xref: /openbsd/sys/dev/pci/drm/i915/gt/intel_gtt.c (revision d684a4ca)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 #include <linux/sched/mm.h>
10 
11 #include <drm/drm_cache.h>
12 
13 #include "gem/i915_gem_internal.h"
14 #include "gem/i915_gem_lmem.h"
15 #include "i915_reg.h"
16 #include "i915_trace.h"
17 #include "i915_utils.h"
18 #include "intel_gt.h"
19 #include "intel_gt_mcr.h"
20 #include "intel_gt_print.h"
21 #include "intel_gt_regs.h"
22 #include "intel_gtt.h"
23 
i915_ggtt_require_binder(struct drm_i915_private * i915)24 bool i915_ggtt_require_binder(struct drm_i915_private *i915)
25 {
26 	/* Wa_13010847436 & Wa_14019519902 */
27 	return !i915_direct_stolen_access(i915) &&
28 		MEDIA_VER_FULL(i915) == IP_VER(13, 0);
29 }
30 
intel_ggtt_update_needs_vtd_wa(struct drm_i915_private * i915)31 static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915)
32 {
33 	return IS_BROXTON(i915) && i915_vtd_active(i915);
34 }
35 
intel_vm_no_concurrent_access_wa(struct drm_i915_private * i915)36 bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915)
37 {
38 	return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915);
39 }
40 
alloc_pt_lmem(struct i915_address_space * vm,int sz)41 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
42 {
43 	struct drm_i915_gem_object *obj;
44 
45 	/*
46 	 * To avoid severe over-allocation when dealing with min_page_size
47 	 * restrictions, we override that behaviour here by allowing an object
48 	 * size and page layout which can be smaller. In practice this should be
49 	 * totally fine, since GTT paging structures are not typically inserted
50 	 * into the GTT.
51 	 *
52 	 * Note that we also hit this path for the scratch page, and for this
53 	 * case it might need to be 64K, but that should work fine here since we
54 	 * used the passed in size for the page size, which should ensure it
55 	 * also has the same alignment.
56 	 */
57 	obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
58 						    vm->lmem_pt_obj_flags);
59 	/*
60 	 * Ensure all paging structures for this vm share the same dma-resv
61 	 * object underneath, with the idea that one object_lock() will lock
62 	 * them all at once.
63 	 */
64 	if (!IS_ERR(obj)) {
65 		obj->base.resv = i915_vm_resv_get(vm);
66 		obj->shares_resv_from = vm;
67 	}
68 
69 	return obj;
70 }
71 
alloc_pt_dma(struct i915_address_space * vm,int sz)72 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
73 {
74 	struct drm_i915_gem_object *obj;
75 
76 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
77 		i915_gem_shrink_all(vm->i915);
78 
79 	obj = i915_gem_object_create_internal(vm->i915, sz);
80 	/*
81 	 * Ensure all paging structures for this vm share the same dma-resv
82 	 * object underneath, with the idea that one object_lock() will lock
83 	 * them all at once.
84 	 */
85 	if (!IS_ERR(obj)) {
86 		obj->base.resv = i915_vm_resv_get(vm);
87 		obj->shares_resv_from = vm;
88 	}
89 
90 	return obj;
91 }
92 
map_pt_dma(struct i915_address_space * vm,struct drm_i915_gem_object * obj)93 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
94 {
95 	enum i915_map_type type;
96 	void *vaddr;
97 
98 	type = intel_gt_coherent_map_type(vm->gt, obj, true);
99 	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
100 	if (IS_ERR(vaddr))
101 		return PTR_ERR(vaddr);
102 
103 	i915_gem_object_make_unshrinkable(obj);
104 	return 0;
105 }
106 
map_pt_dma_locked(struct i915_address_space * vm,struct drm_i915_gem_object * obj)107 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
108 {
109 	enum i915_map_type type;
110 	void *vaddr;
111 
112 	type = intel_gt_coherent_map_type(vm->gt, obj, true);
113 	vaddr = i915_gem_object_pin_map(obj, type);
114 	if (IS_ERR(vaddr))
115 		return PTR_ERR(vaddr);
116 
117 	i915_gem_object_make_unshrinkable(obj);
118 	return 0;
119 }
120 
clear_vm_list(struct list_head * list)121 static void clear_vm_list(struct list_head *list)
122 {
123 	struct i915_vma *vma, *vn;
124 
125 	list_for_each_entry_safe(vma, vn, list, vm_link) {
126 		struct drm_i915_gem_object *obj = vma->obj;
127 
128 		if (!i915_gem_object_get_rcu(obj)) {
129 			/*
130 			 * Object is dying, but has not yet cleared its
131 			 * vma list.
