xref: /openbsd/sys/arch/hppa/hppa/machdep.c (revision 32ffafad)
1 /*	$OpenBSD: machdep.c,v 1.270 2024/05/22 14:25:47 jsg Exp $	*/
2 
3 /*
4  * Copyright (c) 1999-2003 Michael Shalayeff
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/signalvar.h>
32 #include <sys/kernel.h>
33 #include <sys/proc.h>
34 #include <sys/buf.h>
35 #include <sys/reboot.h>
36 #include <sys/device.h>
37 #include <sys/conf.h>
38 #include <sys/timeout.h>
39 #include <sys/malloc.h>
40 #include <sys/pool.h>
41 #include <sys/msgbuf.h>
42 #include <sys/ioctl.h>
43 #include <sys/tty.h>
44 #include <sys/user.h>
45 #include <sys/exec.h>
46 #include <sys/sysctl.h>
47 #include <sys/core.h>
48 #include <sys/kcore.h>
49 #include <sys/extent.h>
50 
51 #include <sys/mount.h>
52 #include <sys/syscallargs.h>
53 
54 #include <net/if.h>
55 #include <uvm/uvm.h>
56 
57 #include <dev/cons.h>
58 
59 #include <machine/pdc.h>
60 #include <machine/iomod.h>
61 #include <machine/psl.h>
62 #include <machine/reg.h>
63 #include <machine/cpufunc.h>
64 #include <machine/autoconf.h>
65 #include <machine/kcore.h>
66 #include <machine/fpu.h>
67 
68 #ifdef DDB
69 #include <machine/db_machdep.h>
70 #include <ddb/db_access.h>
71 #include <ddb/db_sym.h>
72 #include <ddb/db_extern.h>
73 #endif
74 
75 #include <hppa/dev/cpudevs.h>
76 
77 /*
78  * Different kinds of flags used throughout the kernel.
79  */
80 int cold = 1;			/* unset when engine is up to go */
81 extern int msgbufmapped;	/* set when safe to use msgbuf */
82 
83 /*
84  * cache configuration, for most machines is the same
85  * numbers, so it makes sense to do defines w/ numbers depending
86  * on configured cpu types in the kernel
87  */
88 int icache_stride, icache_line_mask;
89 int dcache_stride, dcache_line_mask;
90 
91 /*
92  * things to not kill
93  */
94 volatile u_int8_t *machine_ledaddr;
95 int machine_ledword, machine_leds;
96 struct cpu_info cpu_info[HPPA_MAXCPUS];
97 
98 /*
99  * CPU params (should be the same for all cpus in the system)
100  */
101 struct pdc_cache pdc_cache PDC_ALIGNMENT;
102 struct pdc_btlb pdc_btlb PDC_ALIGNMENT;
103 struct pdc_model pdc_model PDC_ALIGNMENT;
104 
105 	/* w/ a little deviation should be the same for all installed cpus */
106 u_int	cpu_ticksnum, cpu_ticksdenom;
107 
108 	/* exported info */
109 char	machine[] = MACHINE;
110 char	cpu_model[128];
111 enum hppa_cpu_type cpu_type;
112 const char *cpu_typename;
113 int	cpu_hvers;
114 u_int	fpu_version;
115 
116 int	led_blink;
117 
118 /*
119  * exported methods for cpus
120  */
121 int (*cpu_desidhash)(void);
122 int (*cpu_hpt_init)(vaddr_t hpt, vsize_t hptsize);
123 int (*cpu_ibtlb_ins)(int i, pa_space_t sp, vaddr_t va, paddr_t pa,
124 	    vsize_t sz, u_int prot);
125 int (*cpu_dbtlb_ins)(int i, pa_space_t sp, vaddr_t va, paddr_t pa,
126 	    vsize_t sz, u_int prot);
127 
128 dev_t	bootdev;
129 int	physmem, resvmem, resvphysmem, esym;
130 
131 #ifdef MULTIPROCESSOR
132 __cpu_simple_lock_t atomic_lock = __SIMPLELOCK_UNLOCKED;
133 #endif
134 
135 /*
136  * Things for MI glue to stick on.
137  */
138 struct user *proc0paddr;
139 long mem_ex_storage[EXTENT_FIXED_STORAGE_SIZE(64) / sizeof(long)];
140 struct extent *hppa_ex;
141 struct pool hppa_fppl;
142 struct hppa_fpstate proc0fpstate;
143 struct consdev *cn_tab;
144 
145 struct vm_map *exec_map = NULL;
146 struct vm_map *phys_map = NULL;
147 
148 void delay_init(void);
149 static __inline void fall(int, int, int, int, int);
150 void dumpsys(void);
151 void hpmc_dump(void);
152 void cpuid(void);
153 void blink_led_timeout(void *);
154 
155 /*
156  * safepri is a safe priority for sleep to set for a spin-wait
157  * during autoconfiguration or after a panic.
158  */
159 int   safepri = 0;
160 
161 /*
162  * wide used hardware params
163  */
164 struct pdc_hwtlb pdc_hwtlb PDC_ALIGNMENT;
165 struct pdc_coherence pdc_coherence PDC_ALIGNMENT;
166 struct pdc_spidb pdc_spidbits PDC_ALIGNMENT;
167 struct pdc_model pdc_model PDC_ALIGNMENT;
168 
169 struct uvm_constraint_range  dma_constraint = { 0x0, (paddr_t)-1 };
170 struct uvm_constraint_range *uvm_md_constraints[] = { NULL };
171 
172 /*
173  * Whatever CPU types we support
174  */
175 extern const u_int itlb_x[], itlbna_x[], dtlb_x[], dtlbna_x[], tlbd_x[];
176 extern const u_int itlb_s[], itlbna_s[], dtlb_s[], dtlbna_s[], tlbd_s[];
177 extern const u_int itlb_t[], itlbna_t[], dtlb_t[], dtlbna_t[], tlbd_t[];
178 extern const u_int itlb_l[], itlbna_l[], dtlb_l[], dtlbna_l[], tlbd_l[];
179 extern const u_int itlb_u[], itlbna_u[], dtlb_u[], dtlbna_u[], tlbd_u[];
180 int ibtlb_l(int i, pa_space_t sp, vaddr_t va, paddr_t pa,
181     vsize_t sz, u_int prot);
182 int ibtlb_u(int i, pa_space_t sp, vaddr_t va, paddr_t pa,
183     vsize_t sz, u_int prot);
184 int ibtlb_g(int i, pa_space_t sp, vaddr_t va, paddr_t pa,
185     vsize_t sz, u_int prot);
186 int pbtlb_g(int i);
187 int pbtlb_u(int i);
188 int hpti_g(vaddr_t, vsize_t);
189 int desidhash_s(void);
190 int desidhash_t(void);
191 int desidhash_l(void);
192 int desidhash_u(void);
193 const struct hppa_cpu_typed {
194 	char name[8];
195 	enum hppa_cpu_type type;
196 	int  cpuid;
197 	int  features;
198 	int  patch;
199 	int  (*desidhash)(void);
200 	int  (*dbtlbins)(int i, pa_space_t sp, vaddr_t va, paddr_t pa,
201 	     vsize_t sz, u_int prot);
202 	int  (*ibtlbins)(int i, pa_space_t sp, vaddr_t va, paddr_t pa,
203 	     vsize_t sz, u_int prot);
204 	int  (*btlbprg)(int i);
205 	int  (*hptinit)(vaddr_t hpt, vsize_t hptsize);
