702 
703   t->flags = 0;
704   t->count = 0;
705   t->next = NULL;
706   while (e)
707     {
708       memcpy(d, e->attrs, sizeof(eattr)*e->count);
709       t->count += e->count;
710       d += e->count;
711       e = e->next;
712     }
713 }
714 
715 /**
716  * ea_same - compare two &ea_list's
717  * @x: attribute list
718  * @y: attribute list
719  *
720  * ea_same() compares two normalized attribute lists @x and @y and returns
721  * 1 if they contain the same attributes, 0 otherwise.
722  */
723 int
ea_same(ea_list * x,ea_list * y)724 ea_same(ea_list *x, ea_list *y)
725 {
726   int c;
727 
728   if (!x || !y)
729     return x == y;
730   ASSERT(!x->next && !y->next);
731   if (x->count != y->count)
732     return 0;
733   for(c=0; c<x->count; c++)
734     {
735       eattr *a = &x->attrs[c];
736       eattr *b = &y->attrs[c];
737 
738       if (a->id != b->id ||
739 	  a->flags != b->flags ||
740 	  a->type != b->type ||
741 	  ((a->type & EAF_EMBEDDED) ? a->u.data != b->u.data : !adata_same(a->u.ptr, b->u.ptr)))
742 	return 0;
743     }
744   return 1;
745 }
746 
747 static inline ea_list *
ea_list_copy(ea_list * o)748 ea_list_copy(ea_list *o)
749 {
750   ea_list *n;
751   unsigned i, len;
752 
753   if (!o)
754     return NULL;
755   ASSERT(!o->next);
756   len = sizeof(ea_list) + sizeof(eattr) * o->count;
757   n = mb_alloc(rta_pool, len);
758   memcpy(n, o, len);
759   n->flags |= EALF_CACHED;
760   for(i=0; i<o->count; i++)
761     {
762       eattr *a = &n->attrs[i];
763       if (!(a->type & EAF_EMBEDDED))
764 	{
765 	  unsigned size = sizeof(struct adata) + a->u.ptr->length;
766 	  struct adata *d = mb_alloc(rta_pool, size);
767 	  memcpy(d, a->u.ptr, size);
768 	  a->u.ptr = d;
769 	}
770     }
771   return n;
772 }
773 
774 static inline void
ea_free(ea_list * o)775 ea_free(ea_list *o)
776 {
777   int i;
778 
779   if (o)
780     {
781       ASSERT(!o->next);
782       for(i=0; i<o->count; i++)
783 	{
784 	  eattr *a = &o->attrs[i];
785 	  if (!(a->type & EAF_EMBEDDED))
786 	    mb_free((void *) a->u.ptr);
787 	}
788       mb_free(o);
789     }
790 }
791 
792 static int
get_generic_attr(const eattr * a,byte ** buf,int buflen UNUSED)793 get_generic_attr(const eattr *a, byte **buf, int buflen UNUSED)
794 {
795   if (a->id == EA_GEN_IGP_METRIC)
796     {
797       *buf += bsprintf(*buf, "igp_metric");
798       return GA_NAME;
799     }
800 
801   return GA_UNKNOWN;
802 }
803 
804 void
ea_format_bitfield(const struct eattr * a,byte * buf,int bufsize,const char ** names,int min,int max)805 ea_format_bitfield(const struct eattr *a, byte *buf, int bufsize, const char **names, int min, int max)
806 {
807   byte *bound = buf + bufsize - 32;
808   u32 data = a->u.data;
809   int i;
810 
811   for (i = min; i < max; i++)
812     if ((data & (1u << i)) && names[i])
813     {
814       if (buf > bound)
815       {
816 	strcpy(buf, " ...");
817 	return;
818       }
819 
820       buf += bsprintf(buf, " %s", names[i]);
821       data &= ~(1u << i);
822     }
823 
824   if (data)
825     bsprintf(buf, " %08x", data);
826 
827   return;
828 }
829 
830 static inline void
opaque_format(const struct adata * ad,byte * buf,uint size)831 opaque_format(const struct adata *ad, byte *buf, uint size)
832 {
