1 #include "blas.h"
2 #include "utils.h"
3 
4 #include <math.h>
5 #include <assert.h>
6 #include <float.h>
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
reorg_cpu(float * x,int out_w,int out_h,int out_c,int batch,int stride,int forward,float * out)10 void reorg_cpu(float *x, int out_w, int out_h, int out_c, int batch, int stride, int forward, float *out)
11 {
12     int b,i,j,k;
13     int in_c = out_c/(stride*stride);
14 
15     //printf("\n out_c = %d, out_w = %d, out_h = %d, stride = %d, forward = %d \n", out_c, out_w, out_h, stride, forward);
16     //printf("  in_c = %d,  in_w = %d,  in_h = %d \n", in_c, out_w*stride, out_h*stride);
17 
18     for(b = 0; b < batch; ++b){
19         for(k = 0; k < out_c; ++k){
20             for(j = 0; j < out_h; ++j){
21                 for(i = 0; i < out_w; ++i){
22                     int in_index  = i + out_w*(j + out_h*(k + out_c*b));
23                     int c2 = k % in_c;
24                     int offset = k / in_c;
25                     int w2 = i*stride + offset % stride;
26                     int h2 = j*stride + offset / stride;
27                     int out_index = w2 + out_w*stride*(h2 + out_h*stride*(c2 + in_c*b));
28                     if(forward) out[out_index] = x[in_index];    // used by default for forward (i.e. forward = 0)
29                     else out[in_index] = x[out_index];
30                 }
31             }
32         }
33     }
34 }
35 
flatten(float * x,int size,int layers,int batch,int forward)36 void flatten(float *x, int size, int layers, int batch, int forward)
37 {
38     float* swap = (float*)xcalloc(size * layers * batch, sizeof(float));
39     int i,c,b;
40     for(b = 0; b < batch; ++b){
41         for(c = 0; c < layers; ++c){
42             for(i = 0; i < size; ++i){
43                 int i1 = b*layers*size + c*size + i;
44                 int i2 = b*layers*size + i*layers + c;
45                 if (forward) swap[i2] = x[i1];
46                 else swap[i1] = x[i2];
47             }
48         }
49     }
50     memcpy(x, swap, size*layers*batch*sizeof(float));
51     free(swap);
52 }
53 
weighted_sum_cpu(float * a,float * b,float * s,int n,float * c)54 void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c)
55 {
56     int i;
57     for(i = 0; i < n; ++i){
58         c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0);
59     }
60 }
61 
weighted_delta_cpu(float * a,float * b,float * s,float * da,float * db,float * ds,int n,float * dc)62 void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc)
63 {
64     int i;
65     for(i = 0; i < n; ++i){
66         if(da) da[i] += dc[i] * s[i];
67         if(db) db[i] += dc[i] * (1-s[i]);
68         ds[i] += dc[i] * (a[i] - b[i]);
69     }
70 }
71 
relu(float src)72 static float relu(float src) {
73     if (src > 0) return src;
74     return 0;
75 }
76 
shortcut_multilayer_cpu(int size,int src_outputs,int batch,int n,int * outputs_of_layers,float ** layers_output,float * out,float * in,float * weights,int nweights,WEIGHTS_NORMALIZATION_T weights_normalization)77 void shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers, float **layers_output, float *out, float *in, float *weights, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization)
78 {
79     // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w)
80     const int layer_step = nweights / (n + 1);    // 1 or l.c or (l.c * l.h * l.w)
81     int step = 0;
82     if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1
83 
84     int id;
85     #pragma omp parallel for
86     for (id = 0; id < size; ++id) {
87 
88         int src_id = id;
89         const int src_i = src_id % src_outputs;
90         src_id /= src_outputs;
91         int src_b = src_id;
92 
93         float sum = 1, max_val = -FLT_MAX;
94         int i;
95         if (weights && weights_normalization) {
96             if (weights_normalization == SOFTMAX_NORMALIZATION) {
97                 for (i = 0; i < (n + 1); ++i) {
98                     const int weights_index = src_i / step + i*layer_step;  // [0 or c or (c, h ,w)]
