1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70
71 struct selinux_policy_convert_data {
72 struct convert_context_args args;
73 struct sidtab_convert_params sidtab_params;
74 };
75
76 /* Forward declaration. */
77 static int context_struct_to_string(struct policydb *policydb,
78 struct context *context,
79 char **scontext,
80 u32 *scontext_len);
81
82 static int sidtab_entry_to_string(struct policydb *policydb,
83 struct sidtab *sidtab,
84 struct sidtab_entry *entry,
85 char **scontext,
86 u32 *scontext_len);
87
88 static void context_struct_compute_av(struct policydb *policydb,
89 struct context *scontext,
90 struct context *tcontext,
91 u16 tclass,
92 struct av_decision *avd,
93 struct extended_perms *xperms);
94
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)95 static int selinux_set_mapping(struct policydb *pol,
96 const struct security_class_mapping *map,
97 struct selinux_map *out_map)
98 {
99 u16 i, j;
100 bool print_unknown_handle = false;
101
102 /* Find number of classes in the input mapping */
103 if (!map)
104 return -EINVAL;
105 i = 0;
106 while (map[i].name)
107 i++;
108
109 /* Allocate space for the class records, plus one for class zero */
110 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111 if (!out_map->mapping)
112 return -ENOMEM;
113
114 /* Store the raw class and permission values */
115 j = 0;
116 while (map[j].name) {
117 const struct security_class_mapping *p_in = map + (j++);
118 struct selinux_mapping *p_out = out_map->mapping + j;
119 u16 k;
120
121 /* An empty class string skips ahead */
122 if (!strcmp(p_in->name, "")) {
123 p_out->num_perms = 0;
124 continue;
125 }
126
127 p_out->value = string_to_security_class(pol, p_in->name);
128 if (!p_out->value) {
129 pr_info("SELinux: Class %s not defined in policy.\n",
130 p_in->name);
131 if (pol->reject_unknown)
132 goto err;
133 p_out->num_perms = 0;
134 print_unknown_handle = true;
135 continue;
136 }
137
138 k = 0;
139 while (p_in->perms[k]) {
140 /* An empty permission string skips ahead */
141 if (!*p_in->perms[k]) {
142 k++;
143 continue;
144 }
145 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146 p_in->perms[k]);
147 if (!p_out->perms[k]) {
148 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
149 p_in->perms[k], p_in->name);
150 if (pol->reject_unknown)
151 goto err;
152 print_unknown_handle = true;
153 }
154
155 k++;
156 }
157 p_out->num_perms = k;
158 }
159
160 if (print_unknown_handle)
161 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 pol->allow_unknown ? "allowed" : "denied");
163
164 out_map->size = i;
165 return 0;
166 err:
167 kfree(out_map->mapping);
168 out_map->mapping = NULL;
169 return -EINVAL;
170 }
171
172 /*
173 * Get real, policy values from mapped values
174 */
175
unmap_class(struct selinux_map * map,u16 tclass)176 static u16 unmap_class(struct selinux_map *map, u16 tclass)
177 {
178 if (tclass < map->size)
179 return map->mapping[tclass].value;
180
181 return tclass;
182 }
183
184 /*
185 * Get kernel value for class from its policy value
186 */
map_class(struct selinux_map * map,u16 pol_value)187 static u16 map_class(struct selinux_map *map, u16 pol_value)
188 {
189 u16 i;
190
191 for (i = 1; i < map->size; i++) {
192 if (map->mapping[i].value == pol_value)
193 return i;
194 }
195
196 return SECCLASS_NULL;
197 }
198
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)199 static void map_decision(struct selinux_map *map,
200 u16 tclass, struct av_decision *avd,
201 int allow_unknown)
202 {
203 if (tclass < map->size) {
204 struct selinux_mapping *mapping = &map->mapping[tclass];
205 unsigned int i, n = mapping->num_perms;
206 u32 result;
207
208 for (i = 0, result = 0; i < n; i++) {
209 if (avd->allowed & mapping->perms[i])
210 result |= (u32)1<<i;
211 if (allow_unknown && !mapping->perms[i])
212 result |= (u32)1<<i;
213 }
214 avd->allowed = result;
215
216 for (i = 0, result = 0; i < n; i++)
217 if (avd->auditallow & mapping->perms[i])
218 result |= (u32)1<<i;
219 avd->auditallow = result;
220
221 for (i = 0, result = 0; i < n; i++) {
222 if (avd->auditdeny & mapping->perms[i])
223 result |= (u32)1<<i;
224 if (!allow_unknown && !mapping->perms[i])
225 result |= (u32)1<<i;
226 }
227 /*
228 * In case the kernel has a bug and requests a permission
229 * between num_perms and the maximum permission number, we
230 * should audit that denial
231 */
232 for (; i < (sizeof(u32)*8); i++)
233 result |= (u32)1<<i;
234 avd->auditdeny = result;
235 }
236 }
237
security_mls_enabled(void)238 int security_mls_enabled(void)
239 {
240 int mls_enabled;
241 struct selinux_policy *policy;
242
243 if (!selinux_initialized())
244 return 0;
245
246 rcu_read_lock();
247 policy = rcu_dereference(selinux_state.policy);
248 mls_enabled = policy->policydb.mls_enabled;
249 rcu_read_unlock();
250 return mls_enabled;
251 }
252
253 /*
254 * Return the boolean value of a constraint expression
255 * when it is applied to the specified source and target
256 * security contexts.
257 *
258 * xcontext is a special beast... It is used by the validatetrans rules
259 * only. For these rules, scontext is the context before the transition,
260 * tcontext is the context after the transition, and xcontext is the context
261 * of the process performing the transition. All other callers of
262 * constraint_expr_eval should pass in NULL for xcontext.
263 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)264 static int constraint_expr_eval(struct policydb *policydb,
265 struct context *scontext,
266 struct context *tcontext,
267 struct context *xcontext,
268 struct constraint_expr *cexpr)
269 {
270 u32 val1, val2;
271 struct context *c;
272 struct role_datum *r1, *r2;
273 struct mls_level *l1, *l2;
274 struct constraint_expr *e;
275 int s[CEXPR_MAXDEPTH];
276 int sp = -1;
277
278 for (e = cexpr; e; e = e->next) {
279 switch (e->expr_type) {
280 case CEXPR_NOT:
281 BUG_ON(sp < 0);
282 s[sp] = !s[sp];
283 break;
284 case CEXPR_AND:
285 BUG_ON(sp < 1);
286 sp--;
287 s[sp] &= s[sp + 1];
288 break;
289 case CEXPR_OR:
290 BUG_ON(sp < 1);
291 sp--;
292 s[sp] |= s[sp + 1];
293 break;
294 case CEXPR_ATTR:
295 if (sp == (CEXPR_MAXDEPTH - 1))
296 return 0;
297 switch (e->attr) {
298 case CEXPR_USER:
299 val1 = scontext->user;
300 val2 = tcontext->user;
301 break;
302 case CEXPR_TYPE:
303 val1 = scontext->type;
304 val2 = tcontext->type;
305 break;
306 case CEXPR_ROLE:
307 val1 = scontext->role;
308 val2 = tcontext->role;
309 r1 = policydb->role_val_to_struct[val1 - 1];
310 r2 = policydb->role_val_to_struct[val2 - 1];
311 switch (e->op) {
312 case CEXPR_DOM:
313 s[++sp] = ebitmap_get_bit(&r1->dominates,
314 val2 - 1);
315 continue;
316 case CEXPR_DOMBY:
317 s[++sp] = ebitmap_get_bit(&r2->dominates,
318 val1 - 1);
319 continue;
320 case CEXPR_INCOMP:
321 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 val2 - 1) &&
323 !ebitmap_get_bit(&r2->dominates,
324 val1 - 1));
325 continue;
326 default:
327 break;
328 }
329 break;
330 case CEXPR_L1L2:
331 l1 = &(scontext->range.level[0]);
332 l2 = &(tcontext->range.level[0]);
333 goto mls_ops;
334 case CEXPR_L1H2:
335 l1 = &(scontext->range.level[0]);
336 l2 = &(tcontext->range.level[1]);
337 goto mls_ops;
338 case CEXPR_H1L2:
339 l1 = &(scontext->range.level[1]);
340 l2 = &(tcontext->range.level[0]);
341 goto mls_ops;
342 case CEXPR_H1H2:
343 l1 = &(scontext->range.level[1]);
344 l2 = &(tcontext->range.level[1]);
345 goto mls_ops;
346 case CEXPR_L1H1:
347 l1 = &(scontext->range.level[0]);
348 l2 = &(scontext->range.level[1]);
349 goto mls_ops;
350 case CEXPR_L2H2:
351 l1 = &(tcontext->range.level[0]);
352 l2 = &(tcontext->range.level[1]);
353 goto mls_ops;
354 mls_ops:
355 switch (e->op) {
356 case CEXPR_EQ:
357 s[++sp] = mls_level_eq(l1, l2);
358 continue;
359 case CEXPR_NEQ:
360 s[++sp] = !mls_level_eq(l1, l2);
361 continue;
362 case CEXPR_DOM:
363 s[++sp] = mls_level_dom(l1, l2);
364 continue;
365 case CEXPR_DOMBY:
366 s[++sp] = mls_level_dom(l2, l1);
367 continue;
368 case CEXPR_INCOMP:
369 s[++sp] = mls_level_incomp(l2, l1);
370 continue;
371 default:
372 BUG();
373 return 0;
374 }
375 break;
376 default:
377 BUG();
378 return 0;
379 }
380
381 switch (e->op) {
382 case CEXPR_EQ:
383 s[++sp] = (val1 == val2);
384 break;
385 case CEXPR_NEQ:
386 s[++sp] = (val1 != val2);
387 break;
388 default:
389 BUG();
390 return 0;
391 }
392 break;
393 case CEXPR_NAMES:
394 if (sp == (CEXPR_MAXDEPTH-1))
395 return 0;
396 c = scontext;
397 if (e->attr & CEXPR_TARGET)
398 c = tcontext;
399 else if (e->attr & CEXPR_XTARGET) {
400 c = xcontext;
401 if (!c) {
402 BUG();
403 return 0;
404 }
405 }
406 if (e->attr & CEXPR_USER)
407 val1 = c->user;
408 else if (e->attr & CEXPR_ROLE)
409 val1 = c->role;
410 else if (e->attr & CEXPR_TYPE)
411 val1 = c->type;
412 else {
413 BUG();
414 return 0;
415 }
416
417 switch (e->op) {
418 case CEXPR_EQ:
419 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 break;
421 case CEXPR_NEQ:
422 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 break;
424 default:
425 BUG();
426 return 0;
427 }
428 break;
429 default:
430 BUG();
431 return 0;
432 }
433 }
434
435 BUG_ON(sp != 0);
436 return s[0];
437 }
438
439 /*
440 * security_dump_masked_av - dumps masked permissions during
441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442 */
dump_masked_av_helper(void * k,void * d,void * args)443 static int dump_masked_av_helper(void *k, void *d, void *args)
444 {
445 struct perm_datum *pdatum = d;
446 char **permission_names = args;
447
448 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449
450 permission_names[pdatum->value - 1] = (char *)k;
451
452 return 0;
453 }
454
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)455 static void security_dump_masked_av(struct policydb *policydb,
456 struct context *scontext,
457 struct context *tcontext,
458 u16 tclass,
459 u32 permissions,
460 const char *reason)
461 {
462 struct common_datum *common_dat;
463 struct class_datum *tclass_dat;
464 struct audit_buffer *ab;
465 char *tclass_name;
466 char *scontext_name = NULL;
467 char *tcontext_name = NULL;
468 char *permission_names[32];
469 int index;
470 u32 length;
471 bool need_comma = false;
472
473 if (!permissions)
474 return;
475
476 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 common_dat = tclass_dat->comdatum;
479
480 /* init permission_names */
481 if (common_dat &&
482 hashtab_map(&common_dat->permissions.table,
483 dump_masked_av_helper, permission_names) < 0)
484 goto out;
485
486 if (hashtab_map(&tclass_dat->permissions.table,
487 dump_masked_av_helper, permission_names) < 0)
488 goto out;
489
490 /* get scontext/tcontext in text form */
491 if (context_struct_to_string(policydb, scontext,
492 &scontext_name, &length) < 0)
493 goto out;
494
495 if (context_struct_to_string(policydb, tcontext,
496 &tcontext_name, &length) < 0)
497 goto out;
498
499 /* audit a message */
500 ab = audit_log_start(audit_context(),
501 GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 if (!ab)
503 goto out;
504
505 audit_log_format(ab, "op=security_compute_av reason=%s "
506 "scontext=%s tcontext=%s tclass=%s perms=",
507 reason, scontext_name, tcontext_name, tclass_name);
508
509 for (index = 0; index < 32; index++) {
510 u32 mask = (1 << index);
511
512 if ((mask & permissions) == 0)
513 continue;
514
515 audit_log_format(ab, "%s%s",
516 need_comma ? "," : "",
517 permission_names[index]
518 ? permission_names[index] : "????");
519 need_comma = true;
520 }
521 audit_log_end(ab);
522 out:
523 /* release scontext/tcontext */
524 kfree(tcontext_name);
525 kfree(scontext_name);
526 }
527
528 /*
529 * security_boundary_permission - drops violated permissions
530 * on boundary constraint.
531 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)532 static void type_attribute_bounds_av(struct policydb *policydb,
533 struct context *scontext,
534 struct context *tcontext,
535 u16 tclass,
536 struct av_decision *avd)
537 {
538 struct context lo_scontext;
539 struct context lo_tcontext, *tcontextp = tcontext;
540 struct av_decision lo_avd;
541 struct type_datum *source;
542 struct type_datum *target;
543 u32 masked = 0;
544
545 source = policydb->type_val_to_struct[scontext->type - 1];
546 BUG_ON(!source);
547
548 if (!source->bounds)
549 return;
550
551 target = policydb->type_val_to_struct[tcontext->type - 1];
552 BUG_ON(!target);
553
554 memset(&lo_avd, 0, sizeof(lo_avd));
555
556 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 lo_scontext.type = source->bounds;
558
559 if (target->bounds) {
560 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 lo_tcontext.type = target->bounds;
562 tcontextp = &lo_tcontext;
563 }
564
565 context_struct_compute_av(policydb, &lo_scontext,
566 tcontextp,
567 tclass,
568 &lo_avd,
569 NULL);
570
571 masked = ~lo_avd.allowed & avd->allowed;
572
573 if (likely(!masked))
574 return; /* no masked permission */
575
576 /* mask violated permissions */
577 avd->allowed &= ~masked;
578
579 /* audit masked permissions */
580 security_dump_masked_av(policydb, scontext, tcontext,
581 tclass, masked, "bounds");
582 }
583
584 /*
585 * flag which drivers have permissions
586 * only looking for ioctl based extended permissions
587 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 struct extended_perms *xperms,
590 struct avtab_node *node)
591 {
592 unsigned int i;
593
594 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 /* if one or more driver has all permissions allowed */
596 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 /* if allowing permissions within a driver */
600 security_xperm_set(xperms->drivers.p,
601 node->datum.u.xperms->driver);
602 }
603
604 xperms->len = 1;
605 }
606
607 /*
608 * Compute access vectors and extended permissions based on a context
609 * structure pair for the permissions in a particular class.
