1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file simple_coder.c
4 /// \brief Wrapper for simple filters
5 ///
6 /// Simple filters don't change the size of the data i.e. number of bytes
7 /// in equals the number of bytes out.
8 //
9 // Author: Lasse Collin
10 //
11 // This file has been put into the public domain.
12 // You can do whatever you want with this file.
13 //
14 ///////////////////////////////////////////////////////////////////////////////
15
16 #include "simple_private.h"
17
18
19 /// Copied or encodes/decodes more data to out[].
20 static lzma_ret
copy_or_code(lzma_coder * coder,const lzma_allocator * allocator,const uint8_t * restrict in,size_t * restrict in_pos,size_t in_size,uint8_t * restrict out,size_t * restrict out_pos,size_t out_size,lzma_action action)21 copy_or_code(lzma_coder *coder, const lzma_allocator *allocator,
22 const uint8_t *restrict in, size_t *restrict in_pos,
23 size_t in_size, uint8_t *restrict out,
24 size_t *restrict out_pos, size_t out_size, lzma_action action)
25 {
26 assert(!coder->end_was_reached);
27
28 if (coder->next.code == NULL) {
29 lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size);
30
31 // Check if end of stream was reached.
32 if (coder->is_encoder && action == LZMA_FINISH
33 && *in_pos == in_size)
34 coder->end_was_reached = true;
35
36 } else {
37 // Call the next coder in the chain to provide us some data.
38 const lzma_ret ret = coder->next.code(
39 coder->next.coder, allocator,
40 in, in_pos, in_size,
41 out, out_pos, out_size, action);
42
43 if (ret == LZMA_STREAM_END) {
44 assert(!coder->is_encoder
45 || action == LZMA_FINISH);
46 coder->end_was_reached = true;
47
48 } else if (ret != LZMA_OK) {
49 return ret;
50 }
51 }
52
53 return LZMA_OK;
54 }
55
56
57 static size_t
call_filter(lzma_coder * coder,uint8_t * buffer,size_t size)58 call_filter(lzma_coder *coder, uint8_t *buffer, size_t size)
59 {
60 const size_t filtered = coder->filter(coder->simple,
61 coder->now_pos, coder->is_encoder,
62 buffer, size);
63 coder->now_pos += filtered;
64 return filtered;
65 }
66
67
68 static lzma_ret
simple_code(lzma_coder * coder,const lzma_allocator * allocator,const uint8_t * restrict in,size_t * restrict in_pos,size_t in_size,uint8_t * restrict out,size_t * restrict out_pos,size_t out_size,lzma_action action)69 simple_code(lzma_coder *coder, const lzma_allocator *allocator,
70 const uint8_t *restrict in, size_t *restrict in_pos,
71 size_t in_size, uint8_t *restrict out,
72 size_t *restrict out_pos, size_t out_size, lzma_action action)
73 {
74 // TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
75 // in cases when the filter is able to filter everything. With most
76 // simple filters it can be done at offset that is a multiple of 2,
77 // 4, or 16. With x86 filter, it needs good luck, and thus cannot
78 // be made to work predictably.
79 if (action == LZMA_SYNC_FLUSH)
80 return LZMA_OPTIONS_ERROR;
81
82 // Flush already filtered data from coder->buffer[] to out[].
83 if (coder->pos < coder->filtered) {
84 lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
85 out, out_pos, out_size);
86
87 // If we couldn't flush all the filtered data, return to
88 // application immediately.
89 if (coder->pos < coder->filtered)
90 return LZMA_OK;
91
92 if (coder->end_was_reached) {
93 assert(coder->filtered == coder->size);
94 return LZMA_STREAM_END;
95 }
96 }
97
98 // If we get here, there is no filtered data left in the buffer.
99 coder->filtered = 0;
100
101 assert(!coder->end_was_reached);
102
103 // If there is more output space left than there is unfiltered data
104 // in coder->buffer[], flush coder->buffer[] to out[], and copy/code
105 // more data to out[] hopefully filling it completely. Then filter
106 // the data in out[]. This step is where most of the data gets
107 // filtered if the buffer sizes used by the application are reasonable.
108 const size_t out_avail = out_size - *out_pos;
109 const size_t buf_avail = coder->size - coder->pos;
110 if (out_avail > buf_avail || buf_avail == 0) {
111 // Store the old position so that we know from which byte
112 // to start filtering.
113 const size_t out_start = *out_pos;
114
115 // Flush data from coder->buffer[] to out[], but don't reset
116 // coder->pos and coder->size yet. This way the coder can be
117 // restarted if the next filter in the chain returns e.g.
118 // LZMA_MEM_ERROR.
119 memcpy(out + *out_pos, coder->buffer + coder->pos, buf_avail);
120 *out_pos += buf_avail;
121
122 // Copy/Encode/Decode more data to out[].
123 {
124 const lzma_ret ret = copy_or_code(coder, allocator,
125 in, in_pos, in_size,
126 out, out_pos, out_size, action);
127 assert(ret != LZMA_STREAM_END);
128 if (ret != LZMA_OK)
129 return ret;
130 }
131
132 // Filter out[].
133 const size_t size = *out_pos - out_start;
134 const size_t filtered = call_filter(
135 coder, out + out_start, size);
136
137 const size_t unfiltered = size - filtered;
138 assert(unfiltered <= coder->allocated / 2);
139
140 // Now we can update coder->pos and coder->size, because
141 // the next coder in the chain (if any) was successful.
