1 /* $OpenBSD: if_se.c,v 1.27 2024/11/05 18:58:59 miod Exp $ */
2
3 /*-
4 * Copyright (c) 2009, 2010 Christopher Zimmermann <madroach@zakweb.de>
5 * Copyright (c) 2008, 2009, 2010 Nikolay Denev <ndenev@gmail.com>
6 * Copyright (c) 2007, 2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
7 * Copyright (c) 1997, 1998, 1999
8 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Bill Paul.
21 * 4. Neither the name of the author nor the names of any co-contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
26 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
28 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AUTHORS OR
29 * THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
34 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
36 * OF THE POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * SiS 190/191 PCI Ethernet NIC driver.
41 *
42 * Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
43 * SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
44 * Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
45 * <kmliu@sis.com>. Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
46 * review and very useful comments.
47 *
48 * Ported to OpenBSD by Christopher Zimmermann 2009/10
49 *
50 * Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
51 * Linux and Solaris drivers.
52 */
53
54 #include "bpfilter.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/device.h>
59 #include <sys/ioctl.h>
60 #include <sys/mbuf.h>
61 #include <sys/timeout.h>
62
63 #include <net/if.h>
64 #include <net/if_media.h>
65
66 #include <netinet/in.h>
67 #include <netinet/if_ether.h>
68
69 #if NBPFILTER > 0
70 #include <net/bpf.h>
71 #endif
72
73 #include <dev/mii/miivar.h>
74
75 #include <dev/pci/pcidevs.h>
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78
79 #include <dev/pci/if_sereg.h>
80
81 #define SE_RX_RING_CNT 256 /* [8, 1024] */
82 #define SE_TX_RING_CNT 256 /* [8, 8192] */
83 #define SE_RX_BUF_ALIGN sizeof(uint64_t)
84
85 #define SE_RX_RING_SZ (SE_RX_RING_CNT * sizeof(struct se_desc))
86 #define SE_TX_RING_SZ (SE_TX_RING_CNT * sizeof(struct se_desc))
87
88 struct se_list_data {
89 struct se_desc *se_rx_ring;
90 struct se_desc *se_tx_ring;
91 bus_dmamap_t se_rx_dmamap;
92 bus_dmamap_t se_tx_dmamap;
93 };
94
95 struct se_chain_data {
96 struct mbuf *se_rx_mbuf[SE_RX_RING_CNT];
97 struct mbuf *se_tx_mbuf[SE_TX_RING_CNT];
98 bus_dmamap_t se_rx_map[SE_RX_RING_CNT];
99 bus_dmamap_t se_tx_map[SE_TX_RING_CNT];
100 uint se_rx_prod;
101 uint se_tx_prod;
102 uint se_tx_cons;
103 uint se_tx_cnt;
104 };
105
106 struct se_softc {
107 struct device sc_dev;
108 void *sc_ih;
109 bus_space_tag_t sc_iot;
110 bus_space_handle_t sc_ioh;
111 bus_dma_tag_t sc_dmat;
112
113 struct mii_data sc_mii;
114 struct arpcom sc_ac;
115
116 struct se_list_data se_ldata;
117 struct se_chain_data se_cdata;
118
119 struct timeout sc_tick_tmo;
120
121 int sc_flags;
122 #define SE_FLAG_FASTETHER 0x0001
123 #define SE_FLAG_RGMII 0x0010
124 #define SE_FLAG_LINK 0x8000
125 };
126
127 /*
128 * Various supported device vendors/types and their names.
129 */
130 const struct pci_matchid se_devices[] = {
131 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_190 },
132 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_191 }
133 };
134
135 int se_match(struct device *, void *, void *);
136 void se_attach(struct device *, struct device *, void *);
137 int se_activate(struct device *, int);
138
139 const struct cfattach se_ca = {
140 sizeof(struct se_softc),
141 se_match, se_attach, NULL, se_activate
142 };
143
144 struct cfdriver se_cd = {
145 NULL, "se", DV_IFNET
146 };
147
148 uint32_t
149 se_miibus_cmd(struct se_softc *, uint32_t);
150 int se_miibus_readreg(struct device *, int, int);
151 void se_miibus_writereg(struct device *, int, int, int);
152 void se_miibus_statchg(struct device *);
153
154 int se_newbuf(struct se_softc *, uint);
155 void se_discard_rxbuf(struct se_softc *, uint);
156 int se_encap(struct se_softc *, struct mbuf *, uint *);
157 void se_rxeof(struct se_softc *);
158 void se_txeof(struct se_softc *);
159 int se_intr(void *);
160 void se_tick(void *);
161 void se_start(struct ifnet *);
162 int se_ioctl(struct ifnet *, u_long, caddr_t);
163 int se_init(struct ifnet *);
164 void se_stop(struct se_softc *);
165 void se_watchdog(struct ifnet *);
166 int se_ifmedia_upd(struct ifnet *);
167 void se_ifmedia_sts(struct ifnet *, struct ifmediareq *);
168
169 int se_pcib_match(struct pci_attach_args *);
170 int se_get_mac_addr_apc(struct se_softc *, uint8_t *);
171 int se_get_mac_addr_eeprom(struct se_softc *, uint8_t *);
172 uint16_t
173 se_read_eeprom(struct se_softc *, int);
174
175 void se_iff(struct se_softc *);
176 void se_reset(struct se_softc *);
177 int se_list_rx_init(struct se_softc *);
178 int se_list_rx_free(struct se_softc *);
179 int se_list_tx_init(struct se_softc *);
180 int se_list_tx_free(struct se_softc *);
181
182 /*
183 * Register space access macros.
184 */
185
186 #define CSR_WRITE_4(sc, reg, val) \
187 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, val)
188 #define CSR_WRITE_2(sc, reg, val) \
189 bus_space_write_2((sc)->sc_iot, (sc)->sc_ioh, reg, val)
190 #define CSR_WRITE_1(sc, reg, val) \
191 bus_space_write_1((sc)->sc_iot, (sc)->sc_ioh, reg, val)
192
193 #define CSR_READ_4(sc, reg) \
194 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
195 #define CSR_READ_2(sc, reg) \
196 bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, reg)
197 #define CSR_READ_1(sc, reg) \
198 bus_space_read_1((sc)->sc_iot, (sc)->sc_ioh, reg)
199
200 /*
201 * Read a sequence of words from the EEPROM.