610 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)611 static void context_struct_compute_av(struct policydb *policydb,
612 struct context *scontext,
613 struct context *tcontext,
614 u16 tclass,
615 struct av_decision *avd,
616 struct extended_perms *xperms)
617 {
618 struct constraint_node *constraint;
619 struct role_allow *ra;
620 struct avtab_key avkey;
621 struct avtab_node *node;
622 struct class_datum *tclass_datum;
623 struct ebitmap *sattr, *tattr;
624 struct ebitmap_node *snode, *tnode;
625 unsigned int i, j;
626
627 avd->allowed = 0;
628 avd->auditallow = 0;
629 avd->auditdeny = 0xffffffff;
630 if (xperms) {
631 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
632 xperms->len = 0;
633 }
634
635 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
636 pr_warn_ratelimited("SELinux: Invalid class %u\n", tclass);
637 return;
638 }
639
640 tclass_datum = policydb->class_val_to_struct[tclass - 1];
641
642 /*
643 * If a specific type enforcement rule was defined for
644 * this permission check, then use it.
645 */
646 avkey.target_class = tclass;
647 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
648 sattr = &policydb->type_attr_map_array[scontext->type - 1];
649 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
650 ebitmap_for_each_positive_bit(sattr, snode, i) {
651 ebitmap_for_each_positive_bit(tattr, tnode, j) {
652 avkey.source_type = i + 1;
653 avkey.target_type = j + 1;
654 for (node = avtab_search_node(&policydb->te_avtab,
655 &avkey);
656 node;
657 node = avtab_search_node_next(node, avkey.specified)) {
658 if (node->key.specified == AVTAB_ALLOWED)
659 avd->allowed |= node->datum.u.data;
660 else if (node->key.specified == AVTAB_AUDITALLOW)
661 avd->auditallow |= node->datum.u.data;
662 else if (node->key.specified == AVTAB_AUDITDENY)
663 avd->auditdeny &= node->datum.u.data;
664 else if (xperms && (node->key.specified & AVTAB_XPERMS))
665 services_compute_xperms_drivers(xperms, node);
666 }
667
668 /* Check conditional av table for additional permissions */
669 cond_compute_av(&policydb->te_cond_avtab, &avkey,
670 avd, xperms);
671
672 }
673 }
674
675 /*
676 * Remove any permissions prohibited by a constraint (this includes
677 * the MLS policy).
678 */
679 constraint = tclass_datum->constraints;
680 while (constraint) {
681 if ((constraint->permissions & (avd->allowed)) &&
682 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
683 constraint->expr)) {
684 avd->allowed &= ~(constraint->permissions);
685 }
686 constraint = constraint->next;
687 }
688
689 /*
690 * If checking process transition permission and the
691 * role is changing, then check the (current_role, new_role)
692 * pair.
693 */
694 if (tclass == policydb->process_class &&
695 (avd->allowed & policydb->process_trans_perms) &&
696 scontext->role != tcontext->role) {
697 for (ra = policydb->role_allow; ra; ra = ra->next) {
698 if (scontext->role == ra->role &&
699 tcontext->role == ra->new_role)
700 break;
701 }
702 if (!ra)
703 avd->allowed &= ~policydb->process_trans_perms;
704 }
705
706 /*
707 * If the given source and target types have boundary
708 * constraint, lazy checks have to mask any violated
709 * permission and notice it to userspace via audit.
710 */
711 type_attribute_bounds_av(policydb, scontext, tcontext,
712 tclass, avd);
713 }
714
security_validtrans_handle_fail(struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)715 static int security_validtrans_handle_fail(struct selinux_policy *policy,
716 struct sidtab_entry *oentry,
717 struct sidtab_entry *nentry,
718 struct sidtab_entry *tentry,
719 u16 tclass)
720 {
721 struct policydb *p = &policy->policydb;
722 struct sidtab *sidtab = policy->sidtab;
723 char *o = NULL, *n = NULL, *t = NULL;
724 u32 olen, nlen, tlen;
725
726 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
727 goto out;
728 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
729 goto out;
730 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
731 goto out;
732 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
733 "op=security_validate_transition seresult=denied"
734 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
735 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
736 out:
737 kfree(o);
738 kfree(n);
739 kfree(t);
740
741 if (!enforcing_enabled())
742 return 0;
743 return -EPERM;
744 }
745
security_compute_validatetrans(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)746 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
747 u16 orig_tclass, bool user)
748 {
749 struct selinux_policy *policy;
750 struct policydb *policydb;
751 struct sidtab *sidtab;
752 struct sidtab_entry *oentry;
753 struct sidtab_entry *nentry;
754 struct sidtab_entry *tentry;
755 struct class_datum *tclass_datum;
756 struct constraint_node *constraint;
757 u16 tclass;
758 int rc = 0;
759
760
761 if (!selinux_initialized())
762 return 0;
763
764 rcu_read_lock();
765
766 policy = rcu_dereference(selinux_state.policy);
767 policydb = &policy->policydb;
768 sidtab = policy->sidtab;
769
770 if (!user)
771 tclass = unmap_class(&policy->map, orig_tclass);
772 else
773 tclass = orig_tclass;
774
775 if (!tclass || tclass > policydb->p_classes.nprim) {
776 rc = -EINVAL;
777 goto out;
778 }
779 tclass_datum = policydb->class_val_to_struct[tclass - 1];
780
781 oentry = sidtab_search_entry(sidtab, oldsid);
782 if (!oentry) {
783 pr_err("SELinux: %s: unrecognized SID %d\n",
784 __func__, oldsid);
785 rc = -EINVAL;
786 goto out;
787 }
788
789 nentry = sidtab_search_entry(sidtab, newsid);
790 if (!nentry) {
791 pr_err("SELinux: %s: unrecognized SID %d\n",
792 __func__, newsid);
793 rc = -EINVAL;
794 goto out;
795 }
796
797 tentry = sidtab_search_entry(sidtab, tasksid);
798 if (!tentry) {
799 pr_err("SELinux: %s: unrecognized SID %d\n",
800 __func__, tasksid);
801 rc = -EINVAL;
802 goto out;
803 }
804
805 constraint = tclass_datum->validatetrans;
806 while (constraint) {
807 if (!constraint_expr_eval(policydb, &oentry->context,
808 &nentry->context, &tentry->context,
809 constraint->expr)) {
810 if (user)
811 rc = -EPERM;
812 else
813 rc = security_validtrans_handle_fail(policy,
814 oentry,
815 nentry,
816 tentry,
817 tclass);
818 goto out;
819 }
820 constraint = constraint->next;
821 }
822
823 out:
824 rcu_read_unlock();
825 return rc;
826 }
827
security_validate_transition_user(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)828 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
829 u16 tclass)
830 {
831 return security_compute_validatetrans(oldsid, newsid, tasksid,
832 tclass, true);
833 }
834
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)835 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
836 u16 orig_tclass)
837 {
838 return security_compute_validatetrans(oldsid, newsid, tasksid,
839 orig_tclass, false);
840 }
841
842 /*
843 * security_bounded_transition - check whether the given
844 * transition is directed to bounded, or not.
845 * It returns 0, if @newsid is bounded by @oldsid.
846 * Otherwise, it returns error code.
847 *
848 * @oldsid : current security identifier
849 * @newsid : destinated security identifier
850 */
security_bounded_transition(u32 old_sid,u32 new_sid)851 int security_bounded_transition(u32 old_sid, u32 new_sid)
852 {
853 struct selinux_policy *policy;
854 struct policydb *policydb;
855 struct sidtab *sidtab;
856 struct sidtab_entry *old_entry, *new_entry;
857 struct type_datum *type;
858 u32 index;
859 int rc;
860
861 if (!selinux_initialized())
862 return 0;
863
864 rcu_read_lock();
865 policy = rcu_dereference(selinux_state.policy);
866 policydb = &policy->policydb;
867 sidtab = policy->sidtab;
868
869 rc = -EINVAL;
870 old_entry = sidtab_search_entry(sidtab, old_sid);
871 if (!old_entry) {
872 pr_err("SELinux: %s: unrecognized SID %u\n",
873 __func__, old_sid);
874 goto out;
875 }
876
877 rc = -EINVAL;
878 new_entry = sidtab_search_entry(sidtab, new_sid);
879 if (!new_entry) {
880 pr_err("SELinux: %s: unrecognized SID %u\n",
881 __func__, new_sid);
882 goto out;
883 }
884
885 rc = 0;
886 /* type/domain unchanged */
887 if (old_entry->context.type == new_entry->context.type)
888 goto out;
889
890 index = new_entry->context.type;
891 while (true) {
892 type = policydb->type_val_to_struct[index - 1];
893 BUG_ON(!type);
894
895 /* not bounded anymore */
896 rc = -EPERM;
897 if (!type->bounds)
898 break;
899
900 /* @newsid is bounded by @oldsid */
901 rc = 0;
902 if (type->bounds == old_entry->context.type)
903 break;
904
905 index = type->bounds;
906 }
907
908 if (rc) {
909 char *old_name = NULL;
910 char *new_name = NULL;
911 u32 length;
912
913 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
914 &old_name, &length) &&
915 !sidtab_entry_to_string(policydb, sidtab, new_entry,
916 &new_name, &length)) {
917 audit_log(audit_context(),
918 GFP_ATOMIC, AUDIT_SELINUX_ERR,
919 "op=security_bounded_transition "
920 "seresult=denied "
921 "oldcontext=%s newcontext=%s",
922 old_name, new_name);
923 }
924 kfree(new_name);
925 kfree(old_name);
926 }
927 out:
928 rcu_read_unlock();
929
930 return rc;
931 }
932
avd_init(struct selinux_policy * policy,struct av_decision * avd)933 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
934 {
935 avd->allowed = 0;
936 avd->auditallow = 0;
937 avd->auditdeny = 0xffffffff;
938 if (policy)
939 avd->seqno = policy->latest_granting;
940 else
941 avd->seqno = 0;
942 avd->flags = 0;
943 }
944
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)945 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
946 struct avtab_node *node)
947 {
948 unsigned int i;
949
950 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
951 if (xpermd->driver != node->datum.u.xperms->driver)
952 return;
953 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
954 if (!security_xperm_test(node->datum.u.xperms->perms.p,
955 xpermd->driver))
956 return;
957 } else {
958 BUG();
959 }
960
961 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
962 xpermd->used |= XPERMS_ALLOWED;
963 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
964 memset(xpermd->allowed->p, 0xff,
965 sizeof(xpermd->allowed->p));
966 }
967 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
968 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
969 xpermd->allowed->p[i] |=
970 node->datum.u.xperms->perms.p[i];
971 }
972 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
973 xpermd->used |= XPERMS_AUDITALLOW;
974 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
975 memset(xpermd->auditallow->p, 0xff,
976 sizeof(xpermd->auditallow->p));
977 }
978 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
979 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
980 xpermd->auditallow->p[i] |=
981 node->datum.u.xperms->perms.p[i];
982 }
983 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
984 xpermd->used |= XPERMS_DONTAUDIT;
985 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
986 memset(xpermd->dontaudit->p, 0xff,
987 sizeof(xpermd->dontaudit->p));
988 }
989 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
990 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
991 xpermd->dontaudit->p[i] |=
992 node->datum.u.xperms->perms.p[i];
993 }
994 } else {
995 BUG();
996 }
997 }
998
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)999 void security_compute_xperms_decision(u32 ssid,
1000 u32 tsid,
1001 u16 orig_tclass,
1002 u8 driver,
1003 struct extended_perms_decision *xpermd)
1004 {
1005 struct selinux_policy *policy;
1006 struct policydb *policydb;
1007 struct sidtab *sidtab;
1008 u16 tclass;
1009 struct context *scontext, *tcontext;
1010 struct avtab_key avkey;
1011 struct avtab_node *node;
1012 struct ebitmap *sattr, *tattr;
1013 struct ebitmap_node *snode, *tnode;
1014 unsigned int i, j;
1015
1016 xpermd->driver = driver;
1017 xpermd->used = 0;
1018 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1019 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1020 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1021
1022 rcu_read_lock();
1023 if (!selinux_initialized())
1024 goto allow;
1025
1026 policy = rcu_dereference(selinux_state.policy);
1027 policydb = &policy->policydb;
1028 sidtab = policy->sidtab;
1029
1030 scontext = sidtab_search(sidtab, ssid);
1031 if (!scontext) {
1032 pr_err("SELinux: %s: unrecognized SID %d\n",
1033 __func__, ssid);
1034 goto out;
1035 }
1036
1037 tcontext = sidtab_search(sidtab, tsid);
1038 if (!tcontext) {
1039 pr_err("SELinux: %s: unrecognized SID %d\n",
1040 __func__, tsid);
1041 goto out;
1042 }
1043
1044 tclass = unmap_class(&policy->map, orig_tclass);
1045 if (unlikely(orig_tclass && !tclass)) {
1046 if (policydb->allow_unknown)
1047 goto allow;
1048 goto out;
1049 }
1050
1051
1052 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1053 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1054 goto out;
1055 }
1056
1057 avkey.target_class = tclass;
1058 avkey.specified = AVTAB_XPERMS;
1059 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1060 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1061 ebitmap_for_each_positive_bit(sattr, snode, i) {
1062 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1063 avkey.source_type = i + 1;
1064 avkey.target_type = j + 1;
1065 for (node = avtab_search_node(&policydb->te_avtab,
1066 &avkey);
1067 node;
1068 node = avtab_search_node_next(node, avkey.specified))
1069 services_compute_xperms_decision(xpermd, node);
1070
1071 cond_compute_xperms(&policydb->te_cond_avtab,
1072 &avkey, xpermd);
1073 }
1074 }
1075 out:
1076 rcu_read_unlock();
1077 return;
1078 allow:
1079 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1080 goto out;
1081 }
1082
1083 /**
1084 * security_compute_av - Compute access vector decisions.