132 			 * Unbind the dying vma to ensure our list
133 			 * is completely drained. We leave the destruction to
134 			 * the object destructor to avoid the vma
135 			 * disappearing under it.
136 			 */
137 			atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
138 			WARN_ON(__i915_vma_unbind(vma));
139 
140 			/* Remove from the unbound list */
141 			list_del_init(&vma->vm_link);
142 
143 			/*
144 			 * Delay the vm and vm mutex freeing until the
145 			 * object is done with destruction.
146 			 */
147 			i915_vm_resv_get(vma->vm);
148 			vma->vm_ddestroy = true;
149 		} else {
150 			i915_vma_destroy_locked(vma);
151 			i915_gem_object_put(obj);
152 		}
153 
154 	}
155 }
156 
__i915_vm_close(struct i915_address_space * vm)157 static void __i915_vm_close(struct i915_address_space *vm)
158 {
159 	mutex_lock(&vm->mutex);
160 
161 	clear_vm_list(&vm->bound_list);
162 	clear_vm_list(&vm->unbound_list);
163 
164 	/* Check for must-fix unanticipated side-effects */
165 	GEM_BUG_ON(!list_empty(&vm->bound_list));
166 	GEM_BUG_ON(!list_empty(&vm->unbound_list));
167 
168 	mutex_unlock(&vm->mutex);
169 }
170 
171 /* lock the vm into the current ww, if we lock one, we lock all */
i915_vm_lock_objects(struct i915_address_space * vm,struct i915_gem_ww_ctx * ww)172 int i915_vm_lock_objects(struct i915_address_space *vm,
173 			 struct i915_gem_ww_ctx *ww)
174 {
175 	if (vm->scratch[0]->base.resv == &vm->_resv) {
176 		return i915_gem_object_lock(vm->scratch[0], ww);
177 	} else {
178 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
179 
180 		/* We borrowed the scratch page from ggtt, take the top level object */
181 		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
182 	}
183 }
184 
i915_address_space_fini(struct i915_address_space * vm)185 void i915_address_space_fini(struct i915_address_space *vm)
186 {
187 	drm_mm_takedown(&vm->mm);
188 }
189 
190 /**
191  * i915_vm_resv_release - Final struct i915_address_space destructor
192  * @kref: Pointer to the &i915_address_space.resv_ref member.
193  *
194  * This function is called when the last lock sharer no longer shares the
195  * &i915_address_space._resv lock, and also if we raced when
196  * destroying a vma by the vma destruction
197  */
i915_vm_resv_release(struct kref * kref)198 void i915_vm_resv_release(struct kref *kref)
199 {
200 	struct i915_address_space *vm =
201 		container_of(kref, typeof(*vm), resv_ref);
202 
203 	dma_resv_fini(&vm->_resv);
204 	mutex_destroy(&vm->mutex);
205 
206 	kfree(vm);
207 }
208 
__i915_vm_release(struct work_struct * work)209 static void __i915_vm_release(struct work_struct *work)
210 {
211 	struct i915_address_space *vm =
212 		container_of(work, struct i915_address_space, release_work);
213 
214 	__i915_vm_close(vm);
215 
216 	/* Synchronize async unbinds. */
217 	i915_vma_resource_bind_dep_sync_all(vm);
218 
219 	vm->cleanup(vm);
220 	i915_address_space_fini(vm);
221 
222 	i915_vm_resv_put(vm);
223 }
224 
i915_vm_release(struct kref * kref)225 void i915_vm_release(struct kref *kref)
226 {
227 	struct i915_address_space *vm =
228 		container_of(kref, struct i915_address_space, ref);
229 
230 	GEM_BUG_ON(i915_is_ggtt(vm));
231 	trace_i915_ppgtt_release(vm);
232 
233 	queue_work(vm->i915->wq, &vm->release_work);
234 }
235 
i915_address_space_init(struct i915_address_space * vm,int subclass)236 void i915_address_space_init(struct i915_address_space *vm, int subclass)
237 {
238 	kref_init(&vm->ref);
239 
240 	/*
241 	 * Special case for GGTT that has already done an early
242 	 * kref_init here.
