1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 bfd *symfile_bfd_open (char *);
95
96 int get_section_index (struct objfile *, char *);
97
98 static const struct sym_fns *find_sym_fns (bfd *);
99
100 static void decrement_reading_symtab (void *);
101
102 static void overlay_invalidate_all (void);
103
104 static void overlay_auto_command (char *, int);
105
106 static void overlay_manual_command (char *, int);
107
108 static void overlay_off_command (char *, int);
109
110 static void overlay_load_command (char *, int);
111
112 static void overlay_command (char *, int);
113
114 static void simple_free_overlay_table (void);
115
116 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
118
119 static int simple_read_overlay_table (void);
120
121 static int simple_overlay_update_1 (struct obj_section *);
122
123 static void add_filename_language (char *ext, enum language lang);
124
125 static void info_ext_lang_command (char *args, int from_tty);
126
127 static void init_filename_language_table (void);
128
129 static void symfile_find_segment_sections (struct objfile *objfile);
130
131 void _initialize_symfile (void);
132
133 /* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
135 prepared to read. */
136
137 typedef const struct sym_fns *sym_fns_ptr;
138 DEF_VEC_P (sym_fns_ptr);
139
140 static VEC (sym_fns_ptr) *symtab_fns = NULL;
141
142 /* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
149 library symbols are not loaded, commands like "info fun" will *not*
150 report all the functions that are actually present. */
151
152 int auto_solib_add = 1;
153
154
155 /* True if we are reading a symbol table. */
156
157 int currently_reading_symtab = 0;
158
159 static void
decrement_reading_symtab(void * dummy)160 decrement_reading_symtab (void *dummy)
161 {
162 currently_reading_symtab--;
163 }
164
165 /* Increment currently_reading_symtab and return a cleanup that can be
166 used to decrement it. */
167 struct cleanup *
increment_reading_symtab(void)168 increment_reading_symtab (void)
169 {
170 ++currently_reading_symtab;
171 return make_cleanup (decrement_reading_symtab, NULL);
172 }
173
174 /* Remember the lowest-addressed loadable section we've seen.
175 This function is called via bfd_map_over_sections.
176
177 In case of equal vmas, the section with the largest size becomes the
178 lowest-addressed loadable section.
179
180 If the vmas and sizes are equal, the last section is considered the
181 lowest-addressed loadable section. */
182
183 void
find_lowest_section(bfd * abfd,asection * sect,void * obj)184 find_lowest_section (bfd *abfd, asection *sect, void *obj)
185 {
186 asection **lowest = (asection **) obj;
187
188 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
189 return;
190 if (!*lowest)
191 *lowest = sect; /* First loadable section */
192 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
193 *lowest = sect; /* A lower loadable section */
194 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
195 && (bfd_section_size (abfd, (*lowest))
196 <= bfd_section_size (abfd, sect)))
197 *lowest = sect;
198 }
199
200 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
201
202 struct section_addr_info *
alloc_section_addr_info(size_t num_sections)203 alloc_section_addr_info (size_t num_sections)
204 {
205 struct section_addr_info *sap;
206 size_t size;
207
208 size = (sizeof (struct section_addr_info)
209 + sizeof (struct other_sections) * (num_sections - 1));
210 sap = (struct section_addr_info *) xmalloc (size);
211 memset (sap, 0, size);
212 sap->num_sections = num_sections;
213
214 return sap;
215 }
216
217 /* Build (allocate and populate) a section_addr_info struct from
218 an existing section table. */
219
220 extern struct section_addr_info *
build_section_addr_info_from_section_table(const struct target_section * start,const struct target_section * end)221 build_section_addr_info_from_section_table (const struct target_section *start,
222 const struct target_section *end)
223 {
224 struct section_addr_info *sap;
225 const struct target_section *stp;
226 int oidx;
227
228 sap = alloc_section_addr_info (end - start);
229
230 for (stp = start, oidx = 0; stp != end; stp++)
231 {
232 if (bfd_get_section_flags (stp->bfd,
233 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
234 && oidx < end - start)
235 {
236 sap->other[oidx].addr = stp->addr;
237 sap->other[oidx].name
238 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
239 sap->other[oidx].sectindex = stp->the_bfd_section->index;
240 oidx++;
241 }
242 }
243
244 return sap;
245 }
246
247 /* Create a section_addr_info from section offsets in ABFD. */
248
249 static struct section_addr_info *
build_section_addr_info_from_bfd(bfd * abfd)250 build_section_addr_info_from_bfd (bfd *abfd)
251 {
252 struct section_addr_info *sap;
253 int i;
254 struct bfd_section *sec;
255
256 sap = alloc_section_addr_info (bfd_count_sections (abfd));
257 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259 {
260 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
261 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
262 sap->other[i].sectindex = sec->index;
263 i++;
264 }
265 return sap;
266 }
267
268 /* Create a section_addr_info from section offsets in OBJFILE. */
269
270 struct section_addr_info *
build_section_addr_info_from_objfile(const struct objfile * objfile)271 build_section_addr_info_from_objfile (const struct objfile *objfile)
272 {
273 struct section_addr_info *sap;
274 int i;
275
276 /* Before reread_symbols gets rewritten it is not safe to call:
277 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
278 */
279 sap = build_section_addr_info_from_bfd (objfile->obfd);
280 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
281 {
282 int sectindex = sap->other[i].sectindex;
283
284 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
285 }
286 return sap;
287 }
288
289 /* Free all memory allocated by build_section_addr_info_from_section_table. */
290
291 extern void
free_section_addr_info(struct section_addr_info * sap)292 free_section_addr_info (struct section_addr_info *sap)
293 {
294 int idx;
295
296 for (idx = 0; idx < sap->num_sections; idx++)
297 if (sap->other[idx].name)
298 xfree (sap->other[idx].name);
299 xfree (sap);
300 }
301
302
303 /* Initialize OBJFILE's sect_index_* members. */
304 static void
init_objfile_sect_indices(struct objfile * objfile)305 init_objfile_sect_indices (struct objfile *objfile)
306 {
307 asection *sect;
308 int i;
309
310 sect = bfd_get_section_by_name (objfile->obfd, ".text");
311 if (sect)
312 objfile->sect_index_text = sect->index;
313
314 sect = bfd_get_section_by_name (objfile->obfd, ".data");
315 if (sect)
316 objfile->sect_index_data = sect->index;
317
318 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
319 if (sect)
320 objfile->sect_index_bss = sect->index;
321
322 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
323 if (sect)
324 objfile->sect_index_rodata = sect->index;
325
326 /* This is where things get really weird... We MUST have valid
327 indices for the various sect_index_* members or gdb will abort.
328 So if for example, there is no ".text" section, we have to
329 accomodate that. First, check for a file with the standard
330 one or two segments. */
331
332 symfile_find_segment_sections (objfile);
333
334 /* Except when explicitly adding symbol files at some address,
335 section_offsets contains nothing but zeros, so it doesn't matter
336 which slot in section_offsets the individual sect_index_* members
337 index into. So if they are all zero, it is safe to just point
338 all the currently uninitialized indices to the first slot. But
339 beware: if this is the main executable, it may be relocated
340 later, e.g. by the remote qOffsets packet, and then this will
341 be wrong! That's why we try segments first. */
342
343 for (i = 0; i < objfile->num_sections; i++)
344 {
345 if (ANOFFSET (objfile->section_offsets, i) != 0)
346 {
347 break;
348 }
349 }
350 if (i == objfile->num_sections)
351 {
352 if (objfile->sect_index_text == -1)
353 objfile->sect_index_text = 0;
354 if (objfile->sect_index_data == -1)
355 objfile->sect_index_data = 0;
356 if (objfile->sect_index_bss == -1)
357 objfile->sect_index_bss = 0;
358 if (objfile->sect_index_rodata == -1)
359 objfile->sect_index_rodata = 0;
360 }
361 }
362
363 /* The arguments to place_section. */
364
365 struct place_section_arg
366 {
367 struct section_offsets *offsets;
368 CORE_ADDR lowest;
369 };
370
371 /* Find a unique offset to use for loadable section SECT if
372 the user did not provide an offset. */
373
374 static void
place_section(bfd * abfd,asection * sect,void * obj)375 place_section (bfd *abfd, asection *sect, void *obj)
376 {
377 struct place_section_arg *arg = obj;
378 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
379 int done;
380 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
381
382 /* We are only interested in allocated sections. */
383 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
384 return;
385
386 /* If the user specified an offset, honor it. */
387 if (offsets[sect->index] != 0)
388 return;
389
390 /* Otherwise, let's try to find a place for the section. */
391 start_addr = (arg->lowest + align - 1) & -align;
392
393 do {
394 asection *cur_sec;
395
396 done = 1;
397
398 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
399 {
400 int indx = cur_sec->index;
401
402 /* We don't need to compare against ourself. */
403 if (cur_sec == sect)
404 continue;
405
406 /* We can only conflict with allocated sections. */
407 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
408 continue;
409
410 /* If the section offset is 0, either the section has not been placed
411 yet, or it was the lowest section placed (in which case LOWEST
412 will be past its end). */
413 if (offsets[indx] == 0)
414 continue;
415
416 /* If this section would overlap us, then we must move up. */
417 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
418 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
419 {
420 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
421 start_addr = (start_addr + align - 1) & -align;
422 done = 0;
423 break;
424 }
425
426 /* Otherwise, we appear to be OK. So far. */
427 }
428 }
429 while (!done);
430
431 offsets[sect->index] = start_addr;
432 arg->lowest = start_addr + bfd_get_section_size (sect);
433 }
434
435 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
436 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
437 entries. */
438
439 void
relative_addr_info_to_section_offsets(struct section_offsets * section_offsets,int num_sections,struct section_addr_info * addrs)440 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
441 int num_sections,
442 struct section_addr_info *addrs)
443 {
444 int i;
445
446 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
447
448 /* Now calculate offsets for section that were specified by the caller. */
449 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
450 {
451 struct other_sections *osp;
452
453 osp = &addrs->other[i];
454 if (osp->sectindex == -1)
455 continue;
456
457 /* Record all sections in offsets. */
458 /* The section_offsets in the objfile are here filled in using
459 the BFD index. */
460 section_offsets->offsets[osp->sectindex] = osp->addr;
461 }
462 }
463
464 /* Transform section name S for a name comparison. prelink can split section
465 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
466 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
467 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
468 (`.sbss') section has invalid (increased) virtual address. */
469
470 static const char *
addr_section_name(const char * s)471 addr_section_name (const char *s)
472 {
473 if (strcmp (s, ".dynbss") == 0)
474 return ".bss";
475 if (strcmp (s, ".sdynbss") == 0)
476 return ".sbss";
477
478 return s;
479 }
480
481 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
482 their (name, sectindex) pair. sectindex makes the sort by name stable. */
483
484 static int
addrs_section_compar(const void * ap,const void * bp)485 addrs_section_compar (const void *ap, const void *bp)
486 {
487 const struct other_sections *a = *((struct other_sections **) ap);
488 const struct other_sections *b = *((struct other_sections **) bp);
489 int retval;
490
491 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
492 if (retval)
493 return retval;
494
495 return a->sectindex - b->sectindex;
496 }
497
498 /* Provide sorted array of pointers to sections of ADDRS. The array is
499 terminated by NULL. Caller is responsible to call xfree for it. */
500
501 static struct other_sections **
addrs_section_sort(struct section_addr_info * addrs)502 addrs_section_sort (struct section_addr_info *addrs)
503 {
504 struct other_sections **array;
505 int i;
506
507 /* `+ 1' for the NULL terminator. */
508 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
509 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
510 array[i] = &addrs->other[i];
511 array[i] = NULL;
512
513 qsort (array, i, sizeof (*array), addrs_section_compar);
514
515 return array;
516 }
517
518 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
519 also SECTINDEXes specific to ABFD there. This function can be used to
520 rebase ADDRS to start referencing different BFD than before. */
521
522 void
addr_info_make_relative(struct section_addr_info * addrs,bfd * abfd)523 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
524 {
525 asection *lower_sect;
526 CORE_ADDR lower_offset;
527 int i;
528 struct cleanup *my_cleanup;
529 struct section_addr_info *abfd_addrs;
530 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
531 struct other_sections **addrs_to_abfd_addrs;
532
533 /* Find lowest loadable section to be used as starting point for
534 continguous sections. */
535 lower_sect = NULL;
536 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
537 if (lower_sect == NULL)
538 {
539 warning (_("no loadable sections found in added symbol-file %s"),
540 bfd_get_filename (abfd));
541 lower_offset = 0;
542 }
543 else
544 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
545
546 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
547 in ABFD. Section names are not unique - there can be multiple sections of
548 the same name. Also the sections of the same name do not have to be
549 adjacent to each other. Some sections may be present only in one of the
550 files. Even sections present in both files do not have to be in the same
551 order.
552
553 Use stable sort by name for the sections in both files. Then linearly
554 scan both lists matching as most of the entries as possible. */
555
556 addrs_sorted = addrs_section_sort (addrs);
557 my_cleanup = make_cleanup (xfree, addrs_sorted);
558
559 abfd_addrs = build_section_addr_info_from_bfd (abfd);
560 make_cleanup_free_section_addr_info (abfd_addrs);
561 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
562 make_cleanup (xfree, abfd_addrs_sorted);
563
564 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
565 ABFD_ADDRS_SORTED. */
566
567 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
568 * addrs->num_sections);
569 make_cleanup (xfree, addrs_to_abfd_addrs);
570
571 while (*addrs_sorted)
572 {
573 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
574
575 while (*abfd_addrs_sorted
576 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
577 sect_name) < 0)
578 abfd_addrs_sorted++;
579
580 if (*abfd_addrs_sorted
581 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
582 sect_name) == 0)
583 {
584 int index_in_addrs;
585
586 /* Make the found item directly addressable from ADDRS. */
587 index_in_addrs = *addrs_sorted - addrs->other;
588 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
589 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
590
591 /* Never use the same ABFD entry twice. */
592 abfd_addrs_sorted++;
593 }
594
595 addrs_sorted++;
596 }
597
598 /* Calculate offsets for the loadable sections.
599 FIXME! Sections must be in order of increasing loadable section
600 so that contiguous sections can use the lower-offset!!!
601
602 Adjust offsets if the segments are not contiguous.
603 If the section is contiguous, its offset should be set to
604 the offset of the highest loadable section lower than it
605 (the loadable section directly below it in memory).
606 this_offset = lower_offset = lower_addr - lower_orig_addr */
607
608 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
609 {
610 struct other_sections *sect = addrs_to_abfd_addrs[i];
611
612 if (sect)
613 {
614 /* This is the index used by BFD. */
615 addrs->other[i].sectindex = sect->sectindex;
616
617 if (addrs->other[i].addr != 0)
618 {
619 addrs->other[i].addr -= sect->addr;
620 lower_offset = addrs->other[i].addr;
621 }
622 else
623 addrs->other[i].addr = lower_offset;
624 }
625 else
626 {
627 /* addr_section_name transformation is not used for SECT_NAME. */
628 const char *sect_name = addrs->other[i].name;
629
630 /* This section does not exist in ABFD, which is normally
631 unexpected and we want to issue a warning.
632
633 However, the ELF prelinker does create a few sections which are
634 marked in the main executable as loadable (they are loaded in
635 memory from the DYNAMIC segment) and yet are not present in
636 separate debug info files. This is fine, and should not cause
637 a warning. Shared libraries contain just the section
638 ".gnu.liblist" but it is not marked as loadable there. There is
639 no other way to identify them than by their name as the sections
640 created by prelink have no special flags.