1085 * @ssid: source security identifier
1086 * @tsid: target security identifier
1087 * @orig_tclass: target security class
1088 * @avd: access vector decisions
1089 * @xperms: extended permissions
1090 *
1091 * Compute a set of access vector decisions based on the
1092 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1093 */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1094 void security_compute_av(u32 ssid,
1095 u32 tsid,
1096 u16 orig_tclass,
1097 struct av_decision *avd,
1098 struct extended_perms *xperms)
1099 {
1100 struct selinux_policy *policy;
1101 struct policydb *policydb;
1102 struct sidtab *sidtab;
1103 u16 tclass;
1104 struct context *scontext = NULL, *tcontext = NULL;
1105
1106 rcu_read_lock();
1107 policy = rcu_dereference(selinux_state.policy);
1108 avd_init(policy, avd);
1109 xperms->len = 0;
1110 if (!selinux_initialized())
1111 goto allow;
1112
1113 policydb = &policy->policydb;
1114 sidtab = policy->sidtab;
1115
1116 scontext = sidtab_search(sidtab, ssid);
1117 if (!scontext) {
1118 pr_err("SELinux: %s: unrecognized SID %d\n",
1119 __func__, ssid);
1120 goto out;
1121 }
1122
1123 /* permissive domain? */
1124 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1125 avd->flags |= AVD_FLAGS_PERMISSIVE;
1126
1127 tcontext = sidtab_search(sidtab, tsid);
1128 if (!tcontext) {
1129 pr_err("SELinux: %s: unrecognized SID %d\n",
1130 __func__, tsid);
1131 goto out;
1132 }
1133
1134 tclass = unmap_class(&policy->map, orig_tclass);
1135 if (unlikely(orig_tclass && !tclass)) {
1136 if (policydb->allow_unknown)
1137 goto allow;
1138 goto out;
1139 }
1140 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1141 xperms);
1142 map_decision(&policy->map, orig_tclass, avd,
1143 policydb->allow_unknown);
1144 out:
1145 rcu_read_unlock();
1146 return;
1147 allow:
1148 avd->allowed = 0xffffffff;
1149 goto out;
1150 }
1151
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1152 void security_compute_av_user(u32 ssid,
1153 u32 tsid,
1154 u16 tclass,
1155 struct av_decision *avd)
1156 {
1157 struct selinux_policy *policy;
1158 struct policydb *policydb;
1159 struct sidtab *sidtab;
1160 struct context *scontext = NULL, *tcontext = NULL;
1161
1162 rcu_read_lock();
1163 policy = rcu_dereference(selinux_state.policy);
1164 avd_init(policy, avd);
1165 if (!selinux_initialized())
1166 goto allow;
1167
1168 policydb = &policy->policydb;
1169 sidtab = policy->sidtab;
1170
1171 scontext = sidtab_search(sidtab, ssid);
1172 if (!scontext) {
1173 pr_err("SELinux: %s: unrecognized SID %d\n",
1174 __func__, ssid);
1175 goto out;
1176 }
1177
1178 /* permissive domain? */
1179 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1180 avd->flags |= AVD_FLAGS_PERMISSIVE;
1181
1182 tcontext = sidtab_search(sidtab, tsid);
1183 if (!tcontext) {
1184 pr_err("SELinux: %s: unrecognized SID %d\n",
1185 __func__, tsid);
1186 goto out;
1187 }
1188
1189 if (unlikely(!tclass)) {
1190 if (policydb->allow_unknown)
1191 goto allow;
1192 goto out;
1193 }
1194
1195 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1196 NULL);
1197 out:
1198 rcu_read_unlock();
1199 return;
1200 allow:
1201 avd->allowed = 0xffffffff;
1202 goto out;
1203 }
1204
1205 /*
1206 * Write the security context string representation of
1207 * the context structure `context' into a dynamically
1208 * allocated string of the correct size. Set `*scontext'
1209 * to point to this string and set `*scontext_len' to
1210 * the length of the string.
1211 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1212 static int context_struct_to_string(struct policydb *p,
1213 struct context *context,
1214 char **scontext, u32 *scontext_len)
1215 {
1216 char *scontextp;
1217
1218 if (scontext)
1219 *scontext = NULL;
1220 *scontext_len = 0;
1221
1222 if (context->len) {
1223 *scontext_len = context->len;
1224 if (scontext) {
1225 *scontext = kstrdup(context->str, GFP_ATOMIC);
1226 if (!(*scontext))
1227 return -ENOMEM;
1228 }
1229 return 0;
1230 }
1231
1232 /* Compute the size of the context. */
1233 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1234 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1235 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1236 *scontext_len += mls_compute_context_len(p, context);
1237
1238 if (!scontext)
1239 return 0;
1240
1241 /* Allocate space for the context; caller must free this space. */
1242 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1243 if (!scontextp)
1244 return -ENOMEM;
1245 *scontext = scontextp;
1246
1247 /*
1248 * Copy the user name, role name and type name into the context.
1249 */
1250 scontextp += sprintf(scontextp, "%s:%s:%s",
1251 sym_name(p, SYM_USERS, context->user - 1),
1252 sym_name(p, SYM_ROLES, context->role - 1),
1253 sym_name(p, SYM_TYPES, context->type - 1));
1254
1255 mls_sid_to_context(p, context, &scontextp);
1256
1257 *scontextp = 0;
1258
1259 return 0;
1260 }
1261
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1262 static int sidtab_entry_to_string(struct policydb *p,
1263 struct sidtab *sidtab,
1264 struct sidtab_entry *entry,
1265 char **scontext, u32 *scontext_len)
1266 {
1267 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1268
1269 if (rc != -ENOENT)
1270 return rc;
1271
1272 rc = context_struct_to_string(p, &entry->context, scontext,
1273 scontext_len);
1274 if (!rc && scontext)
1275 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1276 return rc;
1277 }
1278
1279 #include "initial_sid_to_string.h"
1280
security_sidtab_hash_stats(char * page)1281 int security_sidtab_hash_stats(char *page)
1282 {
1283 struct selinux_policy *policy;
1284 int rc;
1285
1286 if (!selinux_initialized()) {
1287 pr_err("SELinux: %s: called before initial load_policy\n",
1288 __func__);
1289 return -EINVAL;
1290 }
1291
1292 rcu_read_lock();
1293 policy = rcu_dereference(selinux_state.policy);
1294 rc = sidtab_hash_stats(policy->sidtab, page);
1295 rcu_read_unlock();
1296
1297 return rc;
1298 }
1299
security_get_initial_sid_context(u32 sid)1300 const char *security_get_initial_sid_context(u32 sid)
1301 {
1302 if (unlikely(sid > SECINITSID_NUM))
1303 return NULL;
1304 return initial_sid_to_string[sid];
1305 }
1306
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1307 static int security_sid_to_context_core(u32 sid, char **scontext,
1308 u32 *scontext_len, int force,
1309 int only_invalid)
1310 {
1311 struct selinux_policy *policy;
1312 struct policydb *policydb;
1313 struct sidtab *sidtab;
1314 struct sidtab_entry *entry;
1315 int rc = 0;
1316
1317 if (scontext)
1318 *scontext = NULL;
1319 *scontext_len = 0;
1320
1321 if (!selinux_initialized()) {
1322 if (sid <= SECINITSID_NUM) {
1323 char *scontextp;
1324 const char *s;
1325
1326 /*
1327 * Before the policy is loaded, translate
1328 * SECINITSID_INIT to "kernel", because systemd and
1329 * libselinux < 2.6 take a getcon_raw() result that is
1330 * both non-null and not "kernel" to mean that a policy
1331 * is already loaded.
1332 */
1333 if (sid == SECINITSID_INIT)
1334 sid = SECINITSID_KERNEL;
1335
1336 s = initial_sid_to_string[sid];
1337 if (!s)
1338 return -EINVAL;
1339 *scontext_len = strlen(s) + 1;
1340 if (!scontext)
1341 return 0;
1342 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1343 if (!scontextp)
1344 return -ENOMEM;
1345 *scontext = scontextp;
1346 return 0;
1347 }
1348 pr_err("SELinux: %s: called before initial "
1349 "load_policy on unknown SID %d\n", __func__, sid);
1350 return -EINVAL;
1351 }
1352 rcu_read_lock();
1353 policy = rcu_dereference(selinux_state.policy);
1354 policydb = &policy->policydb;
1355 sidtab = policy->sidtab;
1356
1357 if (force)
1358 entry = sidtab_search_entry_force(sidtab, sid);
1359 else
1360 entry = sidtab_search_entry(sidtab, sid);
1361 if (!entry) {
1362 pr_err("SELinux: %s: unrecognized SID %d\n",
1363 __func__, sid);
1364 rc = -EINVAL;
1365 goto out_unlock;
1366 }
1367 if (only_invalid && !entry->context.len)
1368 goto out_unlock;
1369
1370 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1371 scontext_len);
1372
1373 out_unlock:
1374 rcu_read_unlock();
1375 return rc;
1376
1377 }
1378
1379 /**
1380 * security_sid_to_context - Obtain a context for a given SID.
1381 * @sid: security identifier, SID
1382 * @scontext: security context
1383 * @scontext_len: length in bytes
1384 *
1385 * Write the string representation of the context associated with @sid
1386 * into a dynamically allocated string of the correct size. Set @scontext
1387 * to point to this string and set @scontext_len to the length of the string.
1388 */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1389 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1390 {
1391 return security_sid_to_context_core(sid, scontext,
1392 scontext_len, 0, 0);
1393 }
1394
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1395 int security_sid_to_context_force(u32 sid,
1396 char **scontext, u32 *scontext_len)
1397 {
1398 return security_sid_to_context_core(sid, scontext,
1399 scontext_len, 1, 0);
1400 }
1401
1402 /**
1403 * security_sid_to_context_inval - Obtain a context for a given SID if it
1404 * is invalid.
1405 * @sid: security identifier, SID
1406 * @scontext: security context
1407 * @scontext_len: length in bytes
1408 *
1409 * Write the string representation of the context associated with @sid
1410 * into a dynamically allocated string of the correct size, but only if the
1411 * context is invalid in the current policy. Set @scontext to point to
1412 * this string (or NULL if the context is valid) and set @scontext_len to
1413 * the length of the string (or 0 if the context is valid).
1414 */
security_sid_to_context_inval(u32 sid,char ** scontext,u32 * scontext_len)1415 int security_sid_to_context_inval(u32 sid,
1416 char **scontext, u32 *scontext_len)
1417 {
1418 return security_sid_to_context_core(sid, scontext,
1419 scontext_len, 1, 1);
1420 }
1421
1422 /*
1423 * Caveat: Mutates scontext.
1424 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1425 static int string_to_context_struct(struct policydb *pol,
1426 struct sidtab *sidtabp,
1427 char *scontext,
1428 struct context *ctx,
1429 u32 def_sid)
1430 {
1431 struct role_datum *role;
1432 struct type_datum *typdatum;
1433 struct user_datum *usrdatum;
1434 char *scontextp, *p, oldc;
1435 int rc = 0;
1436
1437 context_init(ctx);
1438
1439 /* Parse the security context. */
1440
1441 rc = -EINVAL;
1442 scontextp = scontext;
1443
1444 /* Extract the user. */
1445 p = scontextp;
1446 while (*p && *p != ':')
1447 p++;
1448
1449 if (*p == 0)
1450 goto out;
1451
1452 *p++ = 0;
1453
1454 usrdatum = symtab_search(&pol->p_users, scontextp);
1455 if (!usrdatum)
1456 goto out;
1457
1458 ctx->user = usrdatum->value;
1459
1460 /* Extract role. */
1461 scontextp = p;
1462 while (*p && *p != ':')
1463 p++;
1464
1465 if (*p == 0)
1466 goto out;
1467
1468 *p++ = 0;
1469
1470 role = symtab_search(&pol->p_roles, scontextp);
1471 if (!role)
1472 goto out;
1473 ctx->role = role->value;
1474
1475 /* Extract type. */
1476 scontextp = p;
1477 while (*p && *p != ':')
1478 p++;
1479 oldc = *p;
1480 *p++ = 0;
1481
1482 typdatum = symtab_search(&pol->p_types, scontextp);
1483 if (!typdatum || typdatum->attribute)
1484 goto out;
1485
1486 ctx->type = typdatum->value;
1487
1488 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1489 if (rc)
1490 goto out;
1491
1492 /* Check the validity of the new context. */
1493 rc = -EINVAL;
1494 if (!policydb_context_isvalid(pol, ctx))
1495 goto out;
1496 rc = 0;
1497 out:
1498 if (rc)
1499 context_destroy(ctx);
1500 return rc;
1501 }
1502
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1503 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1504 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1505 int force)
1506 {
1507 struct selinux_policy *policy;
1508 struct policydb *policydb;
1509 struct sidtab *sidtab;
1510 char *scontext2, *str = NULL;
1511 struct context context;
1512 int rc = 0;
1513
1514 /* An empty security context is never valid. */
1515 if (!scontext_len)
1516 return -EINVAL;
1517
1518 /* Copy the string to allow changes and ensure a NUL terminator */
1519 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1520 if (!scontext2)
1521 return -ENOMEM;
1522
1523 if (!selinux_initialized()) {
1524 u32 i;
1525
1526 for (i = 1; i < SECINITSID_NUM; i++) {
1527 const char *s = initial_sid_to_string[i];
1528
1529 if (s && !strcmp(s, scontext2)) {
1530 *sid = i;
1531 goto out;
1532 }
1533 }
1534 *sid = SECINITSID_KERNEL;
1535 goto out;
1536 }
1537 *sid = SECSID_NULL;
1538
1539 if (force) {
1540 /* Save another copy for storing in uninterpreted form */
1541 rc = -ENOMEM;
1542 str = kstrdup(scontext2, gfp_flags);
1543 if (!str)
1544 goto out;
1545 }
1546 retry:
1547 rcu_read_lock();
1548 policy = rcu_dereference(selinux_state.policy);
1549 policydb = &policy->policydb;
1550 sidtab = policy->sidtab;
1551 rc = string_to_context_struct(policydb, sidtab, scontext2,
1552 &context, def_sid);
1553 if (rc == -EINVAL && force) {
1554 context.str = str;
1555 context.len = strlen(str) + 1;
1556 str = NULL;
1557 } else if (rc)
1558 goto out_unlock;
1559 rc = sidtab_context_to_sid(sidtab, &context, sid);
1560 if (rc == -ESTALE) {
1561 rcu_read_unlock();
1562 if (context.str) {
1563 str = context.str;
1564 context.str = NULL;
1565 }
1566 context_destroy(&context);
1567 goto retry;
1568 }
1569 context_destroy(&context);
1570 out_unlock:
1571 rcu_read_unlock();
1572 out:
1573 kfree(scontext2);
1574 kfree(str);
1575 return rc;
1576 }
1577
1578 /**
1579 * security_context_to_sid - Obtain a SID for a given security context.