206 } cpu_types[] = {
207 #ifdef HP7000_CPU
208 	{ "PCXS",  hpcxs,  0, 0, 3, desidhash_s, ibtlb_g, NULL, pbtlb_g},
209 #endif
210 #ifdef HP7100_CPU
211 	{ "PCXT",  hpcxt, 0, HPPA_FTRS_BTLBU,
212 	  2, desidhash_t, ibtlb_g, NULL, pbtlb_g},
213 #endif
214 #ifdef HP7200_CPU
215 	{ "PCXT'", hpcxta,HPPA_CPU_PCXT2, HPPA_FTRS_BTLBU,
216 	  2, desidhash_t, ibtlb_g, NULL, pbtlb_g},
217 #endif
218 #ifdef HP7100LC_CPU
219 	{ "PCXL",  hpcxl, HPPA_CPU_PCXL, HPPA_FTRS_BTLBU|HPPA_FTRS_HVT,
220 	  0, desidhash_l, ibtlb_g, NULL, pbtlb_g, hpti_g},
221 #endif
222 #ifdef HP7300LC_CPU
223 	{ "PCXL2", hpcxl2,HPPA_CPU_PCXL2, HPPA_FTRS_BTLBU|HPPA_FTRS_HVT,
224 	  0, desidhash_l, ibtlb_g, NULL, pbtlb_g, hpti_g},
225 #endif
226 #ifdef HP8000_CPU
227 	{ "PCXU",  hpcxu, HPPA_CPU_PCXU, HPPA_FTRS_W32B,
228 	  4, desidhash_u, ibtlb_u, NULL, pbtlb_u },
229 #endif
230 #ifdef HP8200_CPU
231 	{ "PCXU+", hpcxu2,HPPA_CPU_PCXUP, HPPA_FTRS_W32B,
232 	  4, desidhash_u, ibtlb_u, NULL, pbtlb_u },
233 #endif
234 #ifdef HP8500_CPU
235 	{ "PCXW",  hpcxw, HPPA_CPU_PCXW, HPPA_FTRS_W32B,
236 	  4, desidhash_u, ibtlb_u, NULL, pbtlb_u },
237 #endif
238 #ifdef HP8700_CPU
239 	{ "PCXW2",  hpcxw, HPPA_CPU_PCXW2, HPPA_FTRS_W32B,
240 	  4, desidhash_u, ibtlb_u, NULL, pbtlb_u },
241 #endif
242 	{ "", 0 }
243 };
244 
245 int	hppa_cpuspeed(int *mhz);
246 
247 int
hppa_cpuspeed(int * mhz)248 hppa_cpuspeed(int *mhz)
249 {
250 	*mhz = PAGE0->mem_10msec / 10000;
251 
252 	return (0);
253 }
254 
255 void
hppa_init(paddr_t start)256 hppa_init(paddr_t start)
257 {
258 	extern int kernel_text;
259 	struct cpu_info *ci;
260 	int error;
261 	paddr_t	avail_end;
262 
263 	pdc_init();	/* init PDC iface, so we can call em easy */
264 
265 	delay_init();	/* calculate cpu clock ratio */
266 
267 	/* cache parameters */
268 	if ((error = pdc_call((iodcio_t)pdc, 0, PDC_CACHE, PDC_CACHE_DFLT,
269 	    &pdc_cache)) < 0) {
270 #ifdef DEBUG
271 		printf("WARNING: PDC_CACHE error %d\n", error);
272 #endif
273 	}
274 
275 	dcache_line_mask = pdc_cache.dc_conf.cc_line * 16 - 1;
276 	dcache_stride = pdc_cache.dc_stride;
277 	icache_line_mask = pdc_cache.ic_conf.cc_line * 16 - 1;
278 	icache_stride = pdc_cache.ic_stride;
279 
280 	/* cache coherence params (pbably available for 8k only) */
281 	error = pdc_call((iodcio_t)pdc, 0, PDC_CACHE, PDC_CACHE_SETCS,
282 	    &pdc_coherence, 1, 1, 1, 1);
283 #ifdef DEBUG
284 	printf ("PDC_CACHE_SETCS: %d, %d, %d, %d (%d)\n",
285 	    pdc_coherence.ia_cst, pdc_coherence.da_cst,
286 	    pdc_coherence.ita_cst, pdc_coherence.dta_cst, error);
287 #endif
288 	error = pdc_call((iodcio_t)pdc, 0, PDC_CACHE, PDC_CACHE_GETSPIDB,
289 	    &pdc_spidbits, 0, 0, 0, 0);
290 	printf("SPID bits: 0x%x, error = %d\n", pdc_spidbits.spidbits, error);
291 
292 	/* setup hpmc handler */
293 	{
294 		/* from locore.s */
295 		extern uint32_t hpmc_v[], hpmc_tramp[], hpmc_tramp_end[];
296 		uint32_t *p;
297 		uint32_t cksum = 0;
298 
299 		for (p = hpmc_tramp; p < hpmc_tramp_end; p++)
300 			cksum += *p;
301 
302 		p = hpmc_v;
303 		if (pdc_call((iodcio_t)pdc, 0, PDC_INSTR, PDC_INSTR_DFLT, p))
304 			*p = 0x08000240;
305 
306 		p[6] = (uint32_t)&hpmc_tramp;
307 		p[7] = (hpmc_tramp_end - hpmc_tramp) * sizeof(uint32_t);
308 		p[5] =
309 		    -(p[0] + p[1] + p[2] + p[3] + p[4] + p[6] + p[7] + cksum);
310 	}
311 
312 	{
313 		extern u_int hppa_toc[], hppa_toc_end[];
314 		u_int cksum, *p;
315 
316 		for (cksum = 0, p = hppa_toc; p < hppa_toc_end; p++)
317 			cksum += *p;
318 
319 		*p = cksum;
320 		PAGE0->ivec_toc = (u_int)hppa_toc;
321 		PAGE0->ivec_toclen = (hppa_toc_end - hppa_toc + 1) * 4;
322 	}
323 
324 	{
325 		extern u_int hppa_pfr[], hppa_pfr_end[];
326 		u_int cksum, *p;
327 
328 		for (cksum = 0, p = hppa_pfr; p < hppa_pfr_end; p++)
329 			cksum += *p;
330 
331 		*p = cksum;
332 		PAGE0->ivec_mempf = (u_int)hppa_pfr;
333 		PAGE0->ivec_mempflen = (hppa_pfr_end - hppa_pfr + 1) * 4;
334 	}
335 
336 	ci = curcpu();
337 	ci->ci_cpl = IPL_NESTED;
338 	ci->ci_psw = PSL_Q | PSL_P | PSL_C | PSL_D;
339 
340 	cpuid();
341 	ptlball();
342 	ficacheall();
343 	fdcacheall();
344 
345 	avail_end = trunc_page(PAGE0->imm_max_mem);
346 	if (avail_end > SYSCALLGATE)
347 		avail_end = SYSCALLGATE;
348 	physmem = atop(avail_end);
349 	resvmem = atop(((vaddr_t)&kernel_text));
350 
351 	/* we hope this won't fail */
352 	hppa_ex = extent_create("mem", 0x0, 0xffffffff, M_DEVBUF,
353 	    (caddr_t)mem_ex_storage, sizeof(mem_ex_storage),
354 	    EX_NOCOALESCE|EX_NOWAIT);
355 	if (extent_alloc_region(hppa_ex, 0, (vaddr_t)PAGE0->imm_max_mem,
356 	    EX_NOWAIT))
357 		panic("cannot reserve main memory");
358 
359 	/* sets resvphysmem */
360 	pmap_bootstrap(round_page(start));
361 
362 	/* space has been reserved in pmap_bootstrap() */
363 	initmsgbuf((caddr_t)(ptoa(physmem) - round_page(MSGBUFSIZE)),
364 	    round_page(MSGBUFSIZE));
365 
366 	/* they say PDC_COPROC might turn fault light on */
367 	pdc_call((iodcio_t)pdc, 0, PDC_CHASSIS, PDC_CHASSIS_DISP,
368 	    PDC_OSTAT(PDC_OSTAT_RUN) | 0xCEC0);
369 
370 	cpu_cpuspeed = &hppa_cpuspeed;
371 #ifdef DDB
372 	ddb_init();
373 #endif
374 	ficacheall();
375 	fdcacheall();
376 
377 	proc0paddr->u_pcb.pcb_fpstate = &proc0fpstate;
378 	pool_init(&hppa_fppl, sizeof(struct hppa_fpstate), 16, IPL_NONE, 0,
379 	    "hppafp", NULL);
380 }
381 
382 void
cpuid()383 cpuid()
384 {
385 	/*
386 	 * Ptrs to various tlb handlers, to be filled
387 	 * based on cpu features.
