1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/arc.h>
54 #include <sys/ddt.h>
55 #include "zfs_prop.h"
56 #include <sys/zfeature.h>
57 
58 #if defined(__FreeBSD__) && defined(_KERNEL)
59 #include <sys/types.h>
60 #include <sys/sysctl.h>
61 #endif
62 
63 #if defined( __NetBSD__) && defined(_KERNEL)
64 #include <sys/device.h>
65 #endif
66 
67 /*
68  * SPA locking
69  *
70  * There are four basic locks for managing spa_t structures:
71  *
72  * spa_namespace_lock (global mutex)
73  *
74  *	This lock must be acquired to do any of the following:
75  *
76  *		- Lookup a spa_t by name
77  *		- Add or remove a spa_t from the namespace
78  *		- Increase spa_refcount from non-zero
79  *		- Check if spa_refcount is zero
80  *		- Rename a spa_t
81  *		- add/remove/attach/detach devices
82  *		- Held for the duration of create/destroy/import/export
83  *
84  *	It does not need to handle recursion.  A create or destroy may
85  *	reference objects (files or zvols) in other pools, but by
86  *	definition they must have an existing reference, and will never need
87  *	to lookup a spa_t by name.
88  *
89  * spa_refcount (per-spa refcount_t protected by mutex)
90  *
91  *	This reference count keep track of any active users of the spa_t.  The
92  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
93  *	the refcount is never really 'zero' - opening a pool implicitly keeps
94  *	some references in the DMU.  Internally we check against spa_minref, but
95  *	present the image of a zero/non-zero value to consumers.
96  *
97  * spa_config_lock[] (per-spa array of rwlocks)
98  *
99  *	This protects the spa_t from config changes, and must be held in
100  *	the following circumstances:
101  *
102  *		- RW_READER to perform I/O to the spa
103  *		- RW_WRITER to change the vdev config
104  *
105  * The locking order is fairly straightforward:
106  *
107  *		spa_namespace_lock	->	spa_refcount
108  *
109  *	The namespace lock must be acquired to increase the refcount from 0
110  *	or to check if it is zero.
111  *
112  *		spa_refcount		->	spa_config_lock[]
113  *
114  *	There must be at least one valid reference on the spa_t to acquire
115  *	the config lock.
116  *
117  *		spa_namespace_lock	->	spa_config_lock[]
118  *
119  *	The namespace lock must always be taken before the config lock.
120  *
121  *
122  * The spa_namespace_lock can be acquired directly and is globally visible.
123  *
124  * The namespace is manipulated using the following functions, all of which
125  * require the spa_namespace_lock to be held.
126  *
127  *	spa_lookup()		Lookup a spa_t by name.
128  *
129  *	spa_add()		Create a new spa_t in the namespace.
130  *
131  *	spa_remove()		Remove a spa_t from the namespace.  This also
132  *				frees up any memory associated with the spa_t.
133  *
134  *	spa_next()		Returns the next spa_t in the system, or the
135  *				first if NULL is passed.
136  *
137  *	spa_evict_all()		Shutdown and remove all spa_t structures in
138  *				the system.
139  *
140  *	spa_guid_exists()	Determine whether a pool/device guid exists.
141  *
142  * The spa_refcount is manipulated using the following functions:
143  *
144  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
145  *				called with spa_namespace_lock held if the
146  *				refcount is currently zero.
147  *
148  *	spa_close()		Remove a reference from the spa_t.  This will
149  *				not free the spa_t or remove it from the
150  *				namespace.  No locking is required.
151  *
152  *	spa_refcount_zero()	Returns true if the refcount is currently
153  *				zero.  Must be called with spa_namespace_lock
154  *				held.
155  *
156  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
159  *
160  * To read the configuration, it suffices to hold one of these locks as reader.
161  * To modify the configuration, you must hold all locks as writer.  To modify
162  * vdev state without altering the vdev tree's topology (e.g. online/offline),
163  * you must hold SCL_STATE and SCL_ZIO as writer.
164  *
165  * We use these distinct config locks to avoid recursive lock entry.
166  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167  * block allocations (SCL_ALLOC), which may require reading space maps
168  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
169  *
170  * The spa config locks cannot be normal rwlocks because we need the
171  * ability to hand off ownership.  For example, SCL_ZIO is acquired
172  * by the issuing thread and later released by an interrupt thread.
173  * They do, however, obey the usual write-wanted semantics to prevent
174  * writer (i.e. system administrator) starvation.
175  *
176  * The lock acquisition rules are as follows:
177  *
178  * SCL_CONFIG
179  *	Protects changes to the vdev tree topology, such as vdev
180  *	add/remove/attach/detach.  Protects the dirty config list
181  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
182  *
183  * SCL_STATE
184  *	Protects changes to pool state and vdev state, such as vdev
185  *	online/offline/fault/degrade/clear.  Protects the dirty state list
186  *	(spa_state_dirty_list) and global pool state (spa_state).
187  *
188  * SCL_ALLOC
189  *	Protects changes to metaslab groups and classes.
190  *	Held as reader by metaslab_alloc() and metaslab_claim().
191  *
192  * SCL_ZIO
193  *	Held by bp-level zios (those which have no io_vd upon entry)
194  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
195  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
196  *
197  * SCL_FREE
198  *	Protects changes to metaslab groups and classes.
199  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
200  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201  *	blocks in zio_done() while another i/o that holds either
202  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
203  *
204  * SCL_VDEV
205  *	Held as reader to prevent changes to the vdev tree during trivial
206  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
207  *	other locks, and lower than all of them, to ensure that it's safe
208  *	to acquire regardless of caller context.
209  *
210  * In addition, the following rules apply:
211  *
212  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
213  *	The lock ordering is SCL_CONFIG > spa_props_lock.
214  *
215  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
216  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217  *	or zio_write_phys() -- the caller must ensure that the config cannot
218  *	cannot change in the interim, and that the vdev cannot be reopened.
219  *	SCL_STATE as reader suffices for both.
220  *
221  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
222  *
223  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
224  *				for writing.
225  *
226  *	spa_vdev_exit()		Release the config lock, wait for all I/O
227  *				to complete, sync the updated configs to the
228  *				cache, and release the namespace lock.
229  *
230  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
233  *
234  * spa_rename() is also implemented within this file since it requires
235  * manipulation of the namespace.
236  */
237 
238 static avl_tree_t spa_namespace_avl;
239 kmutex_t spa_namespace_lock;
240 static kcondvar_t spa_namespace_cv;
241 static int spa_active_count;
242 int spa_max_replication_override = SPA_DVAS_PER_BP;
243 
244 static kmutex_t spa_spare_lock;
245 static avl_tree_t spa_spare_avl;
246 static kmutex_t spa_l2cache_lock;
247 static avl_tree_t spa_l2cache_avl;
248 
249 kmem_cache_t *spa_buffer_pool;
250 int spa_mode_global;
251 
252 #ifdef ZFS_DEBUG
253 /* Everything except dprintf and spa is on by default in debug builds */
254 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
255 #else
256 int zfs_flags = 0;
257 #endif
258 
259 /*
260  * zfs_recover can be set to nonzero to attempt to recover from
261  * otherwise-fatal errors, typically caused by on-disk corruption.  When
262  * set, calls to zfs_panic_recover() will turn into warning messages.
263  * This should only be used as a last resort, as it typically results
264  * in leaked space, or worse.
265  */
266 boolean_t zfs_recover = B_FALSE;
267 
268 /*
269  * If destroy encounters an EIO while reading metadata (e.g. indirect
270  * blocks), space referenced by the missing metadata can not be freed.
271  * Normally this causes the background destroy to become "stalled", as
272  * it is unable to make forward progress.  While in this stalled state,
273  * all remaining space to free from the error-encountering filesystem is
274  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
275  * permanently leak the space from indirect blocks that can not be read,
276  * and continue to free everything else that it can.
277  *
278  * The default, "stalling" behavior is useful if the storage partially
279  * fails (i.e. some but not all i/os fail), and then later recovers.  In
280  * this case, we will be able to continue pool operations while it is
281  * partially failed, and when it recovers, we can continue to free the
282  * space, with no leaks.  However, note that this case is actually
283  * fairly rare.
284  *
285  * Typically pools either (a) fail completely (but perhaps temporarily,
286  * e.g. a top-level vdev going offline), or (b) have localized,
287  * permanent errors (e.g. disk returns the wrong data due to bit flip or
288  * firmware bug).  In case (a), this setting does not matter because the
289  * pool will be suspended and the sync thread will not be able to make
290  * forward progress regardless.  In case (b), because the error is
291  * permanent, the best we can do is leak the minimum amount of space,
292  * which is what setting this flag will do.  Therefore, it is reasonable
293  * for this flag to normally be set, but we chose the more conservative
294  * approach of not setting it, so that there is no possibility of
295  * leaking space in the "partial temporary" failure case.
