xref: /linux/include/linux/cgroup-defs.h (revision 0e40cf2a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * linux/cgroup-defs.h - basic definitions for cgroup
4  *
5  * This file provides basic type and interface.  Include this file directly
6  * only if necessary to avoid cyclic dependencies.
7  */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10 
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup-defs.h>
23 #include <linux/psi_types.h>
24 
25 #ifdef CONFIG_CGROUPS
26 
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35 struct poll_table_struct;
36 
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME		64
40 
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
45 	CGROUP_SUBSYS_COUNT,
46 };
47 #undef SUBSYS
48 
49 /* bits in struct cgroup_subsys_state flags field */
50 enum {
51 	CSS_NO_REF	= (1 << 0), /* no reference counting for this css */
52 	CSS_ONLINE	= (1 << 1), /* between ->css_online() and ->css_offline() */
53 	CSS_RELEASED	= (1 << 2), /* refcnt reached zero, released */
54 	CSS_VISIBLE	= (1 << 3), /* css is visible to userland */
55 	CSS_DYING	= (1 << 4), /* css is dying */
56 };
57 
58 /* bits in struct cgroup flags field */
59 enum {
60 	/* Control Group requires release notifications to userspace */
61 	CGRP_NOTIFY_ON_RELEASE,
62 	/*
63 	 * Clone the parent's configuration when creating a new child
64 	 * cpuset cgroup.  For historical reasons, this option can be
65 	 * specified at mount time and thus is implemented here.
66 	 */
67 	CGRP_CPUSET_CLONE_CHILDREN,
68 
69 	/* Control group has to be frozen. */
70 	CGRP_FREEZE,
71 
72 	/* Cgroup is frozen. */
73 	CGRP_FROZEN,
74 
75 	/* Control group has to be killed. */
76 	CGRP_KILL,
77 };
78 
79 /* cgroup_root->flags */
80 enum {
81 	CGRP_ROOT_NOPREFIX	= (1 << 1), /* mounted subsystems have no named prefix */
82 	CGRP_ROOT_XATTR		= (1 << 2), /* supports extended attributes */
83 
84 	/*
85 	 * Consider namespaces as delegation boundaries.  If this flag is
86 	 * set, controller specific interface files in a namespace root
87 	 * aren't writeable from inside the namespace.
88 	 */
89 	CGRP_ROOT_NS_DELEGATE	= (1 << 3),
90 
91 	/*
92 	 * Reduce latencies on dynamic cgroup modifications such as task
93 	 * migrations and controller on/offs by disabling percpu operation on
94 	 * cgroup_threadgroup_rwsem. This makes hot path operations such as
95 	 * forks and exits into the slow path and more expensive.
96 	 *
97 	 * The static usage pattern of creating a cgroup, enabling controllers,
98 	 * and then seeding it with CLONE_INTO_CGROUP doesn't require write
99 	 * locking cgroup_threadgroup_rwsem and thus doesn't benefit from
100 	 * favordynmod.
101 	 */
102 	CGRP_ROOT_FAVOR_DYNMODS = (1 << 4),
103 
104 	/*
105 	 * Enable cpuset controller in v1 cgroup to use v2 behavior.
106 	 */
107 	CGRP_ROOT_CPUSET_V2_MODE = (1 << 16),
108 
109 	/*
110 	 * Enable legacy local memory.events.
111 	 */
112 	CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 17),
113 
114 	/*
115 	 * Enable recursive subtree protection
116 	 */
117 	CGRP_ROOT_MEMORY_RECURSIVE_PROT = (1 << 18),
118 
119 	/*
120 	 * Enable hugetlb accounting for the memory controller.
121 	 */
122 	CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING = (1 << 19),
123 
124 	/*
125 	 * Enable legacy local pids.events.