388 	 * from locore.S
389 	 */
390 	extern u_int trap_ep_T_TLB_DIRTY[];
391 	extern u_int trap_ep_T_DTLBMISS[];
392 	extern u_int trap_ep_T_DTLBMISSNA[];
393 	extern u_int trap_ep_T_ITLBMISS[];
394 	extern u_int trap_ep_T_ITLBMISSNA[];
395 
396 	extern u_int fpu_enable;
397 	extern int cpu_fpuena;
398 	struct pdc_cpuid pdc_cpuid PDC_ALIGNMENT;
399 	struct pdc_coproc pdc_coproc PDC_ALIGNMENT;
400 	const struct hppa_cpu_typed *p = NULL;
401 	u_int cpu_features;
402 	int error;
403 
404 	/* may the scientific guessing begin */
405 	cpu_features = 0;
406 	cpu_type = 0;
407 
408 	/* identify system type */
409 	if ((error = pdc_call((iodcio_t)pdc, 0, PDC_MODEL, PDC_MODEL_INFO,
410 	    &pdc_model)) < 0) {
411 #ifdef DEBUG
412 		printf("WARNING: PDC_MODEL error %d\n", error);
413 #endif
414 		pdc_model.hvers = 0;
415 	}
416 
417 	bzero(&pdc_cpuid, sizeof(pdc_cpuid));
418 	if (pdc_call((iodcio_t)pdc, 0, PDC_MODEL, PDC_MODEL_CPUID,
419 	    &pdc_cpuid, 0, 0, 0, 0) >= 0) {
420 
421 		/* patch for old 8200 */
422 		if (pdc_cpuid.version == HPPA_CPU_PCXU &&
423 		    pdc_cpuid.revision > 0x0d)
424 			pdc_cpuid.version = HPPA_CPU_PCXUP;
425 
426 		cpu_type = pdc_cpuid.version;
427 	}
428 
429 	/* locate coprocessors and SFUs */
430 	bzero(&pdc_coproc, sizeof(pdc_coproc));
431 	if ((error = pdc_call((iodcio_t)pdc, 0, PDC_COPROC, PDC_COPROC_DFLT,
432 	    &pdc_coproc, 0, 0, 0, 0, 0)) < 0) {
433 		/*
434 		 * Some 1.1 systems fail the PDC_COPROC call with error == -3,
435 		 * when booting from disk (but not when netbooting).
436 		 * Until the cause of this misbehaviour is found, assume the
437 		 * usual 1.1 FPU settings, so that userland gets a chance to
438 		 * run.
439 		 */
440 		if ((pdc_model.hvers >> 4) != 0 && pdc_model.arch_rev == 4) {
441 			printf("WARNING: PDC_COPROC error %d,"
442 			    " assuming 1.1 FPU\n", error);
443 			fpu_enable = 0xc0;
444 			cpu_fpuena = 1;
445 		} else {
446 			printf("WARNING: PDC_COPROC error %d\n", error);
447 			cpu_fpuena = 0;
448 		}
449 	} else {
450 		printf("pdc_coproc: 0x%x, 0x%x; model %x rev %x\n",
451 		    pdc_coproc.ccr_enable, pdc_coproc.ccr_present,
452 		    pdc_coproc.fpu_model, pdc_coproc.fpu_revision);
453 		fpu_enable = pdc_coproc.ccr_enable & CCR_MASK;
454 		cpu_fpuena = 1;
455 
456 		/* a kludge to detect PCXW */
457 		if (pdc_coproc.fpu_model == HPPA_FPU_PCXW)
458 			cpu_type = HPPA_CPU_PCXW;
459 	}
460 
461 	/* BTLB params */
462 	if (cpu_type < HPPA_CPU_PCXU &&
463 	    (error = pdc_call((iodcio_t)pdc, 0, PDC_BLOCK_TLB,
464 	     PDC_BTLB_DEFAULT, &pdc_btlb)) < 0) {
465 #ifdef DEBUG
466 		printf("WARNING: PDC_BTLB error %d\n", error);
467 #endif
468 	} else {
469 #ifdef BTLBDEBUG
470 		printf("btlb info: minsz=%d, maxsz=%d\n",
471 		    pdc_btlb.min_size, pdc_btlb.max_size);
472 		printf("btlb fixed: i=%d, d=%d, c=%d\n",
473 		    pdc_btlb.finfo.num_i,
474 		    pdc_btlb.finfo.num_d,
475 		    pdc_btlb.finfo.num_c);
476 		printf("btlb varbl: i=%d, d=%d, c=%d\n",
477 		    pdc_btlb.vinfo.num_i,
478 		    pdc_btlb.vinfo.num_d,
479 		    pdc_btlb.vinfo.num_c);
480 #endif /* BTLBDEBUG */
481 		/* purge TLBs and caches */
482 		if (pdc_call((iodcio_t)pdc, 0, PDC_BLOCK_TLB,
483 		    PDC_BTLB_PURGE_ALL) < 0)
484 			printf("WARNING: BTLB purge failed\n");
485 
486 		if (pdc_btlb.finfo.num_c)
487 			cpu_features |= HPPA_FTRS_BTLBU;
488 	}
489 
490 	if (!pdc_call((iodcio_t)pdc, 0, PDC_TLB, PDC_TLB_INFO, &pdc_hwtlb) &&
491 	    pdc_hwtlb.min_size && pdc_hwtlb.max_size) {
492 		cpu_features |= HPPA_FTRS_HVT;
493 		if (pmap_hptsize > pdc_hwtlb.max_size)
494 			pmap_hptsize = pdc_hwtlb.max_size;
495 		else if (pmap_hptsize && pmap_hptsize < pdc_hwtlb.min_size)
496 			pmap_hptsize = pdc_hwtlb.min_size;
497 	} else {
498 #ifdef DEBUG
499 		printf("WARNING: no HPT support, fine!\n");
500 #endif
501 		pmap_hptsize = 0;
502 	}
503 
504 	if (cpu_type)
505 		for (p = cpu_types; p->name[0] && p->cpuid != cpu_type; p++)
506 			;
507 	else
508 		for (p = cpu_types;
509 		    p->name[0] && p->features != cpu_features; p++);
510 
511 	if (!p->name[0]) {
512 		printf("WARNING: UNKNOWN CPU TYPE; GOOD LUCK "
513 		    "(type 0x%x, features 0x%x)\n", cpu_type, cpu_features);
514 		p = cpu_types;
515 	} else if ((p->type == hpcxl || p->type == hpcxl2) && !fpu_enable) {
516 		/* we know PCXL and PCXL2 do not exist w/o FPU */
517 		fpu_enable = 0xc0;
518 		cpu_fpuena = 1;
519 	}
520 
521 	/*
522 	 * TODO: HPT on 7200 is not currently supported
523 	 */
524 	if (pmap_hptsize && p->type != hpcxl && p->type != hpcxl2)
525 		pmap_hptsize = 0;
526 
527 	cpu_type = p->type;
528 	cpu_typename = p->name;
529 	cpu_ibtlb_ins = p->ibtlbins;
530 	cpu_dbtlb_ins = p->dbtlbins;
531 	cpu_hpt_init = p->hptinit;
532 	cpu_desidhash = p->desidhash;
533 
534 	/* patch tlb handler branches */
535 	if (p->patch) {
536 		trap_ep_T_TLB_DIRTY [0] = trap_ep_T_TLB_DIRTY [p->patch];
537 		trap_ep_T_DTLBMISS  [0] = trap_ep_T_DTLBMISS  [p->patch];
538 		trap_ep_T_DTLBMISSNA[0] = trap_ep_T_DTLBMISSNA[p->patch];
539 		trap_ep_T_ITLBMISS  [0] = trap_ep_T_ITLBMISS  [p->patch];
540 		trap_ep_T_ITLBMISSNA[0] = trap_ep_T_ITLBMISSNA[p->patch];
541 	}
542 
543 	/* force strong ordering for now */
544 	if (p->features & HPPA_FTRS_W32B) {
545 		curcpu()->ci_psw |= PSL_O;
546 	}
547 
548 	{
549 		const char *p, *q;
550 		char buf[32];
551 		int lev;
552 
553 		lev = 0xa + (*cpu_desidhash)();
554 		cpu_hvers = pdc_model.hvers >> 4;
555 		if (!cpu_hvers) {
556 			p = "(UNKNOWN)";
557 			q = lev == 0xa? "1.0" : "1.1";
558 		} else {
559 			p = hppa_mod_info(HPPA_TYPE_BOARD, cpu_hvers);
560 			if (!p) {
561 				snprintf(buf, sizeof buf, "(UNKNOWN 0x%x)",
562 				    cpu_hvers);
563 				p = buf;
564 			}
565 
566 			switch (pdc_model.arch_rev) {
567 			default:
568 			case 0:
569 				q = "1.0";
570 				break;
571 			case 4:
572 				q = "1.1";
573 				/* this one is just a 100MHz pcxl */