296  */
297 boolean_t zfs_free_leak_on_eio = B_FALSE;
298 
299 /*
300  * Expiration time in milliseconds. This value has two meanings. First it is
301  * used to determine when the spa_deadman() logic should fire. By default the
302  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
303  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
305  * in a system panic.
306  */
307 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
308 
309 /*
310  * Check time in milliseconds. This defines the frequency at which we check
311  * for hung I/O.
312  */
313 uint64_t zfs_deadman_checktime_ms = 5000ULL;
314 
315 /*
316  * Default value of -1 for zfs_deadman_enabled is resolved in
317  * zfs_deadman_init()
318  */
319 int zfs_deadman_enabled = -1;
320 
321 /*
322  * The worst case is single-sector max-parity RAID-Z blocks, in which
323  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
324  * times the size; so just assume that.  Add to this the fact that
325  * we can have up to 3 DVAs per bp, and one more factor of 2 because
326  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
327  * the worst case is:
328  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
329  */
330 int spa_asize_inflation = 24;
331 
332 #if defined(__FreeBSD__) && defined(_KERNEL)
333 SYSCTL_DECL(_vfs_zfs);
334 SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
335     "Try to recover from otherwise-fatal errors.");
336 
337 static int
sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)338 sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
339 {
340 	int err, val;
341 
342 	val = zfs_flags;
343 	err = sysctl_handle_int(oidp, &val, 0, req);
344 	if (err != 0 || req->newptr == NULL)
345 		return (err);
346 
347 	/*
348 	 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
349 	 * arc buffers in the system have the necessary additional
350 	 * checksum data.  However, it is safe to disable at any
351 	 * time.
352 	 */
353 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
354 		val &= ~ZFS_DEBUG_MODIFY;
355 	zfs_flags = val;
356 
357 	return (0);
358 }
359 
360 SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
361     CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
362     sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
363 
364 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
365     &zfs_deadman_synctime_ms, 0,
366     "Stalled ZFS I/O expiration time in milliseconds");
367 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
368     &zfs_deadman_checktime_ms, 0,
369     "Period of checks for stalled ZFS I/O in milliseconds");
370 SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
371     &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
372 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
373     &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
374 #endif
375 
376 
377 #ifdef __FreeBSD__
378 #ifdef _KERNEL
379 static void
zfs_deadman_init(void)380 zfs_deadman_init(void)
381 {
382 	/*
383 	 * If we are not i386 or amd64 or in a virtual machine,
384 	 * disable ZFS deadman thread by default
385 	 */
386 	if (zfs_deadman_enabled == -1) {
387 #if defined(__amd64__) || defined(__i386__)
388 		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
389 #else
390 		zfs_deadman_enabled = 0;
391 #endif
392 	}
393 }
394 #endif	/* _KERNEL */
395 #endif	/* __FreeBSD__ */
396 
397 #ifdef __NetBSD__
398 #ifdef _KERNEL
399 static struct workqueue *spa_workqueue;
400 
401 static void spa_deadman(void *arg);
402 
403 static void
spa_deadman_wq(struct work * wk,void * arg)404 spa_deadman_wq(struct work *wk, void *arg)
405 {
406 	spa_t *spa = container_of(wk, struct spa, spa_deadman_work);
407 
408 	spa_deadman(spa);
409 }
410 
411 static void
zfs_deadman_init(void)412 zfs_deadman_init(void)
413 {
414 	int error;
415 
416 	error = workqueue_create(&spa_workqueue, "spa_deadman",
417 	    spa_deadman_wq, NULL, PRI_NONE, IPL_NONE, WQ_MPSAFE);
418 	VERIFY0(error);
419 }
420 
421 static void
zfs_deadman_fini(void)422 zfs_deadman_fini(void)
423 {
424 	workqueue_destroy(spa_workqueue);
425 	spa_workqueue = NULL;
426 }
427 #else /* !_KERNEL */
428 #define zfs_deadman_init() /* nothing */
429 #define zfs_deadman_fini() /* nothing */
430 #endif /* !_KERNEL */
431 #endif /* __NetBSD__ */
432 
433 /*
434  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
435  * the pool to be consumed.  This ensures that we don't run the pool
436  * completely out of space, due to unaccounted changes (e.g. to the MOS).
437  * It also limits the worst-case time to allocate space.  If we have
438  * less than this amount of free space, most ZPL operations (e.g. write,
439  * create) will return ENOSPC.
440  *
441  * Certain operations (e.g. file removal, most administrative actions) can
442  * use half the slop space.  They will only return ENOSPC if less than half
443  * the slop space is free.  Typically, once the pool has less than the slop
444  * space free, the user will use these operations to free up space in the pool.
445  * These are the operations that call dsl_pool_adjustedsize() with the netfree
446  * argument set to TRUE.
447  *
448  * A very restricted set of operations are always permitted, regardless of
449  * the amount of free space.  These are the operations that call
450  * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
451  * operations result in a net increase in the amount of space used,
452  * it is possible to run the pool completely out of space, causing it to
453  * be permanently read-only.
454  *
455  * Note that on very small pools, the slop space will be larger than
456  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
457  * but we never allow it to be more than half the pool size.
458  *
459  * See also the comments in zfs_space_check_t.
460  */
461 int spa_slop_shift = 5;
462 SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
463     &spa_slop_shift, 0,
464     "Shift value of reserved space (1/(2^spa_slop_shift)).");
465 uint64_t spa_min_slop = 128 * 1024 * 1024;
466 SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, spa_min_slop, CTLFLAG_RWTUN,
467     &spa_min_slop, 0,
468     "Minimal value of reserved space");
469 
470 /*
471  * ==========================================================================
472  * SPA config locking
473  * ==========================================================================
474  */
475 static void
spa_config_lock_init(spa_t * spa)476 spa_config_lock_init(spa_t *spa)
477 {
478 	for (int i = 0; i < SCL_LOCKS; i++) {
479 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
480 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
481 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
482 		refcount_create_untracked(&scl->scl_count);
483 		scl->scl_writer = NULL;
484 		scl->scl_write_wanted = 0;
485 	}
486 }
487 
488 static void
spa_config_lock_destroy(spa_t * spa)489 spa_config_lock_destroy(spa_t *spa)
490 {
491 	for (int i = 0; i < SCL_LOCKS; i++) {
492 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
493 		mutex_destroy(&scl->scl_lock);
494 		cv_destroy(&scl->scl_cv);
495 		refcount_destroy(&scl->scl_count);
496 		ASSERT(scl->scl_writer == NULL);
497 		ASSERT(scl->scl_write_wanted == 0);
498 	}
499 }
500 
501 int
spa_config_tryenter(spa_t * spa,int locks,void * tag,krw_t rw)502 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
503 {
504 	for (int i = 0; i < SCL_LOCKS; i++) {
505 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
506 		if (!(locks & (1 << i)))
507 			continue;
508 		mutex_enter(&scl->scl_lock);
509 		if (rw == RW_READER) {
510 			if (scl->scl_writer || scl->scl_write_wanted) {
511 				mutex_exit(&scl->scl_lock);
512 				spa_config_exit(spa, locks & ((1 << i) - 1),
513 				    tag);
514 				return (0);
515 			}
516 		} else {
517 			ASSERT(scl->scl_writer != curthread);
518 			if (!refcount_is_zero(&scl->scl_count)) {
519 				mutex_exit(&scl->scl_lock);
520 				spa_config_exit(spa, locks & ((1 << i) - 1),
521 				    tag);
522 				return (0);
523 			}
524 			scl->scl_writer = curthread;
525 		}
526 		(void) refcount_add(&scl->scl_count, tag);
527 		mutex_exit(&scl->scl_lock);
528 	}
529 	return (1);
530 }
531 
532 void
spa_config_enter(spa_t * spa,int locks,void * tag,krw_t rw)533 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
534 {
535 	int wlocks_held = 0;
536 
537 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
538 
539 	for (int i = 0; i < SCL_LOCKS; i++) {
540 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
541 		if (scl->scl_writer == curthread)
542 			wlocks_held |= (1 << i);
543 		if (!(locks & (1 << i)))
544 			continue;
545 		mutex_enter(&scl->scl_lock);
546 		if (rw == RW_READER) {
547 			while (scl->scl_writer || scl->scl_write_wanted) {
548 				cv_wait(&scl->scl_cv, &scl->scl_lock);
549 			}
550 		} else {
551 			ASSERT(scl->scl_writer != curthread);
552 			while (!refcount_is_zero(&scl->scl_count)) {
553 				scl->scl_write_wanted++;
554 				cv_wait(&scl->scl_cv, &scl->scl_lock);
555 				scl->scl_write_wanted--;
556 			}
557 			scl->scl_writer = curthread;
558 		}
559 		(void) refcount_add(&scl->scl_count, tag);
560 		mutex_exit(&scl->scl_lock);
561 	}
562 	ASSERT(wlocks_held <= locks);
563 }
564 
565 void
spa_config_exit(spa_t * spa,int locks,void * tag)566 spa_config_exit(spa_t *spa, int locks, void *tag)
567 {
568 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
569 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
570 		if (!(locks & (1 << i)))
571 			continue;
572 		mutex_enter(&scl->scl_lock);
573 		ASSERT(!refcount_is_zero(&scl->scl_count));
574 		if (refcount_remove(&scl->scl_count, tag) == 0) {
575 			ASSERT(scl->scl_writer == NULL ||
576 			    scl->scl_writer == curthread);
577 			scl->scl_writer = NULL;	/* OK in either case */
578 			cv_broadcast(&scl->scl_cv);
579 		}
580 		mutex_exit(&scl->scl_lock);
581 	}
582 }
583 
584 int
spa_config_held(spa_t * spa,int locks,krw_t rw)585 spa_config_held(spa_t *spa, int locks, krw_t rw)
586 {
587 	int locks_held = 0;
588 
589 	for (int i = 0; i < SCL_LOCKS; i++) {
590 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
591 		if (!(locks & (1 << i)))
592 			continue;
593 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
594 		    (rw == RW_WRITER && scl->scl_writer == curthread))
595 			locks_held |= 1 << i;
596 	}
597 
598 	return (locks_held);
599 }
600 
601 /*
602  * ==========================================================================
603  * SPA namespace functions
604  * ==========================================================================
605  */
606 
607 /*
608  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
609  * Returns NULL if no matching spa_t is found.