126 	 */
127 	CGRP_ROOT_PIDS_LOCAL_EVENTS = (1 << 20),
128 };
129 
130 /* cftype->flags */
131 enum {
132 	CFTYPE_ONLY_ON_ROOT	= (1 << 0),	/* only create on root cgrp */
133 	CFTYPE_NOT_ON_ROOT	= (1 << 1),	/* don't create on root cgrp */
134 	CFTYPE_NS_DELEGATABLE	= (1 << 2),	/* writeable beyond delegation boundaries */
135 
136 	CFTYPE_NO_PREFIX	= (1 << 3),	/* (DON'T USE FOR NEW FILES) no subsys prefix */
137 	CFTYPE_WORLD_WRITABLE	= (1 << 4),	/* (DON'T USE FOR NEW FILES) S_IWUGO */
138 	CFTYPE_DEBUG		= (1 << 5),	/* create when cgroup_debug */
139 
140 	/* internal flags, do not use outside cgroup core proper */
141 	__CFTYPE_ONLY_ON_DFL	= (1 << 16),	/* only on default hierarchy */
142 	__CFTYPE_NOT_ON_DFL	= (1 << 17),	/* not on default hierarchy */
143 	__CFTYPE_ADDED		= (1 << 18),
144 };
145 
146 /*
147  * cgroup_file is the handle for a file instance created in a cgroup which
148  * is used, for example, to generate file changed notifications.  This can
149  * be obtained by setting cftype->file_offset.
150  */
151 struct cgroup_file {
152 	/* do not access any fields from outside cgroup core */
153 	struct kernfs_node *kn;
154 	unsigned long notified_at;
155 	struct timer_list notify_timer;
156 };
157 
158 /*
159  * Per-subsystem/per-cgroup state maintained by the system.  This is the
160  * fundamental structural building block that controllers deal with.
161  *
162  * Fields marked with "PI:" are public and immutable and may be accessed
163  * directly without synchronization.
164  */
165 struct cgroup_subsys_state {
166 	/* PI: the cgroup that this css is attached to */
167 	struct cgroup *cgroup;
168 
169 	/* PI: the cgroup subsystem that this css is attached to */
170 	struct cgroup_subsys *ss;
171 
172 	/* reference count - access via css_[try]get() and css_put() */
173 	struct percpu_ref refcnt;
174 
175 	/*
176 	 * siblings list anchored at the parent's ->children
177 	 *
178 	 * linkage is protected by cgroup_mutex or RCU
179 	 */
180 	struct list_head sibling;
181 	struct list_head children;
182 
183 	/* flush target list anchored at cgrp->rstat_css_list */
184 	struct list_head rstat_css_node;
185 
186 	/*
187 	 * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
188 	 * matching css can be looked up using css_from_id().
189 	 */
190 	int id;
191 
192 	unsigned int flags;
193 
194 	/*
195 	 * Monotonically increasing unique serial number which defines a
196 	 * uniform order among all csses.  It's guaranteed that all
197 	 * ->children lists are in the ascending order of ->serial_nr and
198 	 * used to allow interrupting and resuming iterations.
199 	 */
200 	u64 serial_nr;
201 
202 	/*
203 	 * Incremented by online self and children.  Used to guarantee that
204 	 * parents are not offlined before their children.
205 	 */
206 	atomic_t online_cnt;
207 
208 	/* percpu_ref killing and RCU release */
209 	struct work_struct destroy_work;
210 	struct rcu_work destroy_rwork;
211 
212 	/*
213 	 * PI: the parent css.	Placed here for cache proximity to following
214 	 * fields of the containing structure.
215 	 */
216 	struct cgroup_subsys_state *parent;
217 
218 	/*
219 	 * Keep track of total numbers of visible descendant CSSes.
220 	 * The total number of dying CSSes is tracked in
221 	 * css->cgroup->nr_dying_subsys[ssid].
222 	 * Protected by cgroup_mutex.
223 	 */
224 	int nr_descendants;
225 };
226 
227 /*
228  * A css_set is a structure holding pointers to a set of
229  * cgroup_subsys_state objects. This saves space in the task struct
230  * object and speeds up fork()/exit(), since a single inc/dec and a
231  * list_add()/del() can bump the reference count on the entire cgroup
232  * set for a task.