99                     float w = weights[weights_index];
100                     if (max_val < w) max_val = w;
101                 }
102             }
103             const float eps = 0.0001;
104             sum = eps;
105             for (i = 0; i < (n + 1); ++i) {
106                 const int weights_index = src_i / step + i*layer_step;  // [0 or c or (c, h ,w)]
107                 const float w = weights[weights_index];
108                 if (weights_normalization == RELU_NORMALIZATION) sum += relu(w);
109                 else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val);
110             }
111         }
112 
113         if (weights) {
114             float w = weights[src_i / step];
115             if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum;
116             else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum;
117 
118             out[id] = in[id] * w; // [0 or c or (c, h ,w)]
119         }
120         else out[id] = in[id];
121 
122         // layers
123         for (i = 0; i < n; ++i) {
124             int add_outputs = outputs_of_layers[i];
125             if (src_i < add_outputs) {
126                 int add_index = add_outputs*src_b + src_i;
127                 int out_index = id;
128 
129                 float *add = layers_output[i];
130 
131                 if (weights) {
132                     const int weights_index = src_i / step + (i + 1)*layer_step;  // [0 or c or (c, h ,w)]
133                     float w = weights[weights_index];
134                     if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum;
135                     else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum;
136 
137                     out[out_index] += add[add_index] * w; // [0 or c or (c, h ,w)]
138                 }
139                 else out[out_index] += add[add_index];
140             }
141         }
142     }
143 }
144 
backward_shortcut_multilayer_cpu(int size,int src_outputs,int batch,int n,int * outputs_of_layers,float ** layers_delta,float * delta_out,float * delta_in,float * weights,float * weight_updates,int nweights,float * in,float ** layers_output,WEIGHTS_NORMALIZATION_T weights_normalization)145 void backward_shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers,
146     float **layers_delta, float *delta_out, float *delta_in, float *weights, float *weight_updates, int nweights, float *in, float **layers_output, WEIGHTS_NORMALIZATION_T weights_normalization)
147 {
148     // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w)
149     const int layer_step = nweights / (n + 1);    // 1 or l.c or (l.c * l.h * l.w)
150     int step = 0;
151     if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1
152 
153     int id;
154     #pragma omp parallel for
155     for (id = 0; id < size; ++id) {
156         int src_id = id;
157         int src_i = src_id % src_outputs;
158         src_id /= src_outputs;
159         int src_b = src_id;
160 
161         float grad = 1, sum = 1, max_val = -FLT_MAX;;
162         int i;
163         if (weights && weights_normalization) {
164             if (weights_normalization == SOFTMAX_NORMALIZATION) {
165                 for (i = 0; i < (n + 1); ++i) {
166                     const int weights_index = src_i / step + i*layer_step;  // [0 or c or (c, h ,w)]
167                     float w = weights[weights_index];
168                     if (max_val < w) max_val = w;
169                 }
170             }
171             const float eps = 0.0001;
172             sum = eps;
173             for (i = 0; i < (n + 1); ++i) {
174                 const int weights_index = src_i / step + i*layer_step;  // [0 or c or (c, h ,w)]
175                 const float w = weights[weights_index];
176                 if (weights_normalization == RELU_NORMALIZATION) sum += relu(w);
177                 else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val);
178             }
179 
180             /*
181             grad = 0;
182             for (i = 0; i < (n + 1); ++i) {
