xref: /openbsd/sys/kern/kern_sig.c (revision c387b132)
1 /*	$OpenBSD: kern_sig.c,v 1.348 2024/11/06 17:14:01 claudio Exp $	*/
2 /*	$NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Theo de Raadt. All rights reserved.
6  * Copyright (c) 1982, 1986, 1989, 1991, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  */
40 
41 #include <sys/param.h>
42 #include <sys/signalvar.h>
43 #include <sys/queue.h>
44 #include <sys/namei.h>
45 #include <sys/vnode.h>
46 #include <sys/event.h>
47 #include <sys/proc.h>
48 #include <sys/systm.h>
49 #include <sys/acct.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/wait.h>
53 #include <sys/ktrace.h>
54 #include <sys/stat.h>
55 #include <sys/malloc.h>
56 #include <sys/pool.h>
57 #include <sys/sched.h>
58 #include <sys/user.h>
59 #include <sys/syslog.h>
60 #include <sys/ttycom.h>
61 #include <sys/pledge.h>
62 #include <sys/witness.h>
63 #include <sys/exec_elf.h>
64 
65 #include <sys/mount.h>
66 #include <sys/syscallargs.h>
67 
68 #include <uvm/uvm_extern.h>
69 #include <machine/tcb.h>
70 
71 int nosuidcoredump = 1;
72 
73 /*
74  * The array below categorizes the signals and their default actions.
75  */
76 const int sigprop[NSIG] = {
77 	0,			/* unused */
78 	SA_KILL,		/* SIGHUP */
79 	SA_KILL,		/* SIGINT */
80 	SA_KILL|SA_CORE,	/* SIGQUIT */
81 	SA_KILL|SA_CORE,	/* SIGILL */
82 	SA_KILL|SA_CORE,	/* SIGTRAP */
83 	SA_KILL|SA_CORE,	/* SIGABRT */
84 	SA_KILL|SA_CORE,	/* SIGEMT */
85 	SA_KILL|SA_CORE,	/* SIGFPE */
86 	SA_KILL,		/* SIGKILL */
87 	SA_KILL|SA_CORE,	/* SIGBUS */
88 	SA_KILL|SA_CORE,	/* SIGSEGV */
89 	SA_KILL|SA_CORE,	/* SIGSYS */
90 	SA_KILL,		/* SIGPIPE */
91 	SA_KILL,		/* SIGALRM */
92 	SA_KILL,		/* SIGTERM */
93 	SA_IGNORE,		/* SIGURG */
94 	SA_STOP,		/* SIGSTOP */
95 	SA_STOP|SA_TTYSTOP,	/* SIGTSTP */
96 	SA_IGNORE|SA_CONT,	/* SIGCONT */
97 	SA_IGNORE,		/* SIGCHLD */
98 	SA_STOP|SA_TTYSTOP,	/* SIGTTIN */
99 	SA_STOP|SA_TTYSTOP,	/* SIGTTOU */
100 	SA_IGNORE,		/* SIGIO */
101 	SA_KILL,		/* SIGXCPU */
102 	SA_KILL,		/* SIGXFSZ */
103 	SA_KILL,		/* SIGVTALRM */
104 	SA_KILL,		/* SIGPROF */
105 	SA_IGNORE,		/* SIGWINCH  */
106 	SA_IGNORE,		/* SIGINFO */
107 	SA_KILL,		/* SIGUSR1 */
108 	SA_KILL,		/* SIGUSR2 */
109 	SA_IGNORE,		/* SIGTHR */
110 };
111 
112 #define	CONTSIGMASK	(sigmask(SIGCONT))
113 #define	STOPSIGMASK	(sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
114 			    sigmask(SIGTTIN) | sigmask(SIGTTOU))
115 
116 void setsigvec(struct proc *, int, struct sigaction *);
117 
118 int proc_trap(struct proc *, int);
119 void proc_stop(struct proc *p, int);
120 void proc_stop_sweep(void *);
121 void *proc_stop_si;
122 
123 void setsigctx(struct proc *, int, struct sigctx *);
124 void postsig_done(struct proc *, int, sigset_t, int);
125 void postsig(struct proc *, int, struct sigctx *);
126 int cansignal(struct proc *, struct process *, int);
127 
128 void ptsignal_locked(struct proc *, int, enum signal_type);
129 
130 struct pool sigacts_pool;	/* memory pool for sigacts structures */
131 
132 void sigio_del(struct sigiolst *);
133 void sigio_unlink(struct sigio_ref *, struct sigiolst *);
134 struct mutex sigio_lock = MUTEX_INITIALIZER(IPL_HIGH);
135 
136 /*
137  * Can thread p, send the signal signum to process qr?
138  */
139 int
cansignal(struct proc * p,struct process * qr,int signum)140 cansignal(struct proc *p, struct process *qr, int signum)
141 {
142 	struct process *pr = p->p_p;
143 	struct ucred *uc = p->p_ucred;
144 	struct ucred *quc = qr->ps_ucred;
145 
146 	if (uc->cr_uid == 0)
147 		return (1);		/* root can always signal */
148 
149 	if (pr == qr)
150 		return (1);		/* process can always signal itself */
151 
152 	/* optimization: if the same creds then the tests below will pass */
153 	if (uc == quc)
154 		return (1);
155 
156 	if (signum == SIGCONT && qr->ps_session == pr->ps_session)
157 		return (1);		/* SIGCONT in session */
158 
159 	/*
160 	 * Using kill(), only certain signals can be sent to setugid
161 	 * child processes
162 	 */
163 	if (qr->ps_flags & PS_SUGID) {
164 		switch (signum) {
165 		case 0:
166 		case SIGKILL:
167 		case SIGINT:
168 		case SIGTERM:
169 		case SIGALRM:
170 		case SIGSTOP:
171 		case SIGTTIN:
172 		case SIGTTOU:
173 		case SIGTSTP:
174 		case SIGHUP:
175 		case SIGUSR1:
176 		case SIGUSR2:
177 			if (uc->cr_ruid == quc->cr_ruid ||
178 			    uc->cr_uid == quc->cr_ruid)
179 				return (1);
180 		}
181 		return (0);
182 	}
183 
184 	if (uc->cr_ruid == quc->cr_ruid ||
185 	    uc->cr_ruid == quc->cr_svuid ||
186 	    uc->cr_uid == quc->cr_ruid ||
187 	    uc->cr_uid == quc->cr_svuid)
188 		return (1);
189 	return (0);
190 }
191 
192 /*
193  * Initialize signal-related data structures.
194  */
195 void
signal_init(void)196 signal_init(void)
197 {
198 	proc_stop_si = softintr_establish(IPL_SOFTCLOCK, proc_stop_sweep,
199 	    NULL);
200 	if (proc_stop_si == NULL)
201 		panic("signal_init failed to register softintr");
202 
203 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, IPL_NONE,
204 	    PR_WAITOK, "sigapl", NULL);
205 }
206 
207 /*
208  * Initialize a new sigaltstack structure.
209  */
210 void
sigstkinit(struct sigaltstack * ss)211 sigstkinit(struct sigaltstack *ss)
212 {
213 	ss->ss_flags = SS_DISABLE;
214 	ss->ss_size = 0;
215 	ss->ss_sp = NULL;
216 }
217 
218 /*
219  * Create an initial sigacts structure, using the same signal state
220  * as pr.
221  */
222 struct sigacts *
sigactsinit(struct process * pr)223 sigactsinit(struct process *pr)
224 {
225 	struct sigacts *ps;
226 
227 	ps = pool_get(&sigacts_pool, PR_WAITOK);
228 	memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts));
229 	return (ps);
230 }
231 
232 /*
233  * Release a sigacts structure.
234  */
235 void
sigactsfree(struct sigacts * ps)236 sigactsfree(struct sigacts *ps)
237 {
238 	pool_put(&sigacts_pool, ps);
239 }
240 
241 int
sys_sigaction(struct proc * p,void * v,register_t * retval)242 sys_sigaction(struct proc *p, void *v, register_t *retval)
243 {
244 	struct sys_sigaction_args /* {
245 		syscallarg(int) signum;
246 		syscallarg(const struct sigaction *) nsa;
247 		syscallarg(struct sigaction *) osa;
248 	} */ *uap = v;
249 	struct sigaction vec;
250 #ifdef KTRACE
251 	struct sigaction ovec;
252 #endif
253 	struct sigaction *sa;
254 	const struct sigaction *nsa;
255 	struct sigaction *osa;
256 	struct sigacts *ps = p->p_p->ps_sigacts;
257 	int signum;
258 	int bit, error;
259 
260 	signum = SCARG(uap, signum);
261 	nsa = SCARG(uap, nsa);
262 	osa = SCARG(uap, osa);
263 
264 	if (signum <= 0 || signum >= NSIG ||
265 	    (nsa && (signum == SIGKILL || signum == SIGSTOP)))
266 		return (EINVAL);
267 	sa = &vec;
268 	if (osa) {
269 		mtx_enter(&p->p_p->ps_mtx);
270 		sa->sa_handler = ps->ps_sigact[signum];
271 		sa->sa_mask = ps->ps_catchmask[signum];
272 		bit = sigmask(signum);
273 		sa->sa_flags = 0;
274 		if ((ps->ps_sigonstack & bit) != 0)
275 			sa->sa_flags |= SA_ONSTACK;
276 		if ((ps->ps_sigintr & bit) == 0)
277 			sa->sa_flags |= SA_RESTART;
278 		if ((ps->ps_sigreset & bit) != 0)
279 			sa->sa_flags |= SA_RESETHAND;
280 		if ((ps->ps_siginfo & bit) != 0)
281 			sa->sa_flags |= SA_SIGINFO;
282 		if (signum == SIGCHLD) {
283 			if ((ps->ps_sigflags & SAS_NOCLDSTOP) != 0)
284 				sa->sa_flags |= SA_NOCLDSTOP;
285 			if ((ps->ps_sigflags & SAS_NOCLDWAIT) != 0)
286 				sa->sa_flags |= SA_NOCLDWAIT;
287 		}
288 		mtx_leave(&p->p_p->ps_mtx);
289 		if ((sa->sa_mask & bit) == 0)
290 			sa->sa_flags |= SA_NODEFER;
291 		sa->sa_mask &= ~bit;
292 		error = copyout(sa, osa, sizeof (vec));
293 		if (error)
294 			return (error);
295 #ifdef KTRACE
296 		if (KTRPOINT(p, KTR_STRUCT))
297 			ovec = vec;
298 #endif
299 	}
300 	if (nsa) {
301 		error = copyin(nsa, sa, sizeof (vec));
302 		if (error)
303 			return (error);
304 #ifdef KTRACE
305 		if (KTRPOINT(p, KTR_STRUCT))
306 			ktrsigaction(p, sa);
307 #endif
308 		setsigvec(p, signum, sa);
309 	}
310 #ifdef KTRACE
311 	if (osa && KTRPOINT(p, KTR_STRUCT))
312 		ktrsigaction(p, &ovec);
313 #endif
314 	return (0);
315 }
316 
317 void
setsigvec(struct proc * p,int signum,struct sigaction * sa)318 setsigvec(struct proc *p, int signum, struct sigaction *sa)
319 {
320 	struct sigacts *ps = p->p_p->ps_sigacts;
321 	int bit;
322 
323 	bit = sigmask(signum);
324 
325 	mtx_enter(&p->p_p->ps_mtx);
326 	ps->ps_sigact[signum] = sa->sa_handler;
327 	if ((sa->sa_flags & SA_NODEFER) == 0)
328 		sa->sa_mask |= sigmask(signum);
329 	ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask;
330 	if (signum == SIGCHLD) {
331 		if (sa->sa_flags & SA_NOCLDSTOP)
332 			atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
333 		else
334 			atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
335 		/*
336 		 * If the SA_NOCLDWAIT flag is set or the handler
337 		 * is SIG_IGN we reparent the dying child to PID 1
338 		 * (init) which will reap the zombie.  Because we use
339 		 * init to do our dirty work we never set SAS_NOCLDWAIT
340 		 * for PID 1.