574 				if (lev == 0x10)
575 					lev = 0xc;
576 				/* this one is a pcxl2 */
577 				if (lev == 0x16)
578 					lev = 0xe;
579 				break;
580 			case 8:
581 				q = "2.0";
582 				break;
583 			}
584 		}
585 
586 		snprintf(cpu_model, sizeof cpu_model,
587 		    "HP 9000/%s PA-RISC %s%x", p, q, lev);
588 	}
589 #ifdef DEBUG
590 	printf("cpu: %s\n", cpu_model);
591 #endif
592 }
593 
594 void
cpu_startup(void)595 cpu_startup(void)
596 {
597 	vaddr_t minaddr, maxaddr;
598 
599 	/*
600 	 * i won't understand a friend of mine,
601 	 * who sat in a room full of artificial ice,
602 	 * fogging the air w/ humid cries --
603 	 *	WELCOME TO SUMMER!
604 	 */
605 	printf("%s", version);
606 
607 	printf("%s\n", cpu_model);
608 	printf("real mem = %lu (%luMB)\n", ptoa(physmem),
609 	    ptoa(physmem) / 1024 / 1024);
610 	printf("rsvd mem = %lu (%luKB)\n", ptoa(resvmem), ptoa(resvmem) / 1024);
611 
612 	/*
613 	 * Allocate a submap for exec arguments.  This map effectively
614 	 * limits the number of processes exec'ing at any time.
615 	 */
616 	minaddr = vm_map_min(kernel_map);
617 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
618 	    16*NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
619 
620 	/*
621 	 * Allocate a submap for physio
622 	 */
623 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
624 	    VM_PHYS_SIZE, 0, FALSE, NULL);
625 
626 	printf("avail mem = %lu (%luMB)\n", ptoa(uvmexp.free),
627 	    ptoa(uvmexp.free) / 1024 / 1024);
628 
629 	/*
630 	 * Set up buffers, so they can be used to read disk labels.
631 	 */
632 	bufinit();
633 
634 	/*
635 	 * Configure the system.
636 	 */
637 	if (boothowto & RB_CONFIG) {
638 #ifdef BOOT_CONFIG
639 		user_config();
640 #else
641 		printf("kernel does not support -c; continuing..\n");
642 #endif
643 	}
644 }
645 
646 /*
647  * compute cpu clock ratio such as:
648  *	cpu_ticksnum / cpu_ticksdenom = t + delta
649  *	delta -> 0
650  */
651 void
delay_init(void)652 delay_init(void)
653 {
654 	u_int num, denom, delta, mdelta;
655 
656 	mdelta = UINT_MAX;
657 	for (denom = 1; denom < 1000; denom++) {
658 		num = (PAGE0->mem_10msec * denom) / 10000;
659 		delta = num * 10000 / denom - PAGE0->mem_10msec;
660 		if (!delta) {
661 			cpu_ticksdenom = denom;
662 			cpu_ticksnum = num;
663 			break;
664 		} else if (delta < mdelta) {
665 			cpu_ticksdenom = denom;
666 			cpu_ticksnum = num;
667 			mdelta = delta;
668 		}
669 	}
670 }
671 
672 void
delay(u_int us)673 delay(u_int us)
674 {
675 	u_int start, end, n;
676 
677 	mfctl(CR_ITMR, start);
678 	while (us) {
679 		n = min(1000, us);
680 		end = start + n * cpu_ticksnum / cpu_ticksdenom;
681 
682 		/* N.B. Interval Timer may wrap around */
683 		if (end < start)
684 			do
685 				mfctl(CR_ITMR, start);
686 			while (start > end);
687 
688 		do
689 			mfctl(CR_ITMR, start);
690 		while (start < end);
691 
692 		us -= n;
693 	}
694 }
695 
696 static __inline void
fall(int c_base,int c_count,int c_loop,int c_stride,int data)697 fall(int c_base, int c_count, int c_loop, int c_stride, int data)
698 {
699 	int loop;
700 
701 	for (; c_count--; c_base += c_stride)
702 		for (loop = c_loop; loop--; )
703 			if (data)
704 				fdce(0, c_base);
705 			else
706 				fice(0, c_base);
707 }
708 
709 void
ficacheall(void)710 ficacheall(void)
711 {
712 	/*
713 	 * Flush the instruction, then data cache.
714 	 */
715 	fall(pdc_cache.ic_base, pdc_cache.ic_count, pdc_cache.ic_loop,
716 	    pdc_cache.ic_stride, 0);
717 	sync_caches();
718 }
719 
720 void
fdcacheall(void)721 fdcacheall(void)
722 {
723 	fall(pdc_cache.dc_base, pdc_cache.dc_count, pdc_cache.dc_loop,
724 	    pdc_cache.dc_stride, 1);
725 	sync_caches();
726 }
727 
728 void
ptlball(void)729 ptlball(void)
730 {
731 	pa_space_t sp;
732 	int i, j, k;
733 
734 	/* instruction TLB */
735 	sp = pdc_cache.it_sp_base;
736 	for (i = 0; i < pdc_cache.it_sp_count; i++) {
737 		vaddr_t off = pdc_cache.it_off_base;
738 		for (j = 0; j < pdc_cache.it_off_count; j++) {
739 			for (k = 0; k < pdc_cache.it_loop; k++)
740 				pitlbe(sp, off);
741 			off += pdc_cache.it_off_stride;
742 		}
743 		sp += pdc_cache.it_sp_stride;
744 	}
745 
746 	/* data TLB */
747 	sp = pdc_cache.dt_sp_base;
748 	for (i = 0; i < pdc_cache.dt_sp_count; i++) {
749 		vaddr_t off = pdc_cache.dt_off_base;
750 		for (j = 0; j < pdc_cache.dt_off_count; j++) {
751 			for (k = 0; k < pdc_cache.dt_loop; k++)
752 				pdtlbe(sp, off);
753 			off += pdc_cache.dt_off_stride;
754 		}
755 		sp += pdc_cache.dt_sp_stride;
756 	}
757 }
758 
759 int
hpti_g(vaddr_t hpt,vsize_t hptsize)760 hpti_g(vaddr_t hpt, vsize_t hptsize)
761 {
762 	return pdc_call((iodcio_t)pdc, 0, PDC_TLB, PDC_TLB_CONFIG,
763 	    &pdc_hwtlb, hpt, hptsize, PDC_TLB_CURRPDE);
764 }
765 
766 int
pbtlb_g(int i)767 pbtlb_g(int i)
768 {
769 	return -1;
770 }
771 
772 int
ibtlb_g(int i,pa_space_t sp,vaddr_t va,paddr_t pa,vsize_t sz,u_int prot)773 ibtlb_g(int i, pa_space_t sp, vaddr_t va, paddr_t pa, vsize_t sz, u_int prot)
774 {
775 	int error;
776 
777 	if ((error = pdc_call((iodcio_t)pdc, 0, PDC_BLOCK_TLB, PDC_BTLB_INSERT,
778 	    sp, va, pa, sz, prot, i)) < 0) {
779 #ifdef BTLBDEBUG
780 		printf("WARNING: BTLB insert failed (%d)\n", error);
781 #endif
782 	}
783 	return error;
784 }
785 
786 int
btlb_insert(pa_space_t space,vaddr_t va,paddr_t pa,vsize_t * lenp,u_int prot)787 btlb_insert(pa_space_t space, vaddr_t va, paddr_t pa, vsize_t *lenp, u_int prot)
788 {
789 	static u_int32_t mask;
790 	vsize_t len;
791 	int error, i, btlb_max;
792 
793 	if (!pdc_btlb.min_size && !pdc_btlb.max_size)
794 		return -(ENXIO);
795 
796 	/*
797 	 * On PCXS processors with split BTLB, we should theoretically
798 	 * insert in the IBTLB (if executable mapping requested), and
799 	 * into the DBTLB. The PDC documentation is very clear that
800 	 * slot numbers are, in order, IBTLB, then DBTLB, then combined
801 	 * BTLB.