833   byte *bound = buf + size - 10;
834   uint i;
835 
836   for(i = 0; i < ad->length; i++)
837     {
838       if (buf > bound)
839 	{
840 	  strcpy(buf, " ...");
841 	  return;
842 	}
843       if (i)
844 	*buf++ = ' ';
845 
846       buf += bsprintf(buf, "%02x", ad->data[i]);
847     }
848 
849   *buf = 0;
850   return;
851 }
852 
853 static inline void
ea_show_int_set(struct cli * c,const struct adata * ad,int way,byte * pos,byte * buf,byte * end)854 ea_show_int_set(struct cli *c, const struct adata *ad, int way, byte *pos, byte *buf, byte *end)
855 {
856   int i = int_set_format(ad, way, 0, pos, end - pos);
857   cli_printf(c, -1012, "\t%s", buf);
858   while (i)
859     {
860       i = int_set_format(ad, way, i, buf, end - buf - 1);
861       cli_printf(c, -1012, "\t\t%s", buf);
862     }
863 }
864 
865 static inline void
ea_show_ec_set(struct cli * c,const struct adata * ad,byte * pos,byte * buf,byte * end)866 ea_show_ec_set(struct cli *c, const struct adata *ad, byte *pos, byte *buf, byte *end)
867 {
868   int i = ec_set_format(ad, 0, pos, end - pos);
869   cli_printf(c, -1012, "\t%s", buf);
870   while (i)
871     {
872       i = ec_set_format(ad, i, buf, end - buf - 1);
873       cli_printf(c, -1012, "\t\t%s", buf);
874     }
875 }
876 
877 static inline void
ea_show_lc_set(struct cli * c,const struct adata * ad,byte * pos,byte * buf,byte * end)878 ea_show_lc_set(struct cli *c, const struct adata *ad, byte *pos, byte *buf, byte *end)
879 {
880   int i = lc_set_format(ad, 0, pos, end - pos);
881   cli_printf(c, -1012, "\t%s", buf);
882   while (i)
883     {
884       i = lc_set_format(ad, i, buf, end - buf - 1);
885       cli_printf(c, -1012, "\t\t%s", buf);
886     }
887 }
888 
889 /**
890  * ea_show - print an &eattr to CLI
891  * @c: destination CLI
892  * @e: attribute to be printed
893  *
894  * This function takes an extended attribute represented by its &eattr
895  * structure and prints it to the CLI according to the type information.
896  *
897  * If the protocol defining the attribute provides its own
898  * get_attr() hook, it's consulted first.
899  */
900 void
ea_show(struct cli * c,const eattr * e)901 ea_show(struct cli *c, const eattr *e)
902 {
903   struct protocol *p;
904   int status = GA_UNKNOWN;
905   const struct adata *ad = (e->type & EAF_EMBEDDED) ? NULL : e->u.ptr;
906   byte buf[CLI_MSG_SIZE];
907   byte *pos = buf, *end = buf + sizeof(buf);
908 
909   if (EA_IS_CUSTOM(e->id))
910     {
911       const char *name = ea_custom_name(e->id);
912       if (name)
913         {
914 	  pos += bsprintf(pos, "%s", name);
915 	  status = GA_NAME;
916 	}
917       else
918 	pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
919     }
920   else if (p = class_to_protocol[EA_PROTO(e->id)])
921     {
922       pos += bsprintf(pos, "%s.", p->name);
923       if (p->get_attr)
924 	status = p->get_attr(e, pos, end - pos);
925       pos += strlen(pos);
926     }
927   else if (EA_PROTO(e->id))
928     pos += bsprintf(pos, "%02x.", EA_PROTO(e->id));
929   else
930     status = get_generic_attr(e, &pos, end - pos);
931 
932   if (status < GA_NAME)
933     pos += bsprintf(pos, "%02x", EA_ID(e->id));
934   if (status < GA_FULL)
935     {
936       *pos++ = ':';
937       *pos++ = ' ';