641
642 For the sections `.bss' and `.sbss' see addr_section_name. */
643
644 if (!(strcmp (sect_name, ".gnu.liblist") == 0
645 || strcmp (sect_name, ".gnu.conflict") == 0
646 || (strcmp (sect_name, ".bss") == 0
647 && i > 0
648 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
649 && addrs_to_abfd_addrs[i - 1] != NULL)
650 || (strcmp (sect_name, ".sbss") == 0
651 && i > 0
652 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
653 && addrs_to_abfd_addrs[i - 1] != NULL)))
654 warning (_("section %s not found in %s"), sect_name,
655 bfd_get_filename (abfd));
656
657 addrs->other[i].addr = 0;
658 addrs->other[i].sectindex = -1;
659 }
660 }
661
662 do_cleanups (my_cleanup);
663 }
664
665 /* Parse the user's idea of an offset for dynamic linking, into our idea
666 of how to represent it for fast symbol reading. This is the default
667 version of the sym_fns.sym_offsets function for symbol readers that
668 don't need to do anything special. It allocates a section_offsets table
669 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
670
671 void
default_symfile_offsets(struct objfile * objfile,struct section_addr_info * addrs)672 default_symfile_offsets (struct objfile *objfile,
673 struct section_addr_info *addrs)
674 {
675 objfile->num_sections = bfd_count_sections (objfile->obfd);
676 objfile->section_offsets = (struct section_offsets *)
677 obstack_alloc (&objfile->objfile_obstack,
678 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
679 relative_addr_info_to_section_offsets (objfile->section_offsets,
680 objfile->num_sections, addrs);
681
682 /* For relocatable files, all loadable sections will start at zero.
683 The zero is meaningless, so try to pick arbitrary addresses such
684 that no loadable sections overlap. This algorithm is quadratic,
685 but the number of sections in a single object file is generally
686 small. */
687 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
688 {
689 struct place_section_arg arg;
690 bfd *abfd = objfile->obfd;
691 asection *cur_sec;
692
693 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
694 /* We do not expect this to happen; just skip this step if the
695 relocatable file has a section with an assigned VMA. */
696 if (bfd_section_vma (abfd, cur_sec) != 0)
697 break;
698
699 if (cur_sec == NULL)
700 {
701 CORE_ADDR *offsets = objfile->section_offsets->offsets;
702
703 /* Pick non-overlapping offsets for sections the user did not
704 place explicitly. */
705 arg.offsets = objfile->section_offsets;
706 arg.lowest = 0;
707 bfd_map_over_sections (objfile->obfd, place_section, &arg);
708
709 /* Correctly filling in the section offsets is not quite
710 enough. Relocatable files have two properties that
711 (most) shared objects do not:
712
713 - Their debug information will contain relocations. Some
714 shared libraries do also, but many do not, so this can not
715 be assumed.
716
717 - If there are multiple code sections they will be loaded
718 at different relative addresses in memory than they are
719 in the objfile, since all sections in the file will start
720 at address zero.
721
722 Because GDB has very limited ability to map from an
723 address in debug info to the correct code section,
724 it relies on adding SECT_OFF_TEXT to things which might be
725 code. If we clear all the section offsets, and set the
726 section VMAs instead, then symfile_relocate_debug_section
727 will return meaningful debug information pointing at the
728 correct sections.
729
730 GDB has too many different data structures for section
731 addresses - a bfd, objfile, and so_list all have section
732 tables, as does exec_ops. Some of these could probably
733 be eliminated. */
734
735 for (cur_sec = abfd->sections; cur_sec != NULL;
736 cur_sec = cur_sec->next)
737 {
738 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
739 continue;
740
741 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
742 exec_set_section_address (bfd_get_filename (abfd),
743 cur_sec->index,
744 offsets[cur_sec->index]);
745 offsets[cur_sec->index] = 0;
746 }
747 }
748 }
749
750 /* Remember the bfd indexes for the .text, .data, .bss and
751 .rodata sections. */
752 init_objfile_sect_indices (objfile);
753 }
754
755
756 /* Divide the file into segments, which are individual relocatable units.
757 This is the default version of the sym_fns.sym_segments function for
758 symbol readers that do not have an explicit representation of segments.
759 It assumes that object files do not have segments, and fully linked
760 files have a single segment. */
761
762 struct symfile_segment_data *
default_symfile_segments(bfd * abfd)763 default_symfile_segments (bfd *abfd)
764 {
765 int num_sections, i;
766 asection *sect;
767 struct symfile_segment_data *data;
768 CORE_ADDR low, high;
769
770 /* Relocatable files contain enough information to position each
771 loadable section independently; they should not be relocated
772 in segments. */
773 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
774 return NULL;
775
776 /* Make sure there is at least one loadable section in the file. */
777 for (sect = abfd->sections; sect != NULL; sect = sect->next)
778 {
779 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
780 continue;
781
782 break;
783 }
784 if (sect == NULL)
785 return NULL;
786
787 low = bfd_get_section_vma (abfd, sect);
788 high = low + bfd_get_section_size (sect);
789
790 data = XZALLOC (struct symfile_segment_data);
791 data->num_segments = 1;
792 data->segment_bases = XCALLOC (1, CORE_ADDR);
793 data->segment_sizes = XCALLOC (1, CORE_ADDR);
794
795 num_sections = bfd_count_sections (abfd);
796 data->segment_info = XCALLOC (num_sections, int);
797
798 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
799 {
800 CORE_ADDR vma;
801
802 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
803 continue;
804
805 vma = bfd_get_section_vma (abfd, sect);
806 if (vma < low)
807 low = vma;
808 if (vma + bfd_get_section_size (sect) > high)
809 high = vma + bfd_get_section_size (sect);
810
811 data->segment_info[i] = 1;
812 }
813
814 data->segment_bases[0] = low;
815 data->segment_sizes[0] = high - low;
816
817 return data;
818 }
819
820 /* This is a convenience function to call sym_read for OBJFILE and
821 possibly force the partial symbols to be read. */
822
823 static void
read_symbols(struct objfile * objfile,int add_flags)824 read_symbols (struct objfile *objfile, int add_flags)
825 {
826 (*objfile->sf->sym_read) (objfile, add_flags);
827
828 /* find_separate_debug_file_in_section should be called only if there is
829 single binary with no existing separate debug info file. */
830 if (!objfile_has_partial_symbols (objfile)
831 && objfile->separate_debug_objfile == NULL
832 && objfile->separate_debug_objfile_backlink == NULL)
833 {
834 bfd *abfd = find_separate_debug_file_in_section (objfile);
835 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
836
837 if (abfd != NULL)
838 symbol_file_add_separate (abfd, add_flags, objfile);
839
840 do_cleanups (cleanup);
841 }
842 if ((add_flags & SYMFILE_NO_READ) == 0)
843 require_partial_symbols (objfile, 0);
844 }
845
846 /* Initialize entry point information for this objfile. */
847
848 static void
init_entry_point_info(struct objfile * objfile)849 init_entry_point_info (struct objfile *objfile)
850 {
851 /* Save startup file's range of PC addresses to help blockframe.c
852 decide where the bottom of the stack is. */
853
854 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
855 {
856 /* Executable file -- record its entry point so we'll recognize
857 the startup file because it contains the entry point. */
858 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
859 objfile->ei.entry_point_p = 1;
860 }
861 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
862 && bfd_get_start_address (objfile->obfd) != 0)
863 {
864 /* Some shared libraries may have entry points set and be
865 runnable. There's no clear way to indicate this, so just check
866 for values other than zero. */
867 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
868 objfile->ei.entry_point_p = 1;
869 }
870 else
871 {
872 /* Examination of non-executable.o files. Short-circuit this stuff. */
873 objfile->ei.entry_point_p = 0;
874 }
875
876 if (objfile->ei.entry_point_p)
877 {
878 CORE_ADDR entry_point = objfile->ei.entry_point;
879
880 /* Make certain that the address points at real code, and not a
881 function descriptor. */
882 entry_point
883 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
884 entry_point,
885 ¤t_target);
886
887 /* Remove any ISA markers, so that this matches entries in the
888 symbol table. */
889 objfile->ei.entry_point
890 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
891 }
892 }
893
894 /* Process a symbol file, as either the main file or as a dynamically
895 loaded file.
896
897 This function does not set the OBJFILE's entry-point info.
898
899 OBJFILE is where the symbols are to be read from.
900
901 ADDRS is the list of section load addresses. If the user has given
902 an 'add-symbol-file' command, then this is the list of offsets and
903 addresses he or she provided as arguments to the command; or, if
904 we're handling a shared library, these are the actual addresses the
905 sections are loaded at, according to the inferior's dynamic linker
906 (as gleaned by GDB's shared library code). We convert each address
907 into an offset from the section VMA's as it appears in the object
908 file, and then call the file's sym_offsets function to convert this
909 into a format-specific offset table --- a `struct section_offsets'.
910 If ADDRS is non-zero, OFFSETS must be zero.
911
912 OFFSETS is a table of section offsets already in the right
913 format-specific representation. NUM_OFFSETS is the number of
914 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
915 assume this is the proper table the call to sym_offsets described
916 above would produce. Instead of calling sym_offsets, we just dump
917 it right into objfile->section_offsets. (When we're re-reading
918 symbols from an objfile, we don't have the original load address
919 list any more; all we have is the section offset table.) If
920 OFFSETS is non-zero, ADDRS must be zero.
921
922 ADD_FLAGS encodes verbosity level, whether this is main symbol or
923 an extra symbol file such as dynamically loaded code, and wether
924 breakpoint reset should be deferred. */
925
926 static void
syms_from_objfile_1(struct objfile * objfile,struct section_addr_info * addrs,struct section_offsets * offsets,int num_offsets,int add_flags)927 syms_from_objfile_1 (struct objfile *objfile,
928 struct section_addr_info *addrs,
929 struct section_offsets *offsets,
930 int num_offsets,
931 int add_flags)
932 {
933 struct section_addr_info *local_addr = NULL;
934 struct cleanup *old_chain;
935 const int mainline = add_flags & SYMFILE_MAINLINE;
936
937 gdb_assert (! (addrs && offsets));
938
939 objfile->sf = find_sym_fns (objfile->obfd);
940
941 if (objfile->sf == NULL)
942 {
943 /* No symbols to load, but we still need to make sure
944 that the section_offsets table is allocated. */
945 int num_sections = bfd_count_sections (objfile->obfd);
946 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
947
948 objfile->num_sections = num_sections;
949 objfile->section_offsets
950 = obstack_alloc (&objfile->objfile_obstack, size);
951 memset (objfile->section_offsets, 0, size);
952 return;
953 }
954
955 /* Make sure that partially constructed symbol tables will be cleaned up
956 if an error occurs during symbol reading. */
957 old_chain = make_cleanup_free_objfile (objfile);
958
959 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
960 list. We now establish the convention that an addr of zero means
961 no load address was specified. */
962 if (! addrs && ! offsets)
963 {
964 local_addr
965 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
966 make_cleanup (xfree, local_addr);
967 addrs = local_addr;
968 }
969
970 /* Now either addrs or offsets is non-zero. */
971
972 if (mainline)
973 {
974 /* We will modify the main symbol table, make sure that all its users
975 will be cleaned up if an error occurs during symbol reading. */
976 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
977
978 /* Since no error yet, throw away the old symbol table. */
979
980 if (symfile_objfile != NULL)
981 {
982 free_objfile (symfile_objfile);
983 gdb_assert (symfile_objfile == NULL);
984 }
985
986 /* Currently we keep symbols from the add-symbol-file command.
987 If the user wants to get rid of them, they should do "symbol-file"
988 without arguments first. Not sure this is the best behavior
989 (PR 2207). */
990
991 (*objfile->sf->sym_new_init) (objfile);
992 }
993
994 /* Convert addr into an offset rather than an absolute address.
995 We find the lowest address of a loaded segment in the objfile,
996 and assume that <addr> is where that got loaded.
997
998 We no longer warn if the lowest section is not a text segment (as
999 happens for the PA64 port. */
1000 if (addrs && addrs->other[0].name)
1001 addr_info_make_relative (addrs, objfile->obfd);
1002
1003 /* Initialize symbol reading routines for this objfile, allow complaints to
1004 appear for this new file, and record how verbose to be, then do the
1005 initial symbol reading for this file. */
1006
1007 (*objfile->sf->sym_init) (objfile);
1008 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1009
1010 if (addrs)
1011 (*objfile->sf->sym_offsets) (objfile, addrs);
1012 else
1013 {
1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1015
1016 /* Just copy in the offset table directly as given to us. */
1017 objfile->num_sections = num_offsets;
1018 objfile->section_offsets
1019 = ((struct section_offsets *)
1020 obstack_alloc (&objfile->objfile_obstack, size));
1021 memcpy (objfile->section_offsets, offsets, size);
1022
1023 init_objfile_sect_indices (objfile);
1024 }
1025
1026 read_symbols (objfile, add_flags);
1027
1028 /* Discard cleanups as symbol reading was successful. */
1029
1030 discard_cleanups (old_chain);
1031 xfree (local_addr);
1032 }
1033
1034 /* Same as syms_from_objfile_1, but also initializes the objfile
1035 entry-point info. */
1036
1037 void
syms_from_objfile(struct objfile * objfile,struct section_addr_info * addrs,struct section_offsets * offsets,int num_offsets,int add_flags)1038 syms_from_objfile (struct objfile *objfile,
1039 struct section_addr_info *addrs,
1040 struct section_offsets *offsets,
1041 int num_offsets,
1042 int add_flags)
1043 {
1044 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1045 init_entry_point_info (objfile);
1046 }
1047
1048 /* Perform required actions after either reading in the initial
1049 symbols for a new objfile, or mapping in the symbols from a reusable
1050 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1051
1052 void
new_symfile_objfile(struct objfile * objfile,int add_flags)1053 new_symfile_objfile (struct objfile *objfile, int add_flags)
1054 {
1055 /* If this is the main symbol file we have to clean up all users of the
1056 old main symbol file. Otherwise it is sufficient to fixup all the
1057 breakpoints that may have been redefined by this symbol file. */
1058 if (add_flags & SYMFILE_MAINLINE)
1059 {
1060 /* OK, make it the "real" symbol file. */
1061 symfile_objfile = objfile;
1062
1063 clear_symtab_users (add_flags);
1064 }
1065 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1066 {
1067 breakpoint_re_set ();
1068 }
1069
1070 /* We're done reading the symbol file; finish off complaints. */
1071 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1072 }
1073
1074 /* Process a symbol file, as either the main file or as a dynamically
1075 loaded file.
1076
1077 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1078 A new reference is acquired by this function.
1079
1080 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1081 extra, such as dynamically loaded code, and what to do with breakpoins.
1082
1083 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1084 syms_from_objfile, above.