233  */
234 struct css_set {
235 	/*
236 	 * Set of subsystem states, one for each subsystem. This array is
237 	 * immutable after creation apart from the init_css_set during
238 	 * subsystem registration (at boot time).
239 	 */
240 	struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
241 
242 	/* reference count */
243 	refcount_t refcount;
244 
245 	/*
246 	 * For a domain cgroup, the following points to self.  If threaded,
247 	 * to the matching cset of the nearest domain ancestor.  The
248 	 * dom_cset provides access to the domain cgroup and its csses to
249 	 * which domain level resource consumptions should be charged.
250 	 */
251 	struct css_set *dom_cset;
252 
253 	/* the default cgroup associated with this css_set */
254 	struct cgroup *dfl_cgrp;
255 
256 	/* internal task count, protected by css_set_lock */
257 	int nr_tasks;
258 
259 	/*
260 	 * Lists running through all tasks using this cgroup group.
261 	 * mg_tasks lists tasks which belong to this cset but are in the
262 	 * process of being migrated out or in.  Protected by
263 	 * css_set_lock, but, during migration, once tasks are moved to
264 	 * mg_tasks, it can be read safely while holding cgroup_mutex.
265 	 */
266 	struct list_head tasks;
267 	struct list_head mg_tasks;
268 	struct list_head dying_tasks;
269 
270 	/* all css_task_iters currently walking this cset */
271 	struct list_head task_iters;
272 
273 	/*
274 	 * On the default hierarchy, ->subsys[ssid] may point to a css
275 	 * attached to an ancestor instead of the cgroup this css_set is
276 	 * associated with.  The following node is anchored at
277 	 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
278 	 * iterate through all css's attached to a given cgroup.
279 	 */
280 	struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
281 
282 	/* all threaded csets whose ->dom_cset points to this cset */
283 	struct list_head threaded_csets;
284 	struct list_head threaded_csets_node;
285 
286 	/*
287 	 * List running through all cgroup groups in the same hash
288 	 * slot. Protected by css_set_lock
289 	 */
290 	struct hlist_node hlist;
291 
292 	/*
293 	 * List of cgrp_cset_links pointing at cgroups referenced from this
294 	 * css_set.  Protected by css_set_lock.
295 	 */
296 	struct list_head cgrp_links;
297 
298 	/*
299 	 * List of csets participating in the on-going migration either as
300 	 * source or destination.  Protected by cgroup_mutex.
301 	 */
302 	struct list_head mg_src_preload_node;
303 	struct list_head mg_dst_preload_node;
304 	struct list_head mg_node;
305 
306 	/*
307 	 * If this cset is acting as the source of migration the following
308 	 * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
309 	 * respectively the source and destination cgroups of the on-going
310 	 * migration.  mg_dst_cset is the destination cset the target tasks
311 	 * on this cset should be migrated to.  Protected by cgroup_mutex.
312 	 */
313 	struct cgroup *mg_src_cgrp;
314 	struct cgroup *mg_dst_cgrp;
315 	struct css_set *mg_dst_cset;
316 
317 	/* dead and being drained, ignore for migration */
318 	bool dead;
319 
320 	/* For RCU-protected deletion */
321 	struct rcu_head rcu_head;
322 };
323 
324 struct cgroup_base_stat {
325 	struct task_cputime cputime;
326 
327 #ifdef CONFIG_SCHED_CORE
328 	u64 forceidle_sum;
329 #endif
330 };
331 
332 /*
333  * rstat - cgroup scalable recursive statistics.  Accounting is done
334  * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
335  * hierarchy on reads.
336  *
337  * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
338  * linked into the updated tree.  On the following read, propagation only
339  * considers and consumes the updated tree.  This makes reading O(the
340  * number of descendants which have been active since last read) instead of
341  * O(the total number of descendants).
342  *
343  * This is important because there can be a lot of (draining) cgroups which
344  * aren't active and stat may be read frequently.  The combination can
345  * become very expensive.  By propagating selectively, increasing reading
346  * frequency decreases the cost of each read.
347  *
348  * This struct hosts both the fields which implement the above -
349  * updated_children and updated_next - and the fields which track basic
350  * resource statistics on top of it - bsync, bstat and last_bstat.