341 		 * XXX exit1 rework means this is unnecessary?
342 		 */
343 		if (initprocess->ps_sigacts != ps &&
344 		    ((sa->sa_flags & SA_NOCLDWAIT) ||
345 		    sa->sa_handler == SIG_IGN))
346 			atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
347 		else
348 			atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
349 	}
350 	if ((sa->sa_flags & SA_RESETHAND) != 0)
351 		ps->ps_sigreset |= bit;
352 	else
353 		ps->ps_sigreset &= ~bit;
354 	if ((sa->sa_flags & SA_SIGINFO) != 0)
355 		ps->ps_siginfo |= bit;
356 	else
357 		ps->ps_siginfo &= ~bit;
358 	if ((sa->sa_flags & SA_RESTART) == 0)
359 		ps->ps_sigintr |= bit;
360 	else
361 		ps->ps_sigintr &= ~bit;
362 	if ((sa->sa_flags & SA_ONSTACK) != 0)
363 		ps->ps_sigonstack |= bit;
364 	else
365 		ps->ps_sigonstack &= ~bit;
366 	/*
367 	 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
368 	 * and for signals set to SIG_DFL where the default is to ignore.
369 	 * However, don't put SIGCONT in ps_sigignore,
370 	 * as we have to restart the process.
371 	 */
372 	if (sa->sa_handler == SIG_IGN ||
373 	    (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {
374 		atomic_clearbits_int(&p->p_siglist, bit);
375 		atomic_clearbits_int(&p->p_p->ps_siglist, bit);
376 		if (signum != SIGCONT)
377 			ps->ps_sigignore |= bit;	/* easier in psignal */
378 		ps->ps_sigcatch &= ~bit;
379 	} else {
380 		ps->ps_sigignore &= ~bit;
381 		if (sa->sa_handler == SIG_DFL)
382 			ps->ps_sigcatch &= ~bit;
383 		else
384 			ps->ps_sigcatch |= bit;
385 	}
386 	mtx_leave(&p->p_p->ps_mtx);
387 }
388 
389 /*
390  * Initialize signal state for process 0;
391  * set to ignore signals that are ignored by default.
392  */
393 void
siginit(struct sigacts * ps)394 siginit(struct sigacts *ps)
395 {
396 	int i;
397 
398 	for (i = 0; i < NSIG; i++)
399 		if (sigprop[i] & SA_IGNORE && i != SIGCONT)
400 			ps->ps_sigignore |= sigmask(i);
401 	ps->ps_sigflags = SAS_NOCLDWAIT | SAS_NOCLDSTOP;
402 }
403 
404 /*
405  * Reset signals for an exec by the specified thread.
406  */
407 void
execsigs(struct proc * p)408 execsigs(struct proc *p)
409 {
410 	struct sigacts *ps;
411 	int nc, mask;
412 
413 	ps = p->p_p->ps_sigacts;
414 	mtx_enter(&p->p_p->ps_mtx);
415 
416 	/*
417 	 * Reset caught signals.  Held signals remain held
418 	 * through p_sigmask (unless they were caught,
419 	 * and are now ignored by default).
420 	 */
421 	while (ps->ps_sigcatch) {
422 		nc = ffs((long)ps->ps_sigcatch);
423 		mask = sigmask(nc);
424 		ps->ps_sigcatch &= ~mask;
425 		if (sigprop[nc] & SA_IGNORE) {
426 			if (nc != SIGCONT)
427 				ps->ps_sigignore |= mask;
428 			atomic_clearbits_int(&p->p_siglist, mask);
429 			atomic_clearbits_int(&p->p_p->ps_siglist, mask);
430 		}
431 		ps->ps_sigact[nc] = SIG_DFL;
432 	}
433 	/*
434 	 * Reset stack state to the user stack.
435 	 * Clear set of signals caught on the signal stack.
436 	 */
437 	sigstkinit(&p->p_sigstk);
438 	atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
439 	if (ps->ps_sigact[SIGCHLD] == SIG_IGN)
440 		ps->ps_sigact[SIGCHLD] = SIG_DFL;
441 	mtx_leave(&p->p_p->ps_mtx);
442 }
443 
444 /*
445  * Manipulate signal mask.
446  * Note that we receive new mask, not pointer,
447  * and return old mask as return value;
448  * the library stub does the rest.
449  */
450 int
sys_sigprocmask(struct proc * p,void * v,register_t * retval)451 sys_sigprocmask(struct proc *p, void *v, register_t *retval)
452 {
453 	struct sys_sigprocmask_args /* {
454 		syscallarg(int) how;
455 		syscallarg(sigset_t) mask;
456 	} */ *uap = v;
457 	int error = 0;
458 	sigset_t mask;
459 
460 	KASSERT(p == curproc);
461 
462 	*retval = p->p_sigmask;
463 	mask = SCARG(uap, mask) &~ sigcantmask;
464 
465 	switch (SCARG(uap, how)) {
466 	case SIG_BLOCK:
467 		SET(p->p_sigmask, mask);
468 		break;
469 	case SIG_UNBLOCK:
470 		CLR(p->p_sigmask, mask);
471 		break;
472 	case SIG_SETMASK:
473 		p->p_sigmask = mask;
474 		break;
475 	default:
476 		error = EINVAL;
477 		break;
478 	}
479 	return (error);
480 }
481 
482 int
sys_sigpending(struct proc * p,void * v,register_t * retval)483 sys_sigpending(struct proc *p, void *v, register_t *retval)
484 {
485 	*retval = p->p_siglist | p->p_p->ps_siglist;
486 	return (0);
487 }
488 
489 /*
490  * Temporarily replace calling proc's signal mask for the duration of a
491  * system call.  Original signal mask will be restored by userret().
492  */
493 void
dosigsuspend(struct proc * p,sigset_t newmask)494 dosigsuspend(struct proc *p, sigset_t newmask)
495 {
496 	KASSERT(p == curproc);
497 
498 	p->p_oldmask = p->p_sigmask;
499 	p->p_sigmask = newmask;
500 	atomic_setbits_int(&p->p_flag, P_SIGSUSPEND);
501 }
502 
503 /*
504  * Suspend thread until signal, providing mask to be set
505  * in the meantime.  Note nonstandard calling convention:
506  * libc stub passes mask, not pointer, to save a copyin.
507  */
508 int
sys_sigsuspend(struct proc * p,void * v,register_t * retval)509 sys_sigsuspend(struct proc *p, void *v, register_t *retval)
510 {
511 	struct sys_sigsuspend_args /* {
512 		syscallarg(int) mask;
513 	} */ *uap = v;
514 
515 	dosigsuspend(p, SCARG(uap, mask) &~ sigcantmask);
516 	while (tsleep_nsec(&nowake, PPAUSE|PCATCH, "sigsusp", INFSLP) == 0)
517 		continue;
518 	/* always return EINTR rather than ERESTART... */
519 	return (EINTR);
520 }
521 
522 int
sigonstack(size_t stack)523 sigonstack(size_t stack)
524 {
525 	const struct sigaltstack *ss = &curproc->p_sigstk;
526 
527 	return (ss->ss_flags & SS_DISABLE ? 0 :
528 	    (stack - (size_t)ss->ss_sp < ss->ss_size));
529 }
530 
531 int
sys_sigaltstack(struct proc * p,void * v,register_t * retval)532 sys_sigaltstack(struct proc *p, void *v, register_t *retval)
533 {
534 	struct sys_sigaltstack_args /* {
535 		syscallarg(const struct sigaltstack *) nss;
536 		syscallarg(struct sigaltstack *) oss;
537 	} */ *uap = v;
538 	struct sigaltstack ss;
539 	const struct sigaltstack *nss;
540 	struct sigaltstack *oss;
541 	int onstack = sigonstack(PROC_STACK(p));
542 	int error;
543 
544 	nss = SCARG(uap, nss);
545 	oss = SCARG(uap, oss);
546 
547 	if (oss != NULL) {
548 		ss = p->p_sigstk;
549 		if (onstack)
550 			ss.ss_flags |= SS_ONSTACK;
551 		if ((error = copyout(&ss, oss, sizeof(ss))))
552 			return (error);
553 	}
554 	if (nss == NULL)
555 		return (0);
556 	error = copyin(nss, &ss, sizeof(ss));
557 	if (error)
558 		return (error);
559 	if (onstack)
560 		return (EPERM);
561 	if (ss.ss_flags & ~SS_DISABLE)
562 		return (EINVAL);
563 	if (ss.ss_flags & SS_DISABLE) {
564 		p->p_sigstk.ss_flags = ss.ss_flags;
565 		return (0);
566 	}
567 	if (ss.ss_size < MINSIGSTKSZ)
568 		return (ENOMEM);
569 
570 	error = uvm_map_remap_as_stack(p, (vaddr_t)ss.ss_sp, ss.ss_size);
571 	if (error)
572 		return (error);
573 
574 	p->p_sigstk = ss;
575 	return (0);
576 }
577 
578 int
sys_kill(struct proc * cp,void * v,register_t * retval)579 sys_kill(struct proc *cp, void *v, register_t *retval)
580 {
581 	struct sys_kill_args /* {
582 		syscallarg(int) pid;
583 		syscallarg(int) signum;
584 	} */ *uap = v;
585 	struct process *pr;
586 	int pid = SCARG(uap, pid);
587 	int signum = SCARG(uap, signum);
588 	int error;
589 	int zombie = 0;
590 
591 	if ((error = pledge_kill(cp, pid)) != 0)
592 		return (error);
593 	if (((u_int)signum) >= NSIG)
594 		return (EINVAL);
595 	if (pid > 0) {
596 		if ((pr = prfind(pid)) == NULL) {
597 			if ((pr = zombiefind(pid)) == NULL)
598 				return (ESRCH);
599 			else
600 				zombie = 1;
601 		}
602 		if (!cansignal(cp, pr, signum))
603 			return (EPERM);
604 
605 		/* kill single process */
606 		if (signum && !zombie)
607 			prsignal(pr, signum);
608 		return (0);
609 	}
610 	switch (pid) {
611 	case -1:		/* broadcast signal */
612 		return (killpg1(cp, signum, 0, 1));
613 	case 0:			/* signal own process group */
614 		return (killpg1(cp, signum, 0, 0));
615 	default:		/* negative explicit process group */
616 		return (killpg1(cp, signum, -pid, 0));
617 	}
618 }
619 
620 int
sys_thrkill(struct proc * cp,void * v,register_t * retval)621 sys_thrkill(struct proc *cp, void *v, register_t *retval)
622 {
623 	struct sys_thrkill_args /* {
624 		syscallarg(pid_t) tid;
625 		syscallarg(int) signum;
626 		syscallarg(void *) tcb;
627 	} */ *uap = v;
628 	struct proc *p;
629 	int tid = SCARG(uap, tid);
630 	int signum = SCARG(uap, signum);
631 	void *tcb;
632 
633 	if (((u_int)signum) >= NSIG)
634 		return (EINVAL);
635 
636 	p = tid ? tfind_user(tid, cp->p_p) : cp;
637 	if (p == NULL)
638 		return (ESRCH);
639 
640 	/* optionally require the target thread to have the given tcb addr */
641 	tcb = SCARG(uap, tcb);
642 	if (tcb != NULL && tcb != TCB_GET(p))
643 		return (ESRCH);
644 
645 	if (signum)
646 		ptsignal(p, signum, STHREAD);
647 	return (0);
648 }
649 
650 /*
651  * Common code for kill process group/broadcast kill.