802 	 *
803 	 * However it also states that ``successful completion may not mean
804 	 * that the entire address range specified in the call has been
805 	 * mapped in the block TLB. For both fixed range slots and variable
806 	 * range slots, complete coverage of the address range specified
807 	 * is not guaranteed. Only a portion of the address range specified
808 	 * may get mapped as a result''.
809 	 *
810 	 * On an HP 9000/720 with PDC ROM v1.2, it turns out that IBTLB
811 	 * entries are inserted as expected, but no DBTLB gets inserted
812 	 * at all, despite PDC returning success.
813 	 *
814 	 * So play it dumb, and do not attempt to insert DBTLB entries at
815 	 * all on split BTLB systems. Callers are supposed to be able to
816 	 * cope with this.
817 	 */
818 
819 	if (pdc_btlb.finfo.num_c == 0) {
820 		if ((prot & TLB_EXECUTE) == 0)
821 			return -(EINVAL);
822 
823 		btlb_max = pdc_btlb.finfo.num_i;
824 	} else {
825 		btlb_max = pdc_btlb.finfo.num_c;
826 	}
827 
828 	/* align size */
829 	for (len = pdc_btlb.min_size << PGSHIFT; len < *lenp; len <<= 1)
830 		;
831 	len >>= PGSHIFT;
832 	i = ffs(~mask) - 1;
833 	if (len > pdc_btlb.max_size || i < 0 || i >= btlb_max) {
834 #ifdef BTLBDEBUG
835 		printf("btln_insert: too big (%u < %u < %u)\n",
836 		    pdc_btlb.min_size, len, pdc_btlb.max_size);
837 #endif
838 		return -(ENOMEM);
839 	}
840 
841 	mask |= 1 << i;
842 	pa >>= PGSHIFT;
843 	va >>= PGSHIFT;
844 	/* check address alignment */
845 	if (pa & (len - 1)) {
846 #ifdef BTLBDEBUG
847 		printf("WARNING: BTLB address misaligned pa=0x%x, len=0x%x\n",
848 		    pa, len);
849 #endif
850 		return -(ERANGE);
851 	}
852 
853 	/* ensure IO space is uncached */
854 	if ((pa & (HPPA_IOBEGIN >> PGSHIFT)) == (HPPA_IOBEGIN >> PGSHIFT))
855 		prot |= TLB_UNCACHABLE;
856 
857 #ifdef BTLBDEBUG
858 	printf("btlb_insert(%d): %x:%x=%x[%x,%x]\n",
859 	    i, space, va, pa, len, prot);
860 #endif
861 	if ((error = (*cpu_dbtlb_ins)(i, space, va, pa, len, prot)) < 0)
862 		return -(EINVAL);
863 	*lenp = len << PGSHIFT;
864 
865 	return i;
866 }
867 
868 int waittime = -1;
869 
870 __dead void
boot(int howto)871 boot(int howto)
872 {
873 	if ((howto & RB_RESET) != 0)
874 		goto doreset;
875 
876 	/*
877 	 * On older systems without software power control, prevent mi code
878 	 * from spinning disks off, in case the operator changes his mind
879 	 * and prefers to reboot - the firmware will not send a spin up
880 	 * command to the disks.
881 	 */
882 	if (cold_hook == NULL)
883 		howto &= ~RB_POWERDOWN;
884 
885 	if (cold) {
886 		if ((howto & RB_USERREQ) == 0)
887 			howto |= RB_HALT;
888 		goto haltsys;
889 	}
890 
891 	boothowto = howto | (boothowto & RB_HALT);
892 
893 	if ((howto & RB_NOSYNC) == 0) {
894 		waittime = 0;
895 		vfs_shutdown(curproc);
896 
897 		if ((howto & RB_TIMEBAD) == 0) {
898 			resettodr();
899 		} else {
900 			printf("WARNING: not updating battery clock\n");
901 		}
902 	}
903 	if_downall();
904 
905 	uvm_shutdown();
906 	splhigh();
907 	cold = 1;
908 
909 	if ((howto & RB_DUMP) != 0)
910 		dumpsys();
911 
912 haltsys:
913 	config_suspend_all(DVACT_POWERDOWN);
914 
915 #ifdef MULTIPROCESSOR
916 	hppa_ipi_broadcast(HPPA_IPI_HALT);
917 #endif
918 
919 	/* in case we came on powerfail interrupt */
920 	if (cold_hook)
921 		(*cold_hook)(HPPA_COLD_COLD);
922 
923 	if ((howto & RB_HALT) != 0) {
924 		if ((howto & RB_POWERDOWN) != 0) {
925 			printf("Powering off...");
926 			DELAY(2000000);
927 			(*cold_hook)(HPPA_COLD_OFF);
928 			DELAY(1000000);
929 		}
930 
931 		printf("System halted!\n");
932 		DELAY(2000000);
933 		__asm volatile("stwas %0, 0(%1)"
934 		    :: "r" (CMD_STOP), "r" (HPPA_LBCAST + iomod_command));
935 	} else {
936 doreset:
937 		printf("rebooting...");
938 		DELAY(2000000);
939 
940 		/* ask firmware to reset */
941                 pdc_call((iodcio_t)pdc, 0, PDC_BROADCAST_RESET, PDC_DO_RESET);
942 
943 		/* forcibly reset module if that fails */
944 		__asm volatile(".export hppa_reset, entry\n\t"
945 		    ".label hppa_reset");
946 		__asm volatile("stwas %0, 0(%1)"
947 		    :: "r" (CMD_RESET), "r" (HPPA_LBCAST + iomod_command));
948 	}
949 
950 	for (;;)
951 		continue;
952 	/* NOTREACHED */
953 }
954 
955 u_long	dumpmag = 0x8fca0101;	/* magic number */
956 int	dumpsize = 0;		/* pages */
957 long	dumplo = 0;		/* blocks */
958 
959 /*
960  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
961  */
962 int
cpu_dumpsize(void)963 cpu_dumpsize(void)
964 {
965 	int size;
966 
967 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
968 	if (roundup(size, dbtob(1)) != dbtob(1))
969 		return -1;
970 
971 	return 1;
972 }
973 
974 /*
975  * Called from HPMC handler in locore
976  */
977 void
hpmc_dump(void)978 hpmc_dump(void)
979 {
980 	cold = 0;
981 	panic("HPMC");
982 	/* NOTREACHED */
983 }
984 
985 int
cpu_dump(void)986 cpu_dump(void)
987 {
988 	long buf[dbtob(1) / sizeof (long)];
989 	kcore_seg_t	*segp;
990 	cpu_kcore_hdr_t	*cpuhdrp;
991 
992 	segp = (kcore_seg_t *)buf;
993 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
994 
995 	/*
996 	 * Generate a segment header.
