1 
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
25  * Use is subject to license terms.
26  */
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 
65 #ifdef	_KERNEL
66 #include <sys/bootprops.h>
67 #include <sys/callb.h>
68 #include <sys/cpupart.h>
69 #include <sys/pool.h>
70 #include <sys/sysdc.h>
71 #include <sys/zone.h>
72 #endif	/* _KERNEL */
73 
74 #include "zfs_prop.h"
75 #include "zfs_comutil.h"
76 
77 typedef enum zti_modes {
78 	zti_mode_fixed,			/* value is # of threads (min 1) */
79 	zti_mode_online_percent,	/* value is % of online CPUs */
80 	zti_mode_batch,			/* cpu-intensive; value is ignored */
81 	zti_mode_null,			/* don't create a taskq */
82 	zti_nmodes
83 } zti_modes_t;
84 
85 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
86 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
87 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
88 #define	ZTI_NULL	{ zti_mode_null, 0 }
89 
90 #define	ZTI_ONE		ZTI_FIX(1)
91 
92 typedef struct zio_taskq_info {
93 	enum zti_modes zti_mode;
94 	uint_t zti_value;
95 } zio_taskq_info_t;
96 
97 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
98 	"issue", "issue_high", "intr", "intr_high"
99 };
100 
101 /*
102  * Define the taskq threads for the following I/O types:
103  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
104  */
105 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
106 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
107 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
108 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
109 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
110 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
111 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
112 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
113 };
114 
115 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
116 static boolean_t spa_has_active_shared_spare(spa_t *spa);
117 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
118     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
119     char **ereport);
120 
121 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
122 id_t		zio_taskq_psrset_bind = PS_NONE;
123 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
124 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
125 
126 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
127 
128 /*
129  * This (illegal) pool name is used when temporarily importing a spa_t in order
130  * to get the vdev stats associated with the imported devices.
131  */
132 #define	TRYIMPORT_NAME	"$import"
133 
134 /*
135  * ==========================================================================
136  * SPA properties routines
137  * ==========================================================================
138  */
139 
140 /*
141  * Add a (source=src, propname=propval) list to an nvlist.
142  */
143 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,char * strval,uint64_t intval,zprop_source_t src)144 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
145     uint64_t intval, zprop_source_t src)
146 {
147 	const char *propname = zpool_prop_to_name(prop);
148 	nvlist_t *propval;
149 
150 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
151 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
152 
153 	if (strval != NULL)
154 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
155 	else
156 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
157 
158 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
159 	nvlist_free(propval);
160 }
161 
162 /*
163  * Get property values from the spa configuration.
164  */
165 static void
spa_prop_get_config(spa_t * spa,nvlist_t ** nvp)166 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
167 {
168 	uint64_t size;
169 	uint64_t alloc;
170 	uint64_t cap, version;
171 	zprop_source_t src = ZPROP_SRC_NONE;
172 	spa_config_dirent_t *dp;
173 
174 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
175 
176 	if (spa->spa_root_vdev != NULL) {
177 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
178 		size = metaslab_class_get_space(spa_normal_class(spa));
179 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
180 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
181 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
182 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
183 		    size - alloc, src);
184 
185 		cap = (size == 0) ? 0 : (alloc * 100 / size);
186 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
187 
188 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
189 		    ddt_get_pool_dedup_ratio(spa), src);
190 
191 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
192 		    spa->spa_root_vdev->vdev_state, src);
193 
194 		version = spa_version(spa);
195 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
196 			src = ZPROP_SRC_DEFAULT;
197 		else
198 			src = ZPROP_SRC_LOCAL;
199 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
200 	}
201 
202 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
203 
204 	if (spa->spa_root != NULL)
205 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
206 		    0, ZPROP_SRC_LOCAL);
207 
208 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
209 		if (dp->scd_path == NULL) {
210 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
211 			    "none", 0, ZPROP_SRC_LOCAL);
212 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
213 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
214 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
215 		}
216 	}
217 }
218 
219 /*
220  * Get zpool property values.
221  */
222 int
spa_prop_get(spa_t * spa,nvlist_t ** nvp)223 spa_prop_get(spa_t *spa, nvlist_t **nvp)
224 {
225 	objset_t *mos = spa->spa_meta_objset;
226 	zap_cursor_t zc;
227 	zap_attribute_t za;
228 	int err;
229 
230 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
231 
232 	mutex_enter(&spa->spa_props_lock);
233 
234 	/*
235 	 * Get properties from the spa config.