351  */
352 struct cgroup_rstat_cpu {
353 	/*
354 	 * ->bsync protects ->bstat.  These are the only fields which get
355 	 * updated in the hot path.
356 	 */
357 	struct u64_stats_sync bsync;
358 	struct cgroup_base_stat bstat;
359 
360 	/*
361 	 * Snapshots at the last reading.  These are used to calculate the
362 	 * deltas to propagate to the global counters.
363 	 */
364 	struct cgroup_base_stat last_bstat;
365 
366 	/*
367 	 * This field is used to record the cumulative per-cpu time of
368 	 * the cgroup and its descendants. Currently it can be read via
369 	 * eBPF/drgn etc, and we are still trying to determine how to
370 	 * expose it in the cgroupfs interface.
371 	 */
372 	struct cgroup_base_stat subtree_bstat;
373 
374 	/*
375 	 * Snapshots at the last reading. These are used to calculate the
376 	 * deltas to propagate to the per-cpu subtree_bstat.
377 	 */
378 	struct cgroup_base_stat last_subtree_bstat;
379 
380 	/*
381 	 * Child cgroups with stat updates on this cpu since the last read
382 	 * are linked on the parent's ->updated_children through
383 	 * ->updated_next.
384 	 *
385 	 * In addition to being more compact, singly-linked list pointing
386 	 * to the cgroup makes it unnecessary for each per-cpu struct to
387 	 * point back to the associated cgroup.
388 	 *
389 	 * Protected by per-cpu cgroup_rstat_cpu_lock.
390 	 */
391 	struct cgroup *updated_children;	/* terminated by self cgroup */
392 	struct cgroup *updated_next;		/* NULL iff not on the list */
393 };
394 
395 struct cgroup_freezer_state {
396 	/* Should the cgroup and its descendants be frozen. */
397 	bool freeze;
398 
399 	/* Should the cgroup actually be frozen? */
400 	int e_freeze;
401 
402 	/* Fields below are protected by css_set_lock */
403 
404 	/* Number of frozen descendant cgroups */
405 	int nr_frozen_descendants;
406 
407 	/*
408 	 * Number of tasks, which are counted as frozen:
409 	 * frozen, SIGSTOPped, and PTRACEd.
410 	 */
411 	int nr_frozen_tasks;
412 };
413 
414 struct cgroup {
415 	/* self css with NULL ->ss, points back to this cgroup */
416 	struct cgroup_subsys_state self;
417 
418 	unsigned long flags;		/* "unsigned long" so bitops work */
419 
420 	/*
421 	 * The depth this cgroup is at.  The root is at depth zero and each
422 	 * step down the hierarchy increments the level.  This along with
423 	 * ancestors[] can determine whether a given cgroup is a
424 	 * descendant of another without traversing the hierarchy.
425 	 */
426 	int level;
427 
428 	/* Maximum allowed descent tree depth */
429 	int max_depth;
430 
431 	/*
432 	 * Keep track of total numbers of visible and dying descent cgroups.
433 	 * Dying cgroups are cgroups which were deleted by a user,
434 	 * but are still existing because someone else is holding a reference.
435 	 * max_descendants is a maximum allowed number of descent cgroups.
436 	 *
437 	 * nr_descendants and nr_dying_descendants are protected
438 	 * by cgroup_mutex and css_set_lock. It's fine to read them holding
439 	 * any of cgroup_mutex and css_set_lock; for writing both locks
440 	 * should be held.
441 	 */
442 	int nr_descendants;
443 	int nr_dying_descendants;
444 	int max_descendants;
445 
446 	/*
447 	 * Each non-empty css_set associated with this cgroup contributes
448 	 * one to nr_populated_csets.  The counter is zero iff this cgroup
449 	 * doesn't have any tasks.
450 	 *
451 	 * All children which have non-zero nr_populated_csets and/or
452 	 * nr_populated_children of their own contribute one to either
453 	 * nr_populated_domain_children or nr_populated_threaded_children
454 	 * depending on their type.  Each counter is zero iff all cgroups
455 	 * of the type in the subtree proper don't have any tasks.