1085 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1086
1087 PARENT is the original objfile if ABFD is a separate debug info file.
1088 Otherwise PARENT is NULL.
1089
1090 Upon success, returns a pointer to the objfile that was added.
1091 Upon failure, jumps back to command level (never returns). */
1092
1093 static struct objfile *
symbol_file_add_with_addrs_or_offsets(bfd * abfd,int add_flags,struct section_addr_info * addrs,struct section_offsets * offsets,int num_offsets,int flags,struct objfile * parent)1094 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1095 int add_flags,
1096 struct section_addr_info *addrs,
1097 struct section_offsets *offsets,
1098 int num_offsets,
1099 int flags, struct objfile *parent)
1100 {
1101 struct objfile *objfile;
1102 const char *name = bfd_get_filename (abfd);
1103 const int from_tty = add_flags & SYMFILE_VERBOSE;
1104 const int mainline = add_flags & SYMFILE_MAINLINE;
1105 const int should_print = ((from_tty || info_verbose)
1106 && (readnow_symbol_files
1107 || (add_flags & SYMFILE_NO_READ) == 0));
1108
1109 if (readnow_symbol_files)
1110 {
1111 flags |= OBJF_READNOW;
1112 add_flags &= ~SYMFILE_NO_READ;
1113 }
1114
1115 /* Give user a chance to burp if we'd be
1116 interactively wiping out any existing symbols. */
1117
1118 if ((have_full_symbols () || have_partial_symbols ())
1119 && mainline
1120 && from_tty
1121 && !query (_("Load new symbol table from \"%s\"? "), name))
1122 error (_("Not confirmed."));
1123
1124 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1125
1126 if (parent)
1127 add_separate_debug_objfile (objfile, parent);
1128
1129 /* We either created a new mapped symbol table, mapped an existing
1130 symbol table file which has not had initial symbol reading
1131 performed, or need to read an unmapped symbol table. */
1132 if (should_print)
1133 {
1134 if (deprecated_pre_add_symbol_hook)
1135 deprecated_pre_add_symbol_hook (name);
1136 else
1137 {
1138 printf_unfiltered (_("Reading symbols from %s..."), name);
1139 wrap_here ("");
1140 gdb_flush (gdb_stdout);
1141 }
1142 }
1143 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1144 add_flags);
1145
1146 /* We now have at least a partial symbol table. Check to see if the
1147 user requested that all symbols be read on initial access via either
1148 the gdb startup command line or on a per symbol file basis. Expand
1149 all partial symbol tables for this objfile if so. */
1150
1151 if ((flags & OBJF_READNOW))
1152 {
1153 if (should_print)
1154 {
1155 printf_unfiltered (_("expanding to full symbols..."));
1156 wrap_here ("");
1157 gdb_flush (gdb_stdout);
1158 }
1159
1160 if (objfile->sf)
1161 objfile->sf->qf->expand_all_symtabs (objfile);
1162 }
1163
1164 if (should_print && !objfile_has_symbols (objfile))
1165 {
1166 wrap_here ("");
1167 printf_unfiltered (_("(no debugging symbols found)..."));
1168 wrap_here ("");
1169 }
1170
1171 if (should_print)
1172 {
1173 if (deprecated_post_add_symbol_hook)
1174 deprecated_post_add_symbol_hook ();
1175 else
1176 printf_unfiltered (_("done.\n"));
1177 }
1178
1179 /* We print some messages regardless of whether 'from_tty ||
1180 info_verbose' is true, so make sure they go out at the right
1181 time. */
1182 gdb_flush (gdb_stdout);
1183
1184 if (objfile->sf == NULL)
1185 {
1186 observer_notify_new_objfile (objfile);
1187 return objfile; /* No symbols. */
1188 }
1189
1190 new_symfile_objfile (objfile, add_flags);
1191
1192 observer_notify_new_objfile (objfile);
1193
1194 bfd_cache_close_all ();
1195 return (objfile);
1196 }
1197
1198 /* Add BFD as a separate debug file for OBJFILE. */
1199
1200 void
symbol_file_add_separate(bfd * bfd,int symfile_flags,struct objfile * objfile)1201 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1202 {
1203 struct objfile *new_objfile;
1204 struct section_addr_info *sap;
1205 struct cleanup *my_cleanup;
1206
1207 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1208 because sections of BFD may not match sections of OBJFILE and because
1209 vma may have been modified by tools such as prelink. */
1210 sap = build_section_addr_info_from_objfile (objfile);
1211 my_cleanup = make_cleanup_free_section_addr_info (sap);
1212
1213 new_objfile = symbol_file_add_with_addrs_or_offsets
1214 (bfd, symfile_flags,
1215 sap, NULL, 0,
1216 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1217 | OBJF_USERLOADED),
1218 objfile);
1219
1220 do_cleanups (my_cleanup);
1221 }
1222
1223 /* Process the symbol file ABFD, as either the main file or as a
1224 dynamically loaded file.
1225
1226 See symbol_file_add_with_addrs_or_offsets's comments for
1227 details. */
1228 struct objfile *
symbol_file_add_from_bfd(bfd * abfd,int add_flags,struct section_addr_info * addrs,int flags,struct objfile * parent)1229 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1230 struct section_addr_info *addrs,
1231 int flags, struct objfile *parent)
1232 {
1233 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1234 flags, parent);
1235 }
1236
1237
1238 /* Process a symbol file, as either the main file or as a dynamically
1239 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1240 for details. */
1241 struct objfile *
symbol_file_add(char * name,int add_flags,struct section_addr_info * addrs,int flags)1242 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1243 int flags)
1244 {
1245 bfd *bfd = symfile_bfd_open (name);
1246 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1247 struct objfile *objf;
1248
1249 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1250 do_cleanups (cleanup);
1251 return objf;
1252 }
1253
1254
1255 /* Call symbol_file_add() with default values and update whatever is
1256 affected by the loading of a new main().
1257 Used when the file is supplied in the gdb command line
1258 and by some targets with special loading requirements.
1259 The auxiliary function, symbol_file_add_main_1(), has the flags
1260 argument for the switches that can only be specified in the symbol_file
1261 command itself. */
1262
1263 void
symbol_file_add_main(char * args,int from_tty)1264 symbol_file_add_main (char *args, int from_tty)
1265 {
1266 symbol_file_add_main_1 (args, from_tty, 0);
1267 }
1268
1269 static void
symbol_file_add_main_1(char * args,int from_tty,int flags)1270 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1271 {
1272 const int add_flags = (current_inferior ()->symfile_flags
1273 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1274
1275 symbol_file_add (args, add_flags, NULL, flags);
1276
1277 /* Getting new symbols may change our opinion about
1278 what is frameless. */
1279 reinit_frame_cache ();
1280
1281 if ((flags & SYMFILE_NO_READ) == 0)
1282 set_initial_language ();
1283 }
1284
1285 void
symbol_file_clear(int from_tty)1286 symbol_file_clear (int from_tty)
1287 {
1288 if ((have_full_symbols () || have_partial_symbols ())
1289 && from_tty
1290 && (symfile_objfile
1291 ? !query (_("Discard symbol table from `%s'? "),
1292 symfile_objfile->name)
1293 : !query (_("Discard symbol table? "))))
1294 error (_("Not confirmed."));
1295
1296 /* solib descriptors may have handles to objfiles. Wipe them before their
1297 objfiles get stale by free_all_objfiles. */
1298 no_shared_libraries (NULL, from_tty);
1299
1300 free_all_objfiles ();
1301
1302 gdb_assert (symfile_objfile == NULL);
1303 if (from_tty)
1304 printf_unfiltered (_("No symbol file now.\n"));
1305 }
1306
1307 static char *
get_debug_link_info(struct objfile * objfile,unsigned long * crc32_out)1308 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1309 {
1310 asection *sect;
1311 bfd_size_type debuglink_size;
1312 unsigned long crc32;
1313 char *contents;
1314 int crc_offset;
1315
1316 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1317
1318 if (sect == NULL)
1319 return NULL;
1320
1321 debuglink_size = bfd_section_size (objfile->obfd, sect);
1322
1323 contents = xmalloc (debuglink_size);
1324 bfd_get_section_contents (objfile->obfd, sect, contents,
1325 (file_ptr)0, (bfd_size_type)debuglink_size);
1326
1327 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1328 crc_offset = strlen (contents) + 1;
1329 crc_offset = (crc_offset + 3) & ~3;
1330
1331 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1332
1333 *crc32_out = crc32;
1334 return contents;
1335 }
1336
1337 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1338 return 1. Otherwise print a warning and return 0. ABFD seek position is
1339 not preserved. */
1340
1341 static int
get_file_crc(bfd * abfd,unsigned long * file_crc_return)1342 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1343 {
1344 unsigned long file_crc = 0;
1345
1346 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1347 {
1348 warning (_("Problem reading \"%s\" for CRC: %s"),
1349 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1350 return 0;
1351 }
1352
1353 for (;;)
1354 {
1355 gdb_byte buffer[8 * 1024];
1356 bfd_size_type count;
1357
1358 count = bfd_bread (buffer, sizeof (buffer), abfd);
1359 if (count == (bfd_size_type) -1)
1360 {
1361 warning (_("Problem reading \"%s\" for CRC: %s"),
1362 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1363 return 0;
1364 }
1365 if (count == 0)
1366 break;
1367 file_crc = bfd_calc_gnu_debuglink_crc32 (file_crc, buffer, count);
1368 }
1369
1370 *file_crc_return = file_crc;
1371 return 1;
1372 }
1373
1374 static int
separate_debug_file_exists(const char * name,unsigned long crc,struct objfile * parent_objfile)1375 separate_debug_file_exists (const char *name, unsigned long crc,
1376 struct objfile *parent_objfile)
1377 {
1378 unsigned long file_crc;
1379 int file_crc_p;
1380 bfd *abfd;
1381 struct stat parent_stat, abfd_stat;
1382 int verified_as_different;
1383
1384 /* Find a separate debug info file as if symbols would be present in
1385 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1386 section can contain just the basename of PARENT_OBJFILE without any
1387 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1388 the separate debug infos with the same basename can exist. */
1389
1390 if (filename_cmp (name, parent_objfile->name) == 0)
1391 return 0;
1392
1393 abfd = gdb_bfd_open_maybe_remote (name);
1394
1395 if (!abfd)
1396 return 0;
1397
1398 /* Verify symlinks were not the cause of filename_cmp name difference above.
1399
1400 Some operating systems, e.g. Windows, do not provide a meaningful
1401 st_ino; they always set it to zero. (Windows does provide a
1402 meaningful st_dev.) Do not indicate a duplicate library in that
1403 case. While there is no guarantee that a system that provides
1404 meaningful inode numbers will never set st_ino to zero, this is
1405 merely an optimization, so we do not need to worry about false
1406 negatives. */
1407
1408 if (bfd_stat (abfd, &abfd_stat) == 0
1409 && abfd_stat.st_ino != 0
1410 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1411 {
1412 if (abfd_stat.st_dev == parent_stat.st_dev
1413 && abfd_stat.st_ino == parent_stat.st_ino)
1414 {
1415 gdb_bfd_unref (abfd);
1416 return 0;
1417 }
1418 verified_as_different = 1;
1419 }
1420 else
1421 verified_as_different = 0;
1422
1423 file_crc_p = get_file_crc (abfd, &file_crc);
1424
1425 gdb_bfd_unref (abfd);
1426
1427 if (!file_crc_p)
1428 return 0;
1429
1430 if (crc != file_crc)
1431 {
1432 /* If one (or both) the files are accessed for example the via "remote:"
1433 gdbserver way it does not support the bfd_stat operation. Verify
1434 whether those two files are not the same manually. */
1435
1436 if (!verified_as_different && !parent_objfile->crc32_p)
1437 {
1438 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1439 &parent_objfile->crc32);
1440 if (!parent_objfile->crc32_p)
1441 return 0;
1442 }
1443
1444 if (verified_as_different || parent_objfile->crc32 != file_crc)
1445 warning (_("the debug information found in \"%s\""
1446 " does not match \"%s\" (CRC mismatch).\n"),
1447 name, parent_objfile->name);
1448
1449 return 0;
1450 }
1451
1452 return 1;
1453 }
1454
1455 char *debug_file_directory = NULL;
1456 static void
show_debug_file_directory(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)1457 show_debug_file_directory (struct ui_file *file, int from_tty,
1458 struct cmd_list_element *c, const char *value)
1459 {
1460 fprintf_filtered (file,
1461 _("The directory where separate debug "
1462 "symbols are searched for is \"%s\".\n"),
1463 value);
1464 }
1465
1466 #if ! defined (DEBUG_SUBDIRECTORY)
1467 #define DEBUG_SUBDIRECTORY ".debug"
1468 #endif
1469
1470 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1471 where the original file resides (may not be the same as
1472 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1473 looking for. Returns the name of the debuginfo, of NULL. */
1474
1475 static char *
find_separate_debug_file(const char * dir,const char * canon_dir,const char * debuglink,unsigned long crc32,struct objfile * objfile)1476 find_separate_debug_file (const char *dir,
1477 const char *canon_dir,
1478 const char *debuglink,
1479 unsigned long crc32, struct objfile *objfile)
1480 {
1481 char *debugdir;
1482 char *debugfile;
1483 int i;
1484 VEC (char_ptr) *debugdir_vec;
1485 struct cleanup *back_to;
1486 int ix;
1487
1488 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1489 i = strlen (dir);
1490 if (canon_dir != NULL && strlen (canon_dir) > i)
1491 i = strlen (canon_dir);
1492
1493 debugfile = xmalloc (strlen (debug_file_directory) + 1
1494 + i
1495 + strlen (DEBUG_SUBDIRECTORY)
1496 + strlen ("/")
1497 + strlen (debuglink)
1498 + 1);
1499
1500 /* First try in the same directory as the original file. */
1501 strcpy (debugfile, dir);
1502 strcat (debugfile, debuglink);
1503
1504 if (separate_debug_file_exists (debugfile, crc32, objfile))
1505 return debugfile;
1506
1507 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1508 strcpy (debugfile, dir);
1509 strcat (debugfile, DEBUG_SUBDIRECTORY);
1510 strcat (debugfile, "/");
1511 strcat (debugfile, debuglink);
1512
1513 if (separate_debug_file_exists (debugfile, crc32, objfile))
1514 return debugfile;
1515
1516 /* Then try in the global debugfile directories.
1517
1518 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1519 cause "/..." lookups. */
1520
1521 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1522 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1523
1524 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1525 {
1526 strcpy (debugfile, debugdir);
1527 strcat (debugfile, "/");
1528 strcat (debugfile, dir);
1529 strcat (debugfile, debuglink);
1530
1531 if (separate_debug_file_exists (debugfile, crc32, objfile))
1532 return debugfile;
1533
1534 /* If the file is in the sysroot, try using its base path in the
1535 global debugfile directory. */
1536 if (canon_dir != NULL
1537 && filename_ncmp (canon_dir, gdb_sysroot,
1538 strlen (gdb_sysroot)) == 0
1539 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1540 {
1541 strcpy (debugfile, debugdir);
1542 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1543 strcat (debugfile, "/");
1544 strcat (debugfile, debuglink);
1545
1546 if (separate_debug_file_exists (debugfile, crc32, objfile))
1547 return debugfile;
1548 }
1549 }
1550
1551 do_cleanups (back_to);
1552 xfree (debugfile);
1553 return NULL;
1554 }
1555
1556 /* Modify PATH to contain only "directory/" part of PATH.