236 	 */
237 	spa_prop_get_config(spa, nvp);
238 
239 	/* If no pool property object, no more prop to get. */
240 	if (mos == NULL || spa->spa_pool_props_object == 0) {
241 		mutex_exit(&spa->spa_props_lock);
242 		return (0);
243 	}
244 
245 	/*
246 	 * Get properties from the MOS pool property object.
247 	 */
248 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
249 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
250 	    zap_cursor_advance(&zc)) {
251 		uint64_t intval = 0;
252 		char *strval = NULL;
253 		zprop_source_t src = ZPROP_SRC_DEFAULT;
254 		zpool_prop_t prop;
255 
256 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
257 			continue;
258 
259 		switch (za.za_integer_length) {
260 		case 8:
261 			/* integer property */
262 			if (za.za_first_integer !=
263 			    zpool_prop_default_numeric(prop))
264 				src = ZPROP_SRC_LOCAL;
265 
266 			if (prop == ZPOOL_PROP_BOOTFS) {
267 				dsl_pool_t *dp;
268 				dsl_dataset_t *ds = NULL;
269 
270 				dp = spa_get_dsl(spa);
271 				rw_enter(&dp->dp_config_rwlock, RW_READER);
272 				if (err = dsl_dataset_hold_obj(dp,
273 				    za.za_first_integer, FTAG, &ds)) {
274 					rw_exit(&dp->dp_config_rwlock);
275 					break;
276 				}
277 
278 				strval = kmem_alloc(
279 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
280 				    KM_SLEEP);
281 				dsl_dataset_name(ds, strval);
282 				dsl_dataset_rele(ds, FTAG);
283 				rw_exit(&dp->dp_config_rwlock);
284 			} else {
285 				strval = NULL;
286 				intval = za.za_first_integer;
287 			}
288 
289 			spa_prop_add_list(*nvp, prop, strval, intval, src);
290 
291 			if (strval != NULL)
292 				kmem_free(strval,
293 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
294 
295 			break;
296 
297 		case 1:
298 			/* string property */
299 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
300 			err = zap_lookup(mos, spa->spa_pool_props_object,
301 			    za.za_name, 1, za.za_num_integers, strval);
302 			if (err) {
303 				kmem_free(strval, za.za_num_integers);
304 				break;
305 			}
306 			spa_prop_add_list(*nvp, prop, strval, 0, src);
307 			kmem_free(strval, za.za_num_integers);
308 			break;
309 
310 		default:
311 			break;
312 		}
313 	}
314 	zap_cursor_fini(&zc);
315 	mutex_exit(&spa->spa_props_lock);
316 out:
317 	if (err && err != ENOENT) {
318 		nvlist_free(*nvp);
319 		*nvp = NULL;
320 		return (err);
321 	}
322 
323 	return (0);
324 }
325 
326 /*
327  * Validate the given pool properties nvlist and modify the list
328  * for the property values to be set.
329  */
330 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)331 spa_prop_validate(spa_t *spa, nvlist_t *props)
332 {
333 	nvpair_t *elem;
334 	int error = 0, reset_bootfs = 0;
335 	uint64_t objnum;
336 
337 	elem = NULL;
338 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
339 		zpool_prop_t prop;
340 		char *propname, *strval;
341 		uint64_t intval;
342 		objset_t *os;
343 		char *slash;
344 
345 		propname = nvpair_name(elem);
346 
347 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
348 			return (EINVAL);
349 
350 		switch (prop) {
351 		case ZPOOL_PROP_VERSION:
352 			error = nvpair_value_uint64(elem, &intval);
353 			if (!error &&
354 			    (intval < spa_version(spa) || intval > SPA_VERSION))
355 				error = EINVAL;
356 			break;
357 
358 		case ZPOOL_PROP_DELEGATION:
359 		case ZPOOL_PROP_AUTOREPLACE:
360 		case ZPOOL_PROP_LISTSNAPS:
361 		case ZPOOL_PROP_AUTOEXPAND:
362 			error = nvpair_value_uint64(elem, &intval);
363 			if (!error && intval > 1)
364 				error = EINVAL;
365 			break;
366 
367 		case ZPOOL_PROP_BOOTFS:
368 			/*
369 			 * If the pool version is less than SPA_VERSION_BOOTFS,
370 			 * or the pool is still being created (version == 0),
371 			 * the bootfs property cannot be set.