997 	 */
998 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
999 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1000 
1001 	/*
1002 	 * Add the machine-dependent header info
1003 	 */
1004 	/* nothing for now */
1005 
1006 	return (bdevsw[major(dumpdev)].d_dump)
1007 	    (dumpdev, dumplo, (caddr_t)buf, dbtob(1));
1008 }
1009 
1010 /*
1011  * Dump the kernel's image to the swap partition.
1012  */
1013 #define	BYTES_PER_DUMP	NBPG
1014 
1015 void
dumpsys(void)1016 dumpsys(void)
1017 {
1018 	int psize, bytes, i, n;
1019 	caddr_t maddr;
1020 	daddr_t blkno;
1021 	int (*dump)(dev_t, daddr_t, caddr_t, size_t);
1022 	int error;
1023 
1024 	/* Save registers
1025 	savectx(&dumppcb); */
1026 
1027 	if (dumpsize == 0)
1028 		dumpconf();
1029 	if (dumplo <= 0) {
1030 		printf("\ndump to dev %x not possible\n", dumpdev);
1031 		return;
1032 	}
1033 	printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
1034 
1035 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1036 	printf("dump ");
1037 	if (psize == -1) {
1038 		printf("area unavailable\n");
1039 		return;
1040 	}
1041 
1042 	if (!(error = cpu_dump())) {
1043 
1044 		bytes = ptoa(physmem);
1045 		maddr = NULL;
1046 		blkno = dumplo + cpu_dumpsize();
1047 		dump = bdevsw[major(dumpdev)].d_dump;
1048 		/* TODO block map the whole physical memory */
1049 		for (i = 0; i < bytes; i += n) {
1050 
1051 			/* Print out how many MBs we are to go. */
1052 			n = bytes - i;
1053 			if (n && (n % (1024*1024)) == 0)
1054 				printf("%d ", n / (1024 * 1024));
1055 
1056 			/* Limit size for next transfer. */
1057 
1058 			if (n > BYTES_PER_DUMP)
1059 				n = BYTES_PER_DUMP;
1060 
1061 			if ((error = (*dump)(dumpdev, blkno, maddr, n)))
1062 				break;
1063 			maddr += n;
1064 			blkno += btodb(n);
1065 		}
1066 	}
1067 
1068 	switch (error) {
1069 	case ENXIO:	printf("device bad\n");			break;
1070 	case EFAULT:	printf("device not ready\n");		break;
1071 	case EINVAL:	printf("area improper\n");		break;
1072 	case EIO:	printf("i/o error\n");			break;
1073 	case EINTR:	printf("aborted from console\n");	break;
1074 	case 0:		printf("succeeded\n");			break;
1075 	default:	printf("error %d\n", error);		break;
1076 	}
1077 }
1078 
1079 /* bcopy(), error on fault */
1080 int
kcopy(const void * from,void * to,size_t size)1081 kcopy(const void *from, void *to, size_t size)
1082 {
1083 	return spcopy(HPPA_SID_KERNEL, from, HPPA_SID_KERNEL, to, size);
1084 }
1085 
1086 int
copyinstr(const void * src,void * dst,size_t size,size_t * lenp)1087 copyinstr(const void *src, void *dst, size_t size, size_t *lenp)
1088 {
1089 	if (size == 0)
1090 		return ENAMETOOLONG;
1091 	return spstrcpy(curproc->p_addr->u_pcb.pcb_space, src,
1092 	    HPPA_SID_KERNEL, dst, size, lenp);
1093 }
1094 
1095 int
copyoutstr(const void * src,void * dst,size_t size,size_t * lenp)1096 copyoutstr(const void *src, void *dst, size_t size, size_t *lenp)
1097 {
1098 	if (size == 0)
1099 		return ENAMETOOLONG;
1100 	return spstrcpy(HPPA_SID_KERNEL, src,
1101 	    curproc->p_addr->u_pcb.pcb_space, dst, size, lenp);
1102 }
1103 
1104 int
copyin(const void * src,void * dst,size_t size)1105 copyin(const void *src, void *dst, size_t size)
1106 {
1107 	return spcopy(curproc->p_addr->u_pcb.pcb_space, src,
1108 	    HPPA_SID_KERNEL, dst, size);
1109 }
1110 
1111 int
copyout(const void * src,void * dst,size_t size)1112 copyout(const void *src, void *dst, size_t size)
1113 {
1114 	return spcopy(HPPA_SID_KERNEL, src,
1115 	    curproc->p_addr->u_pcb.pcb_space, dst, size);
1116 }
1117 
1118 int
copyin32(const uint32_t * src,uint32_t * dst)1119 copyin32(const uint32_t *src, uint32_t *dst)
1120 {
1121 	return spcopy32(curproc->p_addr->u_pcb.pcb_space, src,
1122 	    HPPA_SID_KERNEL, dst);
1123 }
1124 
1125 /*
1126  * Set up tf_sp and tf_r3 (the frame pointer) and copy out the
1127  * frame marker and the old r3
1128  */
1129 int
setstack(struct trapframe * tf,u_long stack,register_t old_r3)1130 setstack(struct trapframe *tf, u_long stack, register_t old_r3)
1131 {
1132 	static const register_t zero = 0;
1133 	int err;
1134 
1135 	tf->tf_r3 = stack;
1136 	err = copyout(&old_r3, (caddr_t)stack, sizeof(register_t));
1137 
1138 	tf->tf_sp = stack += HPPA_FRAME_SIZE;
1139 	return (copyout(&zero, (caddr_t)(stack + HPPA_FRAME_CRP),
1140 	    sizeof(register_t)) || err);
1141 }
1142 
1143 
1144 /*
1145  * Set registers on exec.
1146  */
1147 void
setregs(struct proc * p,struct exec_package * pack,u_long stack,struct ps_strings * arginfo)1148 setregs(struct proc *p, struct exec_package *pack, u_long stack,
1149     struct ps_strings *arginfo)
1150 {
1151 	struct trapframe *tf = p->p_md.md_regs;
1152 	struct pcb *pcb = &p->p_addr->u_pcb;
1153 	struct fpreg *fpreg = &pcb->pcb_fpstate->hfp_regs;
1154 
1155 	memset(tf, 0, sizeof *tf);
1156 	tf->tf_flags = TFF_SYS|TFF_LAST;
1157 	tf->tf_iioq_head = pack->ep_entry | HPPA_PC_PRIV_USER;
1158 	tf->tf_iioq_tail = tf->tf_iioq_head + 4;
1159 	tf->tf_iisq_head = tf->tf_iisq_tail = pcb->pcb_space;
1160 	tf->tf_arg0 = p->p_p->ps_strings;
1161 
1162 	/* setup terminal stack frame */
1163 	setstack(tf, (stack + 0x3f) & ~0x3f, 0);
1164 
1165 	tf->tf_cr30 = (paddr_t)pcb->pcb_fpstate;
1166 
1167 	tf->tf_sr0 = tf->tf_sr1 = tf->tf_sr2 = tf->tf_sr3 =
1168 	tf->tf_sr4 = tf->tf_sr5 = tf->tf_sr6 = pcb->pcb_space;
1169 	tf->tf_pidr1 = tf->tf_pidr2 = pmap_sid2pid(tf->tf_sr0);
1170 
1171 	/*
1172 	 * theoretically these could be inherited,
1173 	 * but just in case.