1580 * @scontext: security context
1581 * @scontext_len: length in bytes
1582 * @sid: security identifier, SID
1583 * @gfp: context for the allocation
1584 *
1585 * Obtains a SID associated with the security context that
1586 * has the string representation specified by @scontext.
1587 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1588 * memory is available, or 0 on success.
1589 */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1590 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1591 gfp_t gfp)
1592 {
1593 return security_context_to_sid_core(scontext, scontext_len,
1594 sid, SECSID_NULL, gfp, 0);
1595 }
1596
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1597 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1598 {
1599 return security_context_to_sid(scontext, strlen(scontext),
1600 sid, gfp);
1601 }
1602
1603 /**
1604 * security_context_to_sid_default - Obtain a SID for a given security context,
1605 * falling back to specified default if needed.
1606 *
1607 * @scontext: security context
1608 * @scontext_len: length in bytes
1609 * @sid: security identifier, SID
1610 * @def_sid: default SID to assign on error
1611 * @gfp_flags: the allocator get-free-page (GFP) flags
1612 *
1613 * Obtains a SID associated with the security context that
1614 * has the string representation specified by @scontext.
1615 * The default SID is passed to the MLS layer to be used to allow
1616 * kernel labeling of the MLS field if the MLS field is not present
1617 * (for upgrading to MLS without full relabel).
1618 * Implicitly forces adding of the context even if it cannot be mapped yet.
1619 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1620 * memory is available, or 0 on success.
1621 */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1622 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1623 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1624 {
1625 return security_context_to_sid_core(scontext, scontext_len,
1626 sid, def_sid, gfp_flags, 1);
1627 }
1628
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1629 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1630 u32 *sid)
1631 {
1632 return security_context_to_sid_core(scontext, scontext_len,
1633 sid, SECSID_NULL, GFP_KERNEL, 1);
1634 }
1635
compute_sid_handle_invalid_context(struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1636 static int compute_sid_handle_invalid_context(
1637 struct selinux_policy *policy,
1638 struct sidtab_entry *sentry,
1639 struct sidtab_entry *tentry,
1640 u16 tclass,
1641 struct context *newcontext)
1642 {
1643 struct policydb *policydb = &policy->policydb;
1644 struct sidtab *sidtab = policy->sidtab;
1645 char *s = NULL, *t = NULL, *n = NULL;
1646 u32 slen, tlen, nlen;
1647 struct audit_buffer *ab;
1648
1649 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1650 goto out;
1651 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1652 goto out;
1653 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1654 goto out;
1655 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1656 if (!ab)
1657 goto out;
1658 audit_log_format(ab,
1659 "op=security_compute_sid invalid_context=");
1660 /* no need to record the NUL with untrusted strings */
1661 audit_log_n_untrustedstring(ab, n, nlen - 1);
1662 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1663 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1664 audit_log_end(ab);
1665 out:
1666 kfree(s);
1667 kfree(t);
1668 kfree(n);
1669 if (!enforcing_enabled())
1670 return 0;
1671 return -EACCES;
1672 }
1673
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1674 static void filename_compute_type(struct policydb *policydb,
1675 struct context *newcontext,
1676 u32 stype, u32 ttype, u16 tclass,
1677 const char *objname)
1678 {
1679 struct filename_trans_key ft;
1680 struct filename_trans_datum *datum;
1681
1682 /*
1683 * Most filename trans rules are going to live in specific directories
1684 * like /dev or /var/run. This bitmap will quickly skip rule searches
1685 * if the ttype does not contain any rules.
1686 */
1687 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1688 return;
1689
1690 ft.ttype = ttype;
1691 ft.tclass = tclass;
1692 ft.name = objname;
1693
1694 datum = policydb_filenametr_search(policydb, &ft);
1695 while (datum) {
1696 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1697 newcontext->type = datum->otype;
1698 return;
1699 }
1700 datum = datum->next;
1701 }
1702 }
1703
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u16 specified,const char * objname,u32 * out_sid,bool kern)1704 static int security_compute_sid(u32 ssid,
1705 u32 tsid,
1706 u16 orig_tclass,
1707 u16 specified,
1708 const char *objname,
1709 u32 *out_sid,
1710 bool kern)
1711 {
1712 struct selinux_policy *policy;
1713 struct policydb *policydb;
1714 struct sidtab *sidtab;
1715 struct class_datum *cladatum;
1716 struct context *scontext, *tcontext, newcontext;
1717 struct sidtab_entry *sentry, *tentry;
1718 struct avtab_key avkey;
1719 struct avtab_node *avnode, *node;
1720 u16 tclass;
1721 int rc = 0;
1722 bool sock;
1723
1724 if (!selinux_initialized()) {
1725 switch (orig_tclass) {
1726 case SECCLASS_PROCESS: /* kernel value */
1727 *out_sid = ssid;
1728 break;
1729 default:
1730 *out_sid = tsid;
1731 break;
1732 }
1733 goto out;
1734 }
1735
1736 retry:
1737 cladatum = NULL;
1738 context_init(&newcontext);
1739
1740 rcu_read_lock();
1741
1742 policy = rcu_dereference(selinux_state.policy);
1743
1744 if (kern) {
1745 tclass = unmap_class(&policy->map, orig_tclass);
1746 sock = security_is_socket_class(orig_tclass);
1747 } else {
1748 tclass = orig_tclass;
1749 sock = security_is_socket_class(map_class(&policy->map,
1750 tclass));
1751 }
1752
1753 policydb = &policy->policydb;
1754 sidtab = policy->sidtab;
1755
1756 sentry = sidtab_search_entry(sidtab, ssid);
1757 if (!sentry) {
1758 pr_err("SELinux: %s: unrecognized SID %d\n",
1759 __func__, ssid);
1760 rc = -EINVAL;
1761 goto out_unlock;
1762 }
1763 tentry = sidtab_search_entry(sidtab, tsid);
1764 if (!tentry) {
1765 pr_err("SELinux: %s: unrecognized SID %d\n",
1766 __func__, tsid);
1767 rc = -EINVAL;
1768 goto out_unlock;
1769 }
1770
1771 scontext = &sentry->context;
1772 tcontext = &tentry->context;
1773
1774 if (tclass && tclass <= policydb->p_classes.nprim)
1775 cladatum = policydb->class_val_to_struct[tclass - 1];
1776
1777 /* Set the user identity. */
1778 switch (specified) {
1779 case AVTAB_TRANSITION:
1780 case AVTAB_CHANGE:
1781 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1782 newcontext.user = tcontext->user;
1783 } else {
1784 /* notice this gets both DEFAULT_SOURCE and unset */
1785 /* Use the process user identity. */
1786 newcontext.user = scontext->user;
1787 }
1788 break;
1789 case AVTAB_MEMBER:
1790 /* Use the related object owner. */
1791 newcontext.user = tcontext->user;
1792 break;
1793 }
1794
1795 /* Set the role to default values. */
1796 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1797 newcontext.role = scontext->role;
1798 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1799 newcontext.role = tcontext->role;
1800 } else {
1801 if ((tclass == policydb->process_class) || sock)
1802 newcontext.role = scontext->role;
1803 else
1804 newcontext.role = OBJECT_R_VAL;
1805 }
1806
1807 /* Set the type.
1808 * Look for a type transition/member/change rule.
1809 */
1810 avkey.source_type = scontext->type;
1811 avkey.target_type = tcontext->type;
1812 avkey.target_class = tclass;
1813 avkey.specified = specified;
1814 avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1815
1816 /* If no permanent rule, also check for enabled conditional rules */
1817 if (!avnode) {
1818 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1819 for (; node; node = avtab_search_node_next(node, specified)) {
1820 if (node->key.specified & AVTAB_ENABLED) {
1821 avnode = node;
1822 break;
1823 }
1824 }
1825 }
1826
1827 /* If a permanent rule is found, use the type from
1828 * the type transition/member/change rule. Otherwise,
1829 * set the type to its default values.
1830 */
1831 if (avnode) {
1832 newcontext.type = avnode->datum.u.data;
1833 } else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1834 newcontext.type = scontext->type;
1835 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1836 newcontext.type = tcontext->type;
1837 } else {
1838 if ((tclass == policydb->process_class) || sock) {
1839 /* Use the type of process. */
1840 newcontext.type = scontext->type;
1841 } else {
1842 /* Use the type of the related object. */
1843 newcontext.type = tcontext->type;
1844 }
1845 }
1846
1847 /* if we have a objname this is a file trans check so check those rules */
1848 if (objname)
1849 filename_compute_type(policydb, &newcontext, scontext->type,
1850 tcontext->type, tclass, objname);
1851
1852 /* Check for class-specific changes. */
1853 if (specified & AVTAB_TRANSITION) {
1854 /* Look for a role transition rule. */
1855 struct role_trans_datum *rtd;
1856 struct role_trans_key rtk = {
1857 .role = scontext->role,
1858 .type = tcontext->type,
1859 .tclass = tclass,
1860 };
1861
1862 rtd = policydb_roletr_search(policydb, &rtk);
1863 if (rtd)
1864 newcontext.role = rtd->new_role;
1865 }
1866
1867 /* Set the MLS attributes.
1868 This is done last because it may allocate memory. */
1869 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1870 &newcontext, sock);
1871 if (rc)
1872 goto out_unlock;
1873
1874 /* Check the validity of the context. */
1875 if (!policydb_context_isvalid(policydb, &newcontext)) {
1876 rc = compute_sid_handle_invalid_context(policy, sentry,
1877 tentry, tclass,
1878 &newcontext);
1879 if (rc)
1880 goto out_unlock;
1881 }
1882 /* Obtain the sid for the context. */
1883 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1884 if (rc == -ESTALE) {
1885 rcu_read_unlock();
1886 context_destroy(&newcontext);
1887 goto retry;
1888 }
1889 out_unlock:
1890 rcu_read_unlock();
1891 context_destroy(&newcontext);
1892 out:
1893 return rc;
1894 }
1895
1896 /**
1897 * security_transition_sid - Compute the SID for a new subject/object.
1898 * @ssid: source security identifier
1899 * @tsid: target security identifier
1900 * @tclass: target security class
1901 * @qstr: object name
1902 * @out_sid: security identifier for new subject/object
1903 *
1904 * Compute a SID to use for labeling a new subject or object in the
1905 * class @tclass based on a SID pair (@ssid, @tsid).
1906 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1907 * if insufficient memory is available, or %0 if the new SID was
1908 * computed successfully.
1909 */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1910 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1911 const struct qstr *qstr, u32 *out_sid)
1912 {
1913 return security_compute_sid(ssid, tsid, tclass,
1914 AVTAB_TRANSITION,
1915 qstr ? qstr->name : NULL, out_sid, true);
1916 }
1917
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1918 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1919 const char *objname, u32 *out_sid)
1920 {
1921 return security_compute_sid(ssid, tsid, tclass,
1922 AVTAB_TRANSITION,
1923 objname, out_sid, false);
1924 }
1925
1926 /**
1927 * security_member_sid - Compute the SID for member selection.
1928 * @ssid: source security identifier
1929 * @tsid: target security identifier
1930 * @tclass: target security class
1931 * @out_sid: security identifier for selected member
1932 *
1933 * Compute a SID to use when selecting a member of a polyinstantiated
1934 * object of class @tclass based on a SID pair (@ssid, @tsid).
1935 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1936 * if insufficient memory is available, or %0 if the SID was
1937 * computed successfully.
1938 */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1939 int security_member_sid(u32 ssid,
1940 u32 tsid,
1941 u16 tclass,
1942 u32 *out_sid)
1943 {
1944 return security_compute_sid(ssid, tsid, tclass,
1945 AVTAB_MEMBER, NULL,
1946 out_sid, false);
1947 }
1948
1949 /**
1950 * security_change_sid - Compute the SID for object relabeling.
1951 * @ssid: source security identifier
1952 * @tsid: target security identifier
1953 * @tclass: target security class
1954 * @out_sid: security identifier for selected member
1955 *
1956 * Compute a SID to use for relabeling an object of class @tclass
1957 * based on a SID pair (@ssid, @tsid).
1958 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1959 * if insufficient memory is available, or %0 if the SID was
1960 * computed successfully.
1961 */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1962 int security_change_sid(u32 ssid,
1963 u32 tsid,
1964 u16 tclass,
1965 u32 *out_sid)
1966 {
1967 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1968 out_sid, false);
1969 }
1970
convert_context_handle_invalid_context(struct policydb * policydb,struct context * context)1971 static inline int convert_context_handle_invalid_context(
1972 struct policydb *policydb,
1973 struct context *context)
1974 {
1975 char *s;
1976 u32 len;
1977
1978 if (enforcing_enabled())
1979 return -EINVAL;
1980
1981 if (!context_struct_to_string(policydb, context, &s, &len)) {
1982 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
1983 s);
1984 kfree(s);
1985 }
1986 return 0;
1987 }
1988
1989 /**
1990 * services_convert_context - Convert a security context across policies.
1991 * @args: populated convert_context_args struct
1992 * @oldc: original context
1993 * @newc: converted context
1994 * @gfp_flags: allocation flags
1995 *
1996 * Convert the values in the security context structure @oldc from the values
1997 * specified in the policy @args->oldp to the values specified in the policy
1998 * @args->newp, storing the new context in @newc, and verifying that the
1999 * context is valid under the new policy.
2000 */
services_convert_context(struct convert_context_args * args,struct context * oldc,struct context * newc,gfp_t gfp_flags)2001 int services_convert_context(struct convert_context_args *args,
2002 struct context *oldc, struct context *newc,
2003 gfp_t gfp_flags)
2004 {
2005 struct ocontext *oc;
2006 struct role_datum *role;
2007 struct type_datum *typdatum;
2008 struct user_datum *usrdatum;
2009 char *s;
2010 u32 len;
2011 int rc;
2012
2013 if (oldc->str) {
2014 s = kstrdup(oldc->str, gfp_flags);
2015 if (!s)
2016 return -ENOMEM;
2017
2018 rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2019 if (rc == -EINVAL) {
2020 /*
2021 * Retain string representation for later mapping.
2022 *
2023 * IMPORTANT: We need to copy the contents of oldc->str
2024 * back into s again because string_to_context_struct()
2025 * may have garbled it.