1557 If there were no directory separators in PATH, PATH will be empty
1558 string on return. */
1559
1560 static void
terminate_after_last_dir_separator(char * path)1561 terminate_after_last_dir_separator (char *path)
1562 {
1563 int i;
1564
1565 /* Strip off the final filename part, leaving the directory name,
1566 followed by a slash. The directory can be relative or absolute. */
1567 for (i = strlen(path) - 1; i >= 0; i--)
1568 if (IS_DIR_SEPARATOR (path[i]))
1569 break;
1570
1571 /* If I is -1 then no directory is present there and DIR will be "". */
1572 path[i + 1] = '\0';
1573 }
1574
1575 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1576 Returns pathname, or NULL. */
1577
1578 char *
find_separate_debug_file_by_debuglink(struct objfile * objfile)1579 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1580 {
1581 char *debuglink;
1582 char *dir, *canon_dir;
1583 char *debugfile;
1584 unsigned long crc32;
1585 struct cleanup *cleanups;
1586
1587 debuglink = get_debug_link_info (objfile, &crc32);
1588
1589 if (debuglink == NULL)
1590 {
1591 /* There's no separate debug info, hence there's no way we could
1592 load it => no warning. */
1593 return NULL;
1594 }
1595
1596 cleanups = make_cleanup (xfree, debuglink);
1597 dir = xstrdup (objfile->name);
1598 make_cleanup (xfree, dir);
1599 terminate_after_last_dir_separator (dir);
1600 canon_dir = lrealpath (dir);
1601
1602 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1603 crc32, objfile);
1604 xfree (canon_dir);
1605
1606 if (debugfile == NULL)
1607 {
1608 #ifdef HAVE_LSTAT
1609 /* For PR gdb/9538, try again with realpath (if different from the
1610 original). */
1611
1612 struct stat st_buf;
1613
1614 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1615 {
1616 char *symlink_dir;
1617
1618 symlink_dir = lrealpath (objfile->name);
1619 if (symlink_dir != NULL)
1620 {
1621 make_cleanup (xfree, symlink_dir);
1622 terminate_after_last_dir_separator (symlink_dir);
1623 if (strcmp (dir, symlink_dir) != 0)
1624 {
1625 /* Different directory, so try using it. */
1626 debugfile = find_separate_debug_file (symlink_dir,
1627 symlink_dir,
1628 debuglink,
1629 crc32,
1630 objfile);
1631 }
1632 }
1633 }
1634 #endif /* HAVE_LSTAT */
1635 }
1636
1637 do_cleanups (cleanups);
1638 return debugfile;
1639 }
1640
1641
1642 /* This is the symbol-file command. Read the file, analyze its
1643 symbols, and add a struct symtab to a symtab list. The syntax of
1644 the command is rather bizarre:
1645
1646 1. The function buildargv implements various quoting conventions
1647 which are undocumented and have little or nothing in common with
1648 the way things are quoted (or not quoted) elsewhere in GDB.
1649
1650 2. Options are used, which are not generally used in GDB (perhaps
1651 "set mapped on", "set readnow on" would be better)
1652
1653 3. The order of options matters, which is contrary to GNU
1654 conventions (because it is confusing and inconvenient). */
1655
1656 void
symbol_file_command(char * args,int from_tty)1657 symbol_file_command (char *args, int from_tty)
1658 {
1659 dont_repeat ();
1660
1661 if (args == NULL)
1662 {
1663 symbol_file_clear (from_tty);
1664 }
1665 else
1666 {
1667 char **argv = gdb_buildargv (args);
1668 int flags = OBJF_USERLOADED;
1669 struct cleanup *cleanups;
1670 char *name = NULL;
1671
1672 cleanups = make_cleanup_freeargv (argv);
1673 while (*argv != NULL)
1674 {
1675 if (strcmp (*argv, "-readnow") == 0)
1676 flags |= OBJF_READNOW;
1677 else if (**argv == '-')
1678 error (_("unknown option `%s'"), *argv);
1679 else
1680 {
1681 symbol_file_add_main_1 (*argv, from_tty, flags);
1682 name = *argv;
1683 }
1684
1685 argv++;
1686 }
1687
1688 if (name == NULL)
1689 error (_("no symbol file name was specified"));
1690
1691 do_cleanups (cleanups);
1692 }
1693 }
1694
1695 /* Set the initial language.
1696
1697 FIXME: A better solution would be to record the language in the
1698 psymtab when reading partial symbols, and then use it (if known) to
1699 set the language. This would be a win for formats that encode the
1700 language in an easily discoverable place, such as DWARF. For
1701 stabs, we can jump through hoops looking for specially named
1702 symbols or try to intuit the language from the specific type of
1703 stabs we find, but we can't do that until later when we read in
1704 full symbols. */
1705
1706 void
set_initial_language(void)1707 set_initial_language (void)
1708 {
1709 enum language lang = language_unknown;
1710
1711 if (language_of_main != language_unknown)
1712 lang = language_of_main;
1713 else
1714 {
1715 const char *filename;
1716
1717 filename = find_main_filename ();
1718 if (filename != NULL)
1719 lang = deduce_language_from_filename (filename);
1720 }
1721
1722 if (lang == language_unknown)
1723 {
1724 /* Make C the default language */
1725 lang = language_c;
1726 }
1727
1728 set_language (lang);
1729 expected_language = current_language; /* Don't warn the user. */
1730 }
1731
1732 /* If NAME is a remote name open the file using remote protocol, otherwise
1733 open it normally. Returns a new reference to the BFD. On error,
1734 returns NULL with the BFD error set. */
1735
1736 bfd *
gdb_bfd_open_maybe_remote(const char * name)1737 gdb_bfd_open_maybe_remote (const char *name)
1738 {
1739 bfd *result;
1740
1741 if (remote_filename_p (name))
1742 result = remote_bfd_open (name, gnutarget);
1743 else
1744 result = gdb_bfd_open (name, gnutarget, -1);
1745
1746 return result;
1747 }
1748
1749
1750 /* Open the file specified by NAME and hand it off to BFD for
1751 preliminary analysis. Return a newly initialized bfd *, which
1752 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1753 absolute). In case of trouble, error() is called. */
1754
1755 bfd *
symfile_bfd_open(char * name)1756 symfile_bfd_open (char *name)
1757 {
1758 bfd *sym_bfd;
1759 int desc;
1760 char *absolute_name;
1761
1762 if (remote_filename_p (name))
1763 {
1764 sym_bfd = remote_bfd_open (name, gnutarget);
1765 if (!sym_bfd)
1766 error (_("`%s': can't open to read symbols: %s."), name,
1767 bfd_errmsg (bfd_get_error ()));
1768
1769 if (!bfd_check_format (sym_bfd, bfd_object))
1770 {
1771 make_cleanup_bfd_unref (sym_bfd);
1772 error (_("`%s': can't read symbols: %s."), name,
1773 bfd_errmsg (bfd_get_error ()));
1774 }
1775
1776 return sym_bfd;
1777 }
1778
1779 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1780
1781 /* Look down path for it, allocate 2nd new malloc'd copy. */
1782 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1783 O_RDONLY | O_BINARY, &absolute_name);
1784 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1785 if (desc < 0)
1786 {
1787 char *exename = alloca (strlen (name) + 5);
1788
1789 strcat (strcpy (exename, name), ".exe");
1790 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1791 O_RDONLY | O_BINARY, &absolute_name);
1792 }
1793 #endif
1794 if (desc < 0)
1795 {
1796 make_cleanup (xfree, name);
1797 perror_with_name (name);
1798 }
1799
1800 xfree (name);
1801 name = absolute_name;
1802 make_cleanup (xfree, name);
1803
1804 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1805 if (!sym_bfd)
1806 {
1807 make_cleanup (xfree, name);
1808 error (_("`%s': can't open to read symbols: %s."), name,
1809 bfd_errmsg (bfd_get_error ()));
1810 }
1811 bfd_set_cacheable (sym_bfd, 1);
1812
1813 if (!bfd_check_format (sym_bfd, bfd_object))
1814 {
1815 make_cleanup_bfd_unref (sym_bfd);
1816 error (_("`%s': can't read symbols: %s."), name,
1817 bfd_errmsg (bfd_get_error ()));
1818 }
1819
1820 return sym_bfd;
1821 }
1822
1823 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1824 the section was not found. */
1825
1826 int
get_section_index(struct objfile * objfile,char * section_name)1827 get_section_index (struct objfile *objfile, char *section_name)
1828 {
1829 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1830
1831 if (sect)
1832 return sect->index;
1833 else
1834 return -1;
1835 }
1836
1837 /* Link SF into the global symtab_fns list. Called on startup by the
1838 _initialize routine in each object file format reader, to register
1839 information about each format the reader is prepared to handle. */
1840
1841 void
add_symtab_fns(const struct sym_fns * sf)1842 add_symtab_fns (const struct sym_fns *sf)
1843 {
1844 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1845 }
1846
1847 /* Initialize OBJFILE to read symbols from its associated BFD. It
1848 either returns or calls error(). The result is an initialized
1849 struct sym_fns in the objfile structure, that contains cached
1850 information about the symbol file. */
1851
1852 static const struct sym_fns *
find_sym_fns(bfd * abfd)1853 find_sym_fns (bfd *abfd)
1854 {
1855 const struct sym_fns *sf;
1856 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1857 int i;
1858
1859 if (our_flavour == bfd_target_srec_flavour
1860 || our_flavour == bfd_target_ihex_flavour
1861 || our_flavour == bfd_target_tekhex_flavour)
1862 return NULL; /* No symbols. */
1863
1864 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1865 if (our_flavour == sf->sym_flavour)
1866 return sf;
1867
1868 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1869 bfd_get_target (abfd));
1870 }
1871
1872
1873 /* This function runs the load command of our current target. */
1874
1875 static void
load_command(char * arg,int from_tty)1876 load_command (char *arg, int from_tty)
1877 {
1878 dont_repeat ();
1879
1880 /* The user might be reloading because the binary has changed. Take
1881 this opportunity to check. */
1882 reopen_exec_file ();
1883 reread_symbols ();
1884
1885 if (arg == NULL)
1886 {
1887 char *parg;
1888 int count = 0;
1889
1890 parg = arg = get_exec_file (1);
1891
1892 /* Count how many \ " ' tab space there are in the name. */
1893 while ((parg = strpbrk (parg, "\\\"'\t ")))
1894 {
1895 parg++;
1896 count++;
1897 }
1898
1899 if (count)
1900 {
1901 /* We need to quote this string so buildargv can pull it apart. */
1902 char *temp = xmalloc (strlen (arg) + count + 1 );
1903 char *ptemp = temp;
1904 char *prev;
1905
1906 make_cleanup (xfree, temp);
1907
1908 prev = parg = arg;
1909 while ((parg = strpbrk (parg, "\\\"'\t ")))
1910 {
1911 strncpy (ptemp, prev, parg - prev);
1912 ptemp += parg - prev;
1913 prev = parg++;
1914 *ptemp++ = '\\';
1915 }
1916 strcpy (ptemp, prev);
1917
1918 arg = temp;
1919 }
1920 }
1921
1922 target_load (arg, from_tty);
1923
1924 /* After re-loading the executable, we don't really know which
1925 overlays are mapped any more. */
1926 overlay_cache_invalid = 1;
1927 }
1928
1929 /* This version of "load" should be usable for any target. Currently
1930 it is just used for remote targets, not inftarg.c or core files,
1931 on the theory that only in that case is it useful.
1932
1933 Avoiding xmodem and the like seems like a win (a) because we don't have
1934 to worry about finding it, and (b) On VMS, fork() is very slow and so
1935 we don't want to run a subprocess. On the other hand, I'm not sure how
1936 performance compares. */
1937
1938 static int validate_download = 0;
1939
1940 /* Callback service function for generic_load (bfd_map_over_sections). */
1941
1942 static void
add_section_size_callback(bfd * abfd,asection * asec,void * data)1943 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1944 {
1945 bfd_size_type *sum = data;
1946
1947 *sum += bfd_get_section_size (asec);
1948 }
1949
1950 /* Opaque data for load_section_callback. */
1951 struct load_section_data {
1952 CORE_ADDR load_offset;
1953 struct load_progress_data *progress_data;
1954 VEC(memory_write_request_s) *requests;
1955 };
1956
1957 /* Opaque data for load_progress. */
1958 struct load_progress_data {
1959 /* Cumulative data. */
1960 unsigned long write_count;
1961 unsigned long data_count;
1962 bfd_size_type total_size;
1963 };
1964
1965 /* Opaque data for load_progress for a single section. */
1966 struct load_progress_section_data {
1967 struct load_progress_data *cumulative;
1968
1969 /* Per-section data. */
1970 const char *section_name;
1971 ULONGEST section_sent;
1972 ULONGEST section_size;
1973 CORE_ADDR lma;
1974 gdb_byte *buffer;
1975 };
1976
1977 /* Target write callback routine for progress reporting. */
1978
1979 static void
load_progress(ULONGEST bytes,void * untyped_arg)1980 load_progress (ULONGEST bytes, void *untyped_arg)
1981 {
1982 struct load_progress_section_data *args = untyped_arg;
1983 struct load_progress_data *totals;
1984
1985 if (args == NULL)
1986 /* Writing padding data. No easy way to get at the cumulative
1987 stats, so just ignore this. */
1988 return;
1989
1990 totals = args->cumulative;
1991
1992 if (bytes == 0 && args->section_sent == 0)
1993 {
1994 /* The write is just starting. Let the user know we've started
1995 this section. */
1996 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1997 args->section_name, hex_string (args->section_size),
1998 paddress (target_gdbarch (), args->lma));
1999 return;
2000 }
2001
2002 if (validate_download)
2003 {
2004 /* Broken memories and broken monitors manifest themselves here
2005 when bring new computers to life. This doubles already slow
2006 downloads. */
2007 /* NOTE: cagney/1999-10-18: A more efficient implementation
2008 might add a verify_memory() method to the target vector and
2009 then use that. remote.c could implement that method using
2010 the ``qCRC'' packet. */
2011 gdb_byte *check = xmalloc (bytes);
2012 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
2013
2014 if (target_read_memory (args->lma, check, bytes) != 0)
2015 error (_("Download verify read failed at %s"),
2016 paddress (target_gdbarch (), args->lma));
2017 if (memcmp (args->buffer, check, bytes) != 0)
2018 error (_("Download verify compare failed at %s"),
2019 paddress (target_gdbarch (), args->lma));
2020 do_cleanups (verify_cleanups);
2021 }
2022 totals->data_count += bytes;
2023 args->lma += bytes;
2024 args->buffer += bytes;
2025 totals->write_count += 1;
2026 args->section_sent += bytes;
2027 if (check_quit_flag ()
2028 || (deprecated_ui_load_progress_hook != NULL
2029 && deprecated_ui_load_progress_hook (args->section_name,
2030 args->section_sent)))
2031 error (_("Canceled the download"));
2032
2033 if (deprecated_show_load_progress != NULL)
2034 deprecated_show_load_progress (args->section_name,
2035 args->section_sent,
2036 args->section_size,
2037 totals->data_count,
2038 totals->total_size);
2039 }
2040
2041 /* Callback service function for generic_load (bfd_map_over_sections). */
2042
2043 static void
load_section_callback(bfd * abfd,asection * asec,void * data)2044 load_section_callback (bfd *abfd, asection *asec, void *data)
2045 {
2046 struct memory_write_request *new_request;
2047 struct load_section_data *args = data;
2048 struct load_progress_section_data *section_data;
2049 bfd_size_type size = bfd_get_section_size (asec);
2050 gdb_byte *buffer;
2051 const char *sect_name = bfd_get_section_name (abfd, asec);
2052
2053 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2054 return;
2055
2056 if (size == 0)
2057 return;