243 	 */
244 	if (!kref_read(&vm->resv_ref))
245 		kref_init(&vm->resv_ref);
246 
247 	vm->pending_unbind = RB_ROOT_CACHED;
248 	INIT_WORK(&vm->release_work, __i915_vm_release);
249 
250 	/*
251 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
252 	 * Do a dummy acquire now under fs_reclaim so that any allocation
253 	 * attempt holding the lock is immediately reported by lockdep.
254 	 */
255 	rw_init(&vm->mutex, "vmlk");
256 	lockdep_set_subclass(&vm->mutex, subclass);
257 
258 	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
259 		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
260 	} else {
261 		/*
262 		 * CHV + BXT VTD workaround use stop_machine(),
263 		 * which is allowed to allocate memory. This means &vm->mutex
264 		 * is the outer lock, and in theory we can allocate memory inside
265 		 * it through stop_machine().
266 		 *
267 		 * Add the annotation for this, we use trylock in shrinker.
268 		 */
269 		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
270 		might_alloc(GFP_KERNEL);
271 		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
272 	}
273 	dma_resv_init(&vm->_resv);
274 
275 	GEM_BUG_ON(!vm->total);
276 	drm_mm_init(&vm->mm, 0, vm->total);
277 
278 	memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT,
279 		 ARRAY_SIZE(vm->min_alignment));
280 
281 	if (HAS_64K_PAGES(vm->i915)) {
282 		vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K;
283 		vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K;
284 	}
285 
286 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
287 
288 	INIT_LIST_HEAD(&vm->bound_list);
289 	INIT_LIST_HEAD(&vm->unbound_list);
290 }
291 
__px_vaddr(struct drm_i915_gem_object * p)292 void *__px_vaddr(struct drm_i915_gem_object *p)
293 {
294 	enum i915_map_type type;
295 
296 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
297 	return page_unpack_bits(p->mm.mapping, &type);
298 }
299 
__px_dma(struct drm_i915_gem_object * p)300 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
301 {
302 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
303 	return sg_dma_address(p->mm.pages->sgl);
304 }
305 
__px_page(struct drm_i915_gem_object * p)306 struct vm_page *__px_page(struct drm_i915_gem_object *p)
307 {
308 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
309 	return sg_page(p->mm.pages->sgl);
310 }
311 
312 void
fill_page_dma(struct drm_i915_gem_object * p,const u64 val,unsigned int count)313 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
314 {
315 	void *vaddr = __px_vaddr(p);
316 
317 	memset64(vaddr, val, count);
318 	drm_clflush_virt_range(vaddr, PAGE_SIZE);
319 }
320 
poison_scratch_page(struct drm_i915_gem_object * scratch)321 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
322 {
323 	void *vaddr = __px_vaddr(scratch);
324 	u8 val;
325 
326 	val = 0;
327 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
328 		val = POISON_FREE;
329 
330 	memset(vaddr, val, scratch->base.size);
331 	drm_clflush_virt_range(vaddr, scratch->base.size);
332 }
333 
setup_scratch_page(struct i915_address_space * vm)334 int setup_scratch_page(struct i915_address_space *vm)
335 {
336 	unsigned long size;
337 
338 	/*
339 	 * In order to utilize 64K pages for an object with a size < 2M, we will
340 	 * need to support a 64K scratch page, given that every 16th entry for a
341 	 * page-table operating in 64K mode must point to a properly aligned 64K
342 	 * region, including any PTEs which happen to point to scratch.
343 	 *
344 	 * This is only relevant for the 48b PPGTT where we support
345 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
346 	 * scratch (read-only) between all vm, we create one 64k scratch page
347 	 * for all.