938       switch (e->type & EAF_TYPE_MASK)
939 	{
940 	case EAF_TYPE_INT:
941 	  bsprintf(pos, "%u", e->u.data);
942 	  break;
943 	case EAF_TYPE_OPAQUE:
944 	  opaque_format(ad, pos, end - pos);
945 	  break;
946 	case EAF_TYPE_IP_ADDRESS:
947 	  bsprintf(pos, "%I", *(ip_addr *) ad->data);
948 	  break;
949 	case EAF_TYPE_ROUTER_ID:
950 	  bsprintf(pos, "%R", e->u.data);
951 	  break;
952 	case EAF_TYPE_AS_PATH:
953 	  as_path_format(ad, pos, end - pos);
954 	  break;
955 	case EAF_TYPE_BITFIELD:
956 	  bsprintf(pos, "%08x", e->u.data);
957 	  break;
958 	case EAF_TYPE_INT_SET:
959 	  ea_show_int_set(c, ad, 1, pos, buf, end);
960 	  return;
961 	case EAF_TYPE_EC_SET:
962 	  ea_show_ec_set(c, ad, pos, buf, end);
963 	  return;
964 	case EAF_TYPE_LC_SET:
965 	  ea_show_lc_set(c, ad, pos, buf, end);
966 	  return;
967 	case EAF_TYPE_UNDEF:
968 	default:
969 	  bsprintf(pos, "<type %02x>", e->type);
970 	}
971     }
972   cli_printf(c, -1012, "\t%s", buf);
973 }
974 
975 /**
976  * ea_dump - dump an extended attribute
977  * @e: attribute to be dumped
978  *
979  * ea_dump() dumps contents of the extended attribute given to
980  * the debug output.
981  */
982 void
ea_dump(ea_list * e)983 ea_dump(ea_list *e)
984 {
985   int i;
986 
987   if (!e)
988     {
989       debug("NONE");
990       return;
991     }
992   while (e)
993     {
994       debug("[%c%c%c]",
995 	    (e->flags & EALF_SORTED) ? 'S' : 's',
996 	    (e->flags & EALF_BISECT) ? 'B' : 'b',
997 	    (e->flags & EALF_CACHED) ? 'C' : 'c');
998       for(i=0; i<e->count; i++)
999 	{
1000 	  eattr *a = &e->attrs[i];
1001 	  debug(" %02x:%02x.%02x", EA_PROTO(a->id), EA_ID(a->id), a->flags);
1002 	  debug("=%c", "?iO?I?P???S?????" [a->type & EAF_TYPE_MASK]);
1003 	  if (a->type & EAF_ORIGINATED)
1004 	    debug("o");
1005 	  if (a->type & EAF_EMBEDDED)
1006 	    debug(":%08x", a->u.data);
1007 	  else
1008 	    {
1009 	      int j, len = a->u.ptr->length;
1010 	      debug("[%d]:", len);
1011 	      for(j=0; j<len; j++)
1012 		debug("%02x", a->u.ptr->data[j]);
1013 	    }
1014 	}
1015       if (e = e->next)
1016 	debug(" | ");
1017     }
1018 }
1019 
1020 /**
1021  * ea_hash - calculate an &ea_list hash key
1022  * @e: attribute list
1023  *
1024  * ea_hash() takes an extended attribute list and calculated a hopefully
1025  * uniformly distributed hash value from its contents.
1026  */
1027 inline uint
ea_hash(ea_list * e)1028 ea_hash(ea_list *e)
1029 {
1030   const u64 mul = 0x68576150f3d6847;
1031   u64 h = 0xafcef24eda8b29;
1032   int i;
1033 
1034   if (e)			/* Assuming chain of length 1 */
1035     {
1036       for(i=0; i<e->count; i++)
1037 	{
1038 	  struct eattr *a = &e->attrs[i];
1039 	  h ^= a->id; h *= mul;
1040 	  if (a->type & EAF_EMBEDDED)
1041 	    h ^= a->u.data;
1042 	  else
1043 	    {
1044 	      const struct adata *d = a->u.ptr;
1045 	      h ^= mem_hash(d->data, d->length);
1046 	    }
1047 	  h *= mul;
1048 	}
1049     }
1050   return (h >> 32) ^ (h & 0xffffffff);
1051 }
1052 
1053 /**
1054  * ea_append - concatenate &ea_list's
1055  * @to: destination list (can be %NULL)
1056  * @what: list to be appended (can be %NULL)
1057  *
1058  * This function appends the &ea_list @what at the end of
1059  * &ea_list @to and returns a pointer to the resulting list.