456 	 */
457 	int nr_populated_csets;
458 	int nr_populated_domain_children;
459 	int nr_populated_threaded_children;
460 
461 	int nr_threaded_children;	/* # of live threaded child cgroups */
462 
463 	struct kernfs_node *kn;		/* cgroup kernfs entry */
464 	struct cgroup_file procs_file;	/* handle for "cgroup.procs" */
465 	struct cgroup_file events_file;	/* handle for "cgroup.events" */
466 
467 	/* handles for "{cpu,memory,io,irq}.pressure" */
468 	struct cgroup_file psi_files[NR_PSI_RESOURCES];
469 
470 	/*
471 	 * The bitmask of subsystems enabled on the child cgroups.
472 	 * ->subtree_control is the one configured through
473 	 * "cgroup.subtree_control" while ->subtree_ss_mask is the effective
474 	 * one which may have more subsystems enabled.  Controller knobs
475 	 * are made available iff it's enabled in ->subtree_control.
476 	 */
477 	u16 subtree_control;
478 	u16 subtree_ss_mask;
479 	u16 old_subtree_control;
480 	u16 old_subtree_ss_mask;
481 
482 	/* Private pointers for each registered subsystem */
483 	struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
484 
485 	/*
486 	 * Keep track of total number of dying CSSes at and below this cgroup.
487 	 * Protected by cgroup_mutex.
488 	 */
489 	int nr_dying_subsys[CGROUP_SUBSYS_COUNT];
490 
491 	struct cgroup_root *root;
492 
493 	/*
494 	 * List of cgrp_cset_links pointing at css_sets with tasks in this
495 	 * cgroup.  Protected by css_set_lock.
496 	 */
497 	struct list_head cset_links;
498 
499 	/*
500 	 * On the default hierarchy, a css_set for a cgroup with some
501 	 * susbsys disabled will point to css's which are associated with
502 	 * the closest ancestor which has the subsys enabled.  The
503 	 * following lists all css_sets which point to this cgroup's css
504 	 * for the given subsystem.
505 	 */
506 	struct list_head e_csets[CGROUP_SUBSYS_COUNT];
507 
508 	/*
509 	 * If !threaded, self.  If threaded, it points to the nearest
510 	 * domain ancestor.  Inside a threaded subtree, cgroups are exempt
511 	 * from process granularity and no-internal-task constraint.
512 	 * Domain level resource consumptions which aren't tied to a
513 	 * specific task are charged to the dom_cgrp.
514 	 */
515 	struct cgroup *dom_cgrp;
516 	struct cgroup *old_dom_cgrp;		/* used while enabling threaded */
517 
518 	/* per-cpu recursive resource statistics */
519 	struct cgroup_rstat_cpu __percpu *rstat_cpu;
520 	struct list_head rstat_css_list;
521 
522 	/*
523 	 * Add padding to separate the read mostly rstat_cpu and
524 	 * rstat_css_list into a different cacheline from the following
525 	 * rstat_flush_next and *bstat fields which can have frequent updates.
526 	 */
527 	CACHELINE_PADDING(_pad_);
528 
529 	/*
530 	 * A singly-linked list of cgroup structures to be rstat flushed.
531 	 * This is a scratch field to be used exclusively by
532 	 * cgroup_rstat_flush_locked() and protected by cgroup_rstat_lock.
533 	 */
534 	struct cgroup	*rstat_flush_next;
535 
536 	/* cgroup basic resource statistics */
537 	struct cgroup_base_stat last_bstat;
538 	struct cgroup_base_stat bstat;
539 	struct prev_cputime prev_cputime;	/* for printing out cputime */
540 
541 	/*
542 	 * list of pidlists, up to two for each namespace (one for procs, one
543 	 * for tasks); created on demand.