202 */
203 uint16_t
se_read_eeprom(struct se_softc * sc,int offset)204 se_read_eeprom(struct se_softc *sc, int offset)
205 {
206 uint32_t val;
207 int i;
208
209 KASSERT(offset <= EI_OFFSET);
210
211 CSR_WRITE_4(sc, ROMInterface,
212 EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
213 DELAY(500);
214 for (i = 0; i < SE_TIMEOUT; i++) {
215 val = CSR_READ_4(sc, ROMInterface);
216 if ((val & EI_REQ) == 0)
217 break;
218 DELAY(100);
219 }
220 if (i == SE_TIMEOUT) {
221 printf("%s: EEPROM read timeout: 0x%08x\n",
222 sc->sc_dev.dv_xname, val);
223 return 0xffff;
224 }
225
226 return (val & EI_DATA) >> EI_DATA_SHIFT;
227 }
228
229 int
se_get_mac_addr_eeprom(struct se_softc * sc,uint8_t * dest)230 se_get_mac_addr_eeprom(struct se_softc *sc, uint8_t *dest)
231 {
232 uint16_t val;
233 int i;
234
235 val = se_read_eeprom(sc, EEPROMSignature);
236 if (val == 0xffff || val == 0x0000) {
237 printf("%s: invalid EEPROM signature : 0x%04x\n",
238 sc->sc_dev.dv_xname, val);
239 return (EINVAL);
240 }
241
242 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
243 val = se_read_eeprom(sc, EEPROMMACAddr + i / 2);
244 dest[i + 0] = (uint8_t)val;
245 dest[i + 1] = (uint8_t)(val >> 8);
246 }
247
248 if ((se_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
249 sc->sc_flags |= SE_FLAG_RGMII;
250 return (0);
251 }
252
253 /*
254 * For SiS96x, APC CMOS RAM is used to store Ethernet address.
255 * APC CMOS RAM is accessed through ISA bridge.
256 */
257 #if defined(__amd64__) || defined(__i386__)
258 int
se_pcib_match(struct pci_attach_args * pa)259 se_pcib_match(struct pci_attach_args *pa)
260 {
261 const struct pci_matchid apc_devices[] = {
262 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_965 },
263 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_966 },
264 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_968 }
265 };
266
267 return pci_matchbyid(pa, apc_devices, nitems(apc_devices));
268 }
269 #endif
270
271 int
se_get_mac_addr_apc(struct se_softc * sc,uint8_t * dest)272 se_get_mac_addr_apc(struct se_softc *sc, uint8_t *dest)
273 {
274 #if defined(__amd64__) || defined(__i386__)
275 struct pci_attach_args pa;
276 pcireg_t reg;
277 bus_space_handle_t ioh;
278 int rc, i;
279
280 if (pci_find_device(&pa, se_pcib_match) == 0) {
281 printf("\n%s: couldn't find PCI-ISA bridge\n",
282 sc->sc_dev.dv_xname);
283 return EINVAL;
284 }
285
286 /* Enable port 0x78 and 0x79 to access APC registers. */
287 reg = pci_conf_read(pa.pa_pc, pa.pa_tag, 0x48);
288 pci_conf_write(pa.pa_pc, pa.pa_tag, 0x48, reg & ~0x02);
289 DELAY(50);
290 (void)pci_conf_read(pa.pa_pc, pa.pa_tag, 0x48);
291
292 /* XXX this abuses bus_space implementation knowledge */
293 rc = _bus_space_map(pa.pa_iot, 0x78, 2, 0, &ioh);
294 if (rc == 0) {
295 /* Read stored Ethernet address. */
296 for (i = 0; i < ETHER_ADDR_LEN; i++) {
297 bus_space_write_1(pa.pa_iot, ioh, 0, 0x09 + i);
298 dest[i] = bus_space_read_1(pa.pa_iot, ioh, 1);
299 }
300 bus_space_write_1(pa.pa_iot, ioh, 0, 0x12);
301 if ((bus_space_read_1(pa.pa_iot, ioh, 1) & 0x80) != 0)
302 sc->sc_flags |= SE_FLAG_RGMII;
303 _bus_space_unmap(pa.pa_iot, ioh, 2, NULL);
304 } else
305 rc = EINVAL;
306
307 /* Restore access to APC registers. */
308 pci_conf_write(pa.pa_pc, pa.pa_tag, 0x48, reg);
309
310 return rc;
311 #endif
312 return EINVAL;
313 }
314
315 uint32_t
se_miibus_cmd(struct se_softc * sc,uint32_t ctrl)316 se_miibus_cmd(struct se_softc *sc, uint32_t ctrl)
317 {
318 int i;
319 uint32_t val;
320
321 CSR_WRITE_4(sc, GMIIControl, ctrl);
322 DELAY(10);
323 for (i = 0; i < SE_TIMEOUT; i++) {
324 val = CSR_READ_4(sc, GMIIControl);
325 if ((val & GMI_REQ) == 0)
326 return val;
327 DELAY(10);
328 }
329
330 return GMI_REQ;
331 }
332
333 int
se_miibus_readreg(struct device * self,int phy,int reg)334 se_miibus_readreg(struct device *self, int phy, int reg)
335 {
336 struct se_softc *sc = (struct se_softc *)self;
337 uint32_t ctrl, val;
338
339 ctrl = (phy << GMI_PHY_SHIFT) | (reg << GMI_REG_SHIFT) |
340 GMI_OP_RD | GMI_REQ;
341 val = se_miibus_cmd(sc, ctrl);
342 if ((val & GMI_REQ) != 0) {
343 printf("%s: PHY read timeout : %d\n",
344 sc->sc_dev.dv_xname, reg);
345 return 0;
346 }
347 return (val & GMI_DATA) >> GMI_DATA_SHIFT;
348 }
349
350 void
se_miibus_writereg(struct device * self,int phy,int reg,int data)351 se_miibus_writereg(struct device *self, int phy, int reg, int data)
352 {
353 struct se_softc *sc = (struct se_softc *)self;
354 uint32_t ctrl, val;
355
356 ctrl = (phy << GMI_PHY_SHIFT) | (reg << GMI_REG_SHIFT) |
357 GMI_OP_WR | (data << GMI_DATA_SHIFT) | GMI_REQ;
358 val = se_miibus_cmd(sc, ctrl);
359 if ((val & GMI_REQ) != 0) {
360 printf("%s: PHY write timeout : %d\n",
361 sc->sc_dev.dv_xname, reg);
362 }
363 }
364
365 void
se_miibus_statchg(struct device * self)366 se_miibus_statchg(struct device *self)
367 {
368 struct se_softc *sc = (struct se_softc *)self;