652  * cp is calling process.
653  */
654 int
killpg1(struct proc * cp,int signum,int pgid,int all)655 killpg1(struct proc *cp, int signum, int pgid, int all)
656 {
657 	struct process *pr;
658 	struct pgrp *pgrp;
659 	int nfound = 0;
660 
661 	if (all) {
662 		/*
663 		 * broadcast
664 		 */
665 		LIST_FOREACH(pr, &allprocess, ps_list) {
666 			if (pr->ps_pid <= 1 ||
667 			    pr->ps_flags & (PS_SYSTEM | PS_NOBROADCASTKILL) ||
668 			    pr == cp->p_p || !cansignal(cp, pr, signum))
669 				continue;
670 			nfound++;
671 			if (signum)
672 				prsignal(pr, signum);
673 		}
674 	} else {
675 		if (pgid == 0)
676 			/*
677 			 * zero pgid means send to my process group.
678 			 */
679 			pgrp = cp->p_p->ps_pgrp;
680 		else {
681 			pgrp = pgfind(pgid);
682 			if (pgrp == NULL)
683 				return (ESRCH);
684 		}
685 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist) {
686 			if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM ||
687 			    !cansignal(cp, pr, signum))
688 				continue;
689 			nfound++;
690 			if (signum)
691 				prsignal(pr, signum);
692 		}
693 	}
694 	return (nfound ? 0 : ESRCH);
695 }
696 
697 #define CANDELIVER(uid, euid, pr) \
698 	(euid == 0 || \
699 	(uid) == (pr)->ps_ucred->cr_ruid || \
700 	(uid) == (pr)->ps_ucred->cr_svuid || \
701 	(uid) == (pr)->ps_ucred->cr_uid || \
702 	(euid) == (pr)->ps_ucred->cr_ruid || \
703 	(euid) == (pr)->ps_ucred->cr_svuid || \
704 	(euid) == (pr)->ps_ucred->cr_uid)
705 
706 #define CANSIGIO(cr, pr) \
707 	CANDELIVER((cr)->cr_ruid, (cr)->cr_uid, (pr))
708 
709 /*
710  * Send a signal to a process group.  If checktty is 1,
711  * limit to members which have a controlling terminal.
712  */
713 void
pgsignal(struct pgrp * pgrp,int signum,int checkctty)714 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
715 {
716 	struct process *pr;
717 
718 	if (pgrp)
719 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
720 			if (checkctty == 0 || pr->ps_flags & PS_CONTROLT)
721 				prsignal(pr, signum);
722 }
723 
724 /*
725  * Send a SIGIO or SIGURG signal to a process or process group using stored
726  * credentials rather than those of the current process.
727  */
728 void
pgsigio(struct sigio_ref * sir,int sig,int checkctty)729 pgsigio(struct sigio_ref *sir, int sig, int checkctty)
730 {
731 	struct process *pr;
732 	struct sigio *sigio;
733 
734 	if (sir->sir_sigio == NULL)
735 		return;
736 
737 	KERNEL_LOCK();
738 	mtx_enter(&sigio_lock);
739 	sigio = sir->sir_sigio;
740 	if (sigio == NULL)
741 		goto out;
742 	if (sigio->sio_pgid > 0) {
743 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc))
744 			prsignal(sigio->sio_proc, sig);
745 	} else if (sigio->sio_pgid < 0) {
746 		LIST_FOREACH(pr, &sigio->sio_pgrp->pg_members, ps_pglist) {
747 			if (CANSIGIO(sigio->sio_ucred, pr) &&
748 			    (checkctty == 0 || (pr->ps_flags & PS_CONTROLT)))
749 				prsignal(pr, sig);
750 		}
751 	}
752 out:
753 	mtx_leave(&sigio_lock);
754 	KERNEL_UNLOCK();
755 }
756 
757 /*
758  * Recalculate the signal mask and reset the signal disposition after
759  * usermode frame for delivery is formed.
760  */
761 void
postsig_done(struct proc * p,int signum,sigset_t catchmask,int reset)762 postsig_done(struct proc *p, int signum, sigset_t catchmask, int reset)
763 {
764 	p->p_ru.ru_nsignals++;
765 	SET(p->p_sigmask, catchmask);
766 	if (reset != 0) {
767 		sigset_t mask = sigmask(signum);
768 		struct sigacts *ps = p->p_p->ps_sigacts;
769 
770 		mtx_enter(&p->p_p->ps_mtx);
771 		ps->ps_sigcatch &= ~mask;
772 		if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
773 			ps->ps_sigignore |= mask;
774 		ps->ps_sigact[signum] = SIG_DFL;
775 		mtx_leave(&p->p_p->ps_mtx);
776 	}
777 }
778 
779 /*
780  * Send a signal caused by a trap to the current thread
781  * If it will be caught immediately, deliver it with correct code.
782  * Otherwise, post it normally.
783  */
784 void
trapsignal(struct proc * p,int signum,u_long trapno,int code,union sigval sigval)785 trapsignal(struct proc *p, int signum, u_long trapno, int code,
786     union sigval sigval)
787 {
788 	struct process *pr = p->p_p;
789 	struct sigctx ctx;
790 	int mask;
791 
792 	switch (signum) {
793 	case SIGILL:
794 		if (code == ILL_BTCFI) {
795 			pr->ps_acflag |= ABTCFI;
796 			break;
797 		}
798 		/* FALLTHROUGH */
799 	case SIGBUS:
800 	case SIGSEGV:
801 		pr->ps_acflag |= ATRAP;
802 		break;
803 	}
804 
805 	mask = sigmask(signum);
806 	setsigctx(p, signum, &ctx);
807 	if ((pr->ps_flags & PS_TRACED) == 0 && ctx.sig_catch != 0 &&
808 	    (p->p_sigmask & mask) == 0) {
809 		siginfo_t si;
810 
811 		initsiginfo(&si, signum, trapno, code, sigval);
812 #ifdef KTRACE
813 		if (KTRPOINT(p, KTR_PSIG)) {
814 			ktrpsig(p, signum, ctx.sig_action,
815 			    p->p_sigmask, code, &si);
816 		}
817 #endif
818 		if (sendsig(ctx.sig_action, signum, p->p_sigmask, &si,
819 		    ctx.sig_info, ctx.sig_onstack)) {
820 			KERNEL_LOCK();
821 			sigexit(p, SIGILL);
822 			/* NOTREACHED */
823 		}
824 		postsig_done(p, signum, ctx.sig_catchmask, ctx.sig_reset);
825 	} else {
826 		p->p_sisig = signum;
827 		p->p_sitrapno = trapno;	/* XXX for core dump/debugger */
828 		p->p_sicode = code;
829 		p->p_sigval = sigval;
830 
831 		/*
832 		 * If traced, stop if signal is masked, and stay stopped
833 		 * until released by the debugger.  If our parent process
834 		 * is waiting for us, don't hang as we could deadlock.
835 		 */
836 		if (((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) &&
837 		    signum != SIGKILL && (p->p_sigmask & mask) != 0) {
838 			signum = proc_trap(p, signum);
839 
840 			mask = sigmask(signum);
841 			setsigctx(p, signum, &ctx);
842 
843 			/*
844 			 * If we are no longer being traced, or the parent
845 			 * didn't give us a signal, skip sending the signal.
846 			 */
847 			if ((pr->ps_flags & PS_TRACED) == 0 || signum == 0)
848 				return;
849 
850 			/* update signal info */
851 			p->p_sisig = signum;
852 		}
853 
854 		/*
855 		 * Signals like SIGBUS and SIGSEGV should not, when
856 		 * generated by the kernel, be ignorable or blockable.
857 		 * If it is and we're not being traced, then just kill
858 		 * the process.
859 		 * After vfs_shutdown(9), init(8) cannot receive signals
860 		 * because new code pages of the signal handler cannot be
861 		 * mapped from halted storage.  init(8) may not die or the
862 		 * kernel panics.  Better loop between signal handler and
863 		 * page fault trap until the machine is halted.
864 		 */
865 		if ((pr->ps_flags & PS_TRACED) == 0 &&
866 		    (sigprop[signum] & SA_KILL) &&
867 		    ((p->p_sigmask & mask) || ctx.sig_ignore) &&
868 		    pr->ps_pid != 1) {
869 			KERNEL_LOCK();
870 			sigexit(p, signum);
871 			/* NOTREACHED */
872 		}
873 		ptsignal(p, signum, STHREAD);
874 	}
875 }
876 
877 /*
878  * Send the signal to the process.  If the signal has an action, the action
879  * is usually performed by the target process rather than the caller; we add
880  * the signal to the set of pending signals for the process.
881  *
882  * Exceptions:
883  *   o When a stop signal is sent to a sleeping process that takes the
884  *     default action, the process is stopped without awakening it.
885  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
886  *     regardless of the signal action (eg, blocked or ignored).
887  *
888  * Other ignored signals are discarded immediately.
889  */
890 void
psignal(struct proc * p,int signum)891 psignal(struct proc *p, int signum)
892 {
893 	ptsignal(p, signum, SPROCESS);
894 }
895 
896 void
prsignal(struct process * pr,int signum)897 prsignal(struct process *pr, int signum)
898 {
899 	mtx_enter(&pr->ps_mtx);
900 	/* Ignore signal if the target process is exiting */
901 	if (pr->ps_flags & PS_EXITING) {
902 		mtx_leave(&pr->ps_mtx);
903 		return;
904 	}
905 	ptsignal_locked(TAILQ_FIRST(&pr->ps_threads), signum, SPROCESS);
906 	mtx_leave(&pr->ps_mtx);
907 }
908 
909 /*
910  * type = SPROCESS	process signal, can be diverted (sigwait())
911  * type = STHREAD	thread signal, but should be propagated if unhandled
912  * type = SPROPAGATED	propagated to this thread, so don't propagate again
913  */
914 void
ptsignal(struct proc * p,int signum,enum signal_type type)915 ptsignal(struct proc *p, int signum, enum signal_type type)
916 {
917 	struct process *pr = p->p_p;
918 
919 	mtx_enter(&pr->ps_mtx);
920 	ptsignal_locked(p, signum, type);
921 	mtx_leave(&pr->ps_mtx);
922 }
923 
924 void
ptsignal_locked(struct proc * p,int signum,enum signal_type type)925 ptsignal_locked(struct proc *p, int signum, enum signal_type type)
926 {
927 	int prop;
928 	sig_t action, altaction = SIG_DFL;
929 	sigset_t mask, sigmask;
930 	int *siglist;
931 	struct process *pr = p->p_p;
932 	struct proc *q;
933 	int wakeparent = 0;
934 
935 	MUTEX_ASSERT_LOCKED(&pr->ps_mtx);
936 
937 #ifdef DIAGNOSTIC
938 	if ((u_int)signum >= NSIG || signum == 0)
939 		panic("psignal signal number");
940 #endif
941 
942 	/* Ignore signal if the target process is exiting */
943 	if (pr->ps_flags & PS_EXITING)
944 		return;
945 
946 	mask = sigmask(signum);
947 	sigmask = READ_ONCE(p->p_sigmask);
948 
949 	if (type == SPROCESS) {
950 		sigset_t tmpmask;
951 
952 		/* Accept SIGKILL to coredumping processes */
953 		if (pr->ps_flags & PS_COREDUMP && signum == SIGKILL) {
954 			atomic_setbits_int(&pr->ps_siglist, mask);
955 			return;
956 		}
957 
958 		/*
959 		 * If the current thread can process the signal
960 		 * immediately (it's unblocked) then have it take it.