544 	 */
545 	struct list_head pidlists;
546 	struct mutex pidlist_mutex;
547 
548 	/* used to wait for offlining of csses */
549 	wait_queue_head_t offline_waitq;
550 
551 	/* used to schedule release agent */
552 	struct work_struct release_agent_work;
553 
554 	/* used to track pressure stalls */
555 	struct psi_group *psi;
556 
557 	/* used to store eBPF programs */
558 	struct cgroup_bpf bpf;
559 
560 	/* Used to store internal freezer state */
561 	struct cgroup_freezer_state freezer;
562 
563 #ifdef CONFIG_BPF_SYSCALL
564 	struct bpf_local_storage __rcu  *bpf_cgrp_storage;
565 #endif
566 
567 	/* All ancestors including self */
568 	struct cgroup *ancestors[];
569 };
570 
571 /*
572  * A cgroup_root represents the root of a cgroup hierarchy, and may be
573  * associated with a kernfs_root to form an active hierarchy.  This is
574  * internal to cgroup core.  Don't access directly from controllers.
575  */
576 struct cgroup_root {
577 	struct kernfs_root *kf_root;
578 
579 	/* The bitmask of subsystems attached to this hierarchy */
580 	unsigned int subsys_mask;
581 
582 	/* Unique id for this hierarchy. */
583 	int hierarchy_id;
584 
585 	/* A list running through the active hierarchies */
586 	struct list_head root_list;
587 	struct rcu_head rcu;	/* Must be near the top */
588 
589 	/*
590 	 * The root cgroup. The containing cgroup_root will be destroyed on its
591 	 * release. cgrp->ancestors[0] will be used overflowing into the
592 	 * following field. cgrp_ancestor_storage must immediately follow.
593 	 */
594 	struct cgroup cgrp;
595 
596 	/* must follow cgrp for cgrp->ancestors[0], see above */
597 	struct cgroup *cgrp_ancestor_storage;
598 
599 	/* Number of cgroups in the hierarchy, used only for /proc/cgroups */
600 	atomic_t nr_cgrps;
601 
602 	/* Hierarchy-specific flags */
603 	unsigned int flags;
604 
605 	/* The path to use for release notifications. */
606 	char release_agent_path[PATH_MAX];
607 
608 	/* The name for this hierarchy - may be empty */
609 	char name[MAX_CGROUP_ROOT_NAMELEN];
610 };
611 
612 /*
613  * struct cftype: handler definitions for cgroup control files
614  *
615  * When reading/writing to a file:
616  *	- the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
617  *	- the 'cftype' of the file is file->f_path.dentry->d_fsdata
618  */
619 struct cftype {
620 	/*
621 	 * By convention, the name should begin with the name of the
622 	 * subsystem, followed by a period.  Zero length string indicates
623 	 * end of cftype array.
624 	 */
625 	char name[MAX_CFTYPE_NAME];
626 	unsigned long private;
627 
628 	/*
629 	 * The maximum length of string, excluding trailing nul, that can
630 	 * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
631 	 */
632 	size_t max_write_len;
633 
634 	/* CFTYPE_* flags */
635 	unsigned int flags;
636 
637 	/*
638 	 * If non-zero, should contain the offset from the start of css to
639 	 * a struct cgroup_file field.  cgroup will record the handle of
640 	 * the created file into it.  The recorded handle can be used as
641 	 * long as the containing css remains accessible.
642 	 */
643 	unsigned int file_offset;
644 
645 	/*
646 	 * Fields used for internal bookkeeping.  Initialized automatically
647 	 * during registration.
648 	 */
649 	struct cgroup_subsys *ss;	/* NULL for cgroup core files */
650 	struct list_head node;		/* anchored at ss->cfts */
651 	struct kernfs_ops *kf_ops;
652 
653 	int (*open)(struct kernfs_open_file *of);
654 	void (*release)(struct kernfs_open_file *of);
655 
656 	/*
657 	 * read_u64() is a shortcut for the common case of returning a
658 	 * single integer. Use it in place of read()
659 	 */
660 	u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
661 	/*
662 	 * read_s64() is a signed version of read_u64()
663 	 */
664 	s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
665 
666 	/* generic seq_file read interface */
667 	int (*seq_show)(struct seq_file *sf, void *v);
668 
669 	/* optional ops, implement all or none */
670 	void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
671 	void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
672 	void (*seq_stop)(struct seq_file *sf, void *v);
673 
674 	/*
675 	 * write_u64() is a shortcut for the common case of accepting
676 	 * a single integer (as parsed by simple_strtoull) from
677 	 * userspace. Use in place of write(); return 0 or error.