2026 */
2027 memcpy(s, oldc->str, oldc->len);
2028 context_init(newc);
2029 newc->str = s;
2030 newc->len = oldc->len;
2031 return 0;
2032 }
2033 kfree(s);
2034 if (rc) {
2035 /* Other error condition, e.g. ENOMEM. */
2036 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2037 oldc->str, -rc);
2038 return rc;
2039 }
2040 pr_info("SELinux: Context %s became valid (mapped).\n",
2041 oldc->str);
2042 return 0;
2043 }
2044
2045 context_init(newc);
2046
2047 /* Convert the user. */
2048 usrdatum = symtab_search(&args->newp->p_users,
2049 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2050 if (!usrdatum)
2051 goto bad;
2052 newc->user = usrdatum->value;
2053
2054 /* Convert the role. */
2055 role = symtab_search(&args->newp->p_roles,
2056 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2057 if (!role)
2058 goto bad;
2059 newc->role = role->value;
2060
2061 /* Convert the type. */
2062 typdatum = symtab_search(&args->newp->p_types,
2063 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2064 if (!typdatum)
2065 goto bad;
2066 newc->type = typdatum->value;
2067
2068 /* Convert the MLS fields if dealing with MLS policies */
2069 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2070 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2071 if (rc)
2072 goto bad;
2073 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2074 /*
2075 * Switching between non-MLS and MLS policy:
2076 * ensure that the MLS fields of the context for all
2077 * existing entries in the sidtab are filled in with a
2078 * suitable default value, likely taken from one of the
2079 * initial SIDs.
2080 */
2081 oc = args->newp->ocontexts[OCON_ISID];
2082 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2083 oc = oc->next;
2084 if (!oc) {
2085 pr_err("SELinux: unable to look up"
2086 " the initial SIDs list\n");
2087 goto bad;
2088 }
2089 rc = mls_range_set(newc, &oc->context[0].range);
2090 if (rc)
2091 goto bad;
2092 }
2093
2094 /* Check the validity of the new context. */
2095 if (!policydb_context_isvalid(args->newp, newc)) {
2096 rc = convert_context_handle_invalid_context(args->oldp, oldc);
2097 if (rc)
2098 goto bad;
2099 }
2100
2101 return 0;
2102 bad:
2103 /* Map old representation to string and save it. */
2104 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2105 if (rc)
2106 return rc;
2107 context_destroy(newc);
2108 newc->str = s;
2109 newc->len = len;
2110 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2111 newc->str);
2112 return 0;
2113 }
2114
security_load_policycaps(struct selinux_policy * policy)2115 static void security_load_policycaps(struct selinux_policy *policy)
2116 {
2117 struct policydb *p;
2118 unsigned int i;
2119 struct ebitmap_node *node;
2120
2121 p = &policy->policydb;
2122
2123 for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2124 WRITE_ONCE(selinux_state.policycap[i],
2125 ebitmap_get_bit(&p->policycaps, i));
2126
2127 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2128 pr_info("SELinux: policy capability %s=%d\n",
2129 selinux_policycap_names[i],
2130 ebitmap_get_bit(&p->policycaps, i));
2131
2132 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2133 if (i >= ARRAY_SIZE(selinux_policycap_names))
2134 pr_info("SELinux: unknown policy capability %u\n",
2135 i);
2136 }
2137 }
2138
2139 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2140 struct selinux_policy *newpolicy);
2141
selinux_policy_free(struct selinux_policy * policy)2142 static void selinux_policy_free(struct selinux_policy *policy)
2143 {
2144 if (!policy)
2145 return;
2146
2147 sidtab_destroy(policy->sidtab);
2148 kfree(policy->map.mapping);
2149 policydb_destroy(&policy->policydb);
2150 kfree(policy->sidtab);
2151 kfree(policy);
2152 }
2153
selinux_policy_cond_free(struct selinux_policy * policy)2154 static void selinux_policy_cond_free(struct selinux_policy *policy)
2155 {
2156 cond_policydb_destroy_dup(&policy->policydb);
2157 kfree(policy);
2158 }
2159
selinux_policy_cancel(struct selinux_load_state * load_state)2160 void selinux_policy_cancel(struct selinux_load_state *load_state)
2161 {
2162 struct selinux_state *state = &selinux_state;
2163 struct selinux_policy *oldpolicy;
2164
2165 oldpolicy = rcu_dereference_protected(state->policy,
2166 lockdep_is_held(&state->policy_mutex));
2167
2168 sidtab_cancel_convert(oldpolicy->sidtab);
2169 selinux_policy_free(load_state->policy);
2170 kfree(load_state->convert_data);
2171 }
2172
selinux_notify_policy_change(u32 seqno)2173 static void selinux_notify_policy_change(u32 seqno)
2174 {
2175 /* Flush external caches and notify userspace of policy load */
2176 avc_ss_reset(seqno);
2177 selnl_notify_policyload(seqno);
2178 selinux_status_update_policyload(seqno);
2179 selinux_netlbl_cache_invalidate();
2180 selinux_xfrm_notify_policyload();
2181 selinux_ima_measure_state_locked();
2182 }
2183
selinux_policy_commit(struct selinux_load_state * load_state)2184 void selinux_policy_commit(struct selinux_load_state *load_state)
2185 {
2186 struct selinux_state *state = &selinux_state;
2187 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2188 unsigned long flags;
2189 u32 seqno;
2190
2191 oldpolicy = rcu_dereference_protected(state->policy,
2192 lockdep_is_held(&state->policy_mutex));
2193
2194 /* If switching between different policy types, log MLS status */
2195 if (oldpolicy) {
2196 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2197 pr_info("SELinux: Disabling MLS support...\n");
2198 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2199 pr_info("SELinux: Enabling MLS support...\n");
2200 }
2201
2202 /* Set latest granting seqno for new policy. */
2203 if (oldpolicy)
2204 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2205 else
2206 newpolicy->latest_granting = 1;
2207 seqno = newpolicy->latest_granting;
2208
2209 /* Install the new policy. */
2210 if (oldpolicy) {
2211 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2212 rcu_assign_pointer(state->policy, newpolicy);
2213 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2214 } else {
2215 rcu_assign_pointer(state->policy, newpolicy);
2216 }
2217
2218 /* Load the policycaps from the new policy */
2219 security_load_policycaps(newpolicy);
2220
2221 if (!selinux_initialized()) {
2222 /*
2223 * After first policy load, the security server is
2224 * marked as initialized and ready to handle requests and
2225 * any objects created prior to policy load are then labeled.
2226 */
2227 selinux_mark_initialized();
2228 selinux_complete_init();
2229 }
2230
2231 /* Free the old policy */
2232 synchronize_rcu();
2233 selinux_policy_free(oldpolicy);
2234 kfree(load_state->convert_data);
2235
2236 /* Notify others of the policy change */
2237 selinux_notify_policy_change(seqno);
2238 }
2239
2240 /**
2241 * security_load_policy - Load a security policy configuration.
2242 * @data: binary policy data
2243 * @len: length of data in bytes
2244 * @load_state: policy load state
2245 *
2246 * Load a new set of security policy configuration data,
2247 * validate it and convert the SID table as necessary.
2248 * This function will flush the access vector cache after
2249 * loading the new policy.
2250 */
security_load_policy(void * data,size_t len,struct selinux_load_state * load_state)2251 int security_load_policy(void *data, size_t len,
2252 struct selinux_load_state *load_state)
2253 {
2254 struct selinux_state *state = &selinux_state;
2255 struct selinux_policy *newpolicy, *oldpolicy;
2256 struct selinux_policy_convert_data *convert_data;
2257 int rc = 0;
2258 struct policy_file file = { data, len }, *fp = &file;
2259
2260 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2261 if (!newpolicy)
2262 return -ENOMEM;
2263
2264 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2265 if (!newpolicy->sidtab) {
2266 rc = -ENOMEM;
2267 goto err_policy;
2268 }
2269
2270 rc = policydb_read(&newpolicy->policydb, fp);
2271 if (rc)
2272 goto err_sidtab;
2273
2274 newpolicy->policydb.len = len;
2275 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2276 &newpolicy->map);
2277 if (rc)
2278 goto err_policydb;
2279
2280 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2281 if (rc) {
2282 pr_err("SELinux: unable to load the initial SIDs\n");
2283 goto err_mapping;
2284 }
2285
2286 if (!selinux_initialized()) {
2287 /* First policy load, so no need to preserve state from old policy */
2288 load_state->policy = newpolicy;
2289 load_state->convert_data = NULL;
2290 return 0;
2291 }
2292
2293 oldpolicy = rcu_dereference_protected(state->policy,
2294 lockdep_is_held(&state->policy_mutex));
2295
2296 /* Preserve active boolean values from the old policy */
2297 rc = security_preserve_bools(oldpolicy, newpolicy);
2298 if (rc) {
2299 pr_err("SELinux: unable to preserve booleans\n");
2300 goto err_free_isids;
2301 }
2302
2303 /*
2304 * Convert the internal representations of contexts
2305 * in the new SID table.
2306 */
2307
2308 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2309 if (!convert_data) {
2310 rc = -ENOMEM;
2311 goto err_free_isids;
2312 }
2313
2314 convert_data->args.oldp = &oldpolicy->policydb;
2315 convert_data->args.newp = &newpolicy->policydb;
2316
2317 convert_data->sidtab_params.args = &convert_data->args;
2318 convert_data->sidtab_params.target = newpolicy->sidtab;
2319
2320 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2321 if (rc) {
2322 pr_err("SELinux: unable to convert the internal"
2323 " representation of contexts in the new SID"
2324 " table\n");
2325 goto err_free_convert_data;
2326 }
2327
2328 load_state->policy = newpolicy;
2329 load_state->convert_data = convert_data;
2330 return 0;
2331
2332 err_free_convert_data:
2333 kfree(convert_data);
2334 err_free_isids:
2335 sidtab_destroy(newpolicy->sidtab);
2336 err_mapping:
2337 kfree(newpolicy->map.mapping);
2338 err_policydb:
2339 policydb_destroy(&newpolicy->policydb);
2340 err_sidtab:
2341 kfree(newpolicy->sidtab);
2342 err_policy:
2343 kfree(newpolicy);
2344
2345 return rc;
2346 }
2347
2348 /**
2349 * ocontext_to_sid - Helper to safely get sid for an ocontext
2350 * @sidtab: SID table
2351 * @c: ocontext structure
2352 * @index: index of the context entry (0 or 1)
2353 * @out_sid: pointer to the resulting SID value
2354 *
2355 * For all ocontexts except OCON_ISID the SID fields are populated
2356 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2357 * operation, this helper must be used to do that safely.
2358 *
2359 * WARNING: This function may return -ESTALE, indicating that the caller
2360 * must retry the operation after re-acquiring the policy pointer!
2361 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2362 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2363 size_t index, u32 *out_sid)
2364 {
2365 int rc;
2366 u32 sid;
2367
2368 /* Ensure the associated sidtab entry is visible to this thread. */
2369 sid = smp_load_acquire(&c->sid[index]);
2370 if (!sid) {
2371 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2372 if (rc)
2373 return rc;
2374
2375 /*
2376 * Ensure the new sidtab entry is visible to other threads
2377 * when they see the SID.
2378 */
2379 smp_store_release(&c->sid[index], sid);
2380 }
2381 *out_sid = sid;
2382 return 0;
2383 }
2384
2385 /**
2386 * security_port_sid - Obtain the SID for a port.
2387 * @protocol: protocol number
2388 * @port: port number
2389 * @out_sid: security identifier
2390 */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2391 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2392 {
2393 struct selinux_policy *policy;
2394 struct policydb *policydb;
2395 struct sidtab *sidtab;
2396 struct ocontext *c;
2397 int rc;
2398
2399 if (!selinux_initialized()) {
2400 *out_sid = SECINITSID_PORT;
2401 return 0;
2402 }
2403
2404 retry:
2405 rc = 0;
2406 rcu_read_lock();
2407 policy = rcu_dereference(selinux_state.policy);
2408 policydb = &policy->policydb;
2409 sidtab = policy->sidtab;
2410
2411 c = policydb->ocontexts[OCON_PORT];
2412 while (c) {
2413 if (c->u.port.protocol == protocol &&
2414 c->u.port.low_port <= port &&
2415 c->u.port.high_port >= port)
2416 break;
2417 c = c->next;
2418 }
2419
2420 if (c) {
2421 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2422 if (rc == -ESTALE) {
2423 rcu_read_unlock();
2424 goto retry;
2425 }
2426 if (rc)
2427 goto out;
2428 } else {
2429 *out_sid = SECINITSID_PORT;
2430 }
2431
2432 out:
2433 rcu_read_unlock();
2434 return rc;
2435 }
2436
2437 /**
2438 * security_ib_pkey_sid - Obtain the SID for a pkey.
2439 * @subnet_prefix: Subnet Prefix
2440 * @pkey_num: pkey number
2441 * @out_sid: security identifier
2442 */
security_ib_pkey_sid(u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2443 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2444 {
2445 struct selinux_policy *policy;
2446 struct policydb *policydb;
2447 struct sidtab *sidtab;
2448 struct ocontext *c;
2449 int rc;
2450
2451 if (!selinux_initialized()) {
2452 *out_sid = SECINITSID_UNLABELED;
2453 return 0;
2454 }
2455
2456 retry:
2457 rc = 0;
2458 rcu_read_lock();
2459 policy = rcu_dereference(selinux_state.policy);
2460 policydb = &policy->policydb;
2461 sidtab = policy->sidtab;
2462
2463 c = policydb->ocontexts[OCON_IBPKEY];
2464 while (c) {
2465 if (c->u.ibpkey.low_pkey <= pkey_num &&
2466 c->u.ibpkey.high_pkey >= pkey_num &&
2467 c->u.ibpkey.subnet_prefix == subnet_prefix)
2468 break;
2469
2470 c = c->next;
2471 }
2472
2473 if (c) {
2474 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2475 if (rc == -ESTALE) {
2476 rcu_read_unlock();
2477 goto retry;
2478 }
2479 if (rc)
2480 goto out;
2481 } else
2482 *out_sid = SECINITSID_UNLABELED;
2483
2484 out:
2485 rcu_read_unlock();
2486 return rc;
2487 }
2488
2489 /**
2490 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2491 * @dev_name: device name
2492 * @port_num: port number
2493 * @out_sid: security identifier
2494 */
security_ib_endport_sid(const char * dev_name,u8 port_num,u32 * out_sid)2495 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2496 {
2497 struct selinux_policy *policy;
2498 struct policydb *policydb;
2499 struct sidtab *sidtab;
2500 struct ocontext *c;
2501 int rc;
2502
2503 if (!selinux_initialized()) {
2504 *out_sid = SECINITSID_UNLABELED;
2505 return 0;
2506 }
2507
2508 retry:
2509 rc = 0;
2510 rcu_read_lock();
2511 policy = rcu_dereference(selinux_state.policy);
2512 policydb = &policy->policydb;
2513 sidtab = policy->sidtab;
2514
2515 c = policydb->ocontexts[OCON_IBENDPORT];
2516 while (c) {
2517 if (c->u.ibendport.port == port_num &&
2518 !strncmp(c->u.ibendport.dev_name,
2519 dev_name,
2520 IB_DEVICE_NAME_MAX))
2521 break;
2522
2523 c = c->next;
2524 }
2525
2526 if (c) {
2527 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2528 if (rc == -ESTALE) {
2529 rcu_read_unlock();
2530 goto retry;
2531 }
2532 if (rc)
2533 goto out;
2534 } else
2535 *out_sid = SECINITSID_UNLABELED;
2536
2537 out:
2538 rcu_read_unlock();
2539 return rc;
2540 }
2541
2542 /**
2543 * security_netif_sid - Obtain the SID for a network interface.