183                 const int weights_index = src_i / step + i*layer_step;  // [0 or c or (c, h ,w)]
184                 const float delta_w = delta_in[id] * in[id];
185                 const float w = weights[weights_index];
186                 if (weights_normalization == RELU_NORMALIZATION) grad += delta_w * relu(w) / sum;
187                 else if (weights_normalization == SOFTMAX_NORMALIZATION) grad += delta_w * expf(w - max_val) / sum;
188             }
189             */
190         }
191 
192         if (weights) {
193             float w = weights[src_i / step];
194             if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum;
195             else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum;
196 
197             delta_out[id] += delta_in[id] * w; // [0 or c or (c, h ,w)]
198             weight_updates[src_i / step] += delta_in[id] * in[id] * grad;
199         }
200         else delta_out[id] += delta_in[id];
201 
202         // layers
203         for (i = 0; i < n; ++i) {
204             int add_outputs = outputs_of_layers[i];
205             if (src_i < add_outputs) {
206                 int add_index = add_outputs*src_b + src_i;
207                 int out_index = id;
208 
209                 float *layer_delta = layers_delta[i];
210                 if (weights) {
211                     float *add = layers_output[i];
212 
213                     const int weights_index = src_i / step + (i + 1)*layer_step;  // [0 or c or (c, h ,w)]
214                     float w = weights[weights_index];
215                     if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum;
216                     else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum;
217 
218                     layer_delta[add_index] += delta_in[id] * w; // [0 or c or (c, h ,w)]
219                     weight_updates[weights_index] += delta_in[id] * add[add_index] * grad;
220                 }
221                 else layer_delta[add_index] += delta_in[id];
222             }
223         }
224     }
225 }
226 
shortcut_cpu(int batch,int w1,int h1,int c1,float * add,int w2,int h2,int c2,float * out)227 void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out)
228 {
229     int stride = w1/w2;
230     int sample = w2/w1;
231     assert(stride == h1/h2);
232     assert(sample == h2/h1);
233     if(stride < 1) stride = 1;
234     if(sample < 1) sample = 1;
235     int minw = (w1 < w2) ? w1 : w2;
236     int minh = (h1 < h2) ? h1 : h2;
237     int minc = (c1 < c2) ? c1 : c2;
238 
239     int i,j,k,b;
240     for(b = 0; b < batch; ++b){
241         for(k = 0; k < minc; ++k){
242             for(j = 0; j < minh; ++j){
243                 for(i = 0; i < minw; ++i){
244                     int out_index = i*sample + w2*(j*sample + h2*(k + c2*b));
245                     int add_index = i*stride + w1*(j*stride + h1*(k + c1*b));
246                     out[out_index] += add[add_index];
247                 }
248             }
249         }
250     }
251 }
252 
mean_cpu(float * x,int batch,int filters,int spatial,float * mean)253 void mean_cpu(float *x, int batch, int filters, int spatial, float *mean)
254 {
255     float scale = 1./(batch * spatial);
256     int i,j,k;
257     for(i = 0; i < filters; ++i){
258         mean[i] = 0;
259         for(j = 0; j < batch; ++j){
260             for(k = 0; k < spatial; ++k){
261                 int index = j*filters*spatial + i*spatial + k;
262                 mean[i] += x[index];
263             }
264         }
265         mean[i] *= scale;
266     }
267 }
268 
variance_cpu(float * x,float * mean,int batch,int filters,int spatial,float * variance)269 void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance)
270 {
271     float scale = 1./(batch * spatial - 1);
272     int i,j,k;
273     for(i = 0; i < filters; ++i){
274         variance[i] = 0;
275         for(j = 0; j < batch; ++j){
276             for(k = 0; k < spatial; ++k){
277                 int index = j*filters*spatial + i*spatial + k;