678 	 */
679 	int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
680 			 u64 val);
681 	/*
682 	 * write_s64() is a signed version of write_u64()
683 	 */
684 	int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
685 			 s64 val);
686 
687 	/*
688 	 * write() is the generic write callback which maps directly to
689 	 * kernfs write operation and overrides all other operations.
690 	 * Maximum write size is determined by ->max_write_len.  Use
691 	 * of_css/cft() to access the associated css and cft.
692 	 */
693 	ssize_t (*write)(struct kernfs_open_file *of,
694 			 char *buf, size_t nbytes, loff_t off);
695 
696 	__poll_t (*poll)(struct kernfs_open_file *of,
697 			 struct poll_table_struct *pt);
698 
699 	struct lock_class_key	lockdep_key;
700 };
701 
702 /*
703  * Control Group subsystem type.
704  * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
705  */
706 struct cgroup_subsys {
707 	struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
708 	int (*css_online)(struct cgroup_subsys_state *css);
709 	void (*css_offline)(struct cgroup_subsys_state *css);
710 	void (*css_released)(struct cgroup_subsys_state *css);
711 	void (*css_free)(struct cgroup_subsys_state *css);
712 	void (*css_reset)(struct cgroup_subsys_state *css);
713 	void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
714 	int (*css_extra_stat_show)(struct seq_file *seq,
715 				   struct cgroup_subsys_state *css);
716 	int (*css_local_stat_show)(struct seq_file *seq,
717 				   struct cgroup_subsys_state *css);
718 
719 	int (*can_attach)(struct cgroup_taskset *tset);
720 	void (*cancel_attach)(struct cgroup_taskset *tset);
721 	void (*attach)(struct cgroup_taskset *tset);
722 	void (*post_attach)(void);
723 	int (*can_fork)(struct task_struct *task,
724 			struct css_set *cset);
725 	void (*cancel_fork)(struct task_struct *task, struct css_set *cset);
726 	void (*fork)(struct task_struct *task);
727 	void (*exit)(struct task_struct *task);
728 	void (*release)(struct task_struct *task);
729 	void (*bind)(struct cgroup_subsys_state *root_css);
730 
731 	bool early_init:1;
732 
733 	/*
734 	 * If %true, the controller, on the default hierarchy, doesn't show
735 	 * up in "cgroup.controllers" or "cgroup.subtree_control", is
736 	 * implicitly enabled on all cgroups on the default hierarchy, and
737 	 * bypasses the "no internal process" constraint.  This is for
738 	 * utility type controllers which is transparent to userland.
739 	 *
740 	 * An implicit controller can be stolen from the default hierarchy
741 	 * anytime and thus must be okay with offline csses from previous
742 	 * hierarchies coexisting with csses for the current one.
743 	 */
744 	bool implicit_on_dfl:1;
745 
746 	/*
747 	 * If %true, the controller, supports threaded mode on the default
748 	 * hierarchy.  In a threaded subtree, both process granularity and
749 	 * no-internal-process constraint are ignored and a threaded
750 	 * controllers should be able to handle that.
751 	 *
752 	 * Note that as an implicit controller is automatically enabled on
753 	 * all cgroups on the default hierarchy, it should also be
754 	 * threaded.  implicit && !threaded is not supported.
755 	 */
756 	bool threaded:1;
757 
758 	/* the following two fields are initialized automatically during boot */
759 	int id;
760 	const char *name;
761 
762 	/* optional, initialized automatically during boot if not set */
763 	const char *legacy_name;
764 
765 	/* link to parent, protected by cgroup_lock() */
766 	struct cgroup_root *root;
767 
768 	/* idr for css->id */
769 	struct idr css_idr;
770 
771 	/*
772 	 * List of cftypes.  Each entry is the first entry of an array
773 	 * terminated by zero length name.