961 		 */
962 		q = curproc;
963 		tmpmask = READ_ONCE(q->p_sigmask);
964 		if (q->p_p == pr && (q->p_flag & P_WEXIT) == 0 &&
965 		    (tmpmask & mask) == 0) {
966 			p = q;
967 			sigmask = tmpmask;
968 		} else {
969 			/*
970 			 * A process-wide signal can be diverted to a
971 			 * different thread that's in sigwait() for this
972 			 * signal.  If there isn't such a thread, then
973 			 * pick a thread that doesn't have it blocked so
974 			 * that the stop/kill consideration isn't
975 			 * delayed.  Otherwise, mark it pending on the
976 			 * main thread.
977 			 */
978 			TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
979 
980 				/* ignore exiting threads */
981 				if (q->p_flag & P_WEXIT)
982 					continue;
983 
984 				/* skip threads that have the signal blocked */
985 				tmpmask = READ_ONCE(q->p_sigmask);
986 				if ((tmpmask & mask) != 0)
987 					continue;
988 
989 				/* okay, could send to this thread */
990 				p = q;
991 				sigmask = tmpmask;
992 
993 				/*
994 				 * sigsuspend, sigwait, ppoll/pselect, etc?
995 				 * Definitely go to this thread, as it's
996 				 * already blocked in the kernel.
997 				 */
998 				if (q->p_flag & P_SIGSUSPEND)
999 					break;
1000 			}
1001 		}
1002 	}
1003 
1004 	if (type != SPROPAGATED)
1005 		knote_locked(&pr->ps_klist, NOTE_SIGNAL | signum);
1006 
1007 	prop = sigprop[signum];
1008 
1009 	/*
1010 	 * If proc is traced, always give parent a chance.
1011 	 */
1012 	if (pr->ps_flags & PS_TRACED) {
1013 		action = SIG_DFL;
1014 	} else {
1015 		sigset_t sigcatch, sigignore;
1016 
1017 		/*
1018 		 * If the signal is being ignored,
1019 		 * then we forget about it immediately.
1020 		 * (Note: we don't set SIGCONT in ps_sigignore,
1021 		 * and if it is set to SIG_IGN,
1022 		 * action will be SIG_DFL here.)
1023 		 */
1024 		sigignore = pr->ps_sigacts->ps_sigignore;
1025 		sigcatch = pr->ps_sigacts->ps_sigcatch;
1026 
1027 		if (sigignore & mask)
1028 			return;
1029 		if (sigmask & mask) {
1030 			action = SIG_HOLD;
1031 			if (sigcatch & mask)
1032 				altaction = SIG_CATCH;
1033 		} else if (sigcatch & mask) {
1034 			action = SIG_CATCH;
1035 		} else {
1036 			action = SIG_DFL;
1037 
1038 			if (prop & SA_KILL && pr->ps_nice > NZERO)
1039 				 pr->ps_nice = NZERO;
1040 
1041 			/*
1042 			 * If sending a tty stop signal to a member of an
1043 			 * orphaned process group, discard the signal here if
1044 			 * the action is default; don't stop the process below
1045 			 * if sleeping, and don't clear any pending SIGCONT.
1046 			 */
1047 			if (prop & SA_TTYSTOP && pr->ps_pgrp->pg_jobc == 0)
1048 				return;
1049 		}
1050 	}
1051 	/*
1052 	 * If delivered to process, mark as pending there.  Continue and stop
1053 	 * signals will be propagated to all threads.  So they are always
1054 	 * marked at thread level.
1055 	 */
1056 	siglist = (type == SPROCESS) ? &pr->ps_siglist : &p->p_siglist;
1057 	if (prop & (SA_CONT | SA_STOP))
1058 		siglist = &p->p_siglist;
1059 
1060 	/*
1061 	 * XXX delay processing of SA_STOP signals unless action == SIG_DFL?
1062 	 */
1063 	if (prop & (SA_CONT | SA_STOP) && type != SPROPAGATED)
1064 		TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)
1065 			if (q != p)
1066 				ptsignal_locked(q, signum, SPROPAGATED);
1067 
1068 	SCHED_LOCK();
1069 
1070 	switch (p->p_stat) {
1071 
1072 	case SSTOP:
1073 		/*
1074 		 * If traced process is already stopped,
1075 		 * then no further action is necessary.
1076 		 */
1077 		if (pr->ps_flags & PS_TRACED)
1078 			goto out;
1079 
1080 		/*
1081 		 * Kill signal always sets processes running.
1082 		 */
1083 		if (signum == SIGKILL) {
1084 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1085 			/* Raise priority to at least PUSER. */
1086 			if (p->p_usrpri > PUSER)
1087 				p->p_usrpri = PUSER;
1088 			unsleep(p);
1089 			setrunnable(p);
1090 			goto out;
1091 		}
1092 
1093 		if (prop & SA_CONT) {
1094 			/*
1095 			 * If SIGCONT is default (or ignored), we continue the
1096 			 * process but don't leave the signal in p_siglist, as
1097 			 * it has no further action.  If SIGCONT is held, we
1098 			 * continue the process and leave the signal in
1099 			 * p_siglist.  If the process catches SIGCONT, let it
1100 			 * handle the signal itself.  If it isn't waiting on
1101 			 * an event, then it goes back to run state.
1102 			 * Otherwise, process goes back to sleep state.
1103 			 */
1104 			atomic_setbits_int(&pr->ps_flags, PS_CONTINUED);
1105 			atomic_clearbits_int(&pr->ps_flags,
1106 			    PS_WAITED | PS_STOPPED);
1107 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1108 			wakeparent = 1;
1109 			if (action == SIG_DFL)
1110 				mask = 0;
1111 			if (action == SIG_CATCH) {
1112 				/* Raise priority to at least PUSER. */
1113 				if (p->p_usrpri > PUSER)
1114 					p->p_usrpri = PUSER;
1115 				unsleep(p);
1116 				setrunnable(p);
1117 				goto out;
1118 			}
1119 			if (p->p_wchan == NULL) {
1120 				unsleep(p);
1121 				setrunnable(p);
1122 				goto out;
1123 			}
1124 			atomic_clearbits_int(&p->p_flag, P_WSLEEP);
1125 			p->p_stat = SSLEEP;
1126 			goto out;
1127 		}
1128 
1129 		/*
1130 		 * Defer further processing for signals which are held,
1131 		 * except that stopped processes must be continued by SIGCONT.
1132 		 */
1133 		if (action == SIG_HOLD)
1134 			goto out;
1135 
1136 		if (prop & SA_STOP) {
1137 			/*
1138 			 * Already stopped, don't need to stop again.
1139 			 * (If we did the shell could get confused.)
1140 			 */
1141 			mask = 0;
1142 			goto out;
1143 		}
1144 
1145 		/*
1146 		 * If process is sleeping interruptibly, then simulate a
1147 		 * wakeup so that when it is continued, it will be made
1148 		 * runnable and can look at the signal.  But don't make
1149 		 * the process runnable, leave it stopped.
1150 		 */
1151 		if (p->p_flag & P_SINTR)
1152 			unsleep(p);
1153 		goto out;
1154 
1155 	case SSLEEP:
1156 		/*
1157 		 * If process is sleeping uninterruptibly
1158 		 * we can't interrupt the sleep... the signal will
1159 		 * be noticed when the process returns through
1160 		 * trap() or syscall().
1161 		 */
1162 		if ((p->p_flag & P_SINTR) == 0)
1163 			goto out;
1164 		/*
1165 		 * Process is sleeping and traced... make it runnable
1166 		 * so it can discover the signal in cursig() and stop
1167 		 * for the parent.
1168 		 */
1169 		if (pr->ps_flags & PS_TRACED) {
1170 			unsleep(p);
1171 			setrunnable(p);
1172 			goto out;
1173 		}
1174 
1175 		/*
1176 		 * Recheck sigmask before waking up the process,
1177 		 * there is a chance that while sending the signal
1178 		 * the process changed sigmask and went to sleep.
1179 		 */
1180 		sigmask = READ_ONCE(p->p_sigmask);
1181 		if (sigmask & mask)
1182 			goto out;
1183 		else if (action == SIG_HOLD) {
1184 			/* signal got unmasked, get proper action */
1185 			action = altaction;
1186 
1187 			if (action == SIG_DFL) {
1188 				if (prop & SA_KILL && pr->ps_nice > NZERO)
1189 					 pr->ps_nice = NZERO;
1190 
1191 				/*
1192 				 * Discard tty stop signals sent to an
1193 				 * orphaned process group, see above.
1194 				 */
1195 				if (prop & SA_TTYSTOP &&
1196 				    pr->ps_pgrp->pg_jobc == 0) {
1197 					mask = 0;
1198 					prop = 0;
1199 					goto out;
1200 				}
1201 			}
1202 		}
1203 
1204 		/*
1205 		 * If SIGCONT is default (or ignored) and process is
1206 		 * asleep, we are finished; the process should not
1207 		 * be awakened.
1208 		 */
1209 		if ((prop & SA_CONT) && action == SIG_DFL) {
1210 			mask = 0;
1211 			goto out;
1212 		}
1213 		/*
1214 		 * When a sleeping process receives a stop
1215 		 * signal, process immediately if possible.
1216 		 */
1217 		if ((prop & SA_STOP) && action == SIG_DFL) {
1218 			/*
1219 			 * If a child holding parent blocked,
1220 			 * stopping could cause deadlock.
1221 			 */
1222 			if (pr->ps_flags & PS_PPWAIT)
1223 				goto out;
1224 			mask = 0;
1225 			pr->ps_xsig = signum;
1226 			proc_stop(p, 0);
1227 			goto out;
1228 		}
1229 		/*
1230 		 * All other (caught or default) signals
1231 		 * cause the process to run.
1232 		 * Raise priority to at least PUSER.
1233 		 */
1234 		if (p->p_usrpri > PUSER)
1235 			p->p_usrpri = PUSER;
1236 		unsleep(p);
1237 		setrunnable(p);
1238 		goto out;
1239 		/* NOTREACHED */
1240 
1241 	case SONPROC:
1242 		if (action == SIG_HOLD)
1243 			goto out;
1244 
1245 		/* set siglist before issuing the ast */
1246 		atomic_setbits_int(siglist, mask);
1247 		mask = 0;
1248 		signotify(p);
1249 		/* FALLTHROUGH */
1250 	default:
1251 		/*
1252 		 * SRUN, SIDL, SDEAD do nothing with the signal,
1253 		 * other than kicking ourselves if we are running.
1254 		 * It will either never be noticed, or noticed very soon.