278                 variance[i] += pow((x[index] - mean[i]), 2);
279             }
280         }
281         variance[i] *= scale;
282     }
283 }
284 
normalize_cpu(float * x,float * mean,float * variance,int batch,int filters,int spatial)285 void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
286 {
287     int b, f, i;
288     for(b = 0; b < batch; ++b){
289         for(f = 0; f < filters; ++f){
290             for(i = 0; i < spatial; ++i){
291                 int index = b*filters*spatial + f*spatial + i;
292                 x[index] = (x[index] - mean[f])/(sqrt(variance[f] + .000001f));
293             }
294         }
295     }
296 }
297 
const_cpu(int N,float ALPHA,float * X,int INCX)298 void const_cpu(int N, float ALPHA, float *X, int INCX)
299 {
300     int i;
301     for(i = 0; i < N; ++i) X[i*INCX] = ALPHA;
302 }
303 
mul_cpu(int N,float * X,int INCX,float * Y,int INCY)304 void mul_cpu(int N, float *X, int INCX, float *Y, int INCY)
305 {
306     int i;
307     for(i = 0; i < N; ++i) Y[i*INCY] *= X[i*INCX];
308 }
309 
pow_cpu(int N,float ALPHA,float * X,int INCX,float * Y,int INCY)310 void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
311 {
312     int i;
313     for(i = 0; i < N; ++i) Y[i*INCY] = pow(X[i*INCX], ALPHA);
314 }
315 
axpy_cpu(int N,float ALPHA,float * X,int INCX,float * Y,int INCY)316 void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
317 {
318     int i;
319     for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX];
320 }
321 
scal_cpu(int N,float ALPHA,float * X,int INCX)322 void scal_cpu(int N, float ALPHA, float *X, int INCX)
323 {
324     int i;
325     for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA;
326 }
327 
scal_add_cpu(int N,float ALPHA,float BETA,float * X,int INCX)328 void scal_add_cpu(int N, float ALPHA, float BETA, float *X, int INCX)
329 {
330     int i;
331     for (i = 0; i < N; ++i) X[i*INCX] = X[i*INCX] * ALPHA + BETA;
332 }
333 
fill_cpu(int N,float ALPHA,float * X,int INCX)334 void fill_cpu(int N, float ALPHA, float *X, int INCX)
335 {
336     int i;
337     if (INCX == 1 && ALPHA == 0) {
338         memset(X, 0, N * sizeof(float));
339     }
340     else {
341         for (i = 0; i < N; ++i) X[i*INCX] = ALPHA;
342     }
343 }
344 
deinter_cpu(int NX,float * X,int NY,float * Y,int B,float * OUT)345 void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT)
346 {
347     int i, j;
348     int index = 0;
349     for(j = 0; j < B; ++j) {
350         for(i = 0; i < NX; ++i){
351             if(X) X[j*NX + i] += OUT[index];
352             ++index;
353         }
354         for(i = 0; i < NY; ++i){
355             if(Y) Y[j*NY + i] += OUT[index];
356             ++index;
357         }
358     }
359 }
360 
inter_cpu(int NX,float * X,int NY,float * Y,int B,float * OUT)361 void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT)
362 {
363     int i, j;
364     int index = 0;
365     for(j = 0; j < B; ++j) {
366         for(i = 0; i < NX; ++i){
367             OUT[index++] = X[j*NX + i];
368         }
369         for(i = 0; i < NY; ++i){
370             OUT[index++] = Y[j*NY + i];
371         }
372     }
373 }
374 
copy_cpu(int N,float * X,int INCX,float * Y,int INCY)375 void copy_cpu(int N, float *X, int INCX, float *Y, int INCY)
376 {
377     int i;
378     for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX];
379 }
380 
mult_add_into_cpu(int N,float * X,float * Y,float * Z)381 void mult_add_into_cpu(int N, float *X, float *Y, float *Z)
382 {
383     int i;
384     for(i = 0; i < N; ++i) Z[i] += X[i]*Y[i];
385 }
386 
smooth_l1_cpu(int n,float * pred,float * truth,float * delta,float * error)387 void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error)
388 {
389     int i;
390     for(i = 0; i < n; ++i){
391         float diff = truth[i] - pred[i];
392         float abs_val = fabs(diff);
393         if(abs_val < 1) {
394             error[i] = diff * diff;
395             delta[i] = diff;
396         }
397         else {
398             error[i] = 2*abs_val - 1;
399             delta[i] = (diff > 0) ? 1 : -1;