610  */
611 spa_t *
spa_lookup(const char * name)612 spa_lookup(const char *name)
613 {
614 	static spa_t search;	/* spa_t is large; don't allocate on stack */
615 	spa_t *spa;
616 	avl_index_t where;
617 	char *cp;
618 
619 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
620 
621 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
622 
623 	/*
624 	 * If it's a full dataset name, figure out the pool name and
625 	 * just use that.
626 	 */
627 	cp = strpbrk(search.spa_name, "/@#");
628 	if (cp != NULL)
629 		*cp = '\0';
630 
631 	spa = avl_find(&spa_namespace_avl, &search, &where);
632 
633 	return (spa);
634 }
635 
636 /*
637  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
638  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
639  * looking for potentially hung I/Os.
640  */
641 static void
spa_deadman(void * arg)642 spa_deadman(void *arg)
643 {
644 	spa_t *spa = arg;
645 
646 	/*
647 	 * Disable the deadman timer if the pool is suspended.
648 	 */
649 	if (spa_suspended(spa)) {
650 #ifdef illumos
651 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
652 #else
653 		/* Nothing.  just don't schedule any future callouts. */
654 #endif
655 		return;
656 	}
657 
658 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
659 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
660 	    ++spa->spa_deadman_calls);
661 	if (zfs_deadman_enabled)
662 		vdev_deadman(spa->spa_root_vdev);
663 #ifndef illumos
664 #ifdef _KERNEL
665 	callout_schedule(&spa->spa_deadman_cycid,
666 	    hz * zfs_deadman_checktime_ms / MILLISEC);
667 #endif
668 #endif
669 }
670 
671 #ifdef _KERNEL
672 static void
spa_deadman_timeout(void * arg)673 spa_deadman_timeout(void *arg)
674 {
675 	spa_t *spa = arg;
676 
677 #ifdef __FreeBSD__
678 	taskqueue_enqueue(taskqueue_thread, &spa->spa_deadman_task);
679 #endif
680 #ifdef __NetBSD__
681 	workqueue_enqueue(spa_workqueue, &spa->spa_deadman_work, NULL);
682 #endif
683 }
684 #endif /* _KERNEL */
685 
686 /*
687  * Create an uninitialized spa_t with the given name.  Requires
688  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
689  * exist by calling spa_lookup() first.
690  */
691 spa_t *
spa_add(const char * name,nvlist_t * config,const char * altroot)692 spa_add(const char *name, nvlist_t *config, const char *altroot)
693 {
694 	spa_t *spa;
695 	spa_config_dirent_t *dp;
696 #ifndef __FreeBSD__
697 	cyc_handler_t hdlr;
698 	cyc_time_t when;
699 #endif
700 
701 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
702 
703 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
704 
705 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
706 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
707 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
708 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
709 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
710 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
711 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
712 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
713 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
714 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
715 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
716 	mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
717 
718 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
719 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
720 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
721 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
722 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
723 
724 	for (int t = 0; t < TXG_SIZE; t++)
725 		bplist_create(&spa->spa_free_bplist[t]);
726 
727 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
728 	spa->spa_state = POOL_STATE_UNINITIALIZED;
729 	spa->spa_freeze_txg = UINT64_MAX;
730 	spa->spa_final_txg = UINT64_MAX;
731 	spa->spa_load_max_txg = UINT64_MAX;
732 	spa->spa_proc = &p0;
733 	spa->spa_proc_state = SPA_PROC_NONE;
734 
735 #ifndef __FreeBSD__
736 	hdlr.cyh_func = spa_deadman;
737 	hdlr.cyh_arg = spa;
738 	hdlr.cyh_level = CY_LOW_LEVEL;
739 #endif
740 
741 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
742 
743 #ifdef illumos
744 	/*
745 	 * This determines how often we need to check for hung I/Os after
746 	 * the cyclic has already fired. Since checking for hung I/Os is
747 	 * an expensive operation we don't want to check too frequently.
748 	 * Instead wait for 5 seconds before checking again.
749 	 */
750 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
751 	when.cyt_when = CY_INFINITY;
752 	mutex_enter(&cpu_lock);
753 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
754 	mutex_exit(&cpu_lock);
755 #endif
756 #ifdef __FreeBSD__
757 #ifdef _KERNEL
758 	/*
759 	 * callout(9) does not provide a way to initialize a callout with
760 	 * a function and an argument, so we use callout_reset() to schedule
761 	 * the callout in the very distant future.  Even if that event ever
762 	 * fires, it should be okayas we won't have any active zio-s.
763 	 * But normally spa_sync() will reschedule the callout with a proper
764 	 * timeout.
765 	 * callout(9) does not allow the callback function to sleep but
766 	 * vdev_deadman() needs to acquire vq_lock and illumos mutexes are
767 	 * emulated using sx(9).  For this reason spa_deadman_timeout()
768 	 * will schedule spa_deadman() as task on a taskqueue that allows
769 	 * sleeping.
770 	 */
771 	TASK_INIT(&spa->spa_deadman_task, 0, spa_deadman, spa);
772 	callout_init(&spa->spa_deadman_cycid, 1);
773 	callout_reset_sbt(&spa->spa_deadman_cycid, SBT_MAX, 0,
774 	    spa_deadman_timeout, spa, 0);
775 #endif
776 #endif
777 #ifdef __NetBSD__
778 #ifdef _KERNEL
779 	callout_init(&spa->spa_deadman_cycid, 0);
780 	callout_setfunc(&spa->spa_deadman_cycid, spa_deadman_timeout, spa);
781 #endif
782 #endif
783 
784 	refcount_create(&spa->spa_refcount);
785 	spa_config_lock_init(spa);
786 
787 	avl_add(&spa_namespace_avl, spa);
788 
789 	/*
790 	 * Set the alternate root, if there is one.
791 	 */
792 	if (altroot) {
793 		spa->spa_root = spa_strdup(altroot);
794 		spa_active_count++;
795 	}
796 
797 	avl_create(&spa->spa_alloc_tree, zio_timestamp_compare,
798 	    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
799 
800 	/*
801 	 * Every pool starts with the default cachefile
802 	 */
803 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
804 	    offsetof(spa_config_dirent_t, scd_link));
805 
806 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
807 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
808 	list_insert_head(&spa->spa_config_list, dp);
809 
810 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
811 	    KM_SLEEP) == 0);
812 
813 	if (config != NULL) {
814 		nvlist_t *features;
815 
816 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
817 		    &features) == 0) {
818 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
819 			    0) == 0);
820 		}
821 
822 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
823 	}
824 
825 	if (spa->spa_label_features == NULL) {
826 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
827 		    KM_SLEEP) == 0);
828 	}
829 
830 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
831 
832 	spa->spa_min_ashift = INT_MAX;
833 	spa->spa_max_ashift = 0;
834 
835 	/*
836 	 * As a pool is being created, treat all features as disabled by
837 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
838 	 * refcount cache.
839 	 */
840 	for (int i = 0; i < SPA_FEATURES; i++) {
841 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
842 	}
843 
844 	return (spa);
845 }
846 
847 /*
848  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
849  * spa_namespace_lock.  This is called only after the spa_t has been closed and
850  * deactivated.