369 #ifdef SE_DEBUG
370 struct ifnet *ifp = &sc->sc_ac.ac_if;
371 #endif
372 struct mii_data *mii = &sc->sc_mii;
373 uint32_t ctl, speed;
374
375 speed = 0;
376 sc->sc_flags &= ~SE_FLAG_LINK;
377 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
378 (IFM_ACTIVE | IFM_AVALID)) {
379 switch (IFM_SUBTYPE(mii->mii_media_active)) {
380 case IFM_10_T:
381 #ifdef SE_DEBUG
382 if (ifp->if_flags & IFF_DEBUG)
383 printf("%s: 10baseT link\n", ifp->if_xname);
384 #endif
385 sc->sc_flags |= SE_FLAG_LINK;
386 speed = SC_SPEED_10;
387 break;
388 case IFM_100_TX:
389 #ifdef SE_DEBUG
390 if (ifp->if_flags & IFF_DEBUG)
391 printf("%s: 100baseTX link\n", ifp->if_xname);
392 #endif
393 sc->sc_flags |= SE_FLAG_LINK;
394 speed = SC_SPEED_100;
395 break;
396 case IFM_1000_T:
397 #ifdef SE_DEBUG
398 if (ifp->if_flags & IFF_DEBUG)
399 printf("%s: 1000baseT link\n", ifp->if_xname);
400 #endif
401 if ((sc->sc_flags & SE_FLAG_FASTETHER) == 0) {
402 sc->sc_flags |= SE_FLAG_LINK;
403 speed = SC_SPEED_1000;
404 }
405 break;
406 default:
407 break;
408 }
409 }
410 if ((sc->sc_flags & SE_FLAG_LINK) == 0) {
411 #ifdef SE_DEBUG
412 if (ifp->if_flags & IFF_DEBUG)
413 printf("%s: no link\n", ifp->if_xname);
414 #endif
415 return;
416 }
417 /* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
418 ctl = CSR_READ_4(sc, StationControl);
419 ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
420 if (speed == SC_SPEED_1000)
421 ctl |= 0x07000000;
422 else
423 ctl |= 0x04000000;
424 #ifdef notyet
425 if ((sc->sc_flags & SE_FLAG_GMII) != 0)
426 ctl |= 0x03000000;
427 #endif
428 ctl |= speed;
429 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
430 ctl |= SC_FDX;
431 CSR_WRITE_4(sc, StationControl, ctl);
432 if ((sc->sc_flags & SE_FLAG_RGMII) != 0) {
433 CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
434 CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
435 }
436 }
437
438 void
se_iff(struct se_softc * sc)439 se_iff(struct se_softc *sc)
440 {
441 struct arpcom *ac = &sc->sc_ac;
442 struct ifnet *ifp = &ac->ac_if;
443 struct ether_multi *enm;
444 struct ether_multistep step;
445 uint32_t crc, hashes[2];
446 uint16_t rxfilt;
447
448 rxfilt = CSR_READ_2(sc, RxMacControl);
449 rxfilt &= ~(AcceptAllPhys | AcceptBroadcast | AcceptMulticast);
450 ifp->if_flags &= ~IFF_ALLMULTI;
451
452 /*
453 * Always accept broadcast frames.
454 * Always accept frames destined to our station address.
455 */
456 rxfilt |= AcceptBroadcast | AcceptMyPhys;
457
458 if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
459 ifp->if_flags |= IFF_ALLMULTI;
460 if (ifp->if_flags & IFF_PROMISC)
461 rxfilt |= AcceptAllPhys;
462 rxfilt |= AcceptMulticast;
463 hashes[0] = hashes[1] = 0xffffffff;
464 } else {
465 rxfilt |= AcceptMulticast;
466 hashes[0] = hashes[1] = 0;
467
468 ETHER_FIRST_MULTI(step, ac, enm);
469 while (enm != NULL) {
470 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
471
472 hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
473
474 ETHER_NEXT_MULTI(step, enm);
475 }
476 }
477
478 CSR_WRITE_2(sc, RxMacControl, rxfilt);
479 CSR_WRITE_4(sc, RxHashTable, hashes[0]);
480 CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
481 }
482
483 void
se_reset(struct se_softc * sc)484 se_reset(struct se_softc *sc)
485 {
486 CSR_WRITE_4(sc, IntrMask, 0);
487 CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
488
489 /* Soft reset. */
490 CSR_WRITE_4(sc, IntrControl, 0x8000);
491 CSR_READ_4(sc, IntrControl);
492 DELAY(100);
493 CSR_WRITE_4(sc, IntrControl, 0);
494 /* Stop MAC. */
495 CSR_WRITE_4(sc, TX_CTL, 0x1a00);
496 CSR_WRITE_4(sc, RX_CTL, 0x1a00);
497
498 CSR_WRITE_4(sc, IntrMask, 0);
499 CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
500
501 CSR_WRITE_4(sc, GMIIControl, 0);
502 }
503
504 /*
505 * Probe for an SiS chip. Check the PCI vendor and device
506 * IDs against our list and return a device name if we find a match.
507 */
508 int
se_match(struct device * parent,void * match,void * aux)509 se_match(struct device *parent, void *match, void *aux)
510 {
511 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
512
513 return pci_matchbyid(pa, se_devices, nitems(se_devices));
514 }
515
516 /*
517 * Attach the interface. Do ifmedia setup and ethernet/BPF attach.
518 */
519 void
se_attach(struct device * parent,struct device * self,void * aux)520 se_attach(struct device *parent, struct device *self, void *aux)
521 {
522 struct se_softc *sc = (struct se_softc *)self;
523 struct arpcom *ac = &sc->sc_ac;
524 struct ifnet *ifp = &ac->ac_if;
525 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
526 uint8_t eaddr[ETHER_ADDR_LEN];
527 const char *intrstr;
528 pci_intr_handle_t ih;
529 bus_size_t iosize;
530 bus_dma_segment_t seg;
531 struct se_list_data *ld;
532 struct se_chain_data *cd;
533 int nseg;
534 uint i;
535 int rc;
536
537 printf(": ");
538
539 /*
540 * Map control/status registers.