2058
2059 new_request = VEC_safe_push (memory_write_request_s,
2060 args->requests, NULL);
2061 memset (new_request, 0, sizeof (struct memory_write_request));
2062 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2063 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2064 new_request->end = new_request->begin + size; /* FIXME Should size
2065 be in instead? */
2066 new_request->data = xmalloc (size);
2067 new_request->baton = section_data;
2068
2069 buffer = new_request->data;
2070
2071 section_data->cumulative = args->progress_data;
2072 section_data->section_name = sect_name;
2073 section_data->section_size = size;
2074 section_data->lma = new_request->begin;
2075 section_data->buffer = buffer;
2076
2077 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2078 }
2079
2080 /* Clean up an entire memory request vector, including load
2081 data and progress records. */
2082
2083 static void
clear_memory_write_data(void * arg)2084 clear_memory_write_data (void *arg)
2085 {
2086 VEC(memory_write_request_s) **vec_p = arg;
2087 VEC(memory_write_request_s) *vec = *vec_p;
2088 int i;
2089 struct memory_write_request *mr;
2090
2091 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2092 {
2093 xfree (mr->data);
2094 xfree (mr->baton);
2095 }
2096 VEC_free (memory_write_request_s, vec);
2097 }
2098
2099 void
generic_load(char * args,int from_tty)2100 generic_load (char *args, int from_tty)
2101 {
2102 bfd *loadfile_bfd;
2103 struct timeval start_time, end_time;
2104 char *filename;
2105 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2106 struct load_section_data cbdata;
2107 struct load_progress_data total_progress;
2108 struct ui_out *uiout = current_uiout;
2109
2110 CORE_ADDR entry;
2111 char **argv;
2112
2113 memset (&cbdata, 0, sizeof (cbdata));
2114 memset (&total_progress, 0, sizeof (total_progress));
2115 cbdata.progress_data = &total_progress;
2116
2117 make_cleanup (clear_memory_write_data, &cbdata.requests);
2118
2119 if (args == NULL)
2120 error_no_arg (_("file to load"));
2121
2122 argv = gdb_buildargv (args);
2123 make_cleanup_freeargv (argv);
2124
2125 filename = tilde_expand (argv[0]);
2126 make_cleanup (xfree, filename);
2127
2128 if (argv[1] != NULL)
2129 {
2130 const char *endptr;
2131
2132 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2133
2134 /* If the last word was not a valid number then
2135 treat it as a file name with spaces in. */
2136 if (argv[1] == endptr)
2137 error (_("Invalid download offset:%s."), argv[1]);
2138
2139 if (argv[2] != NULL)
2140 error (_("Too many parameters."));
2141 }
2142
2143 /* Open the file for loading. */
2144 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2145 if (loadfile_bfd == NULL)
2146 {
2147 perror_with_name (filename);
2148 return;
2149 }
2150
2151 make_cleanup_bfd_unref (loadfile_bfd);
2152
2153 if (!bfd_check_format (loadfile_bfd, bfd_object))
2154 {
2155 error (_("\"%s\" is not an object file: %s"), filename,
2156 bfd_errmsg (bfd_get_error ()));
2157 }
2158
2159 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2160 (void *) &total_progress.total_size);
2161
2162 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2163
2164 gettimeofday (&start_time, NULL);
2165
2166 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2167 load_progress) != 0)
2168 error (_("Load failed"));
2169
2170 gettimeofday (&end_time, NULL);
2171
2172 entry = bfd_get_start_address (loadfile_bfd);
2173 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2174 ui_out_text (uiout, "Start address ");
2175 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2176 ui_out_text (uiout, ", load size ");
2177 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2178 ui_out_text (uiout, "\n");
2179 /* We were doing this in remote-mips.c, I suspect it is right
2180 for other targets too. */
2181 regcache_write_pc (get_current_regcache (), entry);
2182
2183 /* Reset breakpoints, now that we have changed the load image. For
2184 instance, breakpoints may have been set (or reset, by
2185 post_create_inferior) while connected to the target but before we
2186 loaded the program. In that case, the prologue analyzer could
2187 have read instructions from the target to find the right
2188 breakpoint locations. Loading has changed the contents of that
2189 memory. */
2190
2191 breakpoint_re_set ();
2192
2193 /* FIXME: are we supposed to call symbol_file_add or not? According
2194 to a comment from remote-mips.c (where a call to symbol_file_add
2195 was commented out), making the call confuses GDB if more than one
2196 file is loaded in. Some targets do (e.g., remote-vx.c) but
2197 others don't (or didn't - perhaps they have all been deleted). */
2198
2199 print_transfer_performance (gdb_stdout, total_progress.data_count,
2200 total_progress.write_count,
2201 &start_time, &end_time);
2202
2203 do_cleanups (old_cleanups);
2204 }
2205
2206 /* Report how fast the transfer went. */
2207
2208 void
print_transfer_performance(struct ui_file * stream,unsigned long data_count,unsigned long write_count,const struct timeval * start_time,const struct timeval * end_time)2209 print_transfer_performance (struct ui_file *stream,
2210 unsigned long data_count,
2211 unsigned long write_count,
2212 const struct timeval *start_time,
2213 const struct timeval *end_time)
2214 {
2215 ULONGEST time_count;
2216 struct ui_out *uiout = current_uiout;
2217
2218 /* Compute the elapsed time in milliseconds, as a tradeoff between
2219 accuracy and overflow. */
2220 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2221 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2222
2223 ui_out_text (uiout, "Transfer rate: ");
2224 if (time_count > 0)
2225 {
2226 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2227
2228 if (ui_out_is_mi_like_p (uiout))
2229 {
2230 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2231 ui_out_text (uiout, " bits/sec");
2232 }
2233 else if (rate < 1024)
2234 {
2235 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2236 ui_out_text (uiout, " bytes/sec");
2237 }
2238 else
2239 {
2240 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2241 ui_out_text (uiout, " KB/sec");
2242 }
2243 }
2244 else
2245 {
2246 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2247 ui_out_text (uiout, " bits in <1 sec");
2248 }
2249 if (write_count > 0)
2250 {
2251 ui_out_text (uiout, ", ");
2252 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2253 ui_out_text (uiout, " bytes/write");
2254 }
2255 ui_out_text (uiout, ".\n");
2256 }
2257
2258 /* This function allows the addition of incrementally linked object files.
2259 It does not modify any state in the target, only in the debugger. */
2260 /* Note: ezannoni 2000-04-13 This function/command used to have a
2261 special case syntax for the rombug target (Rombug is the boot
2262 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2263 rombug case, the user doesn't need to supply a text address,
2264 instead a call to target_link() (in target.c) would supply the
2265 value to use. We are now discontinuing this type of ad hoc syntax. */
2266
2267 static void
add_symbol_file_command(char * args,int from_tty)2268 add_symbol_file_command (char *args, int from_tty)
2269 {
2270 struct gdbarch *gdbarch = get_current_arch ();
2271 char *filename = NULL;
2272 int flags = OBJF_USERLOADED;
2273 char *arg;
2274 int section_index = 0;
2275 int argcnt = 0;
2276 int sec_num = 0;
2277 int i;
2278 int expecting_sec_name = 0;
2279 int expecting_sec_addr = 0;
2280 char **argv;
2281
2282 struct sect_opt
2283 {
2284 char *name;
2285 char *value;
2286 };
2287
2288 struct section_addr_info *section_addrs;
2289 struct sect_opt *sect_opts = NULL;
2290 size_t num_sect_opts = 0;
2291 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2292
2293 num_sect_opts = 16;
2294 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2295 * sizeof (struct sect_opt));
2296
2297 dont_repeat ();
2298
2299 if (args == NULL)
2300 error (_("add-symbol-file takes a file name and an address"));
2301
2302 argv = gdb_buildargv (args);
2303 make_cleanup_freeargv (argv);
2304
2305 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2306 {
2307 /* Process the argument. */
2308 if (argcnt == 0)
2309 {
2310 /* The first argument is the file name. */
2311 filename = tilde_expand (arg);
2312 make_cleanup (xfree, filename);
2313 }
2314 else
2315 if (argcnt == 1)
2316 {
2317 /* The second argument is always the text address at which
2318 to load the program. */
2319 sect_opts[section_index].name = ".text";
2320 sect_opts[section_index].value = arg;
2321 if (++section_index >= num_sect_opts)
2322 {
2323 num_sect_opts *= 2;
2324 sect_opts = ((struct sect_opt *)
2325 xrealloc (sect_opts,
2326 num_sect_opts
2327 * sizeof (struct sect_opt)));
2328 }
2329 }
2330 else
2331 {
2332 /* It's an option (starting with '-') or it's an argument
2333 to an option. */
2334
2335 if (*arg == '-')
2336 {
2337 if (strcmp (arg, "-readnow") == 0)
2338 flags |= OBJF_READNOW;
2339 else if (strcmp (arg, "-s") == 0)
2340 {
2341 expecting_sec_name = 1;
2342 expecting_sec_addr = 1;
2343 }
2344 }
2345 else
2346 {
2347 if (expecting_sec_name)
2348 {
2349 sect_opts[section_index].name = arg;
2350 expecting_sec_name = 0;
2351 }
2352 else
2353 if (expecting_sec_addr)
2354 {
2355 sect_opts[section_index].value = arg;
2356 expecting_sec_addr = 0;
2357 if (++section_index >= num_sect_opts)
2358 {
2359 num_sect_opts *= 2;
2360 sect_opts = ((struct sect_opt *)
2361 xrealloc (sect_opts,
2362 num_sect_opts
2363 * sizeof (struct sect_opt)));
2364 }
2365 }
2366 else
2367 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2368 " [-readnow] [-s <secname> <addr>]*"));
2369 }
2370 }
2371 }
2372
2373 /* This command takes at least two arguments. The first one is a
2374 filename, and the second is the address where this file has been
2375 loaded. Abort now if this address hasn't been provided by the
2376 user. */
2377 if (section_index < 1)
2378 error (_("The address where %s has been loaded is missing"), filename);
2379
2380 /* Print the prompt for the query below. And save the arguments into
2381 a sect_addr_info structure to be passed around to other
2382 functions. We have to split this up into separate print
2383 statements because hex_string returns a local static
2384 string. */
2385
2386 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2387 section_addrs = alloc_section_addr_info (section_index);
2388 make_cleanup (xfree, section_addrs);
2389 for (i = 0; i < section_index; i++)
2390 {
2391 CORE_ADDR addr;
2392 char *val = sect_opts[i].value;
2393 char *sec = sect_opts[i].name;
2394
2395 addr = parse_and_eval_address (val);
2396
2397 /* Here we store the section offsets in the order they were
2398 entered on the command line. */
2399 section_addrs->other[sec_num].name = sec;
2400 section_addrs->other[sec_num].addr = addr;
2401 printf_unfiltered ("\t%s_addr = %s\n", sec,
2402 paddress (gdbarch, addr));
2403 sec_num++;
2404
2405 /* The object's sections are initialized when a
2406 call is made to build_objfile_section_table (objfile).
2407 This happens in reread_symbols.
2408 At this point, we don't know what file type this is,
2409 so we can't determine what section names are valid. */
2410 }
2411
2412 if (from_tty && (!query ("%s", "")))
2413 error (_("Not confirmed."));
2414
2415 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2416 section_addrs, flags);
2417
2418 /* Getting new symbols may change our opinion about what is
2419 frameless. */
2420 reinit_frame_cache ();
2421 do_cleanups (my_cleanups);
2422 }
2423
2424
2425 typedef struct objfile *objfilep;
2426
2427 DEF_VEC_P (objfilep);
2428
2429 /* Re-read symbols if a symbol-file has changed. */
2430 void
reread_symbols(void)2431 reread_symbols (void)
2432 {
2433 struct objfile *objfile;
2434 long new_modtime;
2435 struct stat new_statbuf;
2436 int res;
2437 VEC (objfilep) *new_objfiles = NULL;
2438 struct cleanup *all_cleanups;
2439
2440 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2441
2442 /* With the addition of shared libraries, this should be modified,
2443 the load time should be saved in the partial symbol tables, since
2444 different tables may come from different source files. FIXME.
2445 This routine should then walk down each partial symbol table
2446 and see if the symbol table that it originates from has been changed. */
2447
2448 for (objfile = object_files; objfile; objfile = objfile->next)
2449 {
2450 /* solib-sunos.c creates one objfile with obfd. */
2451 if (objfile->obfd == NULL)
2452 continue;
2453
2454 /* Separate debug objfiles are handled in the main objfile. */
2455 if (objfile->separate_debug_objfile_backlink)
2456 continue;
2457
2458 /* If this object is from an archive (what you usually create with
2459 `ar', often called a `static library' on most systems, though
2460 a `shared library' on AIX is also an archive), then you should
2461 stat on the archive name, not member name. */
2462 if (objfile->obfd->my_archive)
2463 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2464 else
2465 res = stat (objfile->name, &new_statbuf);
2466 if (res != 0)
2467 {
2468 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2469 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2470 objfile->name);
2471 continue;
2472 }
2473 new_modtime = new_statbuf.st_mtime;
2474 if (new_modtime != objfile->mtime)
2475 {
2476 struct cleanup *old_cleanups;
2477 struct section_offsets *offsets;
2478 int num_offsets;
2479 char *obfd_filename;
2480
2481 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2482 objfile->name);
2483
2484 /* There are various functions like symbol_file_add,
2485 symfile_bfd_open, syms_from_objfile, etc., which might
2486 appear to do what we want. But they have various other
2487 effects which we *don't* want. So we just do stuff
2488 ourselves. We don't worry about mapped files (for one thing,
2489 any mapped file will be out of date). */
2490
2491 /* If we get an error, blow away this objfile (not sure if
2492 that is the correct response for things like shared
2493 libraries). */
2494 old_cleanups = make_cleanup_free_objfile (objfile);
2495 /* We need to do this whenever any symbols go away. */
2496 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2497
2498 if (exec_bfd != NULL
2499 && filename_cmp (bfd_get_filename (objfile->obfd),
2500 bfd_get_filename (exec_bfd)) == 0)
2501 {
2502 /* Reload EXEC_BFD without asking anything. */
2503
2504 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2505 }
2506
2507 /* Keep the calls order approx. the same as in free_objfile. */
2508
2509 /* Free the separate debug objfiles. It will be
2510 automatically recreated by sym_read. */
2511 free_objfile_separate_debug (objfile);
2512
2513 /* Remove any references to this objfile in the global
2514 value lists. */
2515 preserve_values (objfile);
2516
2517 /* Nuke all the state that we will re-read. Much of the following
2518 code which sets things to NULL really is necessary to tell
2519 other parts of GDB that there is nothing currently there.