1060  */
1061 ea_list *
ea_append(ea_list * to,ea_list * what)1062 ea_append(ea_list *to, ea_list *what)
1063 {
1064   ea_list *res;
1065 
1066   if (!to)
1067     return what;
1068   res = to;
1069   while (to->next)
1070     to = to->next;
1071   to->next = what;
1072   return res;
1073 }
1074 
1075 /*
1076  *	rta's
1077  */
1078 
1079 static uint rta_cache_count;
1080 static uint rta_cache_size = 32;
1081 static uint rta_cache_limit;
1082 static uint rta_cache_mask;
1083 static rta **rta_hash_table;
1084 
1085 static void
rta_alloc_hash(void)1086 rta_alloc_hash(void)
1087 {
1088   rta_hash_table = mb_allocz(rta_pool, sizeof(rta *) * rta_cache_size);
1089   if (rta_cache_size < 32768)
1090     rta_cache_limit = rta_cache_size * 2;
1091   else
1092     rta_cache_limit = ~0;
1093   rta_cache_mask = rta_cache_size - 1;
1094 }
1095 
1096 static inline uint
rta_hash(rta * a)1097 rta_hash(rta *a)
1098 {
1099   u64 h;
1100   mem_hash_init(&h);
1101 #define MIX(f) mem_hash_mix(&h, &(a->f), sizeof(a->f));
1102   MIX(src);
1103   MIX(hostentry);
1104   MIX(from);
1105   MIX(igp_metric);
1106   MIX(source);
1107   MIX(scope);
1108   MIX(dest);
1109 #undef MIX
1110 
1111   return mem_hash_value(&h) ^ nexthop_hash(&(a->nh)) ^ ea_hash(a->eattrs);
1112 }
1113 
1114 static inline int
rta_same(rta * x,rta * y)1115 rta_same(rta *x, rta *y)
1116 {
1117   return (x->src == y->src &&
1118 	  x->source == y->source &&
1119 	  x->scope == y->scope &&
1120 	  x->dest == y->dest &&
1121 	  x->igp_metric == y->igp_metric &&
1122 	  ipa_equal(x->from, y->from) &&
1123 	  x->hostentry == y->hostentry &&
1124 	  nexthop_same(&(x->nh), &(y->nh)) &&
1125 	  ea_same(x->eattrs, y->eattrs));
1126 }
1127 
1128 static inline slab *
rta_slab(rta * a)1129 rta_slab(rta *a)
1130 {
1131   return rta_slab_[a->nh.labels > 2 ? 3 : a->nh.labels];
1132 }
1133 
1134 static rta *
rta_copy(rta * o)1135 rta_copy(rta *o)
1136 {
1137   rta *r = sl_alloc(rta_slab(o));
1138 
1139   memcpy(r, o, rta_size(o));
1140   r->uc = 1;
1141   r->nh.next = nexthop_copy(o->nh.next);
1142   r->eattrs = ea_list_copy(o->eattrs);
1143   return r;
1144 }
1145 
1146 static inline void
rta_insert(rta * r)1147 rta_insert(rta *r)
1148 {
1149   uint h = r->hash_key & rta_cache_mask;
1150   r->next = rta_hash_table[h];
1151   if (r->next)
1152     r->next->pprev = &r->next;
1153   r->pprev = &rta_hash_table[h];
1154   rta_hash_table[h] = r;
1155 }
1156 
1157 static void
rta_rehash(void)1158 rta_rehash(void)
1159 {
1160   uint ohs = rta_cache_size;
1161   uint h;
1162   rta *r, *n;
1163   rta **oht = rta_hash_table;
1164 
1165   rta_cache_size = 2*rta_cache_size;
1166   DBG("Rehashing rta cache from %d to %d entries.\n", ohs, rta_cache_size);
1167   rta_alloc_hash();
1168   for(h=0; h<ohs; h++)
1169     for(r=oht[h]; r; r=n)
1170       {
1171 	n = r->next;
1172 	rta_insert(r);
1173       }
1174   mb_free(oht);
1175 }
1176 
1177 /**
1178  * rta_lookup - look up a &rta in attribute cache
1179  * @o: a un-cached &rta
1180  *
1181  * rta_lookup() gets an un-cached &rta structure and returns its cached
1182  * counterpart. It starts with examining the attribute cache to see whether
1183  * there exists a matching entry. If such an entry exists, it's returned and
1184  * its use count is incremented, else a new entry is created with use count
1185  * set to 1.