774 	 */
775 	struct list_head cfts;
776 
777 	/*
778 	 * Base cftypes which are automatically registered.  The two can
779 	 * point to the same array.
780 	 */
781 	struct cftype *dfl_cftypes;	/* for the default hierarchy */
782 	struct cftype *legacy_cftypes;	/* for the legacy hierarchies */
783 
784 	/*
785 	 * A subsystem may depend on other subsystems.  When such subsystem
786 	 * is enabled on a cgroup, the depended-upon subsystems are enabled
787 	 * together if available.  Subsystems enabled due to dependency are
788 	 * not visible to userland until explicitly enabled.  The following
789 	 * specifies the mask of subsystems that this one depends on.
790 	 */
791 	unsigned int depends_on;
792 };
793 
794 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
795 
796 struct cgroup_of_peak {
797 	unsigned long		value;
798 	struct list_head	list;
799 };
800 
801 /**
802  * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
803  * @tsk: target task
804  *
805  * Allows cgroup operations to synchronize against threadgroup changes
806  * using a percpu_rw_semaphore.
807  */
cgroup_threadgroup_change_begin(struct task_struct * tsk)808 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
809 {
810 	percpu_down_read(&cgroup_threadgroup_rwsem);
811 }
812 
813 /**
814  * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
815  * @tsk: target task
816  *
817  * Counterpart of cgroup_threadcgroup_change_begin().
818  */
cgroup_threadgroup_change_end(struct task_struct * tsk)819 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
820 {
821 	percpu_up_read(&cgroup_threadgroup_rwsem);
822 }
823 
824 #else	/* CONFIG_CGROUPS */
825 
826 #define CGROUP_SUBSYS_COUNT 0
827 
cgroup_threadgroup_change_begin(struct task_struct * tsk)828 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
829 {
830 	might_sleep();
831 }
832 
cgroup_threadgroup_change_end(struct task_struct * tsk)833 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
834 
835 #endif	/* CONFIG_CGROUPS */
836 
837 #ifdef CONFIG_SOCK_CGROUP_DATA
838 
839 /*
840  * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
841  * per-socket cgroup information except for memcg association.
842  *
843  * On legacy hierarchies, net_prio and net_cls controllers directly
844  * set attributes on each sock which can then be tested by the network
845  * layer. On the default hierarchy, each sock is associated with the
846  * cgroup it was created in and the networking layer can match the
847  * cgroup directly.
848  */
849 struct sock_cgroup_data {
850 	struct cgroup	*cgroup; /* v2 */
851 #ifdef CONFIG_CGROUP_NET_CLASSID
852 	u32		classid; /* v1 */
853 #endif
854 #ifdef CONFIG_CGROUP_NET_PRIO
855 	u16		prioidx; /* v1 */
856 #endif
857 };
858 
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)859 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
860 {
861 #ifdef CONFIG_CGROUP_NET_PRIO
862 	return READ_ONCE(skcd->prioidx);
863 #else
864 	return 1;
865 #endif
866 }
867 
sock_cgroup_classid(const struct sock_cgroup_data * skcd)868 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
869 {
870 #ifdef CONFIG_CGROUP_NET_CLASSID
871 	return READ_ONCE(skcd->classid);
872 #else
873 	return 0;
874 #endif
875 }
876 
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)877 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
878 					   u16 prioidx)
879 {
880 #ifdef CONFIG_CGROUP_NET_PRIO
881 	WRITE_ONCE(skcd->prioidx, prioidx);
882 #endif
883 }
884 
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)885 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
886 					   u32 classid)
887 {
888 #ifdef CONFIG_CGROUP_NET_CLASSID
889 	WRITE_ONCE(skcd->classid, classid);
890 #endif
891 }
892 
893 #else	/* CONFIG_SOCK_CGROUP_DATA */
894 
895 struct sock_cgroup_data {
896 };
897 
898 #endif	/* CONFIG_SOCK_CGROUP_DATA */
899 
900 #endif	/* _LINUX_CGROUP_DEFS_H */
901