1255 		 */
1256 		goto out;
1257 	}
1258 	/* NOTREACHED */
1259 
1260 out:
1261 	/* finally adjust siglist */
1262 	if (mask)
1263 		atomic_setbits_int(siglist, mask);
1264 	if (prop & SA_CONT) {
1265 		atomic_clearbits_int(siglist, STOPSIGMASK);
1266 	}
1267 	if (prop & SA_STOP) {
1268 		atomic_clearbits_int(siglist, CONTSIGMASK);
1269 		atomic_clearbits_int(&pr->ps_flags, PS_CONTINUED);
1270 	}
1271 
1272 	SCHED_UNLOCK();
1273 	if (wakeparent)
1274 		wakeup(pr->ps_pptr);
1275 }
1276 
1277 /* fill the signal context which should be used by postsig() and issignal() */
1278 void
setsigctx(struct proc * p,int signum,struct sigctx * sctx)1279 setsigctx(struct proc *p, int signum, struct sigctx *sctx)
1280 {
1281 	struct process *pr = p->p_p;
1282 	struct sigacts *ps = pr->ps_sigacts;
1283 	sigset_t mask;
1284 
1285 	mtx_enter(&pr->ps_mtx);
1286 	mask = sigmask(signum);
1287 	sctx->sig_action = ps->ps_sigact[signum];
1288 	sctx->sig_catchmask = ps->ps_catchmask[signum];
1289 	sctx->sig_reset = (ps->ps_sigreset & mask) != 0;
1290 	sctx->sig_info = (ps->ps_siginfo & mask) != 0;
1291 	sctx->sig_intr = (ps->ps_sigintr & mask) != 0;
1292 	sctx->sig_onstack = (ps->ps_sigonstack & mask) != 0;
1293 	sctx->sig_ignore = (ps->ps_sigignore & mask) != 0;
1294 	sctx->sig_catch = (ps->ps_sigcatch & mask) != 0;
1295 	sctx->sig_stop = sigprop[signum] & SA_STOP &&
1296 	    (long)sctx->sig_action == (long)SIG_DFL;
1297 	if (sctx->sig_stop) {
1298 		/*
1299 		 * If the process is a member of an orphaned
1300 		 * process group, ignore tty stop signals.
1301 		 */
1302 		if (pr->ps_flags & PS_TRACED ||
1303 		    (pr->ps_pgrp->pg_jobc == 0 &&
1304 		    sigprop[signum] & SA_TTYSTOP)) {
1305 			sctx->sig_stop = 0;
1306 			sctx->sig_ignore = 1;
1307 		}
1308 	}
1309 	mtx_leave(&pr->ps_mtx);
1310 }
1311 
1312 /*
1313  * Determine signal that should be delivered to process p, the current
1314  * process, 0 if none.
1315  *
1316  * If the current process has received a signal (should be caught or cause
1317  * termination, should interrupt current syscall), return the signal number.
1318  * Stop signals with default action are processed immediately, then cleared;
1319  * they aren't returned.  This is checked after each entry to the system for
1320  * a syscall or trap. The normal call sequence is
1321  *
1322  *	while (signum = cursig(curproc, &ctx, 0))
1323  *		postsig(signum, &ctx);
1324  *
1325  * Assumes that if the P_SINTR flag is set, we're holding both the
1326  * kernel and scheduler locks.
1327  */
1328 int
cursig(struct proc * p,struct sigctx * sctx,int deep)1329 cursig(struct proc *p, struct sigctx *sctx, int deep)
1330 {
1331 	struct process *pr = p->p_p;
1332 	int signum, mask, prop;
1333 	sigset_t ps_siglist;
1334 
1335 	KASSERT(p == curproc);
1336 
1337 	for (;;) {
1338 		ps_siglist = READ_ONCE(pr->ps_siglist);
1339 		membar_consumer();
1340 		mask = SIGPENDING(p);
1341 		if (pr->ps_flags & PS_PPWAIT)
1342 			mask &= ~STOPSIGMASK;
1343 		if (mask == 0)	 	/* no signal to send */
1344 			return (0);
1345 		signum = ffs((long)mask);
1346 		mask = sigmask(signum);
1347 
1348 		/* take the signal! */
1349 		if (atomic_cas_uint(&pr->ps_siglist, ps_siglist,
1350 		    ps_siglist & ~mask) != ps_siglist) {
1351 			/* lost race taking the process signal, restart */
1352 			continue;
1353 		}
1354 		atomic_clearbits_int(&p->p_siglist, mask);
1355 		setsigctx(p, signum, sctx);
1356 
1357 		/*
1358 		 * We should see pending but ignored signals
1359 		 * only if PS_TRACED was on when they were posted.
1360 		 */
1361 		if (sctx->sig_ignore && (pr->ps_flags & PS_TRACED) == 0)
1362 			continue;
1363 
1364 		/*
1365 		 * If cursig is called while going to sleep, abort now
1366 		 * and stop the sleep. When the call unwinded to userret
1367 		 * cursig is called again and there the signal can be
1368 		 * handled cleanly.
1369 		 */
1370 		if (deep)
1371 			goto keep;
1372 
1373 		/*
1374 		 * If traced, always stop, and stay stopped until released
1375 		 * by the debugger.  If our parent process is waiting for
1376 		 * us, don't hang as we could deadlock.
1377 		 */
1378 		if (((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) &&
1379 		    signum != SIGKILL) {
1380 			signum = proc_trap(p, signum);
1381 
1382 			mask = sigmask(signum);
1383 			setsigctx(p, signum, sctx);
1384 
1385 			/*
1386 			 * If we are no longer being traced, or the parent
1387 			 * didn't give us a signal, or the signal is ignored,
1388 			 * look for more signals.
1389 			 */
1390 			if ((pr->ps_flags & PS_TRACED) == 0 || signum == 0 ||
1391 			    sctx->sig_ignore)
1392 				continue;
1393 
1394 			/*
1395 			 * If the new signal is being masked, look for other
1396 			 * signals but leave it for later.
1397 			 */
1398 			if ((p->p_sigmask & mask) != 0) {
1399 				atomic_setbits_int(&p->p_siglist, mask);
1400 				continue;
1401 			}
1402 
1403 		}
1404 
1405 		prop = sigprop[signum];
1406 
1407 		/*
1408 		 * Decide whether the signal should be returned.
1409 		 * Return the signal's number, or fall through
1410 		 * to clear it from the pending mask.
1411 		 */
1412 		switch ((long)sctx->sig_action) {
1413 		case (long)SIG_DFL:
1414 			/*
1415 			 * Don't take default actions on system processes.
1416 			 */
1417 			if (pr->ps_pid <= 1) {
1418 #ifdef DIAGNOSTIC
1419 				/*
1420 				 * Are you sure you want to ignore SIGSEGV
1421 				 * in init? XXX
1422 				 */
1423 				printf("Process (pid %d) got signal"
1424 				    " %d\n", pr->ps_pid, signum);
1425 #endif
1426 				break;		/* == ignore */
1427 			}
1428 			/*
1429 			 * If there is a pending stop signal to process
1430 			 * with default action, stop here,
1431 			 * then clear the signal.
1432 			 */
1433 			if (sctx->sig_stop) {
1434 				mtx_enter(&pr->ps_mtx);
1435 				if (pr->ps_flags & PS_TRACED ||
1436 		    		    (pr->ps_pgrp->pg_jobc == 0 &&
1437 				    prop & SA_TTYSTOP)) {
1438 					mtx_leave(&pr->ps_mtx);
1439 					break;	/* == ignore */
1440 				}
1441 				mtx_leave(&pr->ps_mtx);
1442 				pr->ps_xsig = signum;
1443 				SCHED_LOCK();
1444 				proc_stop(p, 1);
1445 				SCHED_UNLOCK();
1446 				break;
1447 			} else if (prop & SA_IGNORE) {
1448 				/*
1449 				 * Except for SIGCONT, shouldn't get here.
1450 				 * Default action is to ignore; drop it.
1451 				 */
1452 				break;		/* == ignore */
1453 			} else
1454 				goto keep;
1455 			/* NOTREACHED */
1456 		case (long)SIG_IGN:
1457 			/*
1458 			 * Masking above should prevent us ever trying
1459 			 * to take action on an ignored signal other
1460 			 * than SIGCONT, unless process is traced.
1461 			 */
1462 			if ((prop & SA_CONT) == 0 &&
1463 			    (pr->ps_flags & PS_TRACED) == 0)
1464 				printf("%s\n", __func__);
1465 			break;		/* == ignore */
1466 		default:
1467 			/*
1468 			 * This signal has an action, let
1469 			 * postsig() process it.
1470 			 */
1471 			goto keep;
1472 		}
1473 	}
1474 	/* NOTREACHED */
1475 
1476 keep:
1477 	atomic_setbits_int(&p->p_siglist, mask); /*leave the signal for later */
1478 	return (signum);
1479 }
1480 
1481 int
proc_trap(struct proc * p,int signum)1482 proc_trap(struct proc *p, int signum)
1483 {
1484 	struct process *pr = p->p_p;
1485 
1486 	single_thread_set(p, SINGLE_SUSPEND | SINGLE_NOWAIT);
1487 	pr->ps_xsig = signum;
1488 
1489 	SCHED_LOCK();
1490 	proc_stop(p, 1);
1491 	SCHED_UNLOCK();
1492 
1493 	signum = pr->ps_xsig;
1494 	pr->ps_xsig = 0;
1495 	if ((p->p_flag & P_TRACESINGLE) == 0)
1496 		single_thread_clear(p, 0);
1497 	atomic_clearbits_int(&p->p_flag, P_TRACESINGLE);
1498 
1499 	return signum;
1500 }
1501 
1502 /*
1503  * Put the argument process into the stopped state and notify the parent
1504  * via wakeup.  Signals are handled elsewhere.  The process must not be
1505  * on the run queue.
1506  */
1507 void
proc_stop(struct proc * p,int sw)1508 proc_stop(struct proc *p, int sw)
1509 {
1510 	struct process *pr = p->p_p;
1511 
1512 #ifdef MULTIPROCESSOR
1513 	SCHED_ASSERT_LOCKED();
1514 #endif
1515 	/* do not stop exiting procs */
1516 	if (ISSET(p->p_flag, P_WEXIT))
1517 		return;
1518 
1519 	p->p_stat = SSTOP;
1520 	atomic_clearbits_int(&pr->ps_flags, PS_WAITED);
1521 	atomic_setbits_int(&pr->ps_flags, PS_STOPPING);
1522 	atomic_setbits_int(&p->p_flag, P_SUSPSIG);
1523 	/*
1524 	 * We need this soft interrupt to be handled fast.
1525 	 * Extra calls to softclock don't hurt.
1526 	 */
1527 	softintr_schedule(proc_stop_si);
1528 	if (sw)
1529 		mi_switch();
1530 }
1531 
1532 /*
1533  * Called from a soft interrupt to send signals to the parents of stopped
1534  * processes.
1535  * We can't do this in proc_stop because it's called with nasty locks held
1536  * and we would need recursive scheduler lock to deal with that.
1537  */
1538 void
proc_stop_sweep(void * v)1539 proc_stop_sweep(void *v)
1540 {
1541 	struct process *pr;
1542 
1543 	LIST_FOREACH(pr, &allprocess, ps_list) {
1544 		if ((pr->ps_flags & PS_STOPPING) == 0)
1545 			continue;
1546 		atomic_setbits_int(&pr->ps_flags, PS_STOPPED);
1547 		atomic_clearbits_int(&pr->ps_flags, PS_STOPPING);
1548 
1549 		if ((pr->ps_pptr->ps_sigacts->ps_sigflags & SAS_NOCLDSTOP) == 0)
1550 			prsignal(pr->ps_pptr, SIGCHLD);
1551 		wakeup(pr->ps_pptr);
1552 	}
1553 }
1554 
1555 /*
1556  * Take the action for the specified signal
1557  * from the current set of pending signals.
1558  */
1559 void
postsig(struct proc * p,int signum,struct sigctx * sctx)1560 postsig(struct proc *p, int signum, struct sigctx *sctx)
1561 {
1562 	u_long trapno;
1563 	int mask, returnmask;
1564 	siginfo_t si;
1565 	union sigval sigval;
1566 	int code;
1567 
1568 	KASSERT(signum != 0);
1569 
1570 	mask = sigmask(signum);
1571 	atomic_clearbits_int(&p->p_siglist, mask);
1572 	sigval.sival_ptr = NULL;
1573 
1574 	if (p->p_sisig != signum) {
1575 		trapno = 0;
1576 		code = SI_USER;
1577 		sigval.sival_ptr = NULL;
1578 	} else {
1579 		trapno = p->p_sitrapno;
1580 		code = p->p_sicode;
1581 		sigval = p->p_sigval;
1582 	}
1583 	initsiginfo(&si, signum, trapno, code, sigval);
1584 
1585 #ifdef KTRACE
1586 	if (KTRPOINT(p, KTR_PSIG)) {
1587 		ktrpsig(p, signum, sctx->sig_action, p->p_flag & P_SIGSUSPEND ?