1174 	 */
1175 	tf->tf_sr7 = HPPA_SID_KERNEL;
1176 	mfctl(CR_EIEM, tf->tf_eiem);
1177 	tf->tf_ipsw = PSL_C | PSL_Q | PSL_P | PSL_D | PSL_I /* | PSL_L */ |
1178 	    (curcpu()->ci_psw & PSL_O);
1179 
1180 	/* clear the FPU */
1181 	fpu_proc_flush(p);
1182 	memset(fpreg, 0, sizeof *fpreg);
1183 	fpreg->fpr_regs[0] = ((u_int64_t)HPPA_FPU_INIT) << 32;
1184 
1185 	p->p_md.md_bpva = 0;
1186 }
1187 
1188 /*
1189  * Send an interrupt to process.
1190  */
1191 int
sendsig(sig_t catcher,int sig,sigset_t mask,const siginfo_t * ksip,int info,int onstack)1192 sendsig(sig_t catcher, int sig, sigset_t mask, const siginfo_t *ksip,
1193     int info, int onstack)
1194 {
1195 	struct proc *p = curproc;
1196 	struct trapframe *tf = p->p_md.md_regs;
1197 	struct pcb *pcb = &p->p_addr->u_pcb;
1198 	struct sigcontext ksc;
1199 	register_t scp, sip;
1200 	int sss;
1201 
1202 	/* Save the FPU context first. */
1203 	fpu_proc_save(p);
1204 
1205 	/*
1206 	 * Allocate space for the signal handler context.
1207 	 */
1208 	if ((p->p_sigstk.ss_flags & SS_DISABLE) == 0 &&
1209 	    !sigonstack(tf->tf_sp) && onstack)
1210 		scp = round_page((vaddr_t)p->p_sigstk.ss_sp);
1211 	else
1212 		scp = (tf->tf_sp + 63) & ~63;
1213 
1214 	sss = (sizeof(ksc) + 63) & ~63;
1215 	sip = 0;
1216 	if (info) {
1217 		sip = scp + sizeof(ksc);
1218 		sss += (sizeof(*ksip) + 63) & ~63;
1219 	}
1220 
1221 	bzero(&ksc, sizeof(ksc));
1222 	ksc.sc_mask = mask;
1223 	ksc.sc_fp = scp + sss;
1224 	ksc.sc_ps = tf->tf_ipsw;
1225 	ksc.sc_pcoqh = tf->tf_iioq_head;
1226 	ksc.sc_pcoqt = tf->tf_iioq_tail;
1227 	ksc.sc_regs[0] = tf->tf_t1;
1228 	ksc.sc_regs[1] = tf->tf_t2;
1229 	ksc.sc_regs[2] = tf->tf_sp;
1230 	ksc.sc_regs[3] = tf->tf_t3;
1231 	ksc.sc_regs[4] = tf->tf_sar;
1232 	ksc.sc_regs[5] = tf->tf_r1;
1233 	ksc.sc_regs[6] = tf->tf_rp;
1234 	ksc.sc_regs[7] = tf->tf_r3;
1235 	ksc.sc_regs[8] = tf->tf_r4;
1236 	ksc.sc_regs[9] = tf->tf_r5;
1237 	ksc.sc_regs[10] = tf->tf_r6;
1238 	ksc.sc_regs[11] = tf->tf_r7;
1239 	ksc.sc_regs[12] = tf->tf_r8;
1240 	ksc.sc_regs[13] = tf->tf_r9;
1241 	ksc.sc_regs[14] = tf->tf_r10;
1242 	ksc.sc_regs[15] = tf->tf_r11;
1243 	ksc.sc_regs[16] = tf->tf_r12;
1244 	ksc.sc_regs[17] = tf->tf_r13;
1245 	ksc.sc_regs[18] = tf->tf_r14;
1246 	ksc.sc_regs[19] = tf->tf_r15;
1247 	ksc.sc_regs[20] = tf->tf_r16;
1248 	ksc.sc_regs[21] = tf->tf_r17;
1249 	ksc.sc_regs[22] = tf->tf_r18;
1250 	ksc.sc_regs[23] = tf->tf_t4;
1251 	ksc.sc_regs[24] = tf->tf_arg3;
1252 	ksc.sc_regs[25] = tf->tf_arg2;
1253 	ksc.sc_regs[26] = tf->tf_arg1;
1254 	ksc.sc_regs[27] = tf->tf_arg0;
1255 	ksc.sc_regs[28] = tf->tf_dp;
1256 	ksc.sc_regs[29] = tf->tf_ret0;
1257 	ksc.sc_regs[30] = tf->tf_ret1;
1258 	ksc.sc_regs[31] = tf->tf_r31;
1259 	bcopy(&p->p_addr->u_pcb.pcb_fpstate->hfp_regs, ksc.sc_fpregs,
1260 	    sizeof(ksc.sc_fpregs));
1261 
1262 	if (setstack(tf, scp + sss, tf->tf_r3))
1263 		return 1;
1264 
1265 	tf->tf_arg0 = sig;
1266 	tf->tf_arg1 = sip;
1267 	tf->tf_arg2 = tf->tf_r4 = scp;
1268 	tf->tf_arg3 = (register_t)catcher;
1269 	tf->tf_ipsw &= ~(PSL_N|PSL_B|PSL_T);
1270 	tf->tf_iioq_head = HPPA_PC_PRIV_USER | p->p_p->ps_sigcode;
1271 	tf->tf_iioq_tail = tf->tf_iioq_head + 4;
1272 	tf->tf_iisq_tail = tf->tf_iisq_head = pcb->pcb_space;
1273 	/* disable tracing in the trapframe */
1274 
1275 	ksc.sc_cookie = (long)scp ^ p->p_p->ps_sigcookie;
1276 	if (copyout(&ksc, (void *)scp, sizeof(ksc)))
1277 		return 1;
1278 
1279 	if (sip) {
1280 		if (copyout(ksip, (void *)sip, sizeof *ksip))
1281 			return 1;
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 int
sys_sigreturn(struct proc * p,void * v,register_t * retval)1288 sys_sigreturn(struct proc *p, void *v, register_t *retval)
1289 {
1290 	struct sys_sigreturn_args /* {
1291 		syscallarg(struct sigcontext *) sigcntxp;
1292 	} */ *uap = v;
1293 	struct sigcontext ksc, *scp = SCARG(uap, sigcntxp);
1294 	struct trapframe *tf = p->p_md.md_regs;
1295 	int error;
1296 
1297 	if (PROC_PC(p) != p->p_p->ps_sigcoderet) {
1298 		sigexit(p, SIGILL);
1299 		return (EPERM);
1300 	}
1301 
1302 	/* Flush the FPU context first. */
1303 	fpu_proc_flush(p);
1304 
1305 	if ((error = copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc)))
1306 		return (error);
1307 
1308 	if (ksc.sc_cookie != ((long)scp ^ p->p_p->ps_sigcookie)) {
1309 		sigexit(p, SIGILL);
1310 		return (EFAULT);
1311 	}
1312 
1313 	/* Prevent reuse of the sigcontext cookie */
1314 	ksc.sc_cookie = 0;
1315 	(void)copyout(&ksc.sc_cookie, (caddr_t)scp +
1316 	    offsetof(struct sigcontext, sc_cookie), sizeof (ksc.sc_cookie));
1317 
1318 #define PSL_MBS (PSL_C|PSL_Q|PSL_P|PSL_D|PSL_I)
1319 #define PSL_MBZ (PSL_Y|PSL_Z|PSL_S|PSL_X|PSL_M|PSL_R)
1320 	if ((ksc.sc_ps & (PSL_MBS|PSL_MBZ)) != PSL_MBS)
1321 		return (EINVAL);
1322 
1323 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1324 
1325 	tf->tf_t1 = ksc.sc_regs[0];		/* r22 */
1326 	tf->tf_t2 = ksc.sc_regs[1];		/* r21 */