2544 * @name: interface name
2545 * @if_sid: interface SID
2546 */
security_netif_sid(char * name,u32 * if_sid)2547 int security_netif_sid(char *name, u32 *if_sid)
2548 {
2549 struct selinux_policy *policy;
2550 struct policydb *policydb;
2551 struct sidtab *sidtab;
2552 int rc;
2553 struct ocontext *c;
2554
2555 if (!selinux_initialized()) {
2556 *if_sid = SECINITSID_NETIF;
2557 return 0;
2558 }
2559
2560 retry:
2561 rc = 0;
2562 rcu_read_lock();
2563 policy = rcu_dereference(selinux_state.policy);
2564 policydb = &policy->policydb;
2565 sidtab = policy->sidtab;
2566
2567 c = policydb->ocontexts[OCON_NETIF];
2568 while (c) {
2569 if (strcmp(name, c->u.name) == 0)
2570 break;
2571 c = c->next;
2572 }
2573
2574 if (c) {
2575 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2576 if (rc == -ESTALE) {
2577 rcu_read_unlock();
2578 goto retry;
2579 }
2580 if (rc)
2581 goto out;
2582 } else
2583 *if_sid = SECINITSID_NETIF;
2584
2585 out:
2586 rcu_read_unlock();
2587 return rc;
2588 }
2589
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2590 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2591 {
2592 int i, fail = 0;
2593
2594 for (i = 0; i < 4; i++)
2595 if (addr[i] != (input[i] & mask[i])) {
2596 fail = 1;
2597 break;
2598 }
2599
2600 return !fail;
2601 }
2602
2603 /**
2604 * security_node_sid - Obtain the SID for a node (host).
2605 * @domain: communication domain aka address family
2606 * @addrp: address
2607 * @addrlen: address length in bytes
2608 * @out_sid: security identifier
2609 */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2610 int security_node_sid(u16 domain,
2611 void *addrp,
2612 u32 addrlen,
2613 u32 *out_sid)
2614 {
2615 struct selinux_policy *policy;
2616 struct policydb *policydb;
2617 struct sidtab *sidtab;
2618 int rc;
2619 struct ocontext *c;
2620
2621 if (!selinux_initialized()) {
2622 *out_sid = SECINITSID_NODE;
2623 return 0;
2624 }
2625
2626 retry:
2627 rcu_read_lock();
2628 policy = rcu_dereference(selinux_state.policy);
2629 policydb = &policy->policydb;
2630 sidtab = policy->sidtab;
2631
2632 switch (domain) {
2633 case AF_INET: {
2634 u32 addr;
2635
2636 rc = -EINVAL;
2637 if (addrlen != sizeof(u32))
2638 goto out;
2639
2640 addr = *((u32 *)addrp);
2641
2642 c = policydb->ocontexts[OCON_NODE];
2643 while (c) {
2644 if (c->u.node.addr == (addr & c->u.node.mask))
2645 break;
2646 c = c->next;
2647 }
2648 break;
2649 }
2650
2651 case AF_INET6:
2652 rc = -EINVAL;
2653 if (addrlen != sizeof(u64) * 2)
2654 goto out;
2655 c = policydb->ocontexts[OCON_NODE6];
2656 while (c) {
2657 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2658 c->u.node6.mask))
2659 break;
2660 c = c->next;
2661 }
2662 break;
2663
2664 default:
2665 rc = 0;
2666 *out_sid = SECINITSID_NODE;
2667 goto out;
2668 }
2669
2670 if (c) {
2671 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2672 if (rc == -ESTALE) {
2673 rcu_read_unlock();
2674 goto retry;
2675 }
2676 if (rc)
2677 goto out;
2678 } else {
2679 *out_sid = SECINITSID_NODE;
2680 }
2681
2682 rc = 0;
2683 out:
2684 rcu_read_unlock();
2685 return rc;
2686 }
2687
2688 #define SIDS_NEL 25
2689
2690 /**
2691 * security_get_user_sids - Obtain reachable SIDs for a user.
2692 * @fromsid: starting SID
2693 * @username: username
2694 * @sids: array of reachable SIDs for user
2695 * @nel: number of elements in @sids
2696 *
2697 * Generate the set of SIDs for legal security contexts
2698 * for a given user that can be reached by @fromsid.
2699 * Set *@sids to point to a dynamically allocated
2700 * array containing the set of SIDs. Set *@nel to the
2701 * number of elements in the array.
2702 */
2703
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2704 int security_get_user_sids(u32 fromsid,
2705 char *username,
2706 u32 **sids,
2707 u32 *nel)
2708 {
2709 struct selinux_policy *policy;
2710 struct policydb *policydb;
2711 struct sidtab *sidtab;
2712 struct context *fromcon, usercon;
2713 u32 *mysids = NULL, *mysids2, sid;
2714 u32 i, j, mynel, maxnel = SIDS_NEL;
2715 struct user_datum *user;
2716 struct role_datum *role;
2717 struct ebitmap_node *rnode, *tnode;
2718 int rc;
2719
2720 *sids = NULL;
2721 *nel = 0;
2722
2723 if (!selinux_initialized())
2724 return 0;
2725
2726 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2727 if (!mysids)
2728 return -ENOMEM;
2729
2730 retry:
2731 mynel = 0;
2732 rcu_read_lock();
2733 policy = rcu_dereference(selinux_state.policy);
2734 policydb = &policy->policydb;
2735 sidtab = policy->sidtab;
2736
2737 context_init(&usercon);
2738
2739 rc = -EINVAL;
2740 fromcon = sidtab_search(sidtab, fromsid);
2741 if (!fromcon)
2742 goto out_unlock;
2743
2744 rc = -EINVAL;
2745 user = symtab_search(&policydb->p_users, username);
2746 if (!user)
2747 goto out_unlock;
2748
2749 usercon.user = user->value;
2750
2751 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2752 role = policydb->role_val_to_struct[i];
2753 usercon.role = i + 1;
2754 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2755 usercon.type = j + 1;
2756
2757 if (mls_setup_user_range(policydb, fromcon, user,
2758 &usercon))
2759 continue;
2760
2761 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2762 if (rc == -ESTALE) {
2763 rcu_read_unlock();
2764 goto retry;
2765 }
2766 if (rc)
2767 goto out_unlock;
2768 if (mynel < maxnel) {
2769 mysids[mynel++] = sid;
2770 } else {
2771 rc = -ENOMEM;
2772 maxnel += SIDS_NEL;
2773 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2774 if (!mysids2)
2775 goto out_unlock;
2776 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2777 kfree(mysids);
2778 mysids = mysids2;
2779 mysids[mynel++] = sid;
2780 }
2781 }
2782 }
2783 rc = 0;
2784 out_unlock:
2785 rcu_read_unlock();
2786 if (rc || !mynel) {
2787 kfree(mysids);
2788 return rc;
2789 }
2790
2791 rc = -ENOMEM;
2792 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2793 if (!mysids2) {
2794 kfree(mysids);
2795 return rc;
2796 }
2797 for (i = 0, j = 0; i < mynel; i++) {
2798 struct av_decision dummy_avd;
2799 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2800 SECCLASS_PROCESS, /* kernel value */
2801 PROCESS__TRANSITION, AVC_STRICT,
2802 &dummy_avd);
2803 if (!rc)
2804 mysids2[j++] = mysids[i];
2805 cond_resched();
2806 }
2807 kfree(mysids);
2808 *sids = mysids2;
2809 *nel = j;
2810 return 0;
2811 }
2812
2813 /**
2814 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2815 * @policy: policy
2816 * @fstype: filesystem type
2817 * @path: path from root of mount
2818 * @orig_sclass: file security class
2819 * @sid: SID for path
2820 *
2821 * Obtain a SID to use for a file in a filesystem that
2822 * cannot support xattr or use a fixed labeling behavior like
2823 * transition SIDs or task SIDs.
2824 *
2825 * WARNING: This function may return -ESTALE, indicating that the caller
2826 * must retry the operation after re-acquiring the policy pointer!
2827 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2828 static inline int __security_genfs_sid(struct selinux_policy *policy,
2829 const char *fstype,
2830 const char *path,
2831 u16 orig_sclass,
2832 u32 *sid)
2833 {
2834 struct policydb *policydb = &policy->policydb;
2835 struct sidtab *sidtab = policy->sidtab;
2836 u16 sclass;
2837 struct genfs *genfs;
2838 struct ocontext *c;
2839 int cmp = 0;
2840
2841 while (path[0] == '/' && path[1] == '/')
2842 path++;
2843
2844 sclass = unmap_class(&policy->map, orig_sclass);
2845 *sid = SECINITSID_UNLABELED;
2846
2847 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2848 cmp = strcmp(fstype, genfs->fstype);
2849 if (cmp <= 0)
2850 break;
2851 }
2852
2853 if (!genfs || cmp)
2854 return -ENOENT;
2855
2856 for (c = genfs->head; c; c = c->next) {
2857 size_t len = strlen(c->u.name);
2858 if ((!c->v.sclass || sclass == c->v.sclass) &&
2859 (strncmp(c->u.name, path, len) == 0))
2860 break;
2861 }
2862
2863 if (!c)
2864 return -ENOENT;
2865
2866 return ocontext_to_sid(sidtab, c, 0, sid);
2867 }
2868
2869 /**
2870 * security_genfs_sid - Obtain a SID for a file in a filesystem
2871 * @fstype: filesystem type
2872 * @path: path from root of mount
2873 * @orig_sclass: file security class
2874 * @sid: SID for path
2875 *
2876 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2877 * it afterward.
2878 */
security_genfs_sid(const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2879 int security_genfs_sid(const char *fstype,
2880 const char *path,
2881 u16 orig_sclass,
2882 u32 *sid)
2883 {
2884 struct selinux_policy *policy;
2885 int retval;
2886
2887 if (!selinux_initialized()) {
2888 *sid = SECINITSID_UNLABELED;
2889 return 0;
2890 }
2891
2892 do {
2893 rcu_read_lock();
2894 policy = rcu_dereference(selinux_state.policy);
2895 retval = __security_genfs_sid(policy, fstype, path,
2896 orig_sclass, sid);
2897 rcu_read_unlock();
2898 } while (retval == -ESTALE);
2899 return retval;
2900 }
2901
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2902 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2903 const char *fstype,
2904 const char *path,
2905 u16 orig_sclass,
2906 u32 *sid)
2907 {
2908 /* no lock required, policy is not yet accessible by other threads */
2909 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2910 }
2911
2912 /**
2913 * security_fs_use - Determine how to handle labeling for a filesystem.
2914 * @sb: superblock in question
2915 */
security_fs_use(struct super_block * sb)2916 int security_fs_use(struct super_block *sb)
2917 {
2918 struct selinux_policy *policy;
2919 struct policydb *policydb;
2920 struct sidtab *sidtab;
2921 int rc;
2922 struct ocontext *c;
2923 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2924 const char *fstype = sb->s_type->name;
2925
2926 if (!selinux_initialized()) {
2927 sbsec->behavior = SECURITY_FS_USE_NONE;
2928 sbsec->sid = SECINITSID_UNLABELED;
2929 return 0;
2930 }
2931
2932 retry:
2933 rcu_read_lock();
2934 policy = rcu_dereference(selinux_state.policy);
2935 policydb = &policy->policydb;
2936 sidtab = policy->sidtab;
2937
2938 c = policydb->ocontexts[OCON_FSUSE];
2939 while (c) {
2940 if (strcmp(fstype, c->u.name) == 0)
2941 break;
2942 c = c->next;
2943 }
2944
2945 if (c) {
2946 sbsec->behavior = c->v.behavior;
2947 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2948 if (rc == -ESTALE) {
2949 rcu_read_unlock();
2950 goto retry;
2951 }
2952 if (rc)
2953 goto out;
2954 } else {
2955 rc = __security_genfs_sid(policy, fstype, "/",
2956 SECCLASS_DIR, &sbsec->sid);
2957 if (rc == -ESTALE) {
2958 rcu_read_unlock();
2959 goto retry;
2960 }
2961 if (rc) {
2962 sbsec->behavior = SECURITY_FS_USE_NONE;
2963 rc = 0;
2964 } else {
2965 sbsec->behavior = SECURITY_FS_USE_GENFS;
2966 }
2967 }
2968
2969 out:
2970 rcu_read_unlock();
2971 return rc;
2972 }
2973
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)2974 int security_get_bools(struct selinux_policy *policy,
2975 u32 *len, char ***names, int **values)
2976 {
2977 struct policydb *policydb;
2978 u32 i;
2979 int rc;
2980
2981 policydb = &policy->policydb;
2982
2983 *names = NULL;
2984 *values = NULL;
2985
2986 rc = 0;
2987 *len = policydb->p_bools.nprim;
2988 if (!*len)
2989 goto out;
2990
2991 rc = -ENOMEM;
2992 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2993 if (!*names)
2994 goto err;
2995
2996 rc = -ENOMEM;
2997 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2998 if (!*values)
2999 goto err;
3000
3001 for (i = 0; i < *len; i++) {
3002 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3003
3004 rc = -ENOMEM;
3005 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3006 GFP_ATOMIC);
3007 if (!(*names)[i])
3008 goto err;
3009 }
3010 rc = 0;
3011 out:
3012 return rc;
3013 err:
3014 if (*names) {
3015 for (i = 0; i < *len; i++)
3016 kfree((*names)[i]);
3017 kfree(*names);
3018 }
3019 kfree(*values);
3020 *len = 0;
3021 *names = NULL;
3022 *values = NULL;
3023 goto out;
3024 }
3025
3026
security_set_bools(u32 len,int * values)3027 int security_set_bools(u32 len, int *values)
3028 {
3029 struct selinux_state *state = &selinux_state;
3030 struct selinux_policy *newpolicy, *oldpolicy;
3031 int rc;
3032 u32 i, seqno = 0;
3033
3034 if (!selinux_initialized())
3035 return -EINVAL;
3036
3037 oldpolicy = rcu_dereference_protected(state->policy,
3038 lockdep_is_held(&state->policy_mutex));
3039
3040 /* Consistency check on number of booleans, should never fail */
3041 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3042 return -EINVAL;
3043
3044 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3045 if (!newpolicy)
3046 return -ENOMEM;
3047
3048 /*
3049 * Deep copy only the parts of the policydb that might be
3050 * modified as a result of changing booleans.