541 */
542
543 rc = pci_mapreg_map(pa, PCI_MAPREG_START, PCI_MAPREG_TYPE_MEM, 0,
544 &sc->sc_iot, &sc->sc_ioh, NULL, &iosize, 0);
545 if (rc != 0) {
546 printf("can't map i/o space\n");
547 return;
548 }
549
550 if (pci_intr_map(pa, &ih)) {
551 printf("can't map interrupt\n");
552 goto fail1;
553 }
554 intrstr = pci_intr_string(pa->pa_pc, ih);
555 sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_NET, se_intr, sc,
556 self->dv_xname);
557 if (sc->sc_ih == NULL) {
558 printf("can't establish interrupt");
559 if (intrstr != NULL)
560 printf(" at %s", intrstr);
561 printf("\n");
562 goto fail1;
563 }
564
565 printf("%s", intrstr);
566
567 if (pa->pa_id == PCI_ID_CODE(PCI_VENDOR_SIS, PCI_PRODUCT_SIS_190))
568 sc->sc_flags |= SE_FLAG_FASTETHER;
569
570 /* Reset the adapter. */
571 se_reset(sc);
572
573 /* Get MAC address from the EEPROM. */
574 if ((pci_conf_read(pa->pa_pc, pa->pa_tag, 0x70) & (0x01 << 24)) != 0)
575 se_get_mac_addr_apc(sc, eaddr);
576 else
577 se_get_mac_addr_eeprom(sc, eaddr);
578 printf(", address %s\n", ether_sprintf(eaddr));
579 bcopy(eaddr, ac->ac_enaddr, ETHER_ADDR_LEN);
580
581 /*
582 * Now do all the DMA mapping stuff
583 */
584
585 sc->sc_dmat = pa->pa_dmat;
586 ld = &sc->se_ldata;
587 cd = &sc->se_cdata;
588
589 /* First create TX/RX busdma maps. */
590 for (i = 0; i < SE_RX_RING_CNT; i++) {
591 rc = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
592 0, BUS_DMA_NOWAIT, &cd->se_rx_map[i]);
593 if (rc != 0) {
594 printf("%s: cannot init the RX map array\n",
595 self->dv_xname);
596 goto fail2;
597 }
598 }
599
600 for (i = 0; i < SE_TX_RING_CNT; i++) {
601 rc = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
602 0, BUS_DMA_NOWAIT, &cd->se_tx_map[i]);
603 if (rc != 0) {
604 printf("%s: cannot init the TX map array\n",
605 self->dv_xname);
606 goto fail2;
607 }
608 }
609
610 /*
611 * Now allocate a chunk of DMA-able memory for RX and TX ring
612 * descriptors, as a contiguous block of memory.
613 * XXX fix deallocation upon error
614 */
615
616 /* RX */
617 rc = bus_dmamem_alloc(sc->sc_dmat, SE_RX_RING_SZ, PAGE_SIZE, 0,
618 &seg, 1, &nseg, BUS_DMA_NOWAIT);
619 if (rc != 0) {
620 printf("%s: no memory for RX descriptors\n", self->dv_xname);
621 goto fail2;
622 }
623
624 rc = bus_dmamem_map(sc->sc_dmat, &seg, nseg, SE_RX_RING_SZ,
625 (caddr_t *)&ld->se_rx_ring, BUS_DMA_NOWAIT);
626 if (rc != 0) {
627 printf("%s: can't map RX descriptors\n", self->dv_xname);
628 goto fail2;
629 }
630
631 rc = bus_dmamap_create(sc->sc_dmat, SE_RX_RING_SZ, 1,
632 SE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &ld->se_rx_dmamap);
633 if (rc != 0) {
634 printf("%s: can't alloc RX DMA map\n", self->dv_xname);
635 goto fail2;
636 }
637
638 rc = bus_dmamap_load(sc->sc_dmat, ld->se_rx_dmamap,
639 (caddr_t)ld->se_rx_ring, SE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
640 if (rc != 0) {
641 printf("%s: can't load RX DMA map\n", self->dv_xname);
642 bus_dmamem_unmap(sc->sc_dmat,
643 (caddr_t)ld->se_rx_ring, SE_RX_RING_SZ);
644 bus_dmamap_destroy(sc->sc_dmat, ld->se_rx_dmamap);
645 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
646 goto fail2;
647 }
648
649 /* TX */
650 rc = bus_dmamem_alloc(sc->sc_dmat, SE_TX_RING_SZ, PAGE_SIZE, 0,
651 &seg, 1, &nseg, BUS_DMA_NOWAIT);
652 if (rc != 0) {
653 printf("%s: no memory for TX descriptors\n", self->dv_xname);
654 goto fail2;
655 }
656
657 rc = bus_dmamem_map(sc->sc_dmat, &seg, nseg, SE_TX_RING_SZ,
658 (caddr_t *)&ld->se_tx_ring, BUS_DMA_NOWAIT);
659 if (rc != 0) {
660 printf("%s: can't map TX descriptors\n", self->dv_xname);
661 goto fail2;
662 }
663
664 rc = bus_dmamap_create(sc->sc_dmat, SE_TX_RING_SZ, 1,
665 SE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &ld->se_tx_dmamap);
666 if (rc != 0) {
667 printf("%s: can't alloc TX DMA map\n", self->dv_xname);
668 goto fail2;
669 }
670
671 rc = bus_dmamap_load(sc->sc_dmat, ld->se_tx_dmamap,
672 (caddr_t)ld->se_tx_ring, SE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
673 if (rc != 0) {
674 printf("%s: can't load TX DMA map\n", self->dv_xname);
675 bus_dmamem_unmap(sc->sc_dmat,
676 (caddr_t)ld->se_tx_ring, SE_TX_RING_SZ);
677 bus_dmamap_destroy(sc->sc_dmat, ld->se_tx_dmamap);
678 bus_dmamem_free(sc->sc_dmat, &seg, nseg);
679 goto fail2;
680 }
681
682 timeout_set(&sc->sc_tick_tmo, se_tick, sc);
683
684 ifp = &sc->sc_ac.ac_if;
685 ifp->if_softc = sc;
686 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
687 ifp->if_ioctl = se_ioctl;
688 ifp->if_start = se_start;
689 ifp->if_watchdog = se_watchdog;
690 ifq_init_maxlen(&ifp->if_snd, SE_TX_RING_CNT - 1);
691 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
692
693 ifp->if_capabilities = IFCAP_VLAN_MTU;
694
695 /*
696 * Do MII setup.
697 */
698
699 sc->sc_mii.mii_ifp = ifp;
700 sc->sc_mii.mii_readreg = se_miibus_readreg;
701 sc->sc_mii.mii_writereg = se_miibus_writereg;
702 sc->sc_mii.mii_statchg = se_miibus_statchg;
703 ifmedia_init(&sc->sc_mii.mii_media, 0, se_ifmedia_upd,
704 se_ifmedia_sts);
705 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
706 MII_OFFSET_ANY, 0);
707
708 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
709 /* No PHY attached */
710 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
711 0, NULL);
712 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
713 } else
714 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
715
716 /*
717 * Call MI attach routine.