348 	 */
349 	size = I915_GTT_PAGE_SIZE_4K;
350 	if (i915_vm_is_4lvl(vm) &&
351 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K) &&
352 	    !HAS_64K_PAGES(vm->i915))
353 		size = I915_GTT_PAGE_SIZE_64K;
354 
355 	do {
356 		struct drm_i915_gem_object *obj;
357 
358 		obj = vm->alloc_scratch_dma(vm, size);
359 		if (IS_ERR(obj))
360 			goto skip;
361 
362 		if (map_pt_dma(vm, obj))
363 			goto skip_obj;
364 
365 		/* We need a single contiguous page for our scratch */
366 		if (obj->mm.page_sizes.sg < size)
367 			goto skip_obj;
368 
369 		/* And it needs to be correspondingly aligned */
370 		if (__px_dma(obj) & (size - 1))
371 			goto skip_obj;
372 
373 		/*
374 		 * Use a non-zero scratch page for debugging.
375 		 *
376 		 * We want a value that should be reasonably obvious
377 		 * to spot in the error state, while also causing a GPU hang
378 		 * if executed. We prefer using a clear page in production, so
379 		 * should it ever be accidentally used, the effect should be
380 		 * fairly benign.
381 		 */
382 		poison_scratch_page(obj);
383 
384 		vm->scratch[0] = obj;
385 		vm->scratch_order = get_order(size);
386 		return 0;
387 
388 skip_obj:
389 		i915_gem_object_put(obj);
390 skip:
391 		if (size == I915_GTT_PAGE_SIZE_4K)
392 			return -ENOMEM;
393 
394 		size = I915_GTT_PAGE_SIZE_4K;
395 	} while (1);
396 }
397 
free_scratch(struct i915_address_space * vm)398 void free_scratch(struct i915_address_space *vm)
399 {
400 	int i;
401 
402 	if (!vm->scratch[0])
403 		return;
404 
405 	for (i = 0; i <= vm->top; i++)
406 		i915_gem_object_put(vm->scratch[i]);
407 }
408 
gtt_write_workarounds(struct intel_gt * gt)409 void gtt_write_workarounds(struct intel_gt *gt)
410 {
411 	struct drm_i915_private *i915 = gt->i915;
412 	struct intel_uncore *uncore = gt->uncore;
413 
414 	/*
415 	 * This function is for gtt related workarounds. This function is
416 	 * called on driver load and after a GPU reset, so you can place
417 	 * workarounds here even if they get overwritten by GPU reset.
418 	 */
419 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
420 	if (IS_BROADWELL(i915))
421 		intel_uncore_write(uncore,
422 				   GEN8_L3_LRA_1_GPGPU,
423 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
424 	else if (IS_CHERRYVIEW(i915))
425 		intel_uncore_write(uncore,
426 				   GEN8_L3_LRA_1_GPGPU,
427 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
428 	else if (IS_GEN9_LP(i915))
429 		intel_uncore_write(uncore,
430 				   GEN8_L3_LRA_1_GPGPU,
431 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
432 	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
433 		intel_uncore_write(uncore,
434 				   GEN8_L3_LRA_1_GPGPU,
435 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
436 
437 	/*
438 	 * To support 64K PTEs we need to first enable the use of the
439 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
440 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
441 	 * shouldn't be needed after GEN10.
442 	 *
443 	 * 64K pages were first introduced from BDW+, although technically they
444 	 * only *work* from gen9+. For pre-BDW we instead have the option for
445 	 * 32K pages, but we don't currently have any support for it in our
446 	 * driver.
447 	 */
448 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
449 	    GRAPHICS_VER(i915) <= 10)
450 		intel_uncore_rmw(uncore,
451 				 GEN8_GAMW_ECO_DEV_RW_IA,
452 				 0,
453 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
454 
455 	if (IS_GRAPHICS_VER(i915, 8, 11)) {
456 		bool can_use_gtt_cache = true;
457 
458 		/*
459 		 * According to the BSpec if we use 2M/1G pages then we also
460 		 * need to disable the GTT cache. At least on BDW we can see
461 		 * visual corruption when using 2M pages, and not disabling the
462 		 * GTT cache.