3051 */
3052 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3053 if (rc) {
3054 kfree(newpolicy);
3055 return -ENOMEM;
3056 }
3057
3058 /* Update the boolean states in the copy */
3059 for (i = 0; i < len; i++) {
3060 int new_state = !!values[i];
3061 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3062
3063 if (new_state != old_state) {
3064 audit_log(audit_context(), GFP_ATOMIC,
3065 AUDIT_MAC_CONFIG_CHANGE,
3066 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3067 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3068 new_state,
3069 old_state,
3070 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3071 audit_get_sessionid(current));
3072 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3073 }
3074 }
3075
3076 /* Re-evaluate the conditional rules in the copy */
3077 evaluate_cond_nodes(&newpolicy->policydb);
3078
3079 /* Set latest granting seqno for new policy */
3080 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3081 seqno = newpolicy->latest_granting;
3082
3083 /* Install the new policy */
3084 rcu_assign_pointer(state->policy, newpolicy);
3085
3086 /*
3087 * Free the conditional portions of the old policydb
3088 * that were copied for the new policy, and the oldpolicy
3089 * structure itself but not what it references.
3090 */
3091 synchronize_rcu();
3092 selinux_policy_cond_free(oldpolicy);
3093
3094 /* Notify others of the policy change */
3095 selinux_notify_policy_change(seqno);
3096 return 0;
3097 }
3098
security_get_bool_value(u32 index)3099 int security_get_bool_value(u32 index)
3100 {
3101 struct selinux_policy *policy;
3102 struct policydb *policydb;
3103 int rc;
3104 u32 len;
3105
3106 if (!selinux_initialized())
3107 return 0;
3108
3109 rcu_read_lock();
3110 policy = rcu_dereference(selinux_state.policy);
3111 policydb = &policy->policydb;
3112
3113 rc = -EFAULT;
3114 len = policydb->p_bools.nprim;
3115 if (index >= len)
3116 goto out;
3117
3118 rc = policydb->bool_val_to_struct[index]->state;
3119 out:
3120 rcu_read_unlock();
3121 return rc;
3122 }
3123
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3124 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3125 struct selinux_policy *newpolicy)
3126 {
3127 int rc, *bvalues = NULL;
3128 char **bnames = NULL;
3129 struct cond_bool_datum *booldatum;
3130 u32 i, nbools = 0;
3131
3132 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3133 if (rc)
3134 goto out;
3135 for (i = 0; i < nbools; i++) {
3136 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3137 bnames[i]);
3138 if (booldatum)
3139 booldatum->state = bvalues[i];
3140 }
3141 evaluate_cond_nodes(&newpolicy->policydb);
3142
3143 out:
3144 if (bnames) {
3145 for (i = 0; i < nbools; i++)
3146 kfree(bnames[i]);
3147 }
3148 kfree(bnames);
3149 kfree(bvalues);
3150 return rc;
3151 }
3152
3153 /*
3154 * security_sid_mls_copy() - computes a new sid based on the given
3155 * sid and the mls portion of mls_sid.
3156 */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)3157 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3158 {
3159 struct selinux_policy *policy;
3160 struct policydb *policydb;
3161 struct sidtab *sidtab;
3162 struct context *context1;
3163 struct context *context2;
3164 struct context newcon;
3165 char *s;
3166 u32 len;
3167 int rc;
3168
3169 if (!selinux_initialized()) {
3170 *new_sid = sid;
3171 return 0;
3172 }
3173
3174 retry:
3175 rc = 0;
3176 context_init(&newcon);
3177
3178 rcu_read_lock();
3179 policy = rcu_dereference(selinux_state.policy);
3180 policydb = &policy->policydb;
3181 sidtab = policy->sidtab;
3182
3183 if (!policydb->mls_enabled) {
3184 *new_sid = sid;
3185 goto out_unlock;
3186 }
3187
3188 rc = -EINVAL;
3189 context1 = sidtab_search(sidtab, sid);
3190 if (!context1) {
3191 pr_err("SELinux: %s: unrecognized SID %d\n",
3192 __func__, sid);
3193 goto out_unlock;
3194 }
3195
3196 rc = -EINVAL;
3197 context2 = sidtab_search(sidtab, mls_sid);
3198 if (!context2) {
3199 pr_err("SELinux: %s: unrecognized SID %d\n",
3200 __func__, mls_sid);
3201 goto out_unlock;
3202 }
3203
3204 newcon.user = context1->user;
3205 newcon.role = context1->role;
3206 newcon.type = context1->type;
3207 rc = mls_context_cpy(&newcon, context2);
3208 if (rc)
3209 goto out_unlock;
3210
3211 /* Check the validity of the new context. */
3212 if (!policydb_context_isvalid(policydb, &newcon)) {
3213 rc = convert_context_handle_invalid_context(policydb,
3214 &newcon);
3215 if (rc) {
3216 if (!context_struct_to_string(policydb, &newcon, &s,
3217 &len)) {
3218 struct audit_buffer *ab;
3219
3220 ab = audit_log_start(audit_context(),
3221 GFP_ATOMIC,
3222 AUDIT_SELINUX_ERR);
3223 audit_log_format(ab,
3224 "op=security_sid_mls_copy invalid_context=");
3225 /* don't record NUL with untrusted strings */
3226 audit_log_n_untrustedstring(ab, s, len - 1);
3227 audit_log_end(ab);
3228 kfree(s);
3229 }
3230 goto out_unlock;
3231 }
3232 }
3233 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3234 if (rc == -ESTALE) {
3235 rcu_read_unlock();
3236 context_destroy(&newcon);
3237 goto retry;
3238 }
3239 out_unlock:
3240 rcu_read_unlock();
3241 context_destroy(&newcon);
3242 return rc;
3243 }
3244
3245 /**
3246 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3247 * @nlbl_sid: NetLabel SID
3248 * @nlbl_type: NetLabel labeling protocol type
3249 * @xfrm_sid: XFRM SID
3250 * @peer_sid: network peer sid
3251 *
3252 * Description:
3253 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3254 * resolved into a single SID it is returned via @peer_sid and the function
3255 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3256 * returns a negative value. A table summarizing the behavior is below:
3257 *
3258 * | function return | @sid
3259 * ------------------------------+-----------------+-----------------
3260 * no peer labels | 0 | SECSID_NULL
3261 * single peer label | 0 | <peer_label>
3262 * multiple, consistent labels | 0 | <peer_label>
3263 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3264 *
3265 */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3266 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3267 u32 xfrm_sid,
3268 u32 *peer_sid)
3269 {
3270 struct selinux_policy *policy;
3271 struct policydb *policydb;
3272 struct sidtab *sidtab;
3273 int rc;
3274 struct context *nlbl_ctx;
3275 struct context *xfrm_ctx;
3276
3277 *peer_sid = SECSID_NULL;
3278
3279 /* handle the common (which also happens to be the set of easy) cases
3280 * right away, these two if statements catch everything involving a
3281 * single or absent peer SID/label */
3282 if (xfrm_sid == SECSID_NULL) {
3283 *peer_sid = nlbl_sid;
3284 return 0;
3285 }
3286 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3287 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3288 * is present */
3289 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3290 *peer_sid = xfrm_sid;
3291 return 0;
3292 }
3293
3294 if (!selinux_initialized())
3295 return 0;
3296
3297 rcu_read_lock();
3298 policy = rcu_dereference(selinux_state.policy);
3299 policydb = &policy->policydb;
3300 sidtab = policy->sidtab;
3301
3302 /*
3303 * We don't need to check initialized here since the only way both
3304 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3305 * security server was initialized and state->initialized was true.
3306 */
3307 if (!policydb->mls_enabled) {
3308 rc = 0;
3309 goto out;
3310 }
3311
3312 rc = -EINVAL;
3313 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3314 if (!nlbl_ctx) {
3315 pr_err("SELinux: %s: unrecognized SID %d\n",
3316 __func__, nlbl_sid);
3317 goto out;
3318 }
3319 rc = -EINVAL;
3320 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3321 if (!xfrm_ctx) {
3322 pr_err("SELinux: %s: unrecognized SID %d\n",
3323 __func__, xfrm_sid);
3324 goto out;
3325 }
3326 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3327 if (rc)
3328 goto out;
3329
3330 /* at present NetLabel SIDs/labels really only carry MLS
3331 * information so if the MLS portion of the NetLabel SID
3332 * matches the MLS portion of the labeled XFRM SID/label
3333 * then pass along the XFRM SID as it is the most
3334 * expressive */
3335 *peer_sid = xfrm_sid;
3336 out:
3337 rcu_read_unlock();
3338 return rc;
3339 }
3340
get_classes_callback(void * k,void * d,void * args)3341 static int get_classes_callback(void *k, void *d, void *args)
3342 {
3343 struct class_datum *datum = d;
3344 char *name = k, **classes = args;
3345 u32 value = datum->value - 1;
3346
3347 classes[value] = kstrdup(name, GFP_ATOMIC);
3348 if (!classes[value])
3349 return -ENOMEM;
3350
3351 return 0;
3352 }
3353
security_get_classes(struct selinux_policy * policy,char *** classes,u32 * nclasses)3354 int security_get_classes(struct selinux_policy *policy,
3355 char ***classes, u32 *nclasses)
3356 {
3357 struct policydb *policydb;
3358 int rc;
3359
3360 policydb = &policy->policydb;
3361
3362 rc = -ENOMEM;
3363 *nclasses = policydb->p_classes.nprim;
3364 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3365 if (!*classes)
3366 goto out;
3367
3368 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3369 *classes);
3370 if (rc) {
3371 u32 i;
3372
3373 for (i = 0; i < *nclasses; i++)
3374 kfree((*classes)[i]);
3375 kfree(*classes);
3376 }
3377
3378 out:
3379 return rc;
3380 }
3381
get_permissions_callback(void * k,void * d,void * args)3382 static int get_permissions_callback(void *k, void *d, void *args)
3383 {
3384 struct perm_datum *datum = d;
3385 char *name = k, **perms = args;
3386 u32 value = datum->value - 1;
3387
3388 perms[value] = kstrdup(name, GFP_ATOMIC);
3389 if (!perms[value])
3390 return -ENOMEM;
3391
3392 return 0;
3393 }
3394
security_get_permissions(struct selinux_policy * policy,const char * class,char *** perms,u32 * nperms)3395 int security_get_permissions(struct selinux_policy *policy,
3396 const char *class, char ***perms, u32 *nperms)
3397 {
3398 struct policydb *policydb;
3399 u32 i;
3400 int rc;
3401 struct class_datum *match;
3402
3403 policydb = &policy->policydb;
3404
3405 rc = -EINVAL;
3406 match = symtab_search(&policydb->p_classes, class);
3407 if (!match) {
3408 pr_err("SELinux: %s: unrecognized class %s\n",
3409 __func__, class);
3410 goto out;
3411 }
3412
3413 rc = -ENOMEM;
3414 *nperms = match->permissions.nprim;
3415 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3416 if (!*perms)
3417 goto out;
3418
3419 if (match->comdatum) {
3420 rc = hashtab_map(&match->comdatum->permissions.table,
3421 get_permissions_callback, *perms);
3422 if (rc)
3423 goto err;
3424 }
3425
3426 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3427 *perms);
3428 if (rc)
3429 goto err;
3430
3431 out:
3432 return rc;
3433
3434 err:
3435 for (i = 0; i < *nperms; i++)
3436 kfree((*perms)[i]);
3437 kfree(*perms);
3438 return rc;
3439 }
3440
security_get_reject_unknown(void)3441 int security_get_reject_unknown(void)
3442 {
3443 struct selinux_policy *policy;
3444 int value;
3445
3446 if (!selinux_initialized())
3447 return 0;
3448
3449 rcu_read_lock();
3450 policy = rcu_dereference(selinux_state.policy);
3451 value = policy->policydb.reject_unknown;
3452 rcu_read_unlock();
3453 return value;
3454 }
3455
security_get_allow_unknown(void)3456 int security_get_allow_unknown(void)
3457 {
3458 struct selinux_policy *policy;
3459 int value;
3460
3461 if (!selinux_initialized())
3462 return 0;
3463
3464 rcu_read_lock();
3465 policy = rcu_dereference(selinux_state.policy);
3466 value = policy->policydb.allow_unknown;
3467 rcu_read_unlock();
3468 return value;
3469 }
3470
3471 /**
3472 * security_policycap_supported - Check for a specific policy capability
3473 * @req_cap: capability
3474 *
3475 * Description:
3476 * This function queries the currently loaded policy to see if it supports the
3477 * capability specified by @req_cap. Returns true (1) if the capability is
3478 * supported, false (0) if it isn't supported.