851  */
852 void
spa_remove(spa_t * spa)853 spa_remove(spa_t *spa)
854 {
855 	spa_config_dirent_t *dp;
856 
857 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
858 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
859 	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
860 
861 	nvlist_free(spa->spa_config_splitting);
862 
863 	avl_remove(&spa_namespace_avl, spa);
864 	cv_broadcast(&spa_namespace_cv);
865 
866 	if (spa->spa_root) {
867 		spa_strfree(spa->spa_root);
868 		spa_active_count--;
869 	}
870 
871 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
872 		list_remove(&spa->spa_config_list, dp);
873 		if (dp->scd_path != NULL)
874 			spa_strfree(dp->scd_path);
875 		kmem_free(dp, sizeof (spa_config_dirent_t));
876 	}
877 
878 	avl_destroy(&spa->spa_alloc_tree);
879 	list_destroy(&spa->spa_config_list);
880 
881 	nvlist_free(spa->spa_label_features);
882 	nvlist_free(spa->spa_load_info);
883 	spa_config_set(spa, NULL);
884 
885 #ifdef illumos
886 	mutex_enter(&cpu_lock);
887 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
888 		cyclic_remove(spa->spa_deadman_cycid);
889 	mutex_exit(&cpu_lock);
890 	spa->spa_deadman_cycid = CYCLIC_NONE;
891 #endif /* !illumos */
892 #ifdef __FreeBSD__
893 #ifdef _KERNEL
894 	callout_drain(&spa->spa_deadman_cycid);
895 	taskqueue_drain(taskqueue_thread, &spa->spa_deadman_task);
896 #endif
897 #endif
898 #ifdef __NetBSD__
899 #ifdef _KERNEL
900 	callout_drain(&spa->spa_deadman_cycid);
901 #endif
902 #endif
903 
904 	refcount_destroy(&spa->spa_refcount);
905 
906 	spa_config_lock_destroy(spa);
907 
908 	for (int t = 0; t < TXG_SIZE; t++)
909 		bplist_destroy(&spa->spa_free_bplist[t]);
910 
911 	zio_checksum_templates_free(spa);
912 
913 	cv_destroy(&spa->spa_async_cv);
914 	cv_destroy(&spa->spa_evicting_os_cv);
915 	cv_destroy(&spa->spa_proc_cv);
916 	cv_destroy(&spa->spa_scrub_io_cv);
917 	cv_destroy(&spa->spa_suspend_cv);
918 
919 	mutex_destroy(&spa->spa_alloc_lock);
920 	mutex_destroy(&spa->spa_async_lock);
921 	mutex_destroy(&spa->spa_errlist_lock);
922 	mutex_destroy(&spa->spa_errlog_lock);
923 	mutex_destroy(&spa->spa_evicting_os_lock);
924 	mutex_destroy(&spa->spa_history_lock);
925 	mutex_destroy(&spa->spa_proc_lock);
926 	mutex_destroy(&spa->spa_props_lock);
927 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
928 	mutex_destroy(&spa->spa_scrub_lock);
929 	mutex_destroy(&spa->spa_suspend_lock);
930 	mutex_destroy(&spa->spa_vdev_top_lock);
931 
932 	kmem_free(spa, sizeof (spa_t));
933 }
934 
935 /*
936  * Given a pool, return the next pool in the namespace, or NULL if there is
937  * none.  If 'prev' is NULL, return the first pool.
938  */
939 spa_t *
spa_next(spa_t * prev)940 spa_next(spa_t *prev)
941 {
942 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
943 
944 	if (prev)
945 		return (AVL_NEXT(&spa_namespace_avl, prev));
946 	else
947 		return (avl_first(&spa_namespace_avl));
948 }
949 
950 /*
951  * ==========================================================================
952  * SPA refcount functions
953  * ==========================================================================
954  */
955 
956 /*
957  * Add a reference to the given spa_t.  Must have at least one reference, or
958  * have the namespace lock held.
959  */
960 void
spa_open_ref(spa_t * spa,void * tag)961 spa_open_ref(spa_t *spa, void *tag)
962 {
963 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
964 	    MUTEX_HELD(&spa_namespace_lock));
965 	(void) refcount_add(&spa->spa_refcount, tag);
966 }
967 
968 /*
969  * Remove a reference to the given spa_t.  Must have at least one reference, or
970  * have the namespace lock held.
971  */
972 void
spa_close(spa_t * spa,void * tag)973 spa_close(spa_t *spa, void *tag)
974 {
975 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
976 	    MUTEX_HELD(&spa_namespace_lock));
977 	(void) refcount_remove(&spa->spa_refcount, tag);
978 }
979 
980 /*
981  * Remove a reference to the given spa_t held by a dsl dir that is
982  * being asynchronously released.  Async releases occur from a taskq
983  * performing eviction of dsl datasets and dirs.  The namespace lock
984  * isn't held and the hold by the object being evicted may contribute to
985  * spa_minref (e.g. dataset or directory released during pool export),
986  * so the asserts in spa_close() do not apply.
987  */
988 void
spa_async_close(spa_t * spa,void * tag)989 spa_async_close(spa_t *spa, void *tag)
990 {
991 	(void) refcount_remove(&spa->spa_refcount, tag);
992 }
993 
994 /*
995  * Check to see if the spa refcount is zero.  Must be called with
996  * spa_namespace_lock held.  We really compare against spa_minref, which is the
997  * number of references acquired when opening a pool
998  */
999 boolean_t
spa_refcount_zero(spa_t * spa)1000 spa_refcount_zero(spa_t *spa)
1001 {
1002 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1003 
1004 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
1005 }
1006 
1007 /*
1008  * ==========================================================================
1009  * SPA spare and l2cache tracking
1010  * ==========================================================================
1011  */
1012 
1013 /*
1014  * Hot spares and cache devices are tracked using the same code below,
1015  * for 'auxiliary' devices.
1016  */
1017 
1018 typedef struct spa_aux {
1019 	uint64_t	aux_guid;
1020 	uint64_t	aux_pool;
1021 	avl_node_t	aux_avl;
1022 	int		aux_count;
1023 } spa_aux_t;
1024 
1025 static int
spa_aux_compare(const void * a,const void * b)1026 spa_aux_compare(const void *a, const void *b)
1027 {
1028 	const spa_aux_t *sa = a;
1029 	const spa_aux_t *sb = b;
1030 
1031 	if (sa->aux_guid < sb->aux_guid)
1032 		return (-1);
1033 	else if (sa->aux_guid > sb->aux_guid)
1034 		return (1);
1035 	else
1036 		return (0);
1037 }
1038 
1039 void
spa_aux_add(vdev_t * vd,avl_tree_t * avl)1040 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
1041 {
1042 	avl_index_t where;
1043 	spa_aux_t search;
1044 	spa_aux_t *aux;
1045 
1046 	search.aux_guid = vd->vdev_guid;
1047 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
1048 		aux->aux_count++;
1049 	} else {
1050 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
1051 		aux->aux_guid = vd->vdev_guid;
1052 		aux->aux_count = 1;
1053 		avl_insert(avl, aux, where);
1054 	}
1055 }
1056 
1057 void
spa_aux_remove(vdev_t * vd,avl_tree_t * avl)1058 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1059 {
1060 	spa_aux_t search;
1061 	spa_aux_t *aux;
1062 	avl_index_t where;
1063 
1064 	search.aux_guid = vd->vdev_guid;
1065 	aux = avl_find(avl, &search, &where);
1066 
1067 	ASSERT(aux != NULL);
1068 
1069 	if (--aux->aux_count == 0) {
1070 		avl_remove(avl, aux);
1071 		kmem_free(aux, sizeof (spa_aux_t));
1072 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1073 		aux->aux_pool = 0ULL;
1074 	}
1075 }
1076 
1077 boolean_t
spa_aux_exists(uint64_t guid,uint64_t * pool,int * refcnt,avl_tree_t * avl)1078 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1079 {
1080 	spa_aux_t search, *found;
1081 
1082 	search.aux_guid = guid;
1083 	found = avl_find(avl, &search, NULL);
1084 
1085 	if (pool) {
1086 		if (found)
1087 			*pool = found->aux_pool;
1088 		else
1089 			*pool = 0ULL;
1090 	}
1091 
1092 	if (refcnt) {
1093 		if (found)
1094 			*refcnt = found->aux_count;
1095 		else
1096 			*refcnt = 0;
1097 	}
1098 
1099 	return (found != NULL);
1100 }
1101 
1102 void
spa_aux_activate(vdev_t * vd,avl_tree_t * avl)1103 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1104 {
1105 	spa_aux_t search, *found;
1106 	avl_index_t where;
1107 
1108 	search.aux_guid = vd->vdev_guid;
1109 	found = avl_find(avl, &search, &where);
1110 	ASSERT(found != NULL);
1111 	ASSERT(found->aux_pool == 0ULL);
1112 
1113 	found->aux_pool = spa_guid(vd->vdev_spa);
1114 }
1115 
1116 /*
1117  * Spares are tracked globally due to the following constraints:
1118  *
1119  * 	- A spare may be part of multiple pools.
1120  * 	- A spare may be added to a pool even if it's actively in use within
1121  *	  another pool.
1122  * 	- A spare in use in any pool can only be the source of a replacement if
1123  *	  the target is a spare in the same pool.
1124  *
1125  * We keep track of all spares on the system through the use of a reference
1126  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1127  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1128  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1129  * inactive).  When a spare is made active (used to replace a device in the
1130  * pool), we also keep track of which pool its been made a part of.