463 		 */
464 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
465 			can_use_gtt_cache = false;
466 
467 		/* WaGttCachingOffByDefault */
468 		intel_uncore_write(uncore,
469 				   HSW_GTT_CACHE_EN,
470 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
471 		gt_WARN_ON_ONCE(gt, can_use_gtt_cache &&
472 				intel_uncore_read(uncore,
473 						  HSW_GTT_CACHE_EN) == 0);
474 	}
475 }
476 
xelpmp_setup_private_ppat(struct intel_uncore * uncore)477 static void xelpmp_setup_private_ppat(struct intel_uncore *uncore)
478 {
479 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(0),
480 			   MTL_PPAT_L4_0_WB);
481 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(1),
482 			   MTL_PPAT_L4_1_WT);
483 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(2),
484 			   MTL_PPAT_L4_3_UC);
485 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(3),
486 			   MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
487 	intel_uncore_write(uncore, XELPMP_PAT_INDEX(4),
488 			   MTL_PPAT_L4_0_WB | MTL_3_COH_2W);
489 
490 	/*
491 	 * Remaining PAT entries are left at the hardware-default
492 	 * fully-cached setting
493 	 */
494 }
495 
xelpg_setup_private_ppat(struct intel_gt * gt)496 static void xelpg_setup_private_ppat(struct intel_gt *gt)
497 {
498 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(0),
499 				     MTL_PPAT_L4_0_WB);
500 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(1),
501 				     MTL_PPAT_L4_1_WT);
502 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(2),
503 				     MTL_PPAT_L4_3_UC);
504 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(3),
505 				     MTL_PPAT_L4_0_WB | MTL_2_COH_1W);
506 	intel_gt_mcr_multicast_write(gt, XEHP_PAT_INDEX(4),
507 				     MTL_PPAT_L4_0_WB | MTL_3_COH_2W);
508 
509 	/*
510 	 * Remaining PAT entries are left at the hardware-default
511 	 * fully-cached setting
512 	 */
513 }
514 
tgl_setup_private_ppat(struct intel_uncore * uncore)515 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
516 {
517 	/* TGL doesn't support LLC or AGE settings */
518 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
519 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
520 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
521 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
522 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
523 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
524 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
525 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
526 }
527 
xehp_setup_private_ppat(struct intel_gt * gt)528 static void xehp_setup_private_ppat(struct intel_gt *gt)
529 {
530 	enum forcewake_domains fw;
531 	unsigned long flags;
532 
533 	fw = intel_uncore_forcewake_for_reg(gt->uncore, _MMIO(XEHP_PAT_INDEX(0).reg),
534 					    FW_REG_WRITE);
535 	intel_uncore_forcewake_get(gt->uncore, fw);
536 
537 	intel_gt_mcr_lock(gt, &flags);
538 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(0), GEN8_PPAT_WB);
539 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(1), GEN8_PPAT_WC);
540 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(2), GEN8_PPAT_WT);
541 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(3), GEN8_PPAT_UC);
542 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(4), GEN8_PPAT_WB);
543 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(5), GEN8_PPAT_WB);
544 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(6), GEN8_PPAT_WB);
545 	intel_gt_mcr_multicast_write_fw(gt, XEHP_PAT_INDEX(7), GEN8_PPAT_WB);
546 	intel_gt_mcr_unlock(gt, flags);
547 
548 	intel_uncore_forcewake_put(gt->uncore, fw);
549 }
550 
icl_setup_private_ppat(struct intel_uncore * uncore)551 static void icl_setup_private_ppat(struct intel_uncore *uncore)
552 {
553 	intel_uncore_write(uncore,
554 			   GEN10_PAT_INDEX(0),
555 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
556 	intel_uncore_write(uncore,
557 			   GEN10_PAT_INDEX(1),
558 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
559 	intel_uncore_write(uncore,
560 			   GEN10_PAT_INDEX(2),
561 			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
562 	intel_uncore_write(uncore,
563 			   GEN10_PAT_INDEX(3),
564 			   GEN8_PPAT_UC);
565 	intel_uncore_write(uncore,
566 			   GEN10_PAT_INDEX(4),
567 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
568 	intel_uncore_write(uncore,
569 			   GEN10_PAT_INDEX(5),
570 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
571 	intel_uncore_write(uncore,
572 			   GEN10_PAT_INDEX(6),
573 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
574 	intel_uncore_write(uncore,
575 			   GEN10_PAT_INDEX(7),
576 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
577 }
578 
579 /*
580  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
581  * bits. When using advanced contexts each context stores its own PAT, but
582  * writing this data shouldn't be harmful even in those cases.