1186  *
1187  * The extended attribute lists attached to the &rta are automatically
1188  * converted to the normalized form.
1189  */
1190 rta *
rta_lookup(rta * o)1191 rta_lookup(rta *o)
1192 {
1193   rta *r;
1194   uint h;
1195 
1196   ASSERT(!(o->aflags & RTAF_CACHED));
1197   if (o->eattrs)
1198     ea_normalize(o->eattrs);
1199 
1200   h = rta_hash(o);
1201   for(r=rta_hash_table[h & rta_cache_mask]; r; r=r->next)
1202     if (r->hash_key == h && rta_same(r, o))
1203       return rta_clone(r);
1204 
1205   r = rta_copy(o);
1206   r->hash_key = h;
1207   r->aflags = RTAF_CACHED;
1208   rt_lock_source(r->src);
1209   rt_lock_hostentry(r->hostentry);
1210   rta_insert(r);
1211 
1212   if (++rta_cache_count > rta_cache_limit)
1213     rta_rehash();
1214 
1215   return r;
1216 }
1217 
1218 void
rta__free(rta * a)1219 rta__free(rta *a)
1220 {
1221   ASSERT(rta_cache_count && (a->aflags & RTAF_CACHED));
1222   rta_cache_count--;
1223   *a->pprev = a->next;
1224   if (a->next)
1225     a->next->pprev = a->pprev;
1226   rt_unlock_hostentry(a->hostentry);
1227   rt_unlock_source(a->src);
1228   if (a->nh.next)
1229     nexthop_free(a->nh.next);
1230   ea_free(a->eattrs);
1231   a->aflags = 0;		/* Poison the entry */
1232   sl_free(rta_slab(a), a);
1233 }
1234 
1235 rta *
rta_do_cow(rta * o,linpool * lp)1236 rta_do_cow(rta *o, linpool *lp)
1237 {
1238   rta *r = lp_alloc(lp, rta_size(o));
1239   memcpy(r, o, rta_size(o));
1240   for (struct nexthop **nhn = &(r->nh.next), *nho = o->nh.next; nho; nho = nho->next)
1241     {
1242       *nhn = lp_alloc(lp, nexthop_size(nho));
1243       memcpy(*nhn, nho, nexthop_size(nho));
1244       nhn = &((*nhn)->next);
1245     }
1246   r->aflags = 0;
1247   r->uc = 0;
1248   return r;
1249 }
1250 
1251 /**
1252  * rta_dump - dump route attributes
1253  * @a: attribute structure to dump
1254  *
1255  * This function takes a &rta and dumps its contents to the debug output.
1256  */
1257 void
rta_dump(rta * a)1258 rta_dump(rta *a)
1259 {
1260   static char *rts[] = { "RTS_DUMMY", "RTS_STATIC", "RTS_INHERIT", "RTS_DEVICE",
1261 			 "RTS_STAT_DEV", "RTS_REDIR", "RTS_RIP",
1262 			 "RTS_OSPF", "RTS_OSPF_IA", "RTS_OSPF_EXT1",
1263 			 "RTS_OSPF_EXT2", "RTS_BGP", "RTS_PIPE", "RTS_BABEL" };
1264   static char *rtd[] = { "", " DEV", " HOLE", " UNREACH", " PROHIBIT" };
1265 
1266   debug("p=%s uc=%d %s %s%s h=%04x",
1267 	a->src->proto->name, a->uc, rts[a->source], ip_scope_text(a->scope),
1268 	rtd[a->dest], a->hash_key);
1269   if (!(a->aflags & RTAF_CACHED))
1270     debug(" !CACHED");
1271   debug(" <-%I", a->from);
1272   if (a->dest == RTD_UNICAST)
1273     for (struct nexthop *nh = &(a->nh); nh; nh = nh->next)
1274       {
1275 	if (ipa_nonzero(nh->gw)) debug(" ->%I", nh->gw);
1276 	if (nh->labels) debug(" L %d", nh->label[0]);
1277 	for (int i=1; i<nh->labels; i++)
1278 	  debug("/%d", nh->label[i]);
1279 	debug(" [%s]", nh->iface ? nh->iface->name : "???");
1280       }
1281   if (a->eattrs)
1282     {
1283       debug(" EA: ");
1284       ea_dump(a->eattrs);
1285     }
1286 }
1287 
1288 /**
1289  * rta_dump_all - dump attribute cache
1290  *
1291  * This function dumps the whole contents of route attribute cache
1292  * to the debug output.