1131  *
1132  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1133  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1134  * separate spare lock exists for the status query path, which does not need to
1135  * be completely consistent with respect to other vdev configuration changes.
1136  */
1137 
1138 static int
spa_spare_compare(const void * a,const void * b)1139 spa_spare_compare(const void *a, const void *b)
1140 {
1141 	return (spa_aux_compare(a, b));
1142 }
1143 
1144 void
spa_spare_add(vdev_t * vd)1145 spa_spare_add(vdev_t *vd)
1146 {
1147 	mutex_enter(&spa_spare_lock);
1148 	ASSERT(!vd->vdev_isspare);
1149 	spa_aux_add(vd, &spa_spare_avl);
1150 	vd->vdev_isspare = B_TRUE;
1151 	mutex_exit(&spa_spare_lock);
1152 }
1153 
1154 void
spa_spare_remove(vdev_t * vd)1155 spa_spare_remove(vdev_t *vd)
1156 {
1157 	mutex_enter(&spa_spare_lock);
1158 	ASSERT(vd->vdev_isspare);
1159 	spa_aux_remove(vd, &spa_spare_avl);
1160 	vd->vdev_isspare = B_FALSE;
1161 	mutex_exit(&spa_spare_lock);
1162 }
1163 
1164 boolean_t
spa_spare_exists(uint64_t guid,uint64_t * pool,int * refcnt)1165 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1166 {
1167 	boolean_t found;
1168 
1169 	mutex_enter(&spa_spare_lock);
1170 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1171 	mutex_exit(&spa_spare_lock);
1172 
1173 	return (found);
1174 }
1175 
1176 void
spa_spare_activate(vdev_t * vd)1177 spa_spare_activate(vdev_t *vd)
1178 {
1179 	mutex_enter(&spa_spare_lock);
1180 	ASSERT(vd->vdev_isspare);
1181 	spa_aux_activate(vd, &spa_spare_avl);
1182 	mutex_exit(&spa_spare_lock);
1183 }
1184 
1185 /*
1186  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1187  * Cache devices currently only support one pool per cache device, and so
1188  * for these devices the aux reference count is currently unused beyond 1.
1189  */
1190 
1191 static int
spa_l2cache_compare(const void * a,const void * b)1192 spa_l2cache_compare(const void *a, const void *b)
1193 {
1194 	return (spa_aux_compare(a, b));
1195 }
1196 
1197 void
spa_l2cache_add(vdev_t * vd)1198 spa_l2cache_add(vdev_t *vd)
1199 {
1200 	mutex_enter(&spa_l2cache_lock);
1201 	ASSERT(!vd->vdev_isl2cache);
1202 	spa_aux_add(vd, &spa_l2cache_avl);
1203 	vd->vdev_isl2cache = B_TRUE;
1204 	mutex_exit(&spa_l2cache_lock);
1205 }
1206 
1207 void
spa_l2cache_remove(vdev_t * vd)1208 spa_l2cache_remove(vdev_t *vd)
1209 {
1210 	mutex_enter(&spa_l2cache_lock);
1211 	ASSERT(vd->vdev_isl2cache);
1212 	spa_aux_remove(vd, &spa_l2cache_avl);
1213 	vd->vdev_isl2cache = B_FALSE;
1214 	mutex_exit(&spa_l2cache_lock);
1215 }
1216 
1217 boolean_t
spa_l2cache_exists(uint64_t guid,uint64_t * pool)1218 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1219 {
1220 	boolean_t found;
1221 
1222 	mutex_enter(&spa_l2cache_lock);
1223 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1224 	mutex_exit(&spa_l2cache_lock);
1225 
1226 	return (found);
1227 }
1228 
1229 void
spa_l2cache_activate(vdev_t * vd)1230 spa_l2cache_activate(vdev_t *vd)
1231 {
1232 	mutex_enter(&spa_l2cache_lock);
1233 	ASSERT(vd->vdev_isl2cache);
1234 	spa_aux_activate(vd, &spa_l2cache_avl);
1235 	mutex_exit(&spa_l2cache_lock);
1236 }
1237 
1238 /*
1239  * ==========================================================================
1240  * SPA vdev locking
1241  * ==========================================================================
1242  */
1243 
1244 /*
1245  * Lock the given spa_t for the purpose of adding or removing a vdev.
1246  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1247  * It returns the next transaction group for the spa_t.
1248  */
1249 uint64_t
spa_vdev_enter(spa_t * spa)1250 spa_vdev_enter(spa_t *spa)
1251 {
1252 	mutex_enter(&spa->spa_vdev_top_lock);
1253 	mutex_enter(&spa_namespace_lock);
1254 	return (spa_vdev_config_enter(spa));
1255 }
1256 
1257 /*
1258  * Internal implementation for spa_vdev_enter().  Used when a vdev
1259  * operation requires multiple syncs (i.e. removing a device) while
1260  * keeping the spa_namespace_lock held.
1261  */
1262 uint64_t
spa_vdev_config_enter(spa_t * spa)1263 spa_vdev_config_enter(spa_t *spa)
1264 {
1265 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1266 
1267 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1268 
1269 	return (spa_last_synced_txg(spa) + 1);
1270 }
1271 
1272 /*
1273  * Used in combination with spa_vdev_config_enter() to allow the syncing
1274  * of multiple transactions without releasing the spa_namespace_lock.
1275  */
1276 void
spa_vdev_config_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error,char * tag)1277 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1278 {
1279 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1280 
1281 	int config_changed = B_FALSE;
1282 
1283 	ASSERT(txg > spa_last_synced_txg(spa));
1284 
1285 	spa->spa_pending_vdev = NULL;
1286 
1287 	/*
1288 	 * Reassess the DTLs.
1289 	 */
1290 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1291 
1292 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1293 		config_changed = B_TRUE;
1294 		spa->spa_config_generation++;
1295 	}
1296 
1297 	/*
1298 	 * Verify the metaslab classes.
1299 	 */
1300 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1301 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1302 
1303 	spa_config_exit(spa, SCL_ALL, spa);
1304 
1305 	/*
1306 	 * Panic the system if the specified tag requires it.  This
1307 	 * is useful for ensuring that configurations are updated
1308 	 * transactionally.
1309 	 */
1310 	if (zio_injection_enabled)
1311 		zio_handle_panic_injection(spa, tag, 0);
1312 
1313 	/*
1314 	 * Note: this txg_wait_synced() is important because it ensures
1315 	 * that there won't be more than one config change per txg.
1316 	 * This allows us to use the txg as the generation number.
1317 	 */
1318 	if (error == 0)
1319 		txg_wait_synced(spa->spa_dsl_pool, txg);
1320 
1321 	if (vd != NULL) {
1322 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1323 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1324 		vdev_free(vd);
1325 		spa_config_exit(spa, SCL_ALL, spa);
1326 	}
1327 
1328 	/*
1329 	 * If the config changed, update the config cache.
1330 	 */
1331 	if (config_changed)
1332 		spa_config_sync(spa, B_FALSE, B_TRUE);
1333 }
1334 
1335 /*
1336  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1337  * locking of spa_vdev_enter(), we also want make sure the transactions have
1338  * synced to disk, and then update the global configuration cache with the new
1339  * information.
1340  */
1341 int
spa_vdev_exit(spa_t * spa,vdev_t * vd,uint64_t txg,int error)1342 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1343 {
1344 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1345 	mutex_exit(&spa_namespace_lock);
1346 	mutex_exit(&spa->spa_vdev_top_lock);
1347 
1348 	return (error);
1349 }
1350 
1351 /*
1352  * Lock the given spa_t for the purpose of changing vdev state.
1353  */
1354 void
spa_vdev_state_enter(spa_t * spa,int oplocks)1355 spa_vdev_state_enter(spa_t *spa, int oplocks)
1356 {
1357 	int locks = SCL_STATE_ALL | oplocks;
1358 
1359 	/*
1360 	 * Root pools may need to read of the underlying devfs filesystem
1361 	 * when opening up a vdev.  Unfortunately if we're holding the
1362 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1363 	 * the read from the root filesystem.  Instead we "prefetch"
1364 	 * the associated vnodes that we need prior to opening the
1365 	 * underlying devices and cache them so that we can prevent
1366 	 * any I/O when we are doing the actual open.
1367 	 */
1368 	if (spa_is_root(spa)) {
1369 		int low = locks & ~(SCL_ZIO - 1);
1370 		int high = locks & ~low;
1371 
1372 		spa_config_enter(spa, high, spa, RW_WRITER);
1373 		vdev_hold(spa->spa_root_vdev);
1374 		spa_config_enter(spa, low, spa, RW_WRITER);
1375 	} else {
1376 		spa_config_enter(spa, locks, spa, RW_WRITER);
1377 	}
1378 	spa->spa_vdev_locks = locks;
1379 }
1380 
1381 int
spa_vdev_state_exit(spa_t * spa,vdev_t * vd,int error)1382 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1383 {
1384 	boolean_t config_changed = B_FALSE;
1385 
1386 	if (vd != NULL || error == 0)
1387 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1388 		    0, 0, B_FALSE);
1389 
1390 	if (vd != NULL) {
1391 		vdev_state_dirty(vd->vdev_top);
1392 		config_changed = B_TRUE;
1393 		spa->spa_config_generation++;
1394 	}
1395 
1396 	if (spa_is_root(spa))
1397 		vdev_rele(spa->spa_root_vdev);
1398 
1399 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1400 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1401 
1402 	/*
1403 	 * If anything changed, wait for it to sync.  This ensures that,
1404 	 * from the system administrator's perspective, zpool(1M) commands
1405 	 * are synchronous.  This is important for things like zpool offline:
1406 	 * when the command completes, you expect no further I/O from ZFS.