718 */
719 if_attach(ifp);
720 ether_ifattach(ifp);
721
722 return;
723
724 fail2:
725 pci_intr_disestablish(pa->pa_pc, sc->sc_ih);
726 fail1:
727 bus_space_unmap(sc->sc_iot, sc->sc_ioh, iosize);
728 }
729
730 int
se_activate(struct device * self,int act)731 se_activate(struct device *self, int act)
732 {
733 struct se_softc *sc = (struct se_softc *)self;
734 struct ifnet *ifp = &sc->sc_ac.ac_if;
735
736 switch (act) {
737 case DVACT_SUSPEND:
738 if (ifp->if_flags & IFF_RUNNING)
739 se_stop(sc);
740 break;
741 case DVACT_RESUME:
742 if (ifp->if_flags & IFF_UP)
743 (void)se_init(ifp);
744 break;
745 }
746 return (0);
747 }
748
749 /*
750 * Initialize the TX descriptors.
751 */
752 int
se_list_tx_init(struct se_softc * sc)753 se_list_tx_init(struct se_softc *sc)
754 {
755 struct se_list_data *ld = &sc->se_ldata;
756 struct se_chain_data *cd = &sc->se_cdata;
757
758 bzero(ld->se_tx_ring, SE_TX_RING_SZ);
759 ld->se_tx_ring[SE_TX_RING_CNT - 1].se_flags = htole32(RING_END);
760 bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap, 0, SE_TX_RING_SZ,
761 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
762 cd->se_tx_prod = 0;
763 cd->se_tx_cons = 0;
764 cd->se_tx_cnt = 0;
765
766 return 0;
767 }
768
769 int
se_list_tx_free(struct se_softc * sc)770 se_list_tx_free(struct se_softc *sc)
771 {
772 struct se_chain_data *cd = &sc->se_cdata;
773 uint i;
774
775 for (i = 0; i < SE_TX_RING_CNT; i++) {
776 if (cd->se_tx_mbuf[i] != NULL) {
777 bus_dmamap_unload(sc->sc_dmat, cd->se_tx_map[i]);
778 m_free(cd->se_tx_mbuf[i]);
779 cd->se_tx_mbuf[i] = NULL;
780 }
781 }
782
783 return 0;
784 }
785
786 /*
787 * Initialize the RX descriptors and allocate mbufs for them.
788 */
789 int
se_list_rx_init(struct se_softc * sc)790 se_list_rx_init(struct se_softc *sc)
791 {
792 struct se_list_data *ld = &sc->se_ldata;
793 struct se_chain_data *cd = &sc->se_cdata;
794 uint i;
795
796 bzero(ld->se_rx_ring, SE_RX_RING_SZ);
797 bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, 0, SE_RX_RING_SZ,
798 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
799 for (i = 0; i < SE_RX_RING_CNT; i++) {
800 if (se_newbuf(sc, i) != 0)
801 return ENOBUFS;
802 }
803
804 cd->se_rx_prod = 0;
805
806 return 0;
807 }
808
809 int
se_list_rx_free(struct se_softc * sc)810 se_list_rx_free(struct se_softc *sc)
811 {
812 struct se_chain_data *cd = &sc->se_cdata;
813 uint i;
814
815 for (i = 0; i < SE_RX_RING_CNT; i++) {
816 if (cd->se_rx_mbuf[i] != NULL) {
817 bus_dmamap_unload(sc->sc_dmat, cd->se_rx_map[i]);
818 m_free(cd->se_rx_mbuf[i]);
819 cd->se_rx_mbuf[i] = NULL;
820 }
821 }
822
823 return 0;
824 }
825
826 /*
827 * Initialize an RX descriptor and attach an MBUF cluster.
828 */
829 int
se_newbuf(struct se_softc * sc,uint i)830 se_newbuf(struct se_softc *sc, uint i)
831 {
832 #ifdef SE_DEBUG
833 struct ifnet *ifp = &sc->sc_ac.ac_if;
834 #endif
835 struct se_list_data *ld = &sc->se_ldata;
836 struct se_chain_data *cd = &sc->se_cdata;
837 struct se_desc *desc;
838 struct mbuf *m;
839 int rc;
840
841 m = MCLGETL(NULL, M_DONTWAIT, MCLBYTES);
842 if (m == NULL) {
843 #ifdef SE_DEBUG
844 if (ifp->if_flags & IFF_DEBUG)
845 printf("%s: MCLGETL failed\n", ifp->if_xname);
846 #endif
847 return ENOBUFS;
848 }
849 m->m_len = m->m_pkthdr.len = MCLBYTES;
850 m_adj(m, SE_RX_BUF_ALIGN);
851
852 rc = bus_dmamap_load_mbuf(sc->sc_dmat, cd->se_rx_map[i],
853 m, BUS_DMA_NOWAIT);
854 KASSERT(cd->se_rx_map[i]->dm_nsegs == 1);
855 if (rc != 0) {
856 m_freem(m);
857 return ENOBUFS;
858 }
859 bus_dmamap_sync(sc->sc_dmat, cd->se_rx_map[i], 0,
860 cd->se_rx_map[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
861
862 cd->se_rx_mbuf[i] = m;
863 desc = &ld->se_rx_ring[i];
864 desc->se_sts_size = 0;
865 desc->se_cmdsts = htole32(RDC_OWN | RDC_INTR);
866 desc->se_ptr = htole32((uint32_t)cd->se_rx_map[i]->dm_segs[0].ds_addr);
867 desc->se_flags = htole32(cd->se_rx_map[i]->dm_segs[0].ds_len);
868 if (i == SE_RX_RING_CNT - 1)
869 desc->se_flags |= htole32(RING_END);
870 bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, i * sizeof(*desc),
871 sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
872
873 return 0;
874 }
875
876 void
se_discard_rxbuf(struct se_softc * sc,uint i)877 se_discard_rxbuf(struct se_softc *sc, uint i)
878 {
879 struct se_list_data *ld = &sc->se_ldata;
880 struct se_desc *desc;
881
882 desc = &ld->se_rx_ring[i];
883 desc->se_sts_size = 0;
884 desc->se_cmdsts = htole32(RDC_OWN | RDC_INTR);
885 desc->se_flags = htole32(MCLBYTES - SE_RX_BUF_ALIGN);
886 if (i == SE_RX_RING_CNT - 1)
887 desc->se_flags |= htole32(RING_END);
888 bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, i * sizeof(*desc),
889 sizeof(*desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
890 }
891
892 /*
893 * A frame has been uploaded: pass the resulting mbuf chain up to
894 * the higher level protocols.