1588 		    p->p_oldmask : p->p_sigmask, code, &si);
1589 	}
1590 #endif
1591 	if (sctx->sig_action == SIG_DFL) {
1592 		/*
1593 		 * Default action, where the default is to kill
1594 		 * the process.  (Other cases were ignored above.)
1595 		 */
1596 		KERNEL_LOCK();
1597 		sigexit(p, signum);
1598 		/* NOTREACHED */
1599 	} else {
1600 		/*
1601 		 * If we get here, the signal must be caught.
1602 		 */
1603 #ifdef DIAGNOSTIC
1604 		if (sctx->sig_action == SIG_IGN || (p->p_sigmask & mask))
1605 			panic("postsig action");
1606 #endif
1607 		/*
1608 		 * Set the new mask value and also defer further
1609 		 * occurrences of this signal.
1610 		 *
1611 		 * Special case: user has done a sigpause.  Here the
1612 		 * current mask is not of interest, but rather the
1613 		 * mask from before the sigpause is what we want
1614 		 * restored after the signal processing is completed.
1615 		 */
1616 		if (p->p_flag & P_SIGSUSPEND) {
1617 			atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1618 			returnmask = p->p_oldmask;
1619 		} else {
1620 			returnmask = p->p_sigmask;
1621 		}
1622 		if (p->p_sisig == signum) {
1623 			p->p_sisig = 0;
1624 			p->p_sitrapno = 0;
1625 			p->p_sicode = SI_USER;
1626 			p->p_sigval.sival_ptr = NULL;
1627 		}
1628 
1629 		if (sendsig(sctx->sig_action, signum, returnmask, &si,
1630 		    sctx->sig_info, sctx->sig_onstack)) {
1631 			KERNEL_LOCK();
1632 			sigexit(p, SIGILL);
1633 			/* NOTREACHED */
1634 		}
1635 		postsig_done(p, signum, sctx->sig_catchmask, sctx->sig_reset);
1636 	}
1637 }
1638 
1639 /*
1640  * Force the current process to exit with the specified signal, dumping core
1641  * if appropriate.  We bypass the normal tests for masked and caught signals,
1642  * allowing unrecoverable failures to terminate the process without changing
1643  * signal state.  Mark the accounting record with the signal termination.
1644  * If dumping core, save the signal number for the debugger.  Calls exit and
1645  * does not return.
1646  */
1647 void
sigexit(struct proc * p,int signum)1648 sigexit(struct proc *p, int signum)
1649 {
1650 	/* Mark process as going away */
1651 	atomic_setbits_int(&p->p_flag, P_WEXIT);
1652 
1653 	p->p_p->ps_acflag |= AXSIG;
1654 	if (sigprop[signum] & SA_CORE) {
1655 		p->p_sisig = signum;
1656 
1657 		/* if there are other threads, pause them */
1658 		if (P_HASSIBLING(p))
1659 			single_thread_set(p, SINGLE_UNWIND);
1660 
1661 		if (coredump(p) == 0)
1662 			signum |= WCOREFLAG;
1663 	}
1664 	exit1(p, 0, signum, EXIT_NORMAL);
1665 	/* NOTREACHED */
1666 }
1667 
1668 /*
1669  * Send uncatchable SIGABRT for coredump.
1670  */
1671 void
sigabort(struct proc * p)1672 sigabort(struct proc *p)
1673 {
1674 	struct sigaction sa;
1675 
1676 	KASSERT(p == curproc || panicstr || db_active);
1677 
1678 	memset(&sa, 0, sizeof sa);
1679 	sa.sa_handler = SIG_DFL;
1680 	setsigvec(p, SIGABRT, &sa);
1681 	CLR(p->p_sigmask, sigmask(SIGABRT));
1682 	psignal(p, SIGABRT);
1683 }
1684 
1685 /*
1686  * Return 1 if `sig', a given signal, is ignored or masked for `p', a given
1687  * thread, and 0 otherwise.
1688  */
1689 int
sigismasked(struct proc * p,int sig)1690 sigismasked(struct proc *p, int sig)
1691 {
1692 	struct process *pr = p->p_p;
1693 	int rv;
1694 
1695 	KASSERT(p == curproc);
1696 
1697 	mtx_enter(&pr->ps_mtx);
1698 	rv = (pr->ps_sigacts->ps_sigignore & sigmask(sig)) ||
1699 	    (p->p_sigmask & sigmask(sig));
1700 	mtx_leave(&pr->ps_mtx);
1701 
1702 	return !!rv;
1703 }
1704 
1705 struct coredump_iostate {
1706 	struct proc *io_proc;
1707 	struct vnode *io_vp;
1708 	struct ucred *io_cred;
1709 	off_t io_offset;
1710 };
1711 
1712 /*
1713  * Dump core, into a file named "progname.core", unless the process was
1714  * setuid/setgid.
1715  */
1716 int
coredump(struct proc * p)1717 coredump(struct proc *p)
1718 {
1719 #ifdef SMALL_KERNEL
1720 	return EPERM;
1721 #else
1722 	struct process *pr = p->p_p;
1723 	struct vnode *vp;
1724 	struct ucred *cred = p->p_ucred;
1725 	struct vmspace *vm = p->p_vmspace;
1726 	struct nameidata nd;
1727 	struct vattr vattr;
1728 	struct coredump_iostate	io;
1729 	int error, len, incrash = 0;
1730 	char *name;
1731 	const char *dir = "/var/crash";
1732 
1733 	atomic_setbits_int(&pr->ps_flags, PS_COREDUMP);
1734 
1735 #ifdef PMAP_CHECK_COPYIN
1736 	/* disable copyin checks, so we can write out text sections if needed */
1737 	p->p_vmspace->vm_map.check_copyin_count = 0;
1738 #endif
1739 
1740 	/* Don't dump if will exceed file size limit. */
1741 	if (USPACE + ptoa(vm->vm_dsize + vm->vm_ssize) >= lim_cur(RLIMIT_CORE))
1742 		return (EFBIG);
1743 
1744 	name = pool_get(&namei_pool, PR_WAITOK);
1745 
1746 	/*
1747 	 * If the process has inconsistent uids, nosuidcoredump
1748 	 * determines coredump placement policy.
1749 	 */
1750 	if (((pr->ps_flags & PS_SUGID) && (error = suser(p))) ||
1751 	   ((pr->ps_flags & PS_SUGID) && nosuidcoredump)) {
1752 		if (nosuidcoredump == 3) {
1753 			/*
1754 			 * If the program directory does not exist, dumps of
1755 			 * that core will silently fail.
1756 			 */
1757 			len = snprintf(name, MAXPATHLEN, "%s/%s/%u.core",
1758 			    dir, pr->ps_comm, pr->ps_pid);
1759 			incrash = KERNELPATH;
1760 		} else if (nosuidcoredump == 2) {
1761 			len = snprintf(name, MAXPATHLEN, "%s/%s.core",
1762 			    dir, pr->ps_comm);
1763 			incrash = KERNELPATH;
1764 		} else {
1765 			pool_put(&namei_pool, name);
1766 			return (EPERM);
1767 		}
1768 	} else
1769 		len = snprintf(name, MAXPATHLEN, "%s.core", pr->ps_comm);
1770 
1771 	if (len >= MAXPATHLEN) {
1772 		pool_put(&namei_pool, name);
1773 		return (EACCES);
1774 	}
1775 
1776 	/*
1777 	 * Control the UID used to write out.  The normal case uses
1778 	 * the real UID.  If the sugid case is going to write into the
1779 	 * controlled directory, we do so as root.
1780 	 */
1781 	if (incrash == 0) {
1782 		cred = crdup(cred);
1783 		cred->cr_uid = cred->cr_ruid;
1784 		cred->cr_gid = cred->cr_rgid;
1785 	} else {
1786 		if (p->p_fd->fd_rdir) {
1787 			vrele(p->p_fd->fd_rdir);
1788 			p->p_fd->fd_rdir = NULL;
1789 		}
1790 		p->p_ucred = crdup(p->p_ucred);
1791 		crfree(cred);
1792 		cred = p->p_ucred;
1793 		crhold(cred);
1794 		cred->cr_uid = 0;
1795 		cred->cr_gid = 0;
1796 	}
1797 
1798 	/* incrash should be 0 or KERNELPATH only */
1799 	NDINIT(&nd, 0, BYPASSUNVEIL | incrash, UIO_SYSSPACE, name, p);
1800 
1801 	error = vn_open(&nd, O_CREAT | FWRITE | O_NOFOLLOW | O_NONBLOCK,
1802 	    S_IRUSR | S_IWUSR);
1803 
1804 	if (error)
1805 		goto out;
1806 
1807 	/*
1808 	 * Don't dump to non-regular files, files with links, or files
1809 	 * owned by someone else.
1810 	 */
1811 	vp = nd.ni_vp;
1812 	if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) {
1813 		VOP_UNLOCK(vp);
1814 		vn_close(vp, FWRITE, cred, p);
1815 		goto out;
1816 	}
1817 	if (vp->v_type != VREG || vattr.va_nlink != 1 ||
1818 	    vattr.va_mode & ((VREAD | VWRITE) >> 3 | (VREAD | VWRITE) >> 6) ||
1819 	    vattr.va_uid != cred->cr_uid) {
1820 		error = EACCES;
1821 		VOP_UNLOCK(vp);
1822 		vn_close(vp, FWRITE, cred, p);
1823 		goto out;
1824 	}
1825 	vattr_null(&vattr);
1826 	vattr.va_size = 0;
1827 	VOP_SETATTR(vp, &vattr, cred, p);
1828 	pr->ps_acflag |= ACORE;
1829 
1830 	io.io_proc = p;
1831 	io.io_vp = vp;
1832 	io.io_cred = cred;
1833 	io.io_offset = 0;
1834 	VOP_UNLOCK(vp);
1835 	vref(vp);
1836 	error = vn_close(vp, FWRITE, cred, p);
1837 	if (error == 0)
1838 		error = coredump_elf(p, &io);
1839 	vrele(vp);
1840 out:
1841 	crfree(cred);
1842 	pool_put(&namei_pool, name);
1843 	return (error);
1844 #endif
1845 }
1846 
1847 #ifndef SMALL_KERNEL
1848 int
coredump_write(void * cookie,enum uio_seg segflg,const void * data,size_t len,int isvnode)1849 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len,
1850     int isvnode)
1851 {
1852 	struct coredump_iostate *io = cookie;
1853 	off_t coffset = 0;
1854 	size_t csize;
1855 	int chunk, error;
1856 
1857 	csize = len;
1858 	do {
1859 		if (sigmask(SIGKILL) &
1860 		    (io->io_proc->p_siglist | io->io_proc->p_p->ps_siglist))
1861 			return (EINTR);
1862 
1863 		/* Rest of the loop sleeps with lock held, so... */
1864 		yield();
1865 
1866 		chunk = MIN(csize, MAXPHYS);
1867 		error = vn_rdwr(UIO_WRITE, io->io_vp,
1868 		    (caddr_t)data + coffset, chunk,
1869 		    io->io_offset + coffset, segflg,
1870 		    IO_UNIT, io->io_cred, NULL, io->io_proc);
1871 		if (error && (error != EFAULT || !isvnode)) {
1872 			struct process *pr = io->io_proc->p_p;
1873 
1874 			if (error == ENOSPC)
1875 				log(LOG_ERR,
1876 				    "coredump of %s(%d) failed, filesystem full\n",
1877 				    pr->ps_comm, pr->ps_pid);
1878 			else
1879 				log(LOG_ERR,
1880 				    "coredump of %s(%d), write failed: errno %d\n",
1881 				    pr->ps_comm, pr->ps_pid, error);
1882 			return (error);
1883 		}
1884 
1885 		coffset += chunk;
1886 		csize -= chunk;
1887 	} while (csize > 0);
1888 
1889 	io->io_offset += len;
1890 	return (0);
1891 }
1892 
1893 void
coredump_unmap(void * cookie,vaddr_t start,vaddr_t end)1894 coredump_unmap(void *cookie, vaddr_t start, vaddr_t end)
1895 {
1896 	struct coredump_iostate *io = cookie;
1897 
1898 	uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end);
1899 }
1900 
1901 #endif	/* !SMALL_KERNEL */
1902 
1903 /*
1904  * Nonexistent system call-- signal process (may want to handle it).