1407 	 */
1408 	if (vd != NULL)
1409 		txg_wait_synced(spa->spa_dsl_pool, 0);
1410 
1411 	/*
1412 	 * If the config changed, update the config cache.
1413 	 */
1414 	if (config_changed) {
1415 		mutex_enter(&spa_namespace_lock);
1416 		spa_config_sync(spa, B_FALSE, B_TRUE);
1417 		mutex_exit(&spa_namespace_lock);
1418 	}
1419 
1420 	return (error);
1421 }
1422 
1423 /*
1424  * ==========================================================================
1425  * Miscellaneous functions
1426  * ==========================================================================
1427  */
1428 
1429 void
spa_activate_mos_feature(spa_t * spa,const char * feature,dmu_tx_t * tx)1430 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1431 {
1432 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1433 		fnvlist_add_boolean(spa->spa_label_features, feature);
1434 		/*
1435 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1436 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1437 		 * Thankfully, in this case we don't need to dirty the config
1438 		 * because it will be written out anyway when we finish
1439 		 * creating the pool.
1440 		 */
1441 		if (tx->tx_txg != TXG_INITIAL)
1442 			vdev_config_dirty(spa->spa_root_vdev);
1443 	}
1444 }
1445 
1446 void
spa_deactivate_mos_feature(spa_t * spa,const char * feature)1447 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1448 {
1449 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1450 		vdev_config_dirty(spa->spa_root_vdev);
1451 }
1452 
1453 /*
1454  * Rename a spa_t.
1455  */
1456 int
spa_rename(const char * name,const char * newname)1457 spa_rename(const char *name, const char *newname)
1458 {
1459 	spa_t *spa;
1460 	int err;
1461 
1462 	/*
1463 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1464 	 * actually open the pool so that we can sync out the necessary labels.
1465 	 * It's OK to call spa_open() with the namespace lock held because we
1466 	 * allow recursive calls for other reasons.
1467 	 */
1468 	mutex_enter(&spa_namespace_lock);
1469 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1470 		mutex_exit(&spa_namespace_lock);
1471 		return (err);
1472 	}
1473 
1474 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1475 
1476 	avl_remove(&spa_namespace_avl, spa);
1477 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1478 	avl_add(&spa_namespace_avl, spa);
1479 
1480 	/*
1481 	 * Sync all labels to disk with the new names by marking the root vdev
1482 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1483 	 * during the sync.
1484 	 */
1485 	vdev_config_dirty(spa->spa_root_vdev);
1486 
1487 	spa_config_exit(spa, SCL_ALL, FTAG);
1488 
1489 	txg_wait_synced(spa->spa_dsl_pool, 0);
1490 
1491 	/*
1492 	 * Sync the updated config cache.
1493 	 */
1494 	spa_config_sync(spa, B_FALSE, B_TRUE);
1495 
1496 	spa_close(spa, FTAG);
1497 
1498 	mutex_exit(&spa_namespace_lock);
1499 
1500 	return (0);
1501 }
1502 
1503 /*
1504  * Return the spa_t associated with given pool_guid, if it exists.  If
1505  * device_guid is non-zero, determine whether the pool exists *and* contains
1506  * a device with the specified device_guid.
1507  */
1508 spa_t *
spa_by_guid(uint64_t pool_guid,uint64_t device_guid)1509 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1510 {
1511 	spa_t *spa;
1512 	avl_tree_t *t = &spa_namespace_avl;
1513 
1514 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1515 
1516 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1517 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1518 			continue;
1519 		if (spa->spa_root_vdev == NULL)
1520 			continue;
1521 		if (spa_guid(spa) == pool_guid) {
1522 			if (device_guid == 0)
1523 				break;
1524 
1525 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1526 			    device_guid) != NULL)
1527 				break;
1528 
1529 			/*
1530 			 * Check any devices we may be in the process of adding.
1531 			 */
1532 			if (spa->spa_pending_vdev) {
1533 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1534 				    device_guid) != NULL)
1535 					break;
1536 			}
1537 		}
1538 	}
1539 
1540 	return (spa);
1541 }
1542 
1543 /*
1544  * Determine whether a pool with the given pool_guid exists.
1545  */
1546 boolean_t
spa_guid_exists(uint64_t pool_guid,uint64_t device_guid)1547 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1548 {
1549 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1550 }
1551 
1552 char *
spa_strdup(const char * s)1553 spa_strdup(const char *s)
1554 {
1555 	size_t len;
1556 	char *new;
1557 
1558 	len = strlen(s);
1559 	new = kmem_alloc(len + 1, KM_SLEEP);
1560 	bcopy(s, new, len);
1561 	new[len] = '\0';
1562 
1563 	return (new);
1564 }
1565 
1566 void
spa_strfree(char * s)1567 spa_strfree(char *s)
1568 {
1569 	kmem_free(s, strlen(s) + 1);
1570 }
1571 
1572 uint64_t
spa_get_random(uint64_t range)1573 spa_get_random(uint64_t range)
1574 {
1575 	uint64_t r;
1576 
1577 	ASSERT(range != 0);
1578 
1579 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1580 
1581 	return (r % range);
1582 }
1583 
1584 uint64_t
spa_generate_guid(spa_t * spa)1585 spa_generate_guid(spa_t *spa)
1586 {
1587 	uint64_t guid = spa_get_random(-1ULL);
1588 
1589 	if (spa != NULL) {
1590 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1591 			guid = spa_get_random(-1ULL);
1592 	} else {
1593 		while (guid == 0 || spa_guid_exists(guid, 0))
1594 			guid = spa_get_random(-1ULL);
1595 	}
1596 
1597 	return (guid);
1598 }
1599 
1600 void
snprintf_blkptr(char * buf,size_t buflen,const blkptr_t * bp)1601 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1602 {
1603 	char type[256];
1604 	char *checksum = NULL;
1605 	char *compress = NULL;
1606 
1607 	if (bp != NULL) {
1608 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1609 			dmu_object_byteswap_t bswap =
1610 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1611 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1612 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1613 			    "metadata" : "data",
1614 			    dmu_ot_byteswap[bswap].ob_name);
1615 		} else {
1616 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1617 			    sizeof (type));
1618 		}
1619 		if (!BP_IS_EMBEDDED(bp)) {
1620 			checksum =
1621 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1622 		}
1623 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1624 	}
1625 
1626 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1627 	    compress);
1628 }
1629 
1630 void
spa_freeze(spa_t * spa)1631 spa_freeze(spa_t *spa)
1632 {
1633 	uint64_t freeze_txg = 0;
1634 
1635 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1636 	if (spa->spa_freeze_txg == UINT64_MAX) {
1637 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1638 		spa->spa_freeze_txg = freeze_txg;
1639 	}
1640 	spa_config_exit(spa, SCL_ALL, FTAG);
1641 	if (freeze_txg != 0)
1642 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1643 }
1644 
1645 void
zfs_panic_recover(const char * fmt,...)1646 zfs_panic_recover(const char *fmt, ...)
1647 {
1648 	va_list adx;
1649 
1650 	va_start(adx, fmt);
1651 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1652 	va_end(adx);
1653 }
1654 
1655 /*
1656  * This is a stripped-down version of strtoull, suitable only for converting
1657  * lowercase hexadecimal numbers that don't overflow.