583  */
bdw_setup_private_ppat(struct intel_uncore * uncore)584 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
585 {
586 	struct drm_i915_private *i915 = uncore->i915;
587 	u64 pat;
588 
589 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
590 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
591 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
592 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
593 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
594 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
595 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
596 
597 	/* for scanout with eLLC */
598 	if (GRAPHICS_VER(i915) >= 9)
599 		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
600 	else
601 		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
602 
603 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
604 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
605 }
606 
chv_setup_private_ppat(struct intel_uncore * uncore)607 static void chv_setup_private_ppat(struct intel_uncore *uncore)
608 {
609 	u64 pat;
610 
611 	/*
612 	 * Map WB on BDW to snooped on CHV.
613 	 *
614 	 * Only the snoop bit has meaning for CHV, the rest is
615 	 * ignored.
616 	 *
617 	 * The hardware will never snoop for certain types of accesses:
618 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
619 	 * - PPGTT page tables
620 	 * - some other special cycles
621 	 *
622 	 * As with BDW, we also need to consider the following for GT accesses:
623 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
624 	 * so RTL will always use the value corresponding to
625 	 * pat_sel = 000".
626 	 * Which means we must set the snoop bit in PAT entry 0
627 	 * in order to keep the global status page working.
628 	 */
629 
630 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
631 	      GEN8_PPAT(1, 0) |
632 	      GEN8_PPAT(2, 0) |
633 	      GEN8_PPAT(3, 0) |
634 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
635 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
636 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
637 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
638 
639 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
640 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
641 }
642 
setup_private_pat(struct intel_gt * gt)643 void setup_private_pat(struct intel_gt *gt)
644 {
645 	struct intel_uncore *uncore = gt->uncore;
646 	struct drm_i915_private *i915 = gt->i915;
647 
648 	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
649 
650 	if (gt->type == GT_MEDIA) {
651 		xelpmp_setup_private_ppat(gt->uncore);
652 		return;
653 	}
654 
655 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
656 		xelpg_setup_private_ppat(gt);
657 	else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
658 		xehp_setup_private_ppat(gt);
659 	else if (GRAPHICS_VER(i915) >= 12)
660 		tgl_setup_private_ppat(uncore);
661 	else if (GRAPHICS_VER(i915) >= 11)
662 		icl_setup_private_ppat(uncore);
663 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
664 		chv_setup_private_ppat(uncore);
665 	else
666 		bdw_setup_private_ppat(uncore);
667 }
668 
669 struct i915_vma *
__vm_create_scratch_for_read(struct i915_address_space * vm,unsigned long size)670 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
671 {
672 	struct drm_i915_gem_object *obj;
673 	struct i915_vma *vma;
674 
675 	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
676 	if (IS_ERR(obj))
677 		return ERR_CAST(obj);
678 
679 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
680 
681 	vma = i915_vma_instance(obj, vm, NULL);
682 	if (IS_ERR(vma)) {
683 		i915_gem_object_put(obj);
684 		return vma;
685 	}
686 
687 	return vma;
688 }
689 
690 struct i915_vma *
__vm_create_scratch_for_read_pinned(struct i915_address_space * vm,unsigned long size)691 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
692 {
693 	struct i915_vma *vma;
694 	int err;
695 
696 	vma = __vm_create_scratch_for_read(vm, size);
697 	if (IS_ERR(vma))
698 		return vma;
699 
700 	err = i915_vma_pin(vma, 0, 0,
701 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
702 	if (err) {
703 		i915_vma_put(vma);
704 		return ERR_PTR(err);
705 	}
706 
707 	return vma;
708 }
709 
710 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
711 #include "selftests/mock_gtt.c"
712 #endif
713