2520
2521 Try to keep the freeing order compatible with free_objfile. */
2522
2523 if (objfile->sf != NULL)
2524 {
2525 (*objfile->sf->sym_finish) (objfile);
2526 }
2527
2528 clear_objfile_data (objfile);
2529
2530 /* Clean up any state BFD has sitting around. */
2531 {
2532 struct bfd *obfd = objfile->obfd;
2533
2534 obfd_filename = bfd_get_filename (objfile->obfd);
2535 /* Open the new BFD before freeing the old one, so that
2536 the filename remains live. */
2537 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2538 if (objfile->obfd == NULL)
2539 {
2540 /* We have to make a cleanup and error here, rather
2541 than erroring later, because once we unref OBFD,
2542 OBFD_FILENAME will be freed. */
2543 make_cleanup_bfd_unref (obfd);
2544 error (_("Can't open %s to read symbols."), obfd_filename);
2545 }
2546 gdb_bfd_unref (obfd);
2547 }
2548
2549 objfile->name = bfd_get_filename (objfile->obfd);
2550 /* bfd_openr sets cacheable to true, which is what we want. */
2551 if (!bfd_check_format (objfile->obfd, bfd_object))
2552 error (_("Can't read symbols from %s: %s."), objfile->name,
2553 bfd_errmsg (bfd_get_error ()));
2554
2555 /* Save the offsets, we will nuke them with the rest of the
2556 objfile_obstack. */
2557 num_offsets = objfile->num_sections;
2558 offsets = ((struct section_offsets *)
2559 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2560 memcpy (offsets, objfile->section_offsets,
2561 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2562
2563 /* FIXME: Do we have to free a whole linked list, or is this
2564 enough? */
2565 if (objfile->global_psymbols.list)
2566 xfree (objfile->global_psymbols.list);
2567 memset (&objfile->global_psymbols, 0,
2568 sizeof (objfile->global_psymbols));
2569 if (objfile->static_psymbols.list)
2570 xfree (objfile->static_psymbols.list);
2571 memset (&objfile->static_psymbols, 0,
2572 sizeof (objfile->static_psymbols));
2573
2574 /* Free the obstacks for non-reusable objfiles. */
2575 psymbol_bcache_free (objfile->psymbol_cache);
2576 objfile->psymbol_cache = psymbol_bcache_init ();
2577 if (objfile->demangled_names_hash != NULL)
2578 {
2579 htab_delete (objfile->demangled_names_hash);
2580 objfile->demangled_names_hash = NULL;
2581 }
2582 obstack_free (&objfile->objfile_obstack, 0);
2583 objfile->sections = NULL;
2584 objfile->symtabs = NULL;
2585 objfile->psymtabs = NULL;
2586 objfile->psymtabs_addrmap = NULL;
2587 objfile->free_psymtabs = NULL;
2588 objfile->template_symbols = NULL;
2589 objfile->msymbols = NULL;
2590 objfile->minimal_symbol_count = 0;
2591 memset (&objfile->msymbol_hash, 0,
2592 sizeof (objfile->msymbol_hash));
2593 memset (&objfile->msymbol_demangled_hash, 0,
2594 sizeof (objfile->msymbol_demangled_hash));
2595
2596 set_objfile_per_bfd (objfile);
2597
2598 /* obstack_init also initializes the obstack so it is
2599 empty. We could use obstack_specify_allocation but
2600 gdb_obstack.h specifies the alloc/dealloc functions. */
2601 obstack_init (&objfile->objfile_obstack);
2602 build_objfile_section_table (objfile);
2603 terminate_minimal_symbol_table (objfile);
2604
2605 /* We use the same section offsets as from last time. I'm not
2606 sure whether that is always correct for shared libraries. */
2607 objfile->section_offsets = (struct section_offsets *)
2608 obstack_alloc (&objfile->objfile_obstack,
2609 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2610 memcpy (objfile->section_offsets, offsets,
2611 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2612 objfile->num_sections = num_offsets;
2613
2614 /* What the hell is sym_new_init for, anyway? The concept of
2615 distinguishing between the main file and additional files
2616 in this way seems rather dubious. */
2617 if (objfile == symfile_objfile)
2618 {
2619 (*objfile->sf->sym_new_init) (objfile);
2620 }
2621
2622 (*objfile->sf->sym_init) (objfile);
2623 clear_complaints (&symfile_complaints, 1, 1);
2624
2625 objfile->flags &= ~OBJF_PSYMTABS_READ;
2626 read_symbols (objfile, 0);
2627
2628 if (!objfile_has_symbols (objfile))
2629 {
2630 wrap_here ("");
2631 printf_unfiltered (_("(no debugging symbols found)\n"));
2632 wrap_here ("");
2633 }
2634
2635 /* We're done reading the symbol file; finish off complaints. */
2636 clear_complaints (&symfile_complaints, 0, 1);
2637
2638 /* Getting new symbols may change our opinion about what is
2639 frameless. */
2640
2641 reinit_frame_cache ();
2642
2643 /* Discard cleanups as symbol reading was successful. */
2644 discard_cleanups (old_cleanups);
2645
2646 /* If the mtime has changed between the time we set new_modtime
2647 and now, we *want* this to be out of date, so don't call stat
2648 again now. */
2649 objfile->mtime = new_modtime;
2650 init_entry_point_info (objfile);
2651
2652 VEC_safe_push (objfilep, new_objfiles, objfile);
2653 }
2654 }
2655
2656 if (new_objfiles)
2657 {
2658 int ix;
2659
2660 /* Notify objfiles that we've modified objfile sections. */
2661 objfiles_changed ();
2662
2663 clear_symtab_users (0);
2664
2665 /* clear_objfile_data for each objfile was called before freeing it and
2666 observer_notify_new_objfile (NULL) has been called by
2667 clear_symtab_users above. Notify the new files now. */
2668 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2669 observer_notify_new_objfile (objfile);
2670
2671 /* At least one objfile has changed, so we can consider that
2672 the executable we're debugging has changed too. */
2673 observer_notify_executable_changed ();
2674 }
2675
2676 do_cleanups (all_cleanups);
2677 }
2678
2679
2680
2681 typedef struct
2682 {
2683 char *ext;
2684 enum language lang;
2685 }
2686 filename_language;
2687
2688 static filename_language *filename_language_table;
2689 static int fl_table_size, fl_table_next;
2690
2691 static void
add_filename_language(char * ext,enum language lang)2692 add_filename_language (char *ext, enum language lang)
2693 {
2694 if (fl_table_next >= fl_table_size)
2695 {
2696 fl_table_size += 10;
2697 filename_language_table =
2698 xrealloc (filename_language_table,
2699 fl_table_size * sizeof (*filename_language_table));
2700 }
2701
2702 filename_language_table[fl_table_next].ext = xstrdup (ext);
2703 filename_language_table[fl_table_next].lang = lang;
2704 fl_table_next++;
2705 }
2706
2707 static char *ext_args;
2708 static void
show_ext_args(struct ui_file * file,int from_tty,struct cmd_list_element * c,const char * value)2709 show_ext_args (struct ui_file *file, int from_tty,
2710 struct cmd_list_element *c, const char *value)
2711 {
2712 fprintf_filtered (file,
2713 _("Mapping between filename extension "
2714 "and source language is \"%s\".\n"),
2715 value);
2716 }
2717
2718 static void
set_ext_lang_command(char * args,int from_tty,struct cmd_list_element * e)2719 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2720 {
2721 int i;
2722 char *cp = ext_args;
2723 enum language lang;
2724
2725 /* First arg is filename extension, starting with '.' */
2726 if (*cp != '.')
2727 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2728
2729 /* Find end of first arg. */
2730 while (*cp && !isspace (*cp))
2731 cp++;
2732
2733 if (*cp == '\0')
2734 error (_("'%s': two arguments required -- "
2735 "filename extension and language"),
2736 ext_args);
2737
2738 /* Null-terminate first arg. */
2739 *cp++ = '\0';
2740
2741 /* Find beginning of second arg, which should be a source language. */
2742 cp = skip_spaces (cp);
2743
2744 if (*cp == '\0')
2745 error (_("'%s': two arguments required -- "
2746 "filename extension and language"),
2747 ext_args);
2748
2749 /* Lookup the language from among those we know. */
2750 lang = language_enum (cp);
2751
2752 /* Now lookup the filename extension: do we already know it? */
2753 for (i = 0; i < fl_table_next; i++)
2754 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2755 break;
2756
2757 if (i >= fl_table_next)
2758 {
2759 /* New file extension. */
2760 add_filename_language (ext_args, lang);
2761 }
2762 else
2763 {
2764 /* Redefining a previously known filename extension. */
2765
2766 /* if (from_tty) */
2767 /* query ("Really make files of type %s '%s'?", */
2768 /* ext_args, language_str (lang)); */
2769
2770 xfree (filename_language_table[i].ext);
2771 filename_language_table[i].ext = xstrdup (ext_args);
2772 filename_language_table[i].lang = lang;
2773 }
2774 }
2775
2776 static void
info_ext_lang_command(char * args,int from_tty)2777 info_ext_lang_command (char *args, int from_tty)
2778 {
2779 int i;
2780
2781 printf_filtered (_("Filename extensions and the languages they represent:"));
2782 printf_filtered ("\n\n");
2783 for (i = 0; i < fl_table_next; i++)
2784 printf_filtered ("\t%s\t- %s\n",
2785 filename_language_table[i].ext,
2786 language_str (filename_language_table[i].lang));
2787 }
2788
2789 static void
init_filename_language_table(void)2790 init_filename_language_table (void)
2791 {
2792 if (fl_table_size == 0) /* Protect against repetition. */
2793 {
2794 fl_table_size = 20;
2795 fl_table_next = 0;
2796 filename_language_table =
2797 xmalloc (fl_table_size * sizeof (*filename_language_table));
2798 add_filename_language (".c", language_c);
2799 add_filename_language (".d", language_d);
2800 add_filename_language (".C", language_cplus);
2801 add_filename_language (".cc", language_cplus);
2802 add_filename_language (".cp", language_cplus);
2803 add_filename_language (".cpp", language_cplus);
2804 add_filename_language (".cxx", language_cplus);
2805 add_filename_language (".c++", language_cplus);
2806 add_filename_language (".java", language_java);
2807 add_filename_language (".class", language_java);
2808 add_filename_language (".m", language_objc);
2809 add_filename_language (".f", language_fortran);
2810 add_filename_language (".F", language_fortran);
2811 add_filename_language (".for", language_fortran);
2812 add_filename_language (".FOR", language_fortran);
2813 add_filename_language (".ftn", language_fortran);
2814 add_filename_language (".FTN", language_fortran);
2815 add_filename_language (".fpp", language_fortran);
2816 add_filename_language (".FPP", language_fortran);
2817 add_filename_language (".f90", language_fortran);
2818 add_filename_language (".F90", language_fortran);
2819 add_filename_language (".f95", language_fortran);
2820 add_filename_language (".F95", language_fortran);
2821 add_filename_language (".f03", language_fortran);
2822 add_filename_language (".F03", language_fortran);
2823 add_filename_language (".f08", language_fortran);
2824 add_filename_language (".F08", language_fortran);
2825 add_filename_language (".s", language_asm);
2826 add_filename_language (".sx", language_asm);
2827 add_filename_language (".S", language_asm);
2828 add_filename_language (".pas", language_pascal);
2829 add_filename_language (".p", language_pascal);
2830 add_filename_language (".pp", language_pascal);
2831 add_filename_language (".adb", language_ada);
2832 add_filename_language (".ads", language_ada);
2833 add_filename_language (".a", language_ada);
2834 add_filename_language (".ada", language_ada);
2835 add_filename_language (".dg", language_ada);
2836 }
2837 }
2838
2839 enum language
deduce_language_from_filename(const char * filename)2840 deduce_language_from_filename (const char *filename)
2841 {
2842 int i;
2843 char *cp;
2844
2845 if (filename != NULL)
2846 if ((cp = strrchr (filename, '.')) != NULL)
2847 for (i = 0; i < fl_table_next; i++)
2848 if (strcmp (cp, filename_language_table[i].ext) == 0)
2849 return filename_language_table[i].lang;
2850
2851 return language_unknown;
2852 }
2853
2854 /* allocate_symtab:
2855
2856 Allocate and partly initialize a new symbol table. Return a pointer
2857 to it. error() if no space.
2858
2859 Caller must set these fields:
2860 LINETABLE(symtab)
2861 symtab->blockvector
2862 symtab->dirname
2863 symtab->free_code
2864 symtab->free_ptr
2865 */
2866
2867 struct symtab *
allocate_symtab(const char * filename,struct objfile * objfile)2868 allocate_symtab (const char *filename, struct objfile *objfile)
2869 {
2870 struct symtab *symtab;
2871
2872 symtab = (struct symtab *)
2873 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2874 memset (symtab, 0, sizeof (*symtab));
2875 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2876 objfile->per_bfd->filename_cache);
2877 symtab->fullname = NULL;
2878 symtab->language = deduce_language_from_filename (filename);
2879 symtab->debugformat = "unknown";
2880
2881 /* Hook it to the objfile it comes from. */
2882
2883 symtab->objfile = objfile;
2884 symtab->next = objfile->symtabs;
2885 objfile->symtabs = symtab;
2886
2887 if (symtab_create_debug)
2888 {
2889 /* Be a bit clever with debugging messages, and don't print objfile
2890 every time, only when it changes. */
2891 static char *last_objfile_name = NULL;
2892
2893 if (last_objfile_name == NULL
2894 || strcmp (last_objfile_name, objfile->name) != 0)
2895 {
2896 xfree (last_objfile_name);
2897 last_objfile_name = xstrdup (objfile->name);
2898 fprintf_unfiltered (gdb_stdlog,
2899 "Creating one or more symtabs for objfile %s ...\n",
2900 last_objfile_name);
2901 }
2902 fprintf_unfiltered (gdb_stdlog,
2903 "Created symtab %s for module %s.\n",
2904 host_address_to_string (symtab), filename);
2905 }
2906
2907 return (symtab);
2908 }
2909
2910
2911 /* Reset all data structures in gdb which may contain references to symbol
2912 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2913
2914 void
clear_symtab_users(int add_flags)2915 clear_symtab_users (int add_flags)
2916 {
2917 /* Someday, we should do better than this, by only blowing away
2918 the things that really need to be blown. */
2919
2920 /* Clear the "current" symtab first, because it is no longer valid.
2921 breakpoint_re_set may try to access the current symtab. */
2922 clear_current_source_symtab_and_line ();
2923
2924 clear_displays ();
2925 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2926 breakpoint_re_set ();
2927 clear_last_displayed_sal ();
2928 clear_pc_function_cache ();
2929 observer_notify_new_objfile (NULL);
2930
2931 /* Clear globals which might have pointed into a removed objfile.
2932 FIXME: It's not clear which of these are supposed to persist
2933 between expressions and which ought to be reset each time. */
2934 expression_context_block = NULL;
2935 innermost_block = NULL;
2936
2937 /* Varobj may refer to old symbols, perform a cleanup. */
2938 varobj_invalidate ();
2939
2940 }
2941
2942 static void
clear_symtab_users_cleanup(void * ignore)2943 clear_symtab_users_cleanup (void *ignore)
2944 {
2945 clear_symtab_users (0);
2946 }
2947
2948 /* OVERLAYS:
2949 The following code implements an abstraction for debugging overlay sections.
2950
2951 The target model is as follows:
2952 1) The gnu linker will permit multiple sections to be mapped into the
2953 same VMA, each with its own unique LMA (or load address).
2954 2) It is assumed that some runtime mechanism exists for mapping the
2955 sections, one by one, from the load address into the VMA address.
2956 3) This code provides a mechanism for gdb to keep track of which
2957 sections should be considered to be mapped from the VMA to the LMA.
2958 This information is used for symbol lookup, and memory read/write.
2959 For instance, if a section has been mapped then its contents
2960 should be read from the VMA, otherwise from the LMA.
2961
2962 Two levels of debugger support for overlays are available. One is
2963 "manual", in which the debugger relies on the user to tell it which
2964 overlays are currently mapped. This level of support is
2965 implemented entirely in the core debugger, and the information about
2966 whether a section is mapped is kept in the objfile->obj_section table.
2967
2968 The second level of support is "automatic", and is only available if
2969 the target-specific code provides functionality to read the target's
2970 overlay mapping table, and translate its contents for the debugger
2971 (by updating the mapped state information in the obj_section tables).
2972
2973 The interface is as follows:
2974 User commands:
2975 overlay map <name> -- tell gdb to consider this section mapped
2976 overlay unmap <name> -- tell gdb to consider this section unmapped
2977 overlay list -- list the sections that GDB thinks are mapped
2978 overlay read-target -- get the target's state of what's mapped
2979 overlay off/manual/auto -- set overlay debugging state
2980 Functional interface:
2981 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2982 section, return that section.