1658  */
1659 uint64_t
zfs_strtonum(const char * str,char ** nptr)1660 zfs_strtonum(const char *str, char **nptr)
1661 {
1662 	uint64_t val = 0;
1663 	char c;
1664 	int digit;
1665 
1666 	while ((c = *str) != '\0') {
1667 		if (c >= '0' && c <= '9')
1668 			digit = c - '0';
1669 		else if (c >= 'a' && c <= 'f')
1670 			digit = 10 + c - 'a';
1671 		else
1672 			break;
1673 
1674 		val *= 16;
1675 		val += digit;
1676 
1677 		str++;
1678 	}
1679 
1680 	if (nptr)
1681 		*nptr = (char *)str;
1682 
1683 	return (val);
1684 }
1685 
1686 /*
1687  * ==========================================================================
1688  * Accessor functions
1689  * ==========================================================================
1690  */
1691 
1692 boolean_t
spa_shutting_down(spa_t * spa)1693 spa_shutting_down(spa_t *spa)
1694 {
1695 	return (spa->spa_async_suspended);
1696 }
1697 
1698 dsl_pool_t *
spa_get_dsl(spa_t * spa)1699 spa_get_dsl(spa_t *spa)
1700 {
1701 	return (spa->spa_dsl_pool);
1702 }
1703 
1704 boolean_t
spa_is_initializing(spa_t * spa)1705 spa_is_initializing(spa_t *spa)
1706 {
1707 	return (spa->spa_is_initializing);
1708 }
1709 
1710 blkptr_t *
spa_get_rootblkptr(spa_t * spa)1711 spa_get_rootblkptr(spa_t *spa)
1712 {
1713 	return (&spa->spa_ubsync.ub_rootbp);
1714 }
1715 
1716 void
spa_set_rootblkptr(spa_t * spa,const blkptr_t * bp)1717 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1718 {
1719 	spa->spa_uberblock.ub_rootbp = *bp;
1720 }
1721 
1722 void
spa_altroot(spa_t * spa,char * buf,size_t buflen)1723 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1724 {
1725 	if (spa->spa_root == NULL)
1726 		buf[0] = '\0';
1727 	else
1728 		(void) strncpy(buf, spa->spa_root, buflen);
1729 }
1730 
1731 int
spa_sync_pass(spa_t * spa)1732 spa_sync_pass(spa_t *spa)
1733 {
1734 	return (spa->spa_sync_pass);
1735 }
1736 
1737 char *
spa_name(spa_t * spa)1738 spa_name(spa_t *spa)
1739 {
1740 	return (spa->spa_name);
1741 }
1742 
1743 uint64_t
spa_guid(spa_t * spa)1744 spa_guid(spa_t *spa)
1745 {
1746 	dsl_pool_t *dp = spa_get_dsl(spa);
1747 	uint64_t guid;
1748 
1749 	/*
1750 	 * If we fail to parse the config during spa_load(), we can go through
1751 	 * the error path (which posts an ereport) and end up here with no root
1752 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1753 	 * this case.
1754 	 */
1755 	if (spa->spa_root_vdev == NULL)
1756 		return (spa->spa_config_guid);
1757 
1758 	guid = spa->spa_last_synced_guid != 0 ?
1759 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1760 
1761 	/*
1762 	 * Return the most recently synced out guid unless we're
1763 	 * in syncing context.
1764 	 */
1765 	if (dp && dsl_pool_sync_context(dp))
1766 		return (spa->spa_root_vdev->vdev_guid);
1767 	else
1768 		return (guid);
1769 }
1770 
1771 uint64_t
spa_load_guid(spa_t * spa)1772 spa_load_guid(spa_t *spa)
1773 {
1774 	/*
1775 	 * This is a GUID that exists solely as a reference for the
1776 	 * purposes of the arc.  It is generated at load time, and
1777 	 * is never written to persistent storage.
1778 	 */
1779 	return (spa->spa_load_guid);
1780 }
1781 
1782 uint64_t
spa_last_synced_txg(spa_t * spa)1783 spa_last_synced_txg(spa_t *spa)
1784 {
1785 	return (spa->spa_ubsync.ub_txg);
1786 }
1787 
1788 uint64_t
spa_first_txg(spa_t * spa)1789 spa_first_txg(spa_t *spa)
1790 {
1791 	return (spa->spa_first_txg);
1792 }
1793 
1794 uint64_t
spa_syncing_txg(spa_t * spa)1795 spa_syncing_txg(spa_t *spa)
1796 {
1797 	return (spa->spa_syncing_txg);
1798 }
1799 
1800 pool_state_t
spa_state(spa_t * spa)1801 spa_state(spa_t *spa)
1802 {
1803 	return (spa->spa_state);
1804 }
1805 
1806 spa_load_state_t
spa_load_state(spa_t * spa)1807 spa_load_state(spa_t *spa)
1808 {
1809 	return (spa->spa_load_state);
1810 }
1811 
1812 uint64_t
spa_freeze_txg(spa_t * spa)1813 spa_freeze_txg(spa_t *spa)
1814 {
1815 	return (spa->spa_freeze_txg);
1816 }
1817 
1818 /* ARGSUSED */
1819 uint64_t
spa_get_asize(spa_t * spa,uint64_t lsize)1820 spa_get_asize(spa_t *spa, uint64_t lsize)
1821 {
1822 	return (lsize * spa_asize_inflation);
1823 }
1824 
1825 /*
1826  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1827  * or at least 128MB, unless that would cause it to be more than half the
1828  * pool size.
1829  *
1830  * See the comment above spa_slop_shift for details.
1831  */
1832 uint64_t
spa_get_slop_space(spa_t * spa)1833 spa_get_slop_space(spa_t *spa)
1834 {
1835 	uint64_t space = spa_get_dspace(spa);
1836 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1837 }
1838 
1839 uint64_t
spa_get_dspace(spa_t * spa)1840 spa_get_dspace(spa_t *spa)
1841 {
1842 	return (spa->spa_dspace);
1843 }
1844 
1845 void
spa_update_dspace(spa_t * spa)1846 spa_update_dspace(spa_t *spa)
1847 {
1848 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1849 	    ddt_get_dedup_dspace(spa);
1850 }
1851 
1852 /*
1853  * Return the failure mode that has been set to this pool. The default
1854  * behavior will be to block all I/Os when a complete failure occurs.
1855  */
1856 uint8_t
spa_get_failmode(spa_t * spa)1857 spa_get_failmode(spa_t *spa)
1858 {
1859 	return (spa->spa_failmode);
1860 }
1861 
1862 boolean_t
spa_suspended(spa_t * spa)1863 spa_suspended(spa_t *spa)
1864 {
1865 	return (spa->spa_suspended);
1866 }
1867 
1868 uint64_t
spa_version(spa_t * spa)1869 spa_version(spa_t *spa)
1870 {
1871 	return (spa->spa_ubsync.ub_version);
1872 }
1873 
1874 boolean_t
spa_deflate(spa_t * spa)1875 spa_deflate(spa_t *spa)
1876 {
1877 	return (spa->spa_deflate);
1878 }
1879 
1880 metaslab_class_t *
spa_normal_class(spa_t * spa)1881 spa_normal_class(spa_t *spa)
1882 {
1883 	return (spa->spa_normal_class);
1884 }
1885 
1886 metaslab_class_t *
spa_log_class(spa_t * spa)1887 spa_log_class(spa_t *spa)
1888 {
1889 	return (spa->spa_log_class);
1890 }
1891 
1892 void
spa_evicting_os_register(spa_t * spa,objset_t * os)1893 spa_evicting_os_register(spa_t *spa, objset_t *os)
1894 {
1895 	mutex_enter(&spa->spa_evicting_os_lock);
1896 	list_insert_head(&spa->spa_evicting_os_list, os);
1897 	mutex_exit(&spa->spa_evicting_os_lock);
1898 }
1899 
1900 void
spa_evicting_os_deregister(spa_t * spa,objset_t * os)1901 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1902 {
1903 	mutex_enter(&spa->spa_evicting_os_lock);
1904 	list_remove(&spa->spa_evicting_os_list, os);
1905 	cv_broadcast(&spa->spa_evicting_os_cv);
1906 	mutex_exit(&spa->spa_evicting_os_lock);
1907 }
1908 
1909 void
spa_evicting_os_wait(spa_t * spa)1910 spa_evicting_os_wait(spa_t *spa)
1911 {
1912 	mutex_enter(&spa->spa_evicting_os_lock);
1913 	while (!list_is_empty(&spa->spa_evicting_os_list))
1914 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1915 	mutex_exit(&spa->spa_evicting_os_lock);
1916 
1917 	dmu_buf_user_evict_wait();
1918 }
1919 
1920 int
spa_max_replication(spa_t * spa)1921 spa_max_replication(spa_t *spa)
1922 {
1923 	/*
1924 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1925 	 * handle BPs with more than one DVA allocated.  Set our max
1926 	 * replication level accordingly.