1905  * Flag error in case process won't see signal immediately (blocked or ignored).
1906  */
1907 int
sys_nosys(struct proc * p,void * v,register_t * retval)1908 sys_nosys(struct proc *p, void *v, register_t *retval)
1909 {
1910 	ptsignal(p, SIGSYS, STHREAD);
1911 	return (ENOSYS);
1912 }
1913 
1914 int
sys___thrsigdivert(struct proc * p,void * v,register_t * retval)1915 sys___thrsigdivert(struct proc *p, void *v, register_t *retval)
1916 {
1917 	struct sys___thrsigdivert_args /* {
1918 		syscallarg(sigset_t) sigmask;
1919 		syscallarg(siginfo_t *) info;
1920 		syscallarg(const struct timespec *) timeout;
1921 	} */ *uap = v;
1922 	struct sigctx ctx;
1923 	sigset_t mask = SCARG(uap, sigmask) &~ sigcantmask;
1924 	siginfo_t si;
1925 	uint64_t nsecs = INFSLP;
1926 	int timeinvalid = 0;
1927 	int error = 0;
1928 
1929 	memset(&si, 0, sizeof(si));
1930 
1931 	if (SCARG(uap, timeout) != NULL) {
1932 		struct timespec ts;
1933 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))) != 0)
1934 			return (error);
1935 #ifdef KTRACE
1936 		if (KTRPOINT(p, KTR_STRUCT))
1937 			ktrreltimespec(p, &ts);
1938 #endif
1939 		if (!timespecisvalid(&ts))
1940 			timeinvalid = 1;
1941 		else
1942 			nsecs = TIMESPEC_TO_NSEC(&ts);
1943 	}
1944 
1945 	dosigsuspend(p, p->p_sigmask &~ mask);
1946 	for (;;) {
1947 		si.si_signo = cursig(p, &ctx, 0);
1948 		if (si.si_signo != 0) {
1949 			sigset_t smask = sigmask(si.si_signo);
1950 			if (smask & mask) {
1951 				atomic_clearbits_int(&p->p_siglist, smask);
1952 				error = 0;
1953 				break;
1954 			}
1955 		}
1956 
1957 		/* per-POSIX, delay this error until after the above */
1958 		if (timeinvalid)
1959 			error = EINVAL;
1960 		/* per-POSIX, return immediately if timeout is zero-valued */
1961 		if (nsecs == 0)
1962 			error = EAGAIN;
1963 
1964 		if (error != 0)
1965 			break;
1966 
1967 		error = tsleep_nsec(&nowake, PPAUSE|PCATCH, "sigwait", nsecs);
1968 	}
1969 
1970 	if (error == 0) {
1971 		*retval = si.si_signo;
1972 		if (SCARG(uap, info) != NULL) {
1973 			error = copyout(&si, SCARG(uap, info), sizeof(si));
1974 #ifdef KTRACE
1975 			if (error == 0 && KTRPOINT(p, KTR_STRUCT))
1976 				ktrsiginfo(p, &si);
1977 #endif
1978 		}
1979 	} else if (error == ERESTART && SCARG(uap, timeout) != NULL) {
1980 		/*
1981 		 * Restarting is wrong if there's a timeout, as it'll be
1982 		 * for the same interval again
1983 		 */
1984 		error = EINTR;
1985 	}
1986 
1987 	return (error);
1988 }
1989 
1990 void
initsiginfo(siginfo_t * si,int sig,u_long trapno,int code,union sigval val)1991 initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val)
1992 {
1993 	memset(si, 0, sizeof(*si));
1994 
1995 	si->si_signo = sig;
1996 	si->si_code = code;
1997 	if (code == SI_USER) {
1998 		si->si_value = val;
1999 	} else {
2000 		switch (sig) {
2001 		case SIGSEGV:
2002 		case SIGILL:
2003 		case SIGBUS:
2004 		case SIGFPE:
2005 			si->si_addr = val.sival_ptr;
2006 			si->si_trapno = trapno;
2007 			break;
2008 		case SIGXFSZ:
2009 			break;
2010 		}
2011 	}
2012 }
2013 
2014 void
userret(struct proc * p)2015 userret(struct proc *p)
2016 {
2017 	struct sigctx ctx;
2018 	int signum;
2019 
2020 	if (p->p_flag & P_SUSPSINGLE)
2021 		single_thread_check(p, 0);
2022 
2023 	/* send SIGPROF or SIGVTALRM if their timers interrupted this thread */
2024 	if (p->p_flag & P_PROFPEND) {
2025 		atomic_clearbits_int(&p->p_flag, P_PROFPEND);
2026 		psignal(p, SIGPROF);
2027 	}
2028 	if (p->p_flag & P_ALRMPEND) {
2029 		atomic_clearbits_int(&p->p_flag, P_ALRMPEND);
2030 		psignal(p, SIGVTALRM);
2031 	}
2032 
2033 	if (SIGPENDING(p) != 0) {
2034 		while ((signum = cursig(p, &ctx, 0)) != 0)
2035 			postsig(p, signum, &ctx);
2036 	}
2037 
2038 	/*
2039 	 * If P_SIGSUSPEND is still set here, then we still need to restore
2040 	 * the original sigmask before returning to userspace.  Also, this
2041 	 * might unmask some pending signals, so we need to check a second
2042 	 * time for signals to post.
2043 	 */
2044 	if (p->p_flag & P_SIGSUSPEND) {
2045 		p->p_sigmask = p->p_oldmask;
2046 		atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
2047 
2048 		while ((signum = cursig(p, &ctx, 0)) != 0)
2049 			postsig(p, signum, &ctx);
2050 	}
2051 
2052 	WITNESS_WARN(WARN_PANIC, NULL, "userret: returning");
2053 
2054 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
2055 }
2056 
2057 int
single_thread_check_locked(struct proc * p,int deep)2058 single_thread_check_locked(struct proc *p, int deep)
2059 {
2060 	struct process *pr = p->p_p;
2061 
2062 	MUTEX_ASSERT_LOCKED(&pr->ps_mtx);
2063 
2064 	if (pr->ps_single == NULL || pr->ps_single == p)
2065 		return (0);
2066 
2067 	do {
2068 		/* if we're in deep, we need to unwind to the edge */
2069 		if (deep) {
2070 			if (pr->ps_flags & PS_SINGLEUNWIND)
2071 				return (ERESTART);
2072 			if (pr->ps_flags & PS_SINGLEEXIT)
2073 				return (EINTR);
2074 		}
2075 
2076 		if (pr->ps_flags & PS_SINGLEEXIT) {
2077 			mtx_leave(&pr->ps_mtx);
2078 			KERNEL_LOCK();
2079 			exit1(p, 0, 0, EXIT_THREAD_NOCHECK);
2080 			/* NOTREACHED */
2081 		}
2082 
2083 		if (--pr->ps_singlecnt == 0)
2084 			wakeup(&pr->ps_singlecnt);
2085 
2086 		/* not exiting and don't need to unwind, so suspend */
2087 		mtx_leave(&pr->ps_mtx);
2088 
2089 		SCHED_LOCK();
2090 		p->p_stat = SSTOP;
2091 		mi_switch();
2092 		SCHED_UNLOCK();
2093 		mtx_enter(&pr->ps_mtx);
2094 	} while (pr->ps_single != NULL);
2095 
2096 	return (0);
2097 }
2098 
2099 int
single_thread_check(struct proc * p,int deep)2100 single_thread_check(struct proc *p, int deep)
2101 {
2102 	int error;
2103 
2104 	mtx_enter(&p->p_p->ps_mtx);
2105 	error = single_thread_check_locked(p, deep);
2106 	mtx_leave(&p->p_p->ps_mtx);
2107 
2108 	return error;
2109 }
2110 
2111 /*
2112  * Stop other threads in the process.  The mode controls how and
2113  * where the other threads should stop:
2114  *  - SINGLE_SUSPEND: stop wherever they are, will later be released (via
2115  *    single_thread_clear())
2116  *  - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit
2117  *    (by setting to SINGLE_EXIT) or released as with SINGLE_SUSPEND
2118  *  - SINGLE_EXIT: unwind to kernel boundary and exit
2119  */
2120 int
single_thread_set(struct proc * p,int flags)2121 single_thread_set(struct proc *p, int flags)
2122 {
2123 	struct process *pr = p->p_p;
2124 	struct proc *q;
2125 	int error, mode = flags & SINGLE_MASK;
2126 
2127 	KASSERT(curproc == p);
2128 
2129 	mtx_enter(&pr->ps_mtx);
2130 	error = single_thread_check_locked(p, flags & SINGLE_DEEP);
2131 	if (error) {
2132 		mtx_leave(&pr->ps_mtx);
2133 		return error;
2134 	}
2135 
2136 	switch (mode) {
2137 	case SINGLE_SUSPEND:
2138 		break;
2139 	case SINGLE_UNWIND:
2140 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
2141 		break;
2142 	case SINGLE_EXIT:
2143 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEEXIT);
2144 		atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
2145 		break;
2146 #ifdef DIAGNOSTIC
2147 	default:
2148 		panic("single_thread_mode = %d", mode);
2149 #endif
2150 	}
2151 	KASSERT((p->p_flag & P_SUSPSINGLE) == 0);
2152 	pr->ps_single = p;
2153 	pr->ps_singlecnt = pr->ps_threadcnt;
2154 
2155 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2156 		if (q == p)
2157 			continue;
2158 		SCHED_LOCK();
2159 		atomic_setbits_int(&q->p_flag, P_SUSPSINGLE);
2160 		switch (q->p_stat) {
2161 		case SSTOP:
2162 			if (mode == SINGLE_EXIT) {
2163 				unsleep(q);
2164 				setrunnable(q);
2165 			} else
2166 				--pr->ps_singlecnt;
2167 			break;
2168 		case SSLEEP:
2169 			/* if it's not interruptible, then just have to wait */
2170 			if (q->p_flag & P_SINTR) {
2171 				/* merely need to suspend?  just stop it */
2172 				if (mode == SINGLE_SUSPEND) {
2173 					q->p_stat = SSTOP;
2174 					--pr->ps_singlecnt;
2175 					break;
2176 				}
2177 				/* need to unwind or exit, so wake it */
2178 				unsleep(q);
2179 				setrunnable(q);
2180 			}
2181 			break;
2182 		case SONPROC:
2183 			signotify(q);
2184 			break;
2185 		case SRUN:
2186 		case SIDL:
2187 		case SDEAD:
2188 			break;
2189 		}
2190 		SCHED_UNLOCK();
2191 	}
2192 
2193 	/* count ourself out */
2194 	--pr->ps_singlecnt;
2195 	mtx_leave(&pr->ps_mtx);
2196 
2197 	if ((flags & SINGLE_NOWAIT) == 0)
2198 		single_thread_wait(pr, 1);
2199 
2200 	return 0;
2201 }
2202 
2203 /*
2204  * Wait for other threads to stop. If recheck is false then the function
2205  * returns non-zero if the caller needs to restart the check else 0 is
2206  * returned. If recheck is true the return value is always 0.