2983 find_pc_overlay(pc): find any overlay section that contains
2984 the pc, either in its VMA or its LMA
2985 section_is_mapped(sect): true if overlay is marked as mapped
2986 section_is_overlay(sect): true if section's VMA != LMA
2987 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2988 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2989 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2990 overlay_mapped_address(...): map an address from section's LMA to VMA
2991 overlay_unmapped_address(...): map an address from section's VMA to LMA
2992 symbol_overlayed_address(...): Return a "current" address for symbol:
2993 either in VMA or LMA depending on whether
2994 the symbol's section is currently mapped. */
2995
2996 /* Overlay debugging state: */
2997
2998 enum overlay_debugging_state overlay_debugging = ovly_off;
2999 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3000
3001 /* Function: section_is_overlay (SECTION)
3002 Returns true if SECTION has VMA not equal to LMA, ie.
3003 SECTION is loaded at an address different from where it will "run". */
3004
3005 int
section_is_overlay(struct obj_section * section)3006 section_is_overlay (struct obj_section *section)
3007 {
3008 if (overlay_debugging && section)
3009 {
3010 bfd *abfd = section->objfile->obfd;
3011 asection *bfd_section = section->the_bfd_section;
3012
3013 if (bfd_section_lma (abfd, bfd_section) != 0
3014 && bfd_section_lma (abfd, bfd_section)
3015 != bfd_section_vma (abfd, bfd_section))
3016 return 1;
3017 }
3018
3019 return 0;
3020 }
3021
3022 /* Function: overlay_invalidate_all (void)
3023 Invalidate the mapped state of all overlay sections (mark it as stale). */
3024
3025 static void
overlay_invalidate_all(void)3026 overlay_invalidate_all (void)
3027 {
3028 struct objfile *objfile;
3029 struct obj_section *sect;
3030
3031 ALL_OBJSECTIONS (objfile, sect)
3032 if (section_is_overlay (sect))
3033 sect->ovly_mapped = -1;
3034 }
3035
3036 /* Function: section_is_mapped (SECTION)
3037 Returns true if section is an overlay, and is currently mapped.
3038
3039 Access to the ovly_mapped flag is restricted to this function, so
3040 that we can do automatic update. If the global flag
3041 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3042 overlay_invalidate_all. If the mapped state of the particular
3043 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3044
3045 int
section_is_mapped(struct obj_section * osect)3046 section_is_mapped (struct obj_section *osect)
3047 {
3048 struct gdbarch *gdbarch;
3049
3050 if (osect == 0 || !section_is_overlay (osect))
3051 return 0;
3052
3053 switch (overlay_debugging)
3054 {
3055 default:
3056 case ovly_off:
3057 return 0; /* overlay debugging off */
3058 case ovly_auto: /* overlay debugging automatic */
3059 /* Unles there is a gdbarch_overlay_update function,
3060 there's really nothing useful to do here (can't really go auto). */
3061 gdbarch = get_objfile_arch (osect->objfile);
3062 if (gdbarch_overlay_update_p (gdbarch))
3063 {
3064 if (overlay_cache_invalid)
3065 {
3066 overlay_invalidate_all ();
3067 overlay_cache_invalid = 0;
3068 }
3069 if (osect->ovly_mapped == -1)
3070 gdbarch_overlay_update (gdbarch, osect);
3071 }
3072 /* fall thru to manual case */
3073 case ovly_on: /* overlay debugging manual */
3074 return osect->ovly_mapped == 1;
3075 }
3076 }
3077
3078 /* Function: pc_in_unmapped_range
3079 If PC falls into the lma range of SECTION, return true, else false. */
3080
3081 CORE_ADDR
pc_in_unmapped_range(CORE_ADDR pc,struct obj_section * section)3082 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3083 {
3084 if (section_is_overlay (section))
3085 {
3086 bfd *abfd = section->objfile->obfd;
3087 asection *bfd_section = section->the_bfd_section;
3088
3089 /* We assume the LMA is relocated by the same offset as the VMA. */
3090 bfd_vma size = bfd_get_section_size (bfd_section);
3091 CORE_ADDR offset = obj_section_offset (section);
3092
3093 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3094 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3095 return 1;
3096 }
3097
3098 return 0;
3099 }
3100
3101 /* Function: pc_in_mapped_range
3102 If PC falls into the vma range of SECTION, return true, else false. */
3103
3104 CORE_ADDR
pc_in_mapped_range(CORE_ADDR pc,struct obj_section * section)3105 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3106 {
3107 if (section_is_overlay (section))
3108 {
3109 if (obj_section_addr (section) <= pc
3110 && pc < obj_section_endaddr (section))
3111 return 1;
3112 }
3113
3114 return 0;
3115 }
3116
3117
3118 /* Return true if the mapped ranges of sections A and B overlap, false
3119 otherwise. */
3120 static int
sections_overlap(struct obj_section * a,struct obj_section * b)3121 sections_overlap (struct obj_section *a, struct obj_section *b)
3122 {
3123 CORE_ADDR a_start = obj_section_addr (a);
3124 CORE_ADDR a_end = obj_section_endaddr (a);
3125 CORE_ADDR b_start = obj_section_addr (b);
3126 CORE_ADDR b_end = obj_section_endaddr (b);
3127
3128 return (a_start < b_end && b_start < a_end);
3129 }
3130
3131 /* Function: overlay_unmapped_address (PC, SECTION)
3132 Returns the address corresponding to PC in the unmapped (load) range.
3133 May be the same as PC. */
3134
3135 CORE_ADDR
overlay_unmapped_address(CORE_ADDR pc,struct obj_section * section)3136 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3137 {
3138 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3139 {
3140 bfd *abfd = section->objfile->obfd;
3141 asection *bfd_section = section->the_bfd_section;
3142
3143 return pc + bfd_section_lma (abfd, bfd_section)
3144 - bfd_section_vma (abfd, bfd_section);
3145 }
3146
3147 return pc;
3148 }
3149
3150 /* Function: overlay_mapped_address (PC, SECTION)
3151 Returns the address corresponding to PC in the mapped (runtime) range.
3152 May be the same as PC. */
3153
3154 CORE_ADDR
overlay_mapped_address(CORE_ADDR pc,struct obj_section * section)3155 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3156 {
3157 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3158 {
3159 bfd *abfd = section->objfile->obfd;
3160 asection *bfd_section = section->the_bfd_section;
3161
3162 return pc + bfd_section_vma (abfd, bfd_section)
3163 - bfd_section_lma (abfd, bfd_section);
3164 }
3165
3166 return pc;
3167 }
3168
3169
3170 /* Function: symbol_overlayed_address
3171 Return one of two addresses (relative to the VMA or to the LMA),
3172 depending on whether the section is mapped or not. */
3173
3174 CORE_ADDR
symbol_overlayed_address(CORE_ADDR address,struct obj_section * section)3175 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3176 {
3177 if (overlay_debugging)
3178 {
3179 /* If the symbol has no section, just return its regular address. */
3180 if (section == 0)
3181 return address;
3182 /* If the symbol's section is not an overlay, just return its
3183 address. */
3184 if (!section_is_overlay (section))
3185 return address;
3186 /* If the symbol's section is mapped, just return its address. */
3187 if (section_is_mapped (section))
3188 return address;
3189 /*
3190 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3191 * then return its LOADED address rather than its vma address!!
3192 */
3193 return overlay_unmapped_address (address, section);
3194 }
3195 return address;
3196 }
3197
3198 /* Function: find_pc_overlay (PC)
3199 Return the best-match overlay section for PC:
3200 If PC matches a mapped overlay section's VMA, return that section.
3201 Else if PC matches an unmapped section's VMA, return that section.
3202 Else if PC matches an unmapped section's LMA, return that section. */
3203
3204 struct obj_section *
find_pc_overlay(CORE_ADDR pc)3205 find_pc_overlay (CORE_ADDR pc)
3206 {
3207 struct objfile *objfile;
3208 struct obj_section *osect, *best_match = NULL;
3209
3210 if (overlay_debugging)
3211 ALL_OBJSECTIONS (objfile, osect)
3212 if (section_is_overlay (osect))
3213 {
3214 if (pc_in_mapped_range (pc, osect))
3215 {
3216 if (section_is_mapped (osect))
3217 return osect;
3218 else
3219 best_match = osect;
3220 }
3221 else if (pc_in_unmapped_range (pc, osect))
3222 best_match = osect;
3223 }
3224 return best_match;
3225 }
3226
3227 /* Function: find_pc_mapped_section (PC)
3228 If PC falls into the VMA address range of an overlay section that is
3229 currently marked as MAPPED, return that section. Else return NULL. */
3230
3231 struct obj_section *
find_pc_mapped_section(CORE_ADDR pc)3232 find_pc_mapped_section (CORE_ADDR pc)
3233 {
3234 struct objfile *objfile;
3235 struct obj_section *osect;
3236
3237 if (overlay_debugging)
3238 ALL_OBJSECTIONS (objfile, osect)
3239 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3240 return osect;
3241
3242 return NULL;
3243 }
3244
3245 /* Function: list_overlays_command
3246 Print a list of mapped sections and their PC ranges. */
3247
3248 static void
list_overlays_command(char * args,int from_tty)3249 list_overlays_command (char *args, int from_tty)
3250 {
3251 int nmapped = 0;
3252 struct objfile *objfile;
3253 struct obj_section *osect;
3254
3255 if (overlay_debugging)
3256 ALL_OBJSECTIONS (objfile, osect)
3257 if (section_is_mapped (osect))
3258 {
3259 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3260 const char *name;
3261 bfd_vma lma, vma;
3262 int size;
3263
3264 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3265 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3266 size = bfd_get_section_size (osect->the_bfd_section);
3267 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3268
3269 printf_filtered ("Section %s, loaded at ", name);
3270 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3271 puts_filtered (" - ");
3272 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3273 printf_filtered (", mapped at ");
3274 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3275 puts_filtered (" - ");
3276 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3277 puts_filtered ("\n");
3278
3279 nmapped++;
3280 }
3281 if (nmapped == 0)
3282 printf_filtered (_("No sections are mapped.\n"));
3283 }
3284
3285 /* Function: map_overlay_command
3286 Mark the named section as mapped (ie. residing at its VMA address). */
3287
3288 static void
map_overlay_command(char * args,int from_tty)3289 map_overlay_command (char *args, int from_tty)
3290 {
3291 struct objfile *objfile, *objfile2;
3292 struct obj_section *sec, *sec2;
3293
3294 if (!overlay_debugging)
3295 error (_("Overlay debugging not enabled. Use "
3296 "either the 'overlay auto' or\n"
3297 "the 'overlay manual' command."));
3298
3299 if (args == 0 || *args == 0)
3300 error (_("Argument required: name of an overlay section"));
3301
3302 /* First, find a section matching the user supplied argument. */
3303 ALL_OBJSECTIONS (objfile, sec)
3304 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3305 {
3306 /* Now, check to see if the section is an overlay. */
3307 if (!section_is_overlay (sec))
3308 continue; /* not an overlay section */
3309
3310 /* Mark the overlay as "mapped". */
3311 sec->ovly_mapped = 1;
3312
3313 /* Next, make a pass and unmap any sections that are
3314 overlapped by this new section: */
3315 ALL_OBJSECTIONS (objfile2, sec2)
3316 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3317 {
3318 if (info_verbose)
3319 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3320 bfd_section_name (objfile->obfd,
3321 sec2->the_bfd_section));
3322 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3323 }
3324 return;
3325 }
3326 error (_("No overlay section called %s"), args);
3327 }
3328
3329 /* Function: unmap_overlay_command
3330 Mark the overlay section as unmapped
3331 (ie. resident in its LMA address range, rather than the VMA range). */
3332
3333 static void
unmap_overlay_command(char * args,int from_tty)3334 unmap_overlay_command (char *args, int from_tty)
3335 {
3336 struct objfile *objfile;
3337 struct obj_section *sec;
3338
3339 if (!overlay_debugging)
3340 error (_("Overlay debugging not enabled. "
3341 "Use either the 'overlay auto' or\n"
3342 "the 'overlay manual' command."));
3343
3344 if (args == 0 || *args == 0)
3345 error (_("Argument required: name of an overlay section"));
3346
3347 /* First, find a section matching the user supplied argument. */
3348 ALL_OBJSECTIONS (objfile, sec)
3349 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3350 {
3351 if (!sec->ovly_mapped)
3352 error (_("Section %s is not mapped"), args);
3353 sec->ovly_mapped = 0;
3354 return;
3355 }
3356 error (_("No overlay section called %s"), args);
3357 }
3358
3359 /* Function: overlay_auto_command
3360 A utility command to turn on overlay debugging.
3361 Possibly this should be done via a set/show command. */
3362
3363 static void
overlay_auto_command(char * args,int from_tty)3364 overlay_auto_command (char *args, int from_tty)
3365 {
3366 overlay_debugging = ovly_auto;
3367 enable_overlay_breakpoints ();
3368 if (info_verbose)
3369 printf_unfiltered (_("Automatic overlay debugging enabled."));
3370 }
3371
3372 /* Function: overlay_manual_command
3373 A utility command to turn on overlay debugging.
3374 Possibly this should be done via a set/show command. */
3375
3376 static void
overlay_manual_command(char * args,int from_tty)3377 overlay_manual_command (char *args, int from_tty)
3378 {
3379 overlay_debugging = ovly_on;
3380 disable_overlay_breakpoints ();
3381 if (info_verbose)
3382 printf_unfiltered (_("Overlay debugging enabled."));
3383 }
3384
3385 /* Function: overlay_off_command
3386 A utility command to turn on overlay debugging.
3387 Possibly this should be done via a set/show command. */
3388
3389 static void
overlay_off_command(char * args,int from_tty)3390 overlay_off_command (char *args, int from_tty)
3391 {
3392 overlay_debugging = ovly_off;
3393 disable_overlay_breakpoints ();
3394 if (info_verbose)
3395 printf_unfiltered (_("Overlay debugging disabled."));
3396 }
3397
3398 static void
overlay_load_command(char * args,int from_tty)3399 overlay_load_command (char *args, int from_tty)
3400 {
3401 struct gdbarch *gdbarch = get_current_arch ();
3402
3403 if (gdbarch_overlay_update_p (gdbarch))
3404 gdbarch_overlay_update (gdbarch, NULL);
3405 else
3406 error (_("This target does not know how to read its overlay state."));
3407 }
3408
3409 /* Function: overlay_command
3410 A place-holder for a mis-typed command. */
3411
3412 /* Command list chain containing all defined "overlay" subcommands. */
3413 static struct cmd_list_element *overlaylist;
3414
3415 static void
overlay_command(char * args,int from_tty)3416 overlay_command (char *args, int from_tty)
3417 {
3418 printf_unfiltered
3419 ("\"overlay\" must be followed by the name of an overlay command.\n");
3420 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3421 }
3422
3423
3424 /* Target Overlays for the "Simplest" overlay manager:
3425
3426 This is GDB's default target overlay layer. It works with the
3427 minimal overlay manager supplied as an example by Cygnus. The
3428 entry point is via a function pointer "gdbarch_overlay_update",
3429 so targets that use a different runtime overlay manager can
3430 substitute their own overlay_update function and take over the
3431 function pointer.
3432
3433 The overlay_update function pokes around in the target's data structures
3434 to see what overlays are mapped, and updates GDB's overlay mapping with
3435 this information.
3436
3437 In this simple implementation, the target data structures are as follows:
3438 unsigned _novlys; /# number of overlay sections #/
3439 unsigned _ovly_table[_novlys][4] = {
3440 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3441 {..., ..., ..., ...},
3442 }
3443 unsigned _novly_regions; /# number of overlay regions #/
3444 unsigned _ovly_region_table[_novly_regions][3] = {
3445 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3446 {..., ..., ...},
3447 }
3448 These functions will attempt to update GDB's mappedness state in the
3449 symbol section table, based on the target's mappedness state.