895 */
896 void
se_rxeof(struct se_softc * sc)897 se_rxeof(struct se_softc *sc)
898 {
899 struct mbuf *m;
900 struct mbuf_list ml = MBUF_LIST_INITIALIZER();
901 struct ifnet *ifp = &sc->sc_ac.ac_if;
902 struct se_list_data *ld = &sc->se_ldata;
903 struct se_chain_data *cd = &sc->se_cdata;
904 struct se_desc *cur_rx;
905 uint32_t rxinfo, rxstat;
906 uint i;
907
908 bus_dmamap_sync(sc->sc_dmat, ld->se_rx_dmamap, 0, SE_RX_RING_SZ,
909 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
910 for (i = cd->se_rx_prod; ; SE_INC(i, SE_RX_RING_CNT)) {
911 cur_rx = &ld->se_rx_ring[i];
912 rxinfo = letoh32(cur_rx->se_cmdsts);
913 if ((rxinfo & RDC_OWN) != 0)
914 break;
915 rxstat = letoh32(cur_rx->se_sts_size);
916
917 /*
918 * If an error occurs, update stats, clear the
919 * status word and leave the mbuf cluster in place:
920 * it should simply get re-used next time this descriptor
921 * comes up in the ring.
922 */
923 if ((rxstat & RDS_CRCOK) == 0 || SE_RX_ERROR(rxstat) != 0 ||
924 SE_RX_NSEGS(rxstat) != 1) {
925 /* XXX We don't support multi-segment frames yet. */
926 if (ifp->if_flags & IFF_DEBUG)
927 printf("%s: rx error %b\n",
928 ifp->if_xname, rxstat, RX_ERR_BITS);
929 se_discard_rxbuf(sc, i);
930 ifp->if_ierrors++;
931 continue;
932 }
933
934 /* No errors; receive the packet. */
935 bus_dmamap_sync(sc->sc_dmat, cd->se_rx_map[i], 0,
936 cd->se_rx_map[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
937 m = cd->se_rx_mbuf[i];
938 if (se_newbuf(sc, i) != 0) {
939 se_discard_rxbuf(sc, i);
940 ifp->if_iqdrops++;
941 continue;
942 }
943 /*
944 * Account for 10 bytes auto padding which is used
945 * to align IP header on a 32bit boundary. Also note,
946 * CRC bytes are automatically removed by the hardware.
947 */
948 m->m_data += SE_RX_PAD_BYTES;
949 m->m_pkthdr.len = m->m_len =
950 SE_RX_BYTES(rxstat) - SE_RX_PAD_BYTES;
951
952 ml_enqueue(&ml, m);
953 }
954
955 if_input(ifp, &ml);
956
957 cd->se_rx_prod = i;
958 }
959
960 /*
961 * A frame was downloaded to the chip. It's safe for us to clean up
962 * the list buffers.
963 */
964
965 void
se_txeof(struct se_softc * sc)966 se_txeof(struct se_softc *sc)
967 {
968 struct ifnet *ifp = &sc->sc_ac.ac_if;
969 struct se_list_data *ld = &sc->se_ldata;
970 struct se_chain_data *cd = &sc->se_cdata;
971 struct se_desc *cur_tx;
972 uint32_t txstat;
973 uint i;
974
975 /*
976 * Go through our tx list and free mbufs for those
977 * frames that have been transmitted.
978 */
979 bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap, 0, SE_TX_RING_SZ,
980 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
981 for (i = cd->se_tx_cons; cd->se_tx_cnt > 0;
982 cd->se_tx_cnt--, SE_INC(i, SE_TX_RING_CNT)) {
983 cur_tx = &ld->se_tx_ring[i];
984 txstat = letoh32(cur_tx->se_cmdsts);
985 if ((txstat & TDC_OWN) != 0)
986 break;
987
988 ifq_clr_oactive(&ifp->if_snd);
989
990 if (SE_TX_ERROR(txstat) != 0) {
991 if (ifp->if_flags & IFF_DEBUG)
992 printf("%s: tx error %b\n",
993 ifp->if_xname, txstat, TX_ERR_BITS);
994 ifp->if_oerrors++;
995 /* TODO: better error differentiation */
996 }
997
998 if (cd->se_tx_mbuf[i] != NULL) {
999 bus_dmamap_sync(sc->sc_dmat, cd->se_tx_map[i], 0,
1000 cd->se_tx_map[i]->dm_mapsize,
1001 BUS_DMASYNC_POSTWRITE);
1002 bus_dmamap_unload(sc->sc_dmat, cd->se_tx_map[i]);
1003 m_free(cd->se_tx_mbuf[i]);
1004 cd->se_tx_mbuf[i] = NULL;
1005 }
1006
1007 cur_tx->se_sts_size = 0;
1008 cur_tx->se_cmdsts = 0;
1009 cur_tx->se_ptr = 0;
1010 cur_tx->se_flags &= htole32(RING_END);
1011 bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap,
1012 i * sizeof(*cur_tx), sizeof(*cur_tx),
1013 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1014 }
1015
1016 cd->se_tx_cons = i;
1017 if (cd->se_tx_cnt == 0)
1018 ifp->if_timer = 0;
1019 }
1020
1021 void
se_tick(void * xsc)1022 se_tick(void *xsc)
1023 {
1024 struct se_softc *sc = xsc;
1025 struct mii_data *mii;
1026 struct ifnet *ifp = &sc->sc_ac.ac_if;
1027 int s;
1028
1029 s = splnet();
1030 mii = &sc->sc_mii;
1031 mii_tick(mii);
1032 if ((sc->sc_flags & SE_FLAG_LINK) == 0) {
1033 se_miibus_statchg(&sc->sc_dev);
1034 if ((sc->sc_flags & SE_FLAG_LINK) != 0 &&
1035 !ifq_empty(&ifp->if_snd))
1036 se_start(ifp);
1037 }
1038 splx(s);
1039
1040 timeout_add_sec(&sc->sc_tick_tmo, 1);
1041 }
1042
1043 int
se_intr(void * arg)1044 se_intr(void *arg)
1045 {
1046 struct se_softc *sc = arg;
1047 struct ifnet *ifp = &sc->sc_ac.ac_if;
1048 uint32_t status;
1049
1050 status = CSR_READ_4(sc, IntrStatus);
1051 if (status == 0xffffffff || (status & SE_INTRS) == 0) {
1052 /* Not ours. */
1053 return 0;
1054 }
1055 /* Ack interrupts/ */
1056 CSR_WRITE_4(sc, IntrStatus, status);
1057 /* Disable further interrupts. */
1058 CSR_WRITE_4(sc, IntrMask, 0);
1059
1060 for (;;) {
1061 if ((ifp->if_flags & IFF_RUNNING) == 0)
1062 break;
1063 if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
1064 se_rxeof(sc);
1065 /* Wakeup Rx MAC. */
1066 if ((status & INTR_RX_IDLE) != 0)
1067 CSR_WRITE_4(sc, RX_CTL,
1068 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1069 }
1070 if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
1071 se_txeof(sc);
1072 status = CSR_READ_4(sc, IntrStatus);
1073 if ((status & SE_INTRS) == 0)
1074 break;
1075 /* Ack interrupts. */
1076 CSR_WRITE_4(sc, IntrStatus, status);
1077 }
1078
1079 if ((ifp->if_flags & IFF_RUNNING) != 0) {
1080 /* Re-enable interrupts */
1081 CSR_WRITE_4(sc, IntrMask, SE_INTRS);
1082 if (!ifq_empty(&ifp->if_snd))
1083 se_start(ifp);
1084 }
1085
1086 return 1;
1087 }
1088
1089 /*
1090 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1091 * pointers to the fragment pointers.