1327 	tf->tf_sp = ksc.sc_regs[2];
1328 	tf->tf_t3 = ksc.sc_regs[3];		/* r20 */
1329 	tf->tf_sar = ksc.sc_regs[4];
1330 	tf->tf_r1 = ksc.sc_regs[5];
1331 	tf->tf_rp = ksc.sc_regs[6];
1332 	tf->tf_r3 = ksc.sc_regs[7];
1333 	tf->tf_r4 = ksc.sc_regs[8];
1334 	tf->tf_r5 = ksc.sc_regs[9];
1335 	tf->tf_r6 = ksc.sc_regs[10];
1336 	tf->tf_r7 = ksc.sc_regs[11];
1337 	tf->tf_r8 = ksc.sc_regs[12];
1338 	tf->tf_r9 = ksc.sc_regs[13];
1339 	tf->tf_r10 = ksc.sc_regs[14];
1340 	tf->tf_r11 = ksc.sc_regs[15];
1341 	tf->tf_r12 = ksc.sc_regs[16];
1342 	tf->tf_r13 = ksc.sc_regs[17];
1343 	tf->tf_r14 = ksc.sc_regs[18];
1344 	tf->tf_r15 = ksc.sc_regs[19];
1345 	tf->tf_r16 = ksc.sc_regs[20];
1346 	tf->tf_r17 = ksc.sc_regs[21];
1347 	tf->tf_r18 = ksc.sc_regs[22];
1348 	tf->tf_t4 = ksc.sc_regs[23];		/* r19 */
1349 	tf->tf_arg3 = ksc.sc_regs[24];		/* r23 */
1350 	tf->tf_arg2 = ksc.sc_regs[25];		/* r24 */
1351 	tf->tf_arg1 = ksc.sc_regs[26];		/* r25 */
1352 	tf->tf_arg0 = ksc.sc_regs[27];		/* r26 */
1353 	tf->tf_dp = ksc.sc_regs[28];
1354 	tf->tf_ret0 = ksc.sc_regs[29];
1355 	tf->tf_ret1 = ksc.sc_regs[30];
1356 	tf->tf_r31 = ksc.sc_regs[31];
1357 	bcopy(ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fpstate->hfp_regs,
1358 	    sizeof(ksc.sc_fpregs));
1359 
1360 	tf->tf_iioq_head = ksc.sc_pcoqh | HPPA_PC_PRIV_USER;
1361 	tf->tf_iioq_tail = ksc.sc_pcoqt | HPPA_PC_PRIV_USER;
1362 	if ((tf->tf_iioq_head & ~PAGE_MASK) == SYSCALLGATE)
1363 		tf->tf_iisq_head = HPPA_SID_KERNEL;
1364 	else
1365 		tf->tf_iisq_head = p->p_addr->u_pcb.pcb_space;
1366 	if ((tf->tf_iioq_tail & ~PAGE_MASK) == SYSCALLGATE)
1367 		tf->tf_iisq_tail = HPPA_SID_KERNEL;
1368 	else
1369 		tf->tf_iisq_tail = p->p_addr->u_pcb.pcb_space;
1370 	tf->tf_ipsw = ksc.sc_ps | (curcpu()->ci_psw & PSL_O);
1371 
1372 	return (EJUSTRETURN);
1373 }
1374 
1375 void
signotify(struct proc * p)1376 signotify(struct proc *p)
1377 {
1378 	setsoftast(p);
1379 	cpu_unidle(p->p_cpu);
1380 }
1381 
1382 /*
1383  * machine dependent system variables.
1384  */
1385 int
cpu_sysctl(int * name,u_int namelen,void * oldp,size_t * oldlenp,void * newp,size_t newlen,struct proc * p)1386 cpu_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
1387     size_t newlen, struct proc *p)
1388 {
1389 	extern u_int fpu_enable;
1390 	extern int cpu_fpuena;
1391 	dev_t consdev;
1392 	int oldval, ret;
1393 
1394 	/* all sysctl names at this level are terminal */
1395 	if (namelen != 1)
1396 		return (ENOTDIR);	/* overloaded */
1397 	switch (name[0]) {
1398 	case CPU_CONSDEV:
1399 		if (cn_tab != NULL)
1400 			consdev = cn_tab->cn_dev;
1401 		else
1402 			consdev = NODEV;
1403 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1404 		    sizeof consdev));
1405 	case CPU_FPU:
1406 		if (curcpu()->ci_fpu_state) {
1407 			mtctl(fpu_enable, CR_CCR);
1408 			fpu_save(curcpu()->ci_fpu_state);
1409 			curcpu()->ci_fpu_state = 0;
1410 			mtctl(0, CR_CCR);
1411 		}
1412 		return (sysctl_int(oldp, oldlenp, newp, newlen, &cpu_fpuena));
1413 	case CPU_LED_BLINK:
1414 		oldval = led_blink;
1415 		ret = sysctl_int(oldp, oldlenp, newp, newlen, &led_blink);
1416 		/*
1417 		 * If we were false and are now true, start the timer.
1418 		 */
1419 		if (!oldval && led_blink > oldval)
1420 			blink_led_timeout(NULL);
1421 		return (ret);
1422 	default:
1423 		return (EOPNOTSUPP);
1424 	}
1425 	/* NOTREACHED */
1426 }
1427 
1428 
1429 /*
1430  * consinit:
1431  * initialize the system console.
1432  */
1433 void
consinit(void)1434 consinit(void)
1435 {
1436 	/*
1437 	 * Initial console setup has been done in pdc_init().
1438 	 */
1439 }
1440 
1441 
1442 struct blink_led_softc {
1443 	SLIST_HEAD(, blink_led) bls_head;
1444 	int bls_on;
1445 	struct timeout bls_to;
1446 } blink_sc = { SLIST_HEAD_INITIALIZER(bls_head), 0 };
1447 
1448 void
blink_led_register(struct blink_led * l)1449 blink_led_register(struct blink_led *l)
1450 {
1451 	if (SLIST_EMPTY(&blink_sc.bls_head)) {
1452 		timeout_set(&blink_sc.bls_to, blink_led_timeout, &blink_sc);
1453 		blink_sc.bls_on = 0;
1454 		if (led_blink)
1455 			timeout_add(&blink_sc.bls_to, 1);
1456 	}
1457 	SLIST_INSERT_HEAD(&blink_sc.bls_head, l, bl_next);
1458 }
1459 
1460 void
blink_led_timeout(void * vsc)1461 blink_led_timeout(void *vsc)
1462 {
1463 	struct blink_led_softc *sc = &blink_sc;
1464 	struct blink_led *l;
1465 	int t;
1466 
1467 	if (SLIST_EMPTY(&sc->bls_head))
1468 		return;
1469 
1470 	SLIST_FOREACH(l, &sc->bls_head, bl_next) {
1471 		(*l->bl_func)(l->bl_arg, sc->bls_on);
1472 	}
1473 	sc->bls_on = !sc->bls_on;
1474 
1475 	if (!led_blink)
1476 		return;
1477 
1478 	/*
1479 	 * Blink rate is:
1480 	 *      full cycle every second if completely idle (loadav = 0)
1481 	 *      full cycle every 2 seconds if loadav = 1
1482 	 *      full cycle every 3 seconds if loadav = 2
1483 	 * etc.
1484 	 */
1485 	t = (((averunnable.ldavg[0] + FSCALE) * hz) >> (FSHIFT + 1));
1486 	timeout_add(&sc->bls_to, t);
1487 }
1488