3450
3451 To do this, we keep a cached copy of the target's _ovly_table, and
3452 attempt to detect when the cached copy is invalidated. The main
3453 entry point is "simple_overlay_update(SECT), which looks up SECT in
3454 the cached table and re-reads only the entry for that section from
3455 the target (whenever possible). */
3456
3457 /* Cached, dynamically allocated copies of the target data structures: */
3458 static unsigned (*cache_ovly_table)[4] = 0;
3459 static unsigned cache_novlys = 0;
3460 static CORE_ADDR cache_ovly_table_base = 0;
3461 enum ovly_index
3462 {
3463 VMA, SIZE, LMA, MAPPED
3464 };
3465
3466 /* Throw away the cached copy of _ovly_table. */
3467 static void
simple_free_overlay_table(void)3468 simple_free_overlay_table (void)
3469 {
3470 if (cache_ovly_table)
3471 xfree (cache_ovly_table);
3472 cache_novlys = 0;
3473 cache_ovly_table = NULL;
3474 cache_ovly_table_base = 0;
3475 }
3476
3477 /* Read an array of ints of size SIZE from the target into a local buffer.
3478 Convert to host order. int LEN is number of ints. */
3479 static void
read_target_long_array(CORE_ADDR memaddr,unsigned int * myaddr,int len,int size,enum bfd_endian byte_order)3480 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3481 int len, int size, enum bfd_endian byte_order)
3482 {
3483 /* FIXME (alloca): Not safe if array is very large. */
3484 gdb_byte *buf = alloca (len * size);
3485 int i;
3486
3487 read_memory (memaddr, buf, len * size);
3488 for (i = 0; i < len; i++)
3489 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3490 }
3491
3492 /* Find and grab a copy of the target _ovly_table
3493 (and _novlys, which is needed for the table's size). */
3494 static int
simple_read_overlay_table(void)3495 simple_read_overlay_table (void)
3496 {
3497 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3498 struct gdbarch *gdbarch;
3499 int word_size;
3500 enum bfd_endian byte_order;
3501
3502 simple_free_overlay_table ();
3503 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3504 if (! novlys_msym)
3505 {
3506 error (_("Error reading inferior's overlay table: "
3507 "couldn't find `_novlys' variable\n"
3508 "in inferior. Use `overlay manual' mode."));
3509 return 0;
3510 }
3511
3512 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3513 if (! ovly_table_msym)
3514 {
3515 error (_("Error reading inferior's overlay table: couldn't find "
3516 "`_ovly_table' array\n"
3517 "in inferior. Use `overlay manual' mode."));
3518 return 0;
3519 }
3520
3521 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3522 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3523 byte_order = gdbarch_byte_order (gdbarch);
3524
3525 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3526 4, byte_order);
3527 cache_ovly_table
3528 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3529 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3530 read_target_long_array (cache_ovly_table_base,
3531 (unsigned int *) cache_ovly_table,
3532 cache_novlys * 4, word_size, byte_order);
3533
3534 return 1; /* SUCCESS */
3535 }
3536
3537 /* Function: simple_overlay_update_1
3538 A helper function for simple_overlay_update. Assuming a cached copy
3539 of _ovly_table exists, look through it to find an entry whose vma,
3540 lma and size match those of OSECT. Re-read the entry and make sure
3541 it still matches OSECT (else the table may no longer be valid).
3542 Set OSECT's mapped state to match the entry. Return: 1 for
3543 success, 0 for failure. */
3544
3545 static int
simple_overlay_update_1(struct obj_section * osect)3546 simple_overlay_update_1 (struct obj_section *osect)
3547 {
3548 int i, size;
3549 bfd *obfd = osect->objfile->obfd;
3550 asection *bsect = osect->the_bfd_section;
3551 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3552 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3553 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3554
3555 size = bfd_get_section_size (osect->the_bfd_section);
3556 for (i = 0; i < cache_novlys; i++)
3557 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3558 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3559 /* && cache_ovly_table[i][SIZE] == size */ )
3560 {
3561 read_target_long_array (cache_ovly_table_base + i * word_size,
3562 (unsigned int *) cache_ovly_table[i],
3563 4, word_size, byte_order);
3564 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3565 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3566 /* && cache_ovly_table[i][SIZE] == size */ )
3567 {
3568 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3569 return 1;
3570 }
3571 else /* Warning! Warning! Target's ovly table has changed! */
3572 return 0;
3573 }
3574 return 0;
3575 }
3576
3577 /* Function: simple_overlay_update
3578 If OSECT is NULL, then update all sections' mapped state
3579 (after re-reading the entire target _ovly_table).
3580 If OSECT is non-NULL, then try to find a matching entry in the
3581 cached ovly_table and update only OSECT's mapped state.
3582 If a cached entry can't be found or the cache isn't valid, then
3583 re-read the entire cache, and go ahead and update all sections. */
3584
3585 void
simple_overlay_update(struct obj_section * osect)3586 simple_overlay_update (struct obj_section *osect)
3587 {
3588 struct objfile *objfile;
3589
3590 /* Were we given an osect to look up? NULL means do all of them. */
3591 if (osect)
3592 /* Have we got a cached copy of the target's overlay table? */
3593 if (cache_ovly_table != NULL)
3594 {
3595 /* Does its cached location match what's currently in the
3596 symtab? */
3597 struct minimal_symbol *minsym
3598 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3599
3600 if (minsym == NULL)
3601 error (_("Error reading inferior's overlay table: couldn't "
3602 "find `_ovly_table' array\n"
3603 "in inferior. Use `overlay manual' mode."));
3604
3605 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3606 /* Then go ahead and try to look up this single section in
3607 the cache. */
3608 if (simple_overlay_update_1 (osect))
3609 /* Found it! We're done. */
3610 return;
3611 }
3612
3613 /* Cached table no good: need to read the entire table anew.
3614 Or else we want all the sections, in which case it's actually
3615 more efficient to read the whole table in one block anyway. */
3616
3617 if (! simple_read_overlay_table ())
3618 return;
3619
3620 /* Now may as well update all sections, even if only one was requested. */
3621 ALL_OBJSECTIONS (objfile, osect)
3622 if (section_is_overlay (osect))
3623 {
3624 int i, size;
3625 bfd *obfd = osect->objfile->obfd;
3626 asection *bsect = osect->the_bfd_section;
3627
3628 size = bfd_get_section_size (bsect);
3629 for (i = 0; i < cache_novlys; i++)
3630 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3631 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3632 /* && cache_ovly_table[i][SIZE] == size */ )
3633 { /* obj_section matches i'th entry in ovly_table. */
3634 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3635 break; /* finished with inner for loop: break out. */
3636 }
3637 }
3638 }
3639
3640 /* Set the output sections and output offsets for section SECTP in
3641 ABFD. The relocation code in BFD will read these offsets, so we
3642 need to be sure they're initialized. We map each section to itself,
3643 with no offset; this means that SECTP->vma will be honored. */
3644
3645 static void
symfile_dummy_outputs(bfd * abfd,asection * sectp,void * dummy)3646 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3647 {
3648 sectp->output_section = sectp;
3649 sectp->output_offset = 0;
3650 }
3651
3652 /* Default implementation for sym_relocate. */
3653
3654
3655 bfd_byte *
default_symfile_relocate(struct objfile * objfile,asection * sectp,bfd_byte * buf)3656 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3657 bfd_byte *buf)
3658 {
3659 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3660 DWO file. */
3661 bfd *abfd = sectp->owner;
3662
3663 /* We're only interested in sections with relocation
3664 information. */
3665 if ((sectp->flags & SEC_RELOC) == 0)
3666 return NULL;
3667
3668 /* We will handle section offsets properly elsewhere, so relocate as if
3669 all sections begin at 0. */
3670 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3671
3672 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3673 }
3674
3675 /* Relocate the contents of a debug section SECTP in ABFD. The
3676 contents are stored in BUF if it is non-NULL, or returned in a
3677 malloc'd buffer otherwise.
3678
3679 For some platforms and debug info formats, shared libraries contain
3680 relocations against the debug sections (particularly for DWARF-2;
3681 one affected platform is PowerPC GNU/Linux, although it depends on
3682 the version of the linker in use). Also, ELF object files naturally
3683 have unresolved relocations for their debug sections. We need to apply
3684 the relocations in order to get the locations of symbols correct.
3685 Another example that may require relocation processing, is the
3686 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3687 debug section. */
3688
3689 bfd_byte *
symfile_relocate_debug_section(struct objfile * objfile,asection * sectp,bfd_byte * buf)3690 symfile_relocate_debug_section (struct objfile *objfile,
3691 asection *sectp, bfd_byte *buf)
3692 {
3693 gdb_assert (objfile->sf->sym_relocate);
3694
3695 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3696 }
3697
3698 struct symfile_segment_data *
get_symfile_segment_data(bfd * abfd)3699 get_symfile_segment_data (bfd *abfd)
3700 {
3701 const struct sym_fns *sf = find_sym_fns (abfd);
3702
3703 if (sf == NULL)
3704 return NULL;
3705
3706 return sf->sym_segments (abfd);
3707 }
3708
3709 void
free_symfile_segment_data(struct symfile_segment_data * data)3710 free_symfile_segment_data (struct symfile_segment_data *data)
3711 {
3712 xfree (data->segment_bases);
3713 xfree (data->segment_sizes);
3714 xfree (data->segment_info);
3715 xfree (data);
3716 }
3717
3718
3719 /* Given:
3720 - DATA, containing segment addresses from the object file ABFD, and
3721 the mapping from ABFD's sections onto the segments that own them,
3722 and
3723 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3724 segment addresses reported by the target,
3725 store the appropriate offsets for each section in OFFSETS.
3726
3727 If there are fewer entries in SEGMENT_BASES than there are segments
3728 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3729
3730 If there are more entries, then ignore the extra. The target may
3731 not be able to distinguish between an empty data segment and a
3732 missing data segment; a missing text segment is less plausible. */
3733 int
symfile_map_offsets_to_segments(bfd * abfd,struct symfile_segment_data * data,struct section_offsets * offsets,int num_segment_bases,const CORE_ADDR * segment_bases)3734 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3735 struct section_offsets *offsets,
3736 int num_segment_bases,
3737 const CORE_ADDR *segment_bases)
3738 {
3739 int i;
3740 asection *sect;
3741
3742 /* It doesn't make sense to call this function unless you have some
3743 segment base addresses. */
3744 gdb_assert (num_segment_bases > 0);
3745
3746 /* If we do not have segment mappings for the object file, we
3747 can not relocate it by segments. */
3748 gdb_assert (data != NULL);
3749 gdb_assert (data->num_segments > 0);
3750
3751 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3752 {
3753 int which = data->segment_info[i];
3754
3755 gdb_assert (0 <= which && which <= data->num_segments);
3756
3757 /* Don't bother computing offsets for sections that aren't
3758 loaded as part of any segment. */
3759 if (! which)
3760 continue;
3761
3762 /* Use the last SEGMENT_BASES entry as the address of any extra
3763 segments mentioned in DATA->segment_info. */
3764 if (which > num_segment_bases)
3765 which = num_segment_bases;
3766
3767 offsets->offsets[i] = (segment_bases[which - 1]
3768 - data->segment_bases[which - 1]);
3769 }
3770
3771 return 1;
3772 }
3773
3774 static void
symfile_find_segment_sections(struct objfile * objfile)3775 symfile_find_segment_sections (struct objfile *objfile)
3776 {
3777 bfd *abfd = objfile->obfd;
3778 int i;
3779 asection *sect;
3780 struct symfile_segment_data *data;
3781
3782 data = get_symfile_segment_data (objfile->obfd);
3783 if (data == NULL)
3784 return;
3785
3786 if (data->num_segments != 1 && data->num_segments != 2)
3787 {
3788 free_symfile_segment_data (data);
3789 return;
3790 }
3791
3792 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3793 {
3794 int which = data->segment_info[i];
3795
3796 if (which == 1)
3797 {
3798 if (objfile->sect_index_text == -1)
3799 objfile->sect_index_text = sect->index;
3800
3801 if (objfile->sect_index_rodata == -1)
3802 objfile->sect_index_rodata = sect->index;
3803 }
3804 else if (which == 2)
3805 {
3806 if (objfile->sect_index_data == -1)
3807 objfile->sect_index_data = sect->index;
3808
3809 if (objfile->sect_index_bss == -1)
3810 objfile->sect_index_bss = sect->index;
3811 }
3812 }
3813
3814 free_symfile_segment_data (data);
3815 }
3816
3817 void
_initialize_symfile(void)3818 _initialize_symfile (void)
3819 {
3820 struct cmd_list_element *c;
3821
3822 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3823 Load symbol table from executable file FILE.\n\
3824 The `file' command can also load symbol tables, as well as setting the file\n\
3825 to execute."), &cmdlist);
3826 set_cmd_completer (c, filename_completer);
3827
3828 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3829 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3830 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3831 ...]\nADDR is the starting address of the file's text.\n\
3832 The optional arguments are section-name section-address pairs and\n\
3833 should be specified if the data and bss segments are not contiguous\n\
3834 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3835 &cmdlist);
3836 set_cmd_completer (c, filename_completer);
3837
3838 c = add_cmd ("load", class_files, load_command, _("\
3839 Dynamically load FILE into the running program, and record its symbols\n\
3840 for access from GDB.\n\
3841 A load OFFSET may also be given."), &cmdlist);
3842 set_cmd_completer (c, filename_completer);
3843
3844 add_prefix_cmd ("overlay", class_support, overlay_command,
3845 _("Commands for debugging overlays."), &overlaylist,
3846 "overlay ", 0, &cmdlist);
3847
3848 add_com_alias ("ovly", "overlay", class_alias, 1);
3849 add_com_alias ("ov", "overlay", class_alias, 1);
3850
3851 add_cmd ("map-overlay", class_support, map_overlay_command,
3852 _("Assert that an overlay section is mapped."), &overlaylist);
3853
3854 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3855 _("Assert that an overlay section is unmapped."), &overlaylist);
3856
3857 add_cmd ("list-overlays", class_support, list_overlays_command,
3858 _("List mappings of overlay sections."), &overlaylist);
3859
3860 add_cmd ("manual", class_support, overlay_manual_command,
3861 _("Enable overlay debugging."), &overlaylist);
3862 add_cmd ("off", class_support, overlay_off_command,
3863 _("Disable overlay debugging."), &overlaylist);
3864 add_cmd ("auto", class_support, overlay_auto_command,
3865 _("Enable automatic overlay debugging."), &overlaylist);
3866 add_cmd ("load-target", class_support, overlay_load_command,
3867 _("Read the overlay mapping state from the target."), &overlaylist);
3868
3869 /* Filename extension to source language lookup table: */
3870 init_filename_language_table ();
3871 add_setshow_string_noescape_cmd ("extension-language", class_files,
3872 &ext_args, _("\
3873 Set mapping between filename extension and source language."), _("\
3874 Show mapping between filename extension and source language."), _("\
3875 Usage: set extension-language .foo bar"),
3876 set_ext_lang_command,
3877 show_ext_args,
3878 &setlist, &showlist);
3879
3880 add_info ("extensions", info_ext_lang_command,
3881 _("All filename extensions associated with a source language."));
3882
3883 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3884 &debug_file_directory, _("\
3885 Set the directories where separate debug symbols are searched for."), _("\
3886 Show the directories where separate debug symbols are searched for."), _("\
3887 Separate debug symbols are first searched for in the same\n\
3888 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3889 and lastly at the path of the directory of the binary with\n\
3890 each global debug-file-directory component prepended."),
3891 NULL,
3892 show_debug_file_directory,
3893 &setlist, &showlist);
3894 }
3895