142 coder->pos = 0;
143 coder->size = unfiltered;
144
145 if (coder->end_was_reached) {
146 // The last byte has been copied to out[] already.
147 // They are left as is.
148 coder->size = 0;
149
150 } else if (unfiltered > 0) {
151 // There is unfiltered data left in out[]. Copy it to
152 // coder->buffer[] and rewind *out_pos appropriately.
153 *out_pos -= unfiltered;
154 memcpy(coder->buffer, out + *out_pos, unfiltered);
155 }
156 } else if (coder->pos > 0) {
157 memmove(coder->buffer, coder->buffer + coder->pos, buf_avail);
158 coder->size -= coder->pos;
159 coder->pos = 0;
160 }
161
162 assert(coder->pos == 0);
163
164 // If coder->buffer[] isn't empty, try to fill it by copying/decoding
165 // more data. Then filter coder->buffer[] and copy the successfully
166 // filtered data to out[]. It is probable, that some filtered and
167 // unfiltered data will be left to coder->buffer[].
168 if (coder->size > 0) {
169 {
170 const lzma_ret ret = copy_or_code(coder, allocator,
171 in, in_pos, in_size,
172 coder->buffer, &coder->size,
173 coder->allocated, action);
174 assert(ret != LZMA_STREAM_END);
175 if (ret != LZMA_OK)
176 return ret;
177 }
178
179 coder->filtered = call_filter(
180 coder, coder->buffer, coder->size);
181
182 // Everything is considered to be filtered if coder->buffer[]
183 // contains the last bytes of the data.
184 if (coder->end_was_reached)
185 coder->filtered = coder->size;
186
187 // Flush as much as possible.
188 lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
189 out, out_pos, out_size);
190 }
191
192 // Check if we got everything done.
193 if (coder->end_was_reached && coder->pos == coder->size)
194 return LZMA_STREAM_END;
195
196 return LZMA_OK;
197 }
198
199
200 static void
simple_coder_end(lzma_coder * coder,const lzma_allocator * allocator)201 simple_coder_end(lzma_coder *coder, const lzma_allocator *allocator)
202 {
203 lzma_next_end(&coder->next, allocator);
204 lzma_free(coder->simple, allocator);
205 lzma_free(coder, allocator);
206 return;
207 }
208
209
210 static lzma_ret
simple_coder_update(lzma_coder * coder,const lzma_allocator * allocator,const lzma_filter * filters_null lzma_attribute ((__unused__)),const lzma_filter * reversed_filters)211 simple_coder_update(lzma_coder *coder, const lzma_allocator *allocator,
212 const lzma_filter *filters_null lzma_attribute((__unused__)),
213 const lzma_filter *reversed_filters)
214 {
215 // No update support, just call the next filter in the chain.
216 return lzma_next_filter_update(
217 &coder->next, allocator, reversed_filters + 1);
218 }
219
220
221 extern lzma_ret
lzma_simple_coder_init(lzma_next_coder * next,const lzma_allocator * allocator,const lzma_filter_info * filters,size_t (* filter)(lzma_simple * simple,uint32_t now_pos,bool is_encoder,uint8_t * buffer,size_t size),size_t simple_size,size_t unfiltered_max,uint32_t alignment,bool is_encoder)222 lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
223 const lzma_filter_info *filters,
224 size_t (*filter)(lzma_simple *simple, uint32_t now_pos,
225 bool is_encoder, uint8_t *buffer, size_t size),
226 size_t simple_size, size_t unfiltered_max,
227 uint32_t alignment, bool is_encoder)
228 {
229 // Allocate memory for the lzma_coder structure if needed.
230 if (next->coder == NULL) {
231 // Here we allocate space also for the temporary buffer. We
232 // need twice the size of unfiltered_max, because then it
233 // is always possible to filter at least unfiltered_max bytes
234 // more data in coder->buffer[] if it can be filled completely.
235 next->coder = lzma_alloc(sizeof(lzma_coder)
236 + 2 * unfiltered_max, allocator);
237 if (next->coder == NULL)
238 return LZMA_MEM_ERROR;
239
240 next->code = &simple_code;
241 next->end = &simple_coder_end;
242 next->update = &simple_coder_update;
243
244 next->coder->next = LZMA_NEXT_CODER_INIT;
245 next->coder->filter = filter;
246 next->coder->allocated = 2 * unfiltered_max;
247
248 // Allocate memory for filter-specific data structure.
249 if (simple_size > 0) {
250 next->coder->simple = lzma_alloc(
251 simple_size, allocator);
252 if (next->coder->simple == NULL)
253 return LZMA_MEM_ERROR;
254 } else {
255 next->coder->simple = NULL;
256 }
257 }
258
259 if (filters[0].options != NULL) {
260 const lzma_options_bcj *simple = filters[0].options;
261 next->coder->now_pos = simple->start_offset;
262 if (next->coder->now_pos & (alignment - 1))
263 return LZMA_OPTIONS_ERROR;
264 } else {
265 next->coder->now_pos = 0;
266 }
267
268 // Reset variables.
269 next->coder->is_encoder = is_encoder;
270 next->coder->end_was_reached = false;
271 next->coder->pos = 0;
272 next->coder->filtered = 0;
273 next->coder->size = 0;
274
275 return lzma_next_filter_init(
276 &next->coder->next, allocator, filters + 1);
277 }
278