1092 */
1093 int
se_encap(struct se_softc * sc,struct mbuf * m_head,uint32_t * txidx)1094 se_encap(struct se_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1095 {
1096 #ifdef SE_DEBUG
1097 struct ifnet *ifp = &sc->sc_ac.ac_if;
1098 #endif
1099 struct mbuf *m;
1100 struct se_list_data *ld = &sc->se_ldata;
1101 struct se_chain_data *cd = &sc->se_cdata;
1102 struct se_desc *desc;
1103 uint i, cnt = 0;
1104 int rc;
1105
1106 /*
1107 * If there's no way we can send any packets, return now.
1108 */
1109 if (SE_TX_RING_CNT - cd->se_tx_cnt < 2) {
1110 #ifdef SE_DEBUG
1111 if (ifp->if_flags & IFF_DEBUG)
1112 printf("%s: encap failed, not enough TX desc\n",
1113 ifp->if_xname);
1114 #endif
1115 return ENOBUFS;
1116 }
1117
1118 if (m_defrag(m_head, M_DONTWAIT) != 0) {
1119 #ifdef SE_DEBUG
1120 if (ifp->if_flags & IFF_DEBUG)
1121 printf("%s: m_defrag failed\n", ifp->if_xname);
1122 #endif
1123 return ENOBUFS; /* XXX should not be fatal */
1124 }
1125
1126 /*
1127 * Start packing the mbufs in this chain into
1128 * the fragment pointers. Stop when we run out
1129 * of fragments or hit the end of the mbuf chain.
1130 */
1131 i = *txidx;
1132
1133 for (m = m_head; m != NULL; m = m->m_next) {
1134 if (m->m_len == 0)
1135 continue;
1136 if ((SE_TX_RING_CNT - (cd->se_tx_cnt + cnt)) < 2) {
1137 #ifdef SE_DEBUG
1138 if (ifp->if_flags & IFF_DEBUG)
1139 printf("%s: encap failed, not enough TX desc\n",
1140 ifp->if_xname);
1141 #endif
1142 return ENOBUFS;
1143 }
1144 cd->se_tx_mbuf[i] = m;
1145 rc = bus_dmamap_load_mbuf(sc->sc_dmat, cd->se_tx_map[i],
1146 m, BUS_DMA_NOWAIT);
1147 if (rc != 0)
1148 return ENOBUFS;
1149 KASSERT(cd->se_tx_map[i]->dm_nsegs == 1);
1150 bus_dmamap_sync(sc->sc_dmat, cd->se_tx_map[i], 0,
1151 cd->se_tx_map[i]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1152
1153 desc = &ld->se_tx_ring[i];
1154 desc->se_sts_size = htole32(cd->se_tx_map[i]->dm_segs->ds_len);
1155 desc->se_ptr =
1156 htole32((uint32_t)cd->se_tx_map[i]->dm_segs->ds_addr);
1157 desc->se_flags = htole32(cd->se_tx_map[i]->dm_segs->ds_len);
1158 if (i == SE_TX_RING_CNT - 1)
1159 desc->se_flags |= htole32(RING_END);
1160 desc->se_cmdsts = htole32(TDC_OWN | TDC_INTR | TDC_DEF |
1161 TDC_CRC | TDC_PAD | TDC_BST);
1162 bus_dmamap_sync(sc->sc_dmat, ld->se_tx_dmamap,
1163 i * sizeof(*desc), sizeof(*desc),
1164 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1165
1166 SE_INC(i, SE_TX_RING_CNT);
1167 cnt++;
1168 }
1169
1170 /* can't happen */
1171 if (m != NULL)
1172 return ENOBUFS;
1173
1174 cd->se_tx_cnt += cnt;
1175 *txidx = i;
1176
1177 return 0;
1178 }
1179
1180 /*
1181 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1182 * to the mbuf data regions directly in the transmit lists. We also save a
1183 * copy of the pointers since the transmit list fragment pointers are
1184 * physical addresses.
1185 */
1186 void
se_start(struct ifnet * ifp)1187 se_start(struct ifnet *ifp)
1188 {
1189 struct se_softc *sc = ifp->if_softc;
1190 struct mbuf *m_head = NULL;
1191 struct se_chain_data *cd = &sc->se_cdata;
1192 uint i, queued = 0;
1193
1194 if ((sc->sc_flags & SE_FLAG_LINK) == 0 ||
1195 !(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) {
1196 #ifdef SE_DEBUG
1197 if (ifp->if_flags & IFF_DEBUG)
1198 printf("%s: can't tx, flags 0x%x 0x%04x\n",
1199 ifp->if_xname, sc->sc_flags, (uint)ifp->if_flags);
1200 #endif
1201 return;
1202 }
1203
1204 i = cd->se_tx_prod;
1205
1206 while (cd->se_tx_mbuf[i] == NULL) {
1207 m_head = ifq_deq_begin(&ifp->if_snd);
1208 if (m_head == NULL)
1209 break;
1210
1211 if (se_encap(sc, m_head, &i) != 0) {
1212 ifq_deq_rollback(&ifp->if_snd, m_head);
1213 ifq_set_oactive(&ifp->if_snd);
1214 break;
1215 }
1216
1217 /* now we are committed to transmit the packet */
1218 ifq_deq_commit(&ifp->if_snd, m_head);
1219 queued++;
1220
1221 /*
1222 * If there's a BPF listener, bounce a copy of this frame
1223 * to him.
1224 */
1225 #if NBPFILTER > 0
1226 if (ifp->if_bpf)
1227 bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT);
1228 #endif
1229 }
1230
1231 if (queued > 0) {
1232 /* Transmit */
1233 cd->se_tx_prod = i;
1234 CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
1235 ifp->if_timer = 5;
1236 }
1237 }
1238
1239 int
se_init(struct ifnet * ifp)1240 se_init(struct ifnet *ifp)
1241 {
1242 struct se_softc *sc = ifp->if_softc;
1243 uint16_t rxfilt;
1244 int i;
1245
1246 splassert(IPL_NET);
1247
1248 /*
1249 * Cancel pending I/O and free all RX/TX buffers.