3479 *
3480 */
security_policycap_supported(unsigned int req_cap)3481 int security_policycap_supported(unsigned int req_cap)
3482 {
3483 struct selinux_policy *policy;
3484 int rc;
3485
3486 if (!selinux_initialized())
3487 return 0;
3488
3489 rcu_read_lock();
3490 policy = rcu_dereference(selinux_state.policy);
3491 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3492 rcu_read_unlock();
3493
3494 return rc;
3495 }
3496
3497 struct selinux_audit_rule {
3498 u32 au_seqno;
3499 struct context au_ctxt;
3500 };
3501
selinux_audit_rule_free(void * vrule)3502 void selinux_audit_rule_free(void *vrule)
3503 {
3504 struct selinux_audit_rule *rule = vrule;
3505
3506 if (rule) {
3507 context_destroy(&rule->au_ctxt);
3508 kfree(rule);
3509 }
3510 }
3511
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule,gfp_t gfp)3512 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3513 gfp_t gfp)
3514 {
3515 struct selinux_state *state = &selinux_state;
3516 struct selinux_policy *policy;
3517 struct policydb *policydb;
3518 struct selinux_audit_rule *tmprule;
3519 struct role_datum *roledatum;
3520 struct type_datum *typedatum;
3521 struct user_datum *userdatum;
3522 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3523 int rc = 0;
3524
3525 *rule = NULL;
3526
3527 if (!selinux_initialized())
3528 return -EOPNOTSUPP;
3529
3530 switch (field) {
3531 case AUDIT_SUBJ_USER:
3532 case AUDIT_SUBJ_ROLE:
3533 case AUDIT_SUBJ_TYPE:
3534 case AUDIT_OBJ_USER:
3535 case AUDIT_OBJ_ROLE:
3536 case AUDIT_OBJ_TYPE:
3537 /* only 'equals' and 'not equals' fit user, role, and type */
3538 if (op != Audit_equal && op != Audit_not_equal)
3539 return -EINVAL;
3540 break;
3541 case AUDIT_SUBJ_SEN:
3542 case AUDIT_SUBJ_CLR:
3543 case AUDIT_OBJ_LEV_LOW:
3544 case AUDIT_OBJ_LEV_HIGH:
3545 /* we do not allow a range, indicated by the presence of '-' */
3546 if (strchr(rulestr, '-'))
3547 return -EINVAL;
3548 break;
3549 default:
3550 /* only the above fields are valid */
3551 return -EINVAL;
3552 }
3553
3554 tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3555 if (!tmprule)
3556 return -ENOMEM;
3557 context_init(&tmprule->au_ctxt);
3558
3559 rcu_read_lock();
3560 policy = rcu_dereference(state->policy);
3561 policydb = &policy->policydb;
3562 tmprule->au_seqno = policy->latest_granting;
3563 switch (field) {
3564 case AUDIT_SUBJ_USER:
3565 case AUDIT_OBJ_USER:
3566 userdatum = symtab_search(&policydb->p_users, rulestr);
3567 if (!userdatum) {
3568 rc = -EINVAL;
3569 goto err;
3570 }
3571 tmprule->au_ctxt.user = userdatum->value;
3572 break;
3573 case AUDIT_SUBJ_ROLE:
3574 case AUDIT_OBJ_ROLE:
3575 roledatum = symtab_search(&policydb->p_roles, rulestr);
3576 if (!roledatum) {
3577 rc = -EINVAL;
3578 goto err;
3579 }
3580 tmprule->au_ctxt.role = roledatum->value;
3581 break;
3582 case AUDIT_SUBJ_TYPE:
3583 case AUDIT_OBJ_TYPE:
3584 typedatum = symtab_search(&policydb->p_types, rulestr);
3585 if (!typedatum) {
3586 rc = -EINVAL;
3587 goto err;
3588 }
3589 tmprule->au_ctxt.type = typedatum->value;
3590 break;
3591 case AUDIT_SUBJ_SEN:
3592 case AUDIT_SUBJ_CLR:
3593 case AUDIT_OBJ_LEV_LOW:
3594 case AUDIT_OBJ_LEV_HIGH:
3595 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3596 GFP_ATOMIC);
3597 if (rc)
3598 goto err;
3599 break;
3600 }
3601 rcu_read_unlock();
3602
3603 *rule = tmprule;
3604 return 0;
3605
3606 err:
3607 rcu_read_unlock();
3608 selinux_audit_rule_free(tmprule);
3609 *rule = NULL;
3610 return rc;
3611 }
3612
3613 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3614 int selinux_audit_rule_known(struct audit_krule *rule)
3615 {
3616 u32 i;
3617
3618 for (i = 0; i < rule->field_count; i++) {
3619 struct audit_field *f = &rule->fields[i];
3620 switch (f->type) {
3621 case AUDIT_SUBJ_USER:
3622 case AUDIT_SUBJ_ROLE:
3623 case AUDIT_SUBJ_TYPE:
3624 case AUDIT_SUBJ_SEN:
3625 case AUDIT_SUBJ_CLR:
3626 case AUDIT_OBJ_USER:
3627 case AUDIT_OBJ_ROLE:
3628 case AUDIT_OBJ_TYPE:
3629 case AUDIT_OBJ_LEV_LOW:
3630 case AUDIT_OBJ_LEV_HIGH:
3631 return 1;
3632 }
3633 }
3634
3635 return 0;
3636 }
3637
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3638 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3639 {
3640 struct selinux_state *state = &selinux_state;
3641 struct selinux_policy *policy;
3642 struct context *ctxt;
3643 struct mls_level *level;
3644 struct selinux_audit_rule *rule = vrule;
3645 int match = 0;
3646
3647 if (unlikely(!rule)) {
3648 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3649 return -ENOENT;
3650 }
3651
3652 if (!selinux_initialized())
3653 return 0;
3654
3655 rcu_read_lock();
3656
3657 policy = rcu_dereference(state->policy);
3658
3659 if (rule->au_seqno < policy->latest_granting) {
3660 match = -ESTALE;
3661 goto out;
3662 }
3663
3664 ctxt = sidtab_search(policy->sidtab, sid);
3665 if (unlikely(!ctxt)) {
3666 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3667 sid);
3668 match = -ENOENT;
3669 goto out;
3670 }
3671
3672 /* a field/op pair that is not caught here will simply fall through
3673 without a match */
3674 switch (field) {
3675 case AUDIT_SUBJ_USER:
3676 case AUDIT_OBJ_USER:
3677 switch (op) {
3678 case Audit_equal:
3679 match = (ctxt->user == rule->au_ctxt.user);
3680 break;
3681 case Audit_not_equal:
3682 match = (ctxt->user != rule->au_ctxt.user);
3683 break;
3684 }
3685 break;
3686 case AUDIT_SUBJ_ROLE:
3687 case AUDIT_OBJ_ROLE:
3688 switch (op) {
3689 case Audit_equal:
3690 match = (ctxt->role == rule->au_ctxt.role);
3691 break;
3692 case Audit_not_equal:
3693 match = (ctxt->role != rule->au_ctxt.role);
3694 break;
3695 }
3696 break;
3697 case AUDIT_SUBJ_TYPE:
3698 case AUDIT_OBJ_TYPE:
3699 switch (op) {
3700 case Audit_equal:
3701 match = (ctxt->type == rule->au_ctxt.type);
3702 break;
3703 case Audit_not_equal:
3704 match = (ctxt->type != rule->au_ctxt.type);
3705 break;
3706 }
3707 break;
3708 case AUDIT_SUBJ_SEN:
3709 case AUDIT_SUBJ_CLR:
3710 case AUDIT_OBJ_LEV_LOW:
3711 case AUDIT_OBJ_LEV_HIGH:
3712 level = ((field == AUDIT_SUBJ_SEN ||
3713 field == AUDIT_OBJ_LEV_LOW) ?
3714 &ctxt->range.level[0] : &ctxt->range.level[1]);
3715 switch (op) {
3716 case Audit_equal:
3717 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3718 level);
3719 break;
3720 case Audit_not_equal:
3721 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3722 level);
3723 break;
3724 case Audit_lt:
3725 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3726 level) &&
3727 !mls_level_eq(&rule->au_ctxt.range.level[0],
3728 level));
3729 break;
3730 case Audit_le:
3731 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3732 level);
3733 break;
3734 case Audit_gt:
3735 match = (mls_level_dom(level,
3736 &rule->au_ctxt.range.level[0]) &&
3737 !mls_level_eq(level,
3738 &rule->au_ctxt.range.level[0]));
3739 break;
3740 case Audit_ge:
3741 match = mls_level_dom(level,
3742 &rule->au_ctxt.range.level[0]);
3743 break;
3744 }
3745 }
3746
3747 out:
3748 rcu_read_unlock();
3749 return match;
3750 }
3751
aurule_avc_callback(u32 event)3752 static int aurule_avc_callback(u32 event)
3753 {
3754 if (event == AVC_CALLBACK_RESET)
3755 return audit_update_lsm_rules();
3756 return 0;
3757 }
3758
aurule_init(void)3759 static int __init aurule_init(void)
3760 {
3761 int err;
3762
3763 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3764 if (err)
3765 panic("avc_add_callback() failed, error %d\n", err);
3766
3767 return err;
3768 }
3769 __initcall(aurule_init);
3770
3771 #ifdef CONFIG_NETLABEL
3772 /**
3773 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3774 * @secattr: the NetLabel packet security attributes
3775 * @sid: the SELinux SID
3776 *
3777 * Description:
3778 * Attempt to cache the context in @ctx, which was derived from the packet in
3779 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3780 * already been initialized.
3781 *
3782 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3783 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3784 u32 sid)
3785 {
3786 u32 *sid_cache;
3787
3788 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3789 if (sid_cache == NULL)
3790 return;
3791 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3792 if (secattr->cache == NULL) {
3793 kfree(sid_cache);
3794 return;
3795 }
3796
3797 *sid_cache = sid;
3798 secattr->cache->free = kfree;
3799 secattr->cache->data = sid_cache;
3800 secattr->flags |= NETLBL_SECATTR_CACHE;
3801 }
3802
3803 /**
3804 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3805 * @secattr: the NetLabel packet security attributes
3806 * @sid: the SELinux SID
3807 *
3808 * Description:
3809 * Convert the given NetLabel security attributes in @secattr into a
3810 * SELinux SID. If the @secattr field does not contain a full SELinux
3811 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3812 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3813 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3814 * conversion for future lookups. Returns zero on success, negative values on
3815 * failure.
3816 *
3817 */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3818 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3819 u32 *sid)
3820 {
3821 struct selinux_policy *policy;
3822 struct policydb *policydb;
3823 struct sidtab *sidtab;
3824 int rc;
3825 struct context *ctx;
3826 struct context ctx_new;
3827
3828 if (!selinux_initialized()) {
3829 *sid = SECSID_NULL;
3830 return 0;
3831 }
3832
3833 retry:
3834 rc = 0;
3835 rcu_read_lock();
3836 policy = rcu_dereference(selinux_state.policy);
3837 policydb = &policy->policydb;
3838 sidtab = policy->sidtab;
3839
3840 if (secattr->flags & NETLBL_SECATTR_CACHE)
3841 *sid = *(u32 *)secattr->cache->data;
3842 else if (secattr->flags & NETLBL_SECATTR_SECID)
3843 *sid = secattr->attr.secid;
3844 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3845 rc = -EIDRM;
3846 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3847 if (ctx == NULL)
3848 goto out;
3849
3850 context_init(&ctx_new);
3851 ctx_new.user = ctx->user;
3852 ctx_new.role = ctx->role;
3853 ctx_new.type = ctx->type;
3854 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3855 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3856 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3857 if (rc)
3858 goto out;
3859 }
3860 rc = -EIDRM;
3861 if (!mls_context_isvalid(policydb, &ctx_new)) {
3862 ebitmap_destroy(&ctx_new.range.level[0].cat);
3863 goto out;
3864 }
3865
3866 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3867 ebitmap_destroy(&ctx_new.range.level[0].cat);
3868 if (rc == -ESTALE) {
3869 rcu_read_unlock();
3870 goto retry;
3871 }
3872 if (rc)
3873 goto out;
3874
3875 security_netlbl_cache_add(secattr, *sid);
3876 } else
3877 *sid = SECSID_NULL;
3878
3879 out:
3880 rcu_read_unlock();
3881 return rc;
3882 }
3883
3884 /**
3885 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3886 * @sid: the SELinux SID
3887 * @secattr: the NetLabel packet security attributes
3888 *
3889 * Description:
3890 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3891 * Returns zero on success, negative values on failure.
3892 *
3893 */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3894 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3895 {
3896 struct selinux_policy *policy;
3897 struct policydb *policydb;
3898 int rc;
3899 struct context *ctx;
3900
3901 if (!selinux_initialized())
3902 return 0;
3903
3904 rcu_read_lock();
3905 policy = rcu_dereference(selinux_state.policy);
3906 policydb = &policy->policydb;
3907
3908 rc = -ENOENT;
3909 ctx = sidtab_search(policy->sidtab, sid);
3910 if (ctx == NULL)
3911 goto out;
3912
3913 rc = -ENOMEM;
3914 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3915 GFP_ATOMIC);
3916 if (secattr->domain == NULL)
3917 goto out;
3918
3919 secattr->attr.secid = sid;
3920 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3921 mls_export_netlbl_lvl(policydb, ctx, secattr);
3922 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3923 out:
3924 rcu_read_unlock();
3925 return rc;
3926 }
3927 #endif /* CONFIG_NETLABEL */
3928
3929 /**
3930 * __security_read_policy - read the policy.
3931 * @policy: SELinux policy
3932 * @data: binary policy data
3933 * @len: length of data in bytes
3934 *
3935 */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3936 static int __security_read_policy(struct selinux_policy *policy,
3937 void *data, size_t *len)
3938 {
3939 int rc;
3940 struct policy_file fp;
3941
3942 fp.data = data;
3943 fp.len = *len;
3944
3945 rc = policydb_write(&policy->policydb, &fp);
3946 if (rc)
3947 return rc;
3948
3949 *len = (unsigned long)fp.data - (unsigned long)data;
3950 return 0;
3951 }
3952
3953 /**
3954 * security_read_policy - read the policy.
3955 * @data: binary policy data
3956 * @len: length of data in bytes
3957 *
3958 */
security_read_policy(void ** data,size_t * len)3959 int security_read_policy(void **data, size_t *len)
3960 {
3961 struct selinux_state *state = &selinux_state;
3962 struct selinux_policy *policy;
3963
3964 policy = rcu_dereference_protected(
3965 state->policy, lockdep_is_held(&state->policy_mutex));
3966 if (!policy)
3967 return -EINVAL;
3968
3969 *len = policy->policydb.len;
3970 *data = vmalloc_user(*len);
3971 if (!*data)
3972 return -ENOMEM;
3973
3974 return __security_read_policy(policy, *data, len);
3975 }
3976
3977 /**
3978 * security_read_state_kernel - read the policy.
3979 * @data: binary policy data
3980 * @len: length of data in bytes
3981 *
3982 * Allocates kernel memory for reading SELinux policy.
3983 * This function is for internal use only and should not
3984 * be used for returning data to user space.
3985 *
3986 * This function must be called with policy_mutex held.
3987 */
security_read_state_kernel(void ** data,size_t * len)3988 int security_read_state_kernel(void **data, size_t *len)
3989 {
3990 int err;
3991 struct selinux_state *state = &selinux_state;
3992 struct selinux_policy *policy;
3993
3994 policy = rcu_dereference_protected(
3995 state->policy, lockdep_is_held(&state->policy_mutex));
3996 if (!policy)
3997 return -EINVAL;
3998
3999 *len = policy->policydb.len;
4000 *data = vmalloc(*len);
4001 if (!*data)
4002 return -ENOMEM;
4003
4004 err = __security_read_policy(policy, *data, len);
4005 if (err) {
4006 vfree(*data);
4007 *data = NULL;
4008 *len = 0;
4009 }
4010 return err;
4011 }
4012