1927 	 */
1928 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1929 		return (1);
1930 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1931 }
1932 
1933 int
spa_prev_software_version(spa_t * spa)1934 spa_prev_software_version(spa_t *spa)
1935 {
1936 	return (spa->spa_prev_software_version);
1937 }
1938 
1939 uint64_t
spa_deadman_synctime(spa_t * spa)1940 spa_deadman_synctime(spa_t *spa)
1941 {
1942 	return (spa->spa_deadman_synctime);
1943 }
1944 
1945 uint64_t
dva_get_dsize_sync(spa_t * spa,const dva_t * dva)1946 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1947 {
1948 	uint64_t asize = DVA_GET_ASIZE(dva);
1949 	uint64_t dsize = asize;
1950 
1951 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1952 
1953 	if (asize != 0 && spa->spa_deflate) {
1954 		uint64_t vdev = DVA_GET_VDEV(dva);
1955 		vdev_t *vd = vdev_lookup_top(spa, vdev);
1956 		if (vd == NULL) {
1957 			panic(
1958 			    "dva_get_dsize_sync(): bad DVA %llu:%llu",
1959 			    (u_longlong_t)vdev, (u_longlong_t)asize);
1960 		}
1961 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1962 	}
1963 
1964 	return (dsize);
1965 }
1966 
1967 uint64_t
bp_get_dsize_sync(spa_t * spa,const blkptr_t * bp)1968 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1969 {
1970 	uint64_t dsize = 0;
1971 
1972 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1973 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1974 
1975 	return (dsize);
1976 }
1977 
1978 uint64_t
bp_get_dsize(spa_t * spa,const blkptr_t * bp)1979 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1980 {
1981 	uint64_t dsize = 0;
1982 
1983 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1984 
1985 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1986 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1987 
1988 	spa_config_exit(spa, SCL_VDEV, FTAG);
1989 
1990 	return (dsize);
1991 }
1992 
1993 /*
1994  * ==========================================================================
1995  * Initialization and Termination
1996  * ==========================================================================
1997  */
1998 
1999 static int
spa_name_compare(const void * a1,const void * a2)2000 spa_name_compare(const void *a1, const void *a2)
2001 {
2002 	const spa_t *s1 = a1;
2003 	const spa_t *s2 = a2;
2004 	int s;
2005 
2006 	s = strcmp(s1->spa_name, s2->spa_name);
2007 	if (s > 0)
2008 		return (1);
2009 	if (s < 0)
2010 		return (-1);
2011 	return (0);
2012 }
2013 
2014 int
spa_busy(void)2015 spa_busy(void)
2016 {
2017 	return (spa_active_count);
2018 }
2019 
2020 void
spa_boot_init()2021 spa_boot_init()
2022 {
2023 	spa_config_load();
2024 }
2025 
2026 #ifdef __FreeBSD__
2027 #ifdef _KERNEL
2028 EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
2029 #endif
2030 #endif
2031 
2032 void
spa_init(int mode)2033 spa_init(int mode)
2034 {
2035 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2036 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2037 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2038 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2039 
2040 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2041 	    offsetof(spa_t, spa_avl));
2042 
2043 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2044 	    offsetof(spa_aux_t, aux_avl));
2045 
2046 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2047 	    offsetof(spa_aux_t, aux_avl));
2048 
2049 	spa_mode_global = mode;
2050 
2051 #ifdef illumos
2052 #ifdef _KERNEL
2053 	spa_arch_init();
2054 #else
2055 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
2056 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
2057 		if (arc_procfd == -1) {
2058 			perror("could not enable watchpoints: "
2059 			    "opening /proc/self/ctl failed: ");
2060 		} else {
2061 			arc_watch = B_TRUE;
2062 		}
2063 	}
2064 #endif
2065 #endif /* illumos */
2066 	refcount_sysinit();
2067 	unique_init();
2068 	range_tree_init();
2069 	metaslab_alloc_trace_init();
2070 	zio_init();
2071 	lz4_init();
2072 	dmu_init();
2073 	zil_init();
2074 	vdev_cache_stat_init();
2075 	zfs_prop_init();
2076 	zpool_prop_init();
2077 	zpool_feature_init();
2078 #if defined(__NetBSD__) && defined(_KERNEL)
2079 	config_mountroot((device_t) 0, (void (*)(device_t)) spa_config_load);
2080 #else
2081 	spa_config_load();
2082 #endif
2083 	l2arc_start();
2084 #ifdef __FreeBSD__
2085 #ifdef _KERNEL
2086 	zfs_deadman_init();
2087 #endif
2088 #endif	/* __FreeBSD__ */
2089 #ifdef __NetBSD__
2090 	zfs_deadman_init();
2091 #endif
2092 }
2093 
2094 void
spa_fini(void)2095 spa_fini(void)
2096 {
2097 #ifdef __NetBSD__
2098 	zfs_deadman_fini();
2099 #endif
2100 	l2arc_stop();
2101 
2102 	spa_evict_all();
2103 
2104 	vdev_cache_stat_fini();
2105 	zil_fini();
2106 	dmu_fini();
2107 	lz4_fini();
2108 	zio_fini();
2109 	metaslab_alloc_trace_fini();
2110 	range_tree_fini();
2111 	unique_fini();
2112 	refcount_fini();
2113 
2114 	avl_destroy(&spa_namespace_avl);
2115 	avl_destroy(&spa_spare_avl);
2116 	avl_destroy(&spa_l2cache_avl);
2117 
2118 	cv_destroy(&spa_namespace_cv);
2119 	mutex_destroy(&spa_namespace_lock);
2120 	mutex_destroy(&spa_spare_lock);
2121 	mutex_destroy(&spa_l2cache_lock);
2122 }
2123 
2124 /*
2125  * Return whether this pool has slogs. No locking needed.
2126  * It's not a problem if the wrong answer is returned as it's only for
2127  * performance and not correctness
2128  */
2129 boolean_t
spa_has_slogs(spa_t * spa)2130 spa_has_slogs(spa_t *spa)
2131 {
2132 	return (spa->spa_log_class->mc_rotor != NULL);
2133 }
2134 
2135 spa_log_state_t
spa_get_log_state(spa_t * spa)2136 spa_get_log_state(spa_t *spa)
2137 {
2138 	return (spa->spa_log_state);
2139 }
2140 
2141 void
spa_set_log_state(spa_t * spa,spa_log_state_t state)2142 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2143 {
2144 	spa->spa_log_state = state;
2145 }
2146 
2147 boolean_t
spa_is_root(spa_t * spa)2148 spa_is_root(spa_t *spa)
2149 {
2150 	return (spa->spa_is_root);
2151 }
2152 
2153 boolean_t
spa_writeable(spa_t * spa)2154 spa_writeable(spa_t *spa)
2155 {
2156 	return (!!(spa->spa_mode & FWRITE));
2157 }
2158 
2159 /*
2160  * Returns true if there is a pending sync task in any of the current
2161  * syncing txg, the current quiescing txg, or the current open txg.
2162  */
2163 boolean_t
spa_has_pending_synctask(spa_t * spa)2164 spa_has_pending_synctask(spa_t *spa)
2165 {
2166 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2167 }
2168 
2169 int
spa_mode(spa_t * spa)2170 spa_mode(spa_t *spa)
2171 {
2172 	return (spa->spa_mode);
2173 }
2174 
2175 uint64_t
spa_bootfs(spa_t * spa)2176 spa_bootfs(spa_t *spa)
2177 {
2178 	return (spa->spa_bootfs);
2179 }
2180 
2181 uint64_t
spa_delegation(spa_t * spa)2182 spa_delegation(spa_t *spa)
2183 {
2184 	return (spa->spa_delegation);
2185 }
2186 
2187 objset_t *
spa_meta_objset(spa_t * spa)2188 spa_meta_objset(spa_t *spa)
2189 {
2190 	return (spa->spa_meta_objset);
2191 }
2192 
2193 enum zio_checksum
spa_dedup_checksum(spa_t * spa)2194 spa_dedup_checksum(spa_t *spa)
2195 {
2196 	return (spa->spa_dedup_checksum);
2197 }
2198 
2199 /*
2200  * Reset pool scan stat per scan pass (or reboot).
2201  */
2202 void
spa_scan_stat_init(spa_t * spa)2203 spa_scan_stat_init(spa_t *spa)
2204 {
2205 	/* data not stored on disk */
2206 	spa->spa_scan_pass_start = gethrestime_sec();
2207 	spa->spa_scan_pass_exam = 0;
2208 	vdev_scan_stat_init(spa->spa_root_vdev);
2209 }
2210 
2211 /*
2212  * Get scan stats for zpool status reports
2213  */
2214 int
spa_scan_get_stats(spa_t * spa,pool_scan_stat_t * ps)2215 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2216 {
2217 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2218 
2219 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2220 		return (SET_ERROR(ENOENT));
2221 	bzero(ps, sizeof (pool_scan_stat_t));
2222 
2223 	/* data stored on disk */
2224 	ps->pss_func = scn->scn_phys.scn_func;
2225 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2226 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2227 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2228 	ps->pss_examined = scn->scn_phys.scn_examined;
2229 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2230 	ps->pss_processed = scn->scn_phys.scn_processed;
2231 	ps->pss_errors = scn->scn_phys.scn_errors;
2232 	ps->pss_state = scn->scn_phys.scn_state;
2233 
2234 	/* data not stored on disk */
2235 	ps->pss_pass_start = spa->spa_scan_pass_start;
2236 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2237 
2238 	return (0);
2239 }
2240 
2241 boolean_t
spa_debug_enabled(spa_t * spa)2242 spa_debug_enabled(spa_t *spa)
2243 {
2244 	return (spa->spa_debug);
2245 }
2246 
2247 int
spa_maxblocksize(spa_t * spa)2248 spa_maxblocksize(spa_t *spa)
2249 {
2250 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2251 		return (SPA_MAXBLOCKSIZE);
2252 	else
2253 		return (SPA_OLD_MAXBLOCKSIZE);
2254 }
2255