1293  */
1294 void
rta_dump_all(void)1295 rta_dump_all(void)
1296 {
1297   rta *a;
1298   uint h;
1299 
1300   debug("Route attribute cache (%d entries, rehash at %d):\n", rta_cache_count, rta_cache_limit);
1301   for(h=0; h<rta_cache_size; h++)
1302     for(a=rta_hash_table[h]; a; a=a->next)
1303       {
1304 	debug("%p ", a);
1305 	rta_dump(a);
1306 	debug("\n");
1307       }
1308   debug("\n");
1309 }
1310 
1311 void
rta_show(struct cli * c,rta * a)1312 rta_show(struct cli *c, rta *a)
1313 {
1314   cli_printf(c, -1008, "\tType: %s %s", rta_src_names[a->source], ip_scope_text(a->scope));
1315 
1316   for(ea_list *eal = a->eattrs; eal; eal=eal->next)
1317     for(int i=0; i<eal->count; i++)
1318       ea_show(c, &eal->attrs[i]);
1319 }
1320 
1321 /**
1322  * rta_init - initialize route attribute cache
1323  *
1324  * This function is called during initialization of the routing
1325  * table module to set up the internals of the attribute cache.
1326  */
1327 void
rta_init(void)1328 rta_init(void)
1329 {
1330   rta_pool = rp_new(&root_pool, "Attributes");
1331 
1332   rta_slab_[0] = sl_new(rta_pool, sizeof(rta));
1333   rta_slab_[1] = sl_new(rta_pool, sizeof(rta) + sizeof(u32));
1334   rta_slab_[2] = sl_new(rta_pool, sizeof(rta) + sizeof(u32)*2);
1335   rta_slab_[3] = sl_new(rta_pool, sizeof(rta) + sizeof(u32)*MPLS_MAX_LABEL_STACK);
1336 
1337   nexthop_slab_[0] = sl_new(rta_pool, sizeof(struct nexthop));
1338   nexthop_slab_[1] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32));
1339   nexthop_slab_[2] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32)*2);
1340   nexthop_slab_[3] = sl_new(rta_pool, sizeof(struct nexthop) + sizeof(u32)*MPLS_MAX_LABEL_STACK);
1341 
1342   rta_alloc_hash();
1343   rte_src_init();
1344 }
1345 
1346 /*
1347  *  Documentation for functions declared inline in route.h
1348  */
1349 #if 0
1350 
1351 /**
1352  * rta_clone - clone route attributes
1353  * @r: a &rta to be cloned
1354  *
1355  * rta_clone() takes a cached &rta and returns its identical cached
1356  * copy. Currently it works by just returning the original &rta with
1357  * its use count incremented.
1358  */
1359 static inline rta *rta_clone(rta *r)
1360 { DUMMY; }
1361 
1362 /**
1363  * rta_free - free route attributes
1364  * @r: a &rta to be freed
1365  *
1366  * If you stop using a &rta (for example when deleting a route which uses
1367  * it), you need to call rta_free() to notify the attribute cache the
1368  * attribute is no longer in use and can be freed if you were the last
1369  * user (which rta_free() tests by inspecting the use count).
1370  */
1371 static inline void rta_free(rta *r)
1372 { DUMMY; }
1373 
1374 #endif
1375