1250 */
1251 se_stop(sc);
1252 se_reset(sc);
1253
1254 /* Init circular RX list. */
1255 if (se_list_rx_init(sc) == ENOBUFS) {
1256 se_stop(sc); /* XXX necessary? */
1257 return ENOBUFS;
1258 }
1259
1260 /* Init TX descriptors. */
1261 se_list_tx_init(sc);
1262
1263 /*
1264 * Load the address of the RX and TX lists.
1265 */
1266 CSR_WRITE_4(sc, TX_DESC,
1267 (uint32_t)sc->se_ldata.se_tx_dmamap->dm_segs[0].ds_addr);
1268 CSR_WRITE_4(sc, RX_DESC,
1269 (uint32_t)sc->se_ldata.se_rx_dmamap->dm_segs[0].ds_addr);
1270
1271 CSR_WRITE_4(sc, TxMacControl, 0x60);
1272 CSR_WRITE_4(sc, RxWakeOnLan, 0);
1273 CSR_WRITE_4(sc, RxWakeOnLanData, 0);
1274 CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
1275 SE_RX_PAD_BYTES);
1276
1277 for (i = 0; i < ETHER_ADDR_LEN; i++)
1278 CSR_WRITE_1(sc, RxMacAddr + i, sc->sc_ac.ac_enaddr[i]);
1279 /* Configure RX MAC. */
1280 rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
1281 CSR_WRITE_2(sc, RxMacControl, rxfilt);
1282
1283 /* Program promiscuous mode and multicast filters. */
1284 se_iff(sc);
1285
1286 /*
1287 * Clear and enable interrupts.
1288 */
1289 CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
1290 CSR_WRITE_4(sc, IntrMask, SE_INTRS);
1291
1292 /* Enable receiver and transmitter. */
1293 CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
1294 CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
1295
1296 ifp->if_flags |= IFF_RUNNING;
1297 ifq_clr_oactive(&ifp->if_snd);
1298
1299 sc->sc_flags &= ~SE_FLAG_LINK;
1300 mii_mediachg(&sc->sc_mii);
1301 timeout_add_sec(&sc->sc_tick_tmo, 1);
1302
1303 return 0;
1304 }
1305
1306 /*
1307 * Set media options.
1308 */
1309 int
se_ifmedia_upd(struct ifnet * ifp)1310 se_ifmedia_upd(struct ifnet *ifp)
1311 {
1312 struct se_softc *sc = ifp->if_softc;
1313 struct mii_data *mii;
1314
1315 mii = &sc->sc_mii;
1316 sc->sc_flags &= ~SE_FLAG_LINK;
1317 if (mii->mii_instance) {
1318 struct mii_softc *miisc;
1319 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1320 mii_phy_reset(miisc);
1321 }
1322 return mii_mediachg(mii);
1323 }
1324
1325 /*
1326 * Report current media status.
1327 */
1328 void
se_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)1329 se_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1330 {
1331 struct se_softc *sc = ifp->if_softc;
1332 struct mii_data *mii;
1333
1334 mii = &sc->sc_mii;
1335 mii_pollstat(mii);
1336 ifmr->ifm_active = mii->mii_media_active;
1337 ifmr->ifm_status = mii->mii_media_status;
1338 }
1339
1340 int
se_ioctl(struct ifnet * ifp,u_long command,caddr_t data)1341 se_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1342 {
1343 struct se_softc *sc = ifp->if_softc;
1344 struct ifreq *ifr = (struct ifreq *) data;
1345 int s, rc = 0;
1346
1347 s = splnet();
1348
1349 switch (command) {
1350 case SIOCSIFADDR:
1351 ifp->if_flags |= IFF_UP;
1352 if ((ifp->if_flags & IFF_RUNNING) == 0)
1353 rc = se_init(ifp);
1354 break;
1355 case SIOCSIFFLAGS:
1356 if (ifp->if_flags & IFF_UP) {
1357 if (ifp->if_flags & IFF_RUNNING)
1358 rc = ENETRESET;
1359 else
1360 rc = se_init(ifp);
1361 } else {
1362 if (ifp->if_flags & IFF_RUNNING)
1363 se_stop(sc);
1364 }
1365 break;
1366 case SIOCGIFMEDIA:
1367 case SIOCSIFMEDIA:
1368 rc = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1369 break;
1370 default:
1371 rc = ether_ioctl(ifp, &sc->sc_ac, command, data);
1372 break;
1373 }
1374
1375 if (rc == ENETRESET) {
1376 if (ifp->if_flags & IFF_RUNNING)
1377 se_iff(sc);
1378 rc = 0;
1379 }
1380
1381 splx(s);
1382 return rc;
1383 }
1384
1385 void
se_watchdog(struct ifnet * ifp)1386 se_watchdog(struct ifnet *ifp)
1387 {
1388 struct se_softc *sc = ifp->if_softc;
1389 int s;
1390
1391 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1392 ifp->if_oerrors++;
1393
1394 s = splnet();
1395 se_init(ifp);
1396 if (!ifq_empty(&ifp->if_snd))
1397 se_start(ifp);
1398 splx(s);
1399 }
1400
1401 /*
1402 * Stop the adapter and free any mbufs allocated to the
1403 * RX and TX lists.
1404 */
1405 void
se_stop(struct se_softc * sc)1406 se_stop(struct se_softc *sc)
1407 {
1408 struct ifnet *ifp = &sc->sc_ac.ac_if;
1409
1410 ifp->if_timer = 0;
1411 ifp->if_flags &= ~IFF_RUNNING;
1412 ifq_clr_oactive(&ifp->if_snd);
1413 timeout_del(&sc->sc_tick_tmo);
1414 mii_down(&sc->sc_mii);
1415
1416 CSR_WRITE_4(sc, IntrMask, 0);
1417 CSR_READ_4(sc, IntrMask);
1418 CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1419 /* Stop TX/RX MAC. */
1420 CSR_WRITE_4(sc, TX_CTL, 0x1a00);
1421 CSR_WRITE_4(sc, RX_CTL, 0x1a00);
1422 /* XXX Can we assume active DMA cycles gone? */
1423 DELAY(2000);
1424 CSR_WRITE_4(sc, IntrMask, 0);
1425 CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
1426
1427 sc->sc_flags &= ~SE_FLAG_LINK;
1428 se_list_rx_free(sc);
1429 se_list_tx_free(sc);
1430 }
1431