2207  */
2208 int
single_thread_wait(struct process * pr,int recheck)2209 single_thread_wait(struct process *pr, int recheck)
2210 {
2211 	int wait;
2212 
2213 	/* wait until they're all suspended */
2214 	mtx_enter(&pr->ps_mtx);
2215 	while ((wait = pr->ps_singlecnt > 0)) {
2216 		msleep_nsec(&pr->ps_singlecnt, &pr->ps_mtx, PWAIT, "suspend",
2217 		    INFSLP);
2218 		if (!recheck)
2219 			break;
2220 	}
2221 	KASSERT((pr->ps_single->p_flag & P_SUSPSINGLE) == 0);
2222 	mtx_leave(&pr->ps_mtx);
2223 
2224 	return wait;
2225 }
2226 
2227 void
single_thread_clear(struct proc * p,int flag)2228 single_thread_clear(struct proc *p, int flag)
2229 {
2230 	struct process *pr = p->p_p;
2231 	struct proc *q;
2232 
2233 	KASSERT(pr->ps_single == p);
2234 	KASSERT(curproc == p);
2235 
2236 	mtx_enter(&pr->ps_mtx);
2237 	pr->ps_single = NULL;
2238 	atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND | PS_SINGLEEXIT);
2239 
2240 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2241 		if (q == p || (q->p_flag & P_SUSPSINGLE) == 0)
2242 			continue;
2243 		atomic_clearbits_int(&q->p_flag, P_SUSPSINGLE);
2244 
2245 		/*
2246 		 * if the thread was only stopped for single threading
2247 		 * then clearing that either makes it runnable or puts
2248 		 * it back into some sleep queue
2249 		 */
2250 		SCHED_LOCK();
2251 		if (q->p_stat == SSTOP && (q->p_flag & flag) == 0) {
2252 			if (q->p_wchan == NULL)
2253 				setrunnable(q);
2254 			else {
2255 				atomic_clearbits_int(&q->p_flag, P_WSLEEP);
2256 				q->p_stat = SSLEEP;
2257 			}
2258 		}
2259 		SCHED_UNLOCK();
2260 	}
2261 	mtx_leave(&pr->ps_mtx);
2262 }
2263 
2264 void
sigio_del(struct sigiolst * rmlist)2265 sigio_del(struct sigiolst *rmlist)
2266 {
2267 	struct sigio *sigio;
2268 
2269 	while ((sigio = LIST_FIRST(rmlist)) != NULL) {
2270 		LIST_REMOVE(sigio, sio_pgsigio);
2271 		crfree(sigio->sio_ucred);
2272 		free(sigio, M_SIGIO, sizeof(*sigio));
2273 	}
2274 }
2275 
2276 void
sigio_unlink(struct sigio_ref * sir,struct sigiolst * rmlist)2277 sigio_unlink(struct sigio_ref *sir, struct sigiolst *rmlist)
2278 {
2279 	struct sigio *sigio;
2280 
2281 	MUTEX_ASSERT_LOCKED(&sigio_lock);
2282 
2283 	sigio = sir->sir_sigio;
2284 	if (sigio != NULL) {
2285 		KASSERT(sigio->sio_myref == sir);
2286 		sir->sir_sigio = NULL;
2287 
2288 		if (sigio->sio_pgid > 0)
2289 			sigio->sio_proc = NULL;
2290 		else
2291 			sigio->sio_pgrp = NULL;
2292 		LIST_REMOVE(sigio, sio_pgsigio);
2293 
2294 		LIST_INSERT_HEAD(rmlist, sigio, sio_pgsigio);
2295 	}
2296 }
2297 
2298 void
sigio_free(struct sigio_ref * sir)2299 sigio_free(struct sigio_ref *sir)
2300 {
2301 	struct sigiolst rmlist;
2302 
2303 	if (sir->sir_sigio == NULL)
2304 		return;
2305 
2306 	LIST_INIT(&rmlist);
2307 
2308 	mtx_enter(&sigio_lock);
2309 	sigio_unlink(sir, &rmlist);
2310 	mtx_leave(&sigio_lock);
2311 
2312 	sigio_del(&rmlist);
2313 }
2314 
2315 void
sigio_freelist(struct sigiolst * sigiolst)2316 sigio_freelist(struct sigiolst *sigiolst)
2317 {
2318 	struct sigiolst rmlist;
2319 	struct sigio *sigio;
2320 
2321 	if (LIST_EMPTY(sigiolst))
2322 		return;
2323 
2324 	LIST_INIT(&rmlist);
2325 
2326 	mtx_enter(&sigio_lock);
2327 	while ((sigio = LIST_FIRST(sigiolst)) != NULL)
2328 		sigio_unlink(sigio->sio_myref, &rmlist);
2329 	mtx_leave(&sigio_lock);
2330 
2331 	sigio_del(&rmlist);
2332 }
2333 
2334 int
sigio_setown(struct sigio_ref * sir,u_long cmd,caddr_t data)2335 sigio_setown(struct sigio_ref *sir, u_long cmd, caddr_t data)
2336 {
2337 	struct sigiolst rmlist;
2338 	struct proc *p = curproc;
2339 	struct pgrp *pgrp = NULL;
2340 	struct process *pr = NULL;
2341 	struct sigio *sigio;
2342 	int error;
2343 	pid_t pgid = *(int *)data;
2344 
2345 	if (pgid == 0) {
2346 		sigio_free(sir);
2347 		return (0);
2348 	}
2349 
2350 	if (cmd == TIOCSPGRP) {
2351 		if (pgid < 0)
2352 			return (EINVAL);
2353 		pgid = -pgid;
2354 	}
2355 
2356 	sigio = malloc(sizeof(*sigio), M_SIGIO, M_WAITOK);
2357 	sigio->sio_pgid = pgid;
2358 	sigio->sio_ucred = crhold(p->p_ucred);
2359 	sigio->sio_myref = sir;
2360 
2361 	LIST_INIT(&rmlist);
2362 
2363 	/*
2364 	 * The kernel lock, and not sleeping between prfind()/pgfind() and
2365 	 * linking of the sigio ensure that the process or process group does
2366 	 * not disappear unexpectedly.
2367 	 */
2368 	KERNEL_LOCK();
2369 	mtx_enter(&sigio_lock);
2370 
2371 	if (pgid > 0) {
2372 		pr = prfind(pgid);
2373 		if (pr == NULL) {
2374 			error = ESRCH;
2375 			goto fail;
2376 		}
2377 
2378 		/*
2379 		 * Policy - Don't allow a process to FSETOWN a process
2380 		 * in another session.
2381 		 *
2382 		 * Remove this test to allow maximum flexibility or
2383 		 * restrict FSETOWN to the current process or process
2384 		 * group for maximum safety.
2385 		 */
2386 		if (pr->ps_session != p->p_p->ps_session) {
2387 			error = EPERM;
2388 			goto fail;
2389 		}
2390 
2391 		if ((pr->ps_flags & PS_EXITING) != 0) {
2392 			error = ESRCH;
2393 			goto fail;
2394 		}
2395 	} else /* if (pgid < 0) */ {
2396 		pgrp = pgfind(-pgid);
2397 		if (pgrp == NULL) {
2398 			error = ESRCH;
2399 			goto fail;
2400 		}
2401 
2402 		/*
2403 		 * Policy - Don't allow a process to FSETOWN a process
2404 		 * in another session.
2405 		 *
2406 		 * Remove this test to allow maximum flexibility or
2407 		 * restrict FSETOWN to the current process or process
2408 		 * group for maximum safety.
2409 		 */
2410 		if (pgrp->pg_session != p->p_p->ps_session) {
2411 			error = EPERM;
2412 			goto fail;
2413 		}
2414 	}
2415 
2416 	if (pgid > 0) {
2417 		sigio->sio_proc = pr;
2418 		LIST_INSERT_HEAD(&pr->ps_sigiolst, sigio, sio_pgsigio);
2419 	} else {
2420 		sigio->sio_pgrp = pgrp;
2421 		LIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
2422 	}
2423 
2424 	sigio_unlink(sir, &rmlist);
2425 	sir->sir_sigio = sigio;
2426 
2427 	mtx_leave(&sigio_lock);
2428 	KERNEL_UNLOCK();
2429 
2430 	sigio_del(&rmlist);
2431 
2432 	return (0);
2433 
2434 fail:
2435 	mtx_leave(&sigio_lock);
2436 	KERNEL_UNLOCK();
2437 
2438 	crfree(sigio->sio_ucred);
2439 	free(sigio, M_SIGIO, sizeof(*sigio));
2440 
2441 	return (error);
2442 }
2443 
2444 void
sigio_getown(struct sigio_ref * sir,u_long cmd,caddr_t data)2445 sigio_getown(struct sigio_ref *sir, u_long cmd, caddr_t data)
2446 {
2447 	struct sigio *sigio;
2448 	pid_t pgid = 0;
2449 
2450 	mtx_enter(&sigio_lock);
2451 	sigio = sir->sir_sigio;
2452 	if (sigio != NULL)
2453 		pgid = sigio->sio_pgid;
2454 	mtx_leave(&sigio_lock);
2455 
2456 	if (cmd == TIOCGPGRP)
2457 		pgid = -pgid;
2458 
2459 	*(int *)data = pgid;
2460 }
2461 
2462 void
sigio_copy(struct sigio_ref * dst,struct sigio_ref * src)2463 sigio_copy(struct sigio_ref *dst, struct sigio_ref *src)
2464 {
2465 	struct sigiolst rmlist;
2466 	struct sigio *newsigio, *sigio;
2467 
2468 	sigio_free(dst);
2469 
2470 	if (src->sir_sigio == NULL)
2471 		return;
2472 
2473 	newsigio = malloc(sizeof(*newsigio), M_SIGIO, M_WAITOK);
2474 	LIST_INIT(&rmlist);
2475 
2476 	mtx_enter(&sigio_lock);
2477 
2478 	sigio = src->sir_sigio;
2479 	if (sigio == NULL) {
2480 		mtx_leave(&sigio_lock);
2481 		free(newsigio, M_SIGIO, sizeof(*newsigio));
2482 		return;
2483 	}
2484 
2485 	newsigio->sio_pgid = sigio->sio_pgid;
2486 	newsigio->sio_ucred = crhold(sigio->sio_ucred);
2487 	newsigio->sio_myref = dst;
2488 	if (newsigio->sio_pgid > 0) {
2489 		newsigio->sio_proc = sigio->sio_proc;
2490 		LIST_INSERT_HEAD(&newsigio->sio_proc->ps_sigiolst, newsigio,
2491 		    sio_pgsigio);
2492 	} else {
2493 		newsigio->sio_pgrp = sigio->sio_pgrp;
2494 		LIST_INSERT_HEAD(&newsigio->sio_pgrp->pg_sigiolst, newsigio,
2495 		    sio_pgsigio);
2496 	}
2497 
2498 	sigio_unlink(dst, &rmlist);
2499 	dst->sir_sigio = newsigio;
2500 
2501 	mtx_leave(&sigio_lock);
2502 
2503 	sigio_del(&rmlist);
2504 }
2505