400         }
401     }
402 }
403 
l1_cpu(int n,float * pred,float * truth,float * delta,float * error)404 void l1_cpu(int n, float *pred, float *truth, float *delta, float *error)
405 {
406     int i;
407     for(i = 0; i < n; ++i){
408         float diff = truth[i] - pred[i];
409         error[i] = fabs(diff);
410         delta[i] = diff > 0 ? 1 : -1;
411     }
412 }
413 
softmax_x_ent_cpu(int n,float * pred,float * truth,float * delta,float * error)414 void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
415 {
416     int i;
417     for(i = 0; i < n; ++i){
418         float t = truth[i];
419         float p = pred[i];
420         error[i] = (t) ? -log(p) : 0;
421         delta[i] = t-p;
422     }
423 }
424 
logistic_x_ent_cpu(int n,float * pred,float * truth,float * delta,float * error)425 void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error)
426 {
427     int i;
428     for(i = 0; i < n; ++i){
429         float t = truth[i];
430         float p = pred[i];
431         error[i] = -t*log(p) - (1-t)*log(1-p);
432         delta[i] = t-p;
433     }
434 }
435 
l2_cpu(int n,float * pred,float * truth,float * delta,float * error)436 void l2_cpu(int n, float *pred, float *truth, float *delta, float *error)
437 {
438     int i;
439     for(i = 0; i < n; ++i){
440         float diff = truth[i] - pred[i];
441         error[i] = diff * diff;
442         delta[i] = diff;
443     }
444 }
445 
dot_cpu(int N,float * X,int INCX,float * Y,int INCY)446 float dot_cpu(int N, float *X, int INCX, float *Y, int INCY)
447 {
448     int i;
449     float dot = 0;
450     for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY];
451     return dot;
452 }
453 
softmax(float * input,int n,float temp,float * output,int stride)454 void softmax(float *input, int n, float temp, float *output, int stride)
455 {
456     int i;
457     float sum = 0;
458     float largest = -FLT_MAX;
459     for(i = 0; i < n; ++i){
460         if(input[i*stride] > largest) largest = input[i*stride];
461     }
462     for(i = 0; i < n; ++i){
463         float e = exp(input[i*stride]/temp - largest/temp);
464         sum += e;
465         output[i*stride] = e;
466     }
467     for(i = 0; i < n; ++i){
468         output[i*stride] /= sum;
469     }
470 }
471 
472 
softmax_cpu(float * input,int n,int batch,int batch_offset,int groups,int group_offset,int stride,float temp,float * output)473 void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output)
474 {
475     int g, b;
476     for(b = 0; b < batch; ++b){
477         for(g = 0; g < groups; ++g){
478             softmax(input + b*batch_offset + g*group_offset, n, temp, output + b*batch_offset + g*group_offset, stride);
479         }
480     }
481 }
482 
upsample_cpu(float * in,int w,int h,int c,int batch,int stride,int forward,float scale,float * out)483 void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
484 {
485     int i, j, k, b;
486     for (b = 0; b < batch; ++b) {
487         for (k = 0; k < c; ++k) {
488             for (j = 0; j < h*stride; ++j) {
489                 for (i = 0; i < w*stride; ++i) {
490                     int in_index = b*w*h*c + k*w*h + (j / stride)*w + i / stride;
491                     int out_index = b*w*h*c*stride*stride + k*w*h*stride*stride + j*w*stride + i;
492                     if (forward) out[out_index] = scale*in[in_index];
493                     else in[in_index] += scale*out[out_index];
494                 }
495             }
496         }
497     }
498 }
499 
500 
constrain_cpu(int size,float ALPHA,float * X)501 void constrain_cpu(int size, float ALPHA, float *X)
502 {
503     int i;
504     for (i = 0; i < size; ++i) {
505         X[i] = fminf(ALPHA, fmaxf(-ALPHA, X[i]));
506     }
507 }
508 
fix_nan_and_inf_cpu(float * input,size_t size)509 void fix_nan_and_inf_cpu(float *input, size_t size)
510 {
511     int i;
512     for (i = 0; i < size; ++i) {
513         float val = input[i];
514         if (isnan(val) || isinf(val))
515             input[i] = 1.0f / i;  // pseudo random value
516     }
517 }
518