372 			 */
373 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
374 				error = ENOTSUP;
375 				break;
376 			}
377 
378 			/*
379 			 * Make sure the vdev config is bootable
380 			 */
381 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
382 				error = ENOTSUP;
383 				break;
384 			}
385 
386 			reset_bootfs = 1;
387 
388 			error = nvpair_value_string(elem, &strval);
389 
390 			if (!error) {
391 				uint64_t compress;
392 
393 				if (strval == NULL || strval[0] == '\0') {
394 					objnum = zpool_prop_default_numeric(
395 					    ZPOOL_PROP_BOOTFS);
396 					break;
397 				}
398 
399 				if (error = dmu_objset_hold(strval, FTAG, &os))
400 					break;
401 
402 				/* Must be ZPL and not gzip compressed. */
403 
404 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
405 					error = ENOTSUP;
406 				} else if ((error = dsl_prop_get_integer(strval,
407 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
408 				    &compress, NULL)) == 0 &&
409 				    !BOOTFS_COMPRESS_VALID(compress)) {
410 					error = ENOTSUP;
411 				} else {
412 					objnum = dmu_objset_id(os);
413 				}
414 				dmu_objset_rele(os, FTAG);
415 			}
416 			break;
417 
418 		case ZPOOL_PROP_FAILUREMODE:
419 			error = nvpair_value_uint64(elem, &intval);
420 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
421 			    intval > ZIO_FAILURE_MODE_PANIC))
422 				error = EINVAL;
423 
424 			/*
425 			 * This is a special case which only occurs when
426 			 * the pool has completely failed. This allows
427 			 * the user to change the in-core failmode property
428 			 * without syncing it out to disk (I/Os might
429 			 * currently be blocked). We do this by returning
430 			 * EIO to the caller (spa_prop_set) to trick it
431 			 * into thinking we encountered a property validation
432 			 * error.
433 			 */
434 			if (!error && spa_suspended(spa)) {
435 				spa->spa_failmode = intval;
436 				error = EIO;
437 			}
438 			break;
439 
440 		case ZPOOL_PROP_CACHEFILE:
441 			if ((error = nvpair_value_string(elem, &strval)) != 0)
442 				break;
443 
444 			if (strval[0] == '\0')
445 				break;
446 
447 			if (strcmp(strval, "none") == 0)
448 				break;
449 
450 			if (strval[0] != '/') {
451 				error = EINVAL;
452 				break;
453 			}
454 
455 			slash = strrchr(strval, '/');
456 			ASSERT(slash != NULL);
457 
458 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
459 			    strcmp(slash, "/..") == 0)
460 				error = EINVAL;
461 			break;
462 
463 		case ZPOOL_PROP_DEDUPDITTO:
464 			if (spa_version(spa) < SPA_VERSION_DEDUP)
465 				error = ENOTSUP;
466 			else
467 				error = nvpair_value_uint64(elem, &intval);
468 			if (error == 0 &&
469 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
470 				error = EINVAL;
471 			break;
472 		}
473 
474 		if (error)
475 			break;
476 	}
477 
478 	if (!error && reset_bootfs) {
479 		error = nvlist_remove(props,
480 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
481 
482 		if (!error) {
483 			error = nvlist_add_uint64(props,
484 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
485 		}
486 	}
487 
488 	return (error);
489 }
490 
491 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)492 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
493 {
494 	char *cachefile;
495 	spa_config_dirent_t *dp;
496 
497 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
498 	    &cachefile) != 0)
499 		return;
500 
501 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
502 	    KM_SLEEP);
503 
504 	if (cachefile[0] == '\0')
505 		dp->scd_path = spa_strdup(spa_config_path);
506 	else if (strcmp(cachefile, "none") == 0)
507 		dp->scd_path = NULL;
508 	else
509 		dp->scd_path = spa_strdup(cachefile);
510 
511 	list_insert_head(&spa->spa_config_list, dp);
512 	if (need_sync)
513 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
514 }
515 
516 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)517 spa_prop_set(spa_t *spa, nvlist_t *nvp)
518 {
519 	int error;
520 	nvpair_t *elem;
521 	boolean_t need_sync = B_FALSE;
522 	zpool_prop_t prop;
523 
524 	if ((error = spa_prop_validate(spa, nvp)) != 0)
525 		return (error);
526 
527 	elem = NULL;
528 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
529 		if ((prop = zpool_name_to_prop(
530 		    nvpair_name(elem))) == ZPROP_INVAL)
531 			return (EINVAL);
532 
533 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
534 			continue;
535 
536 		need_sync = B_TRUE;
537 		break;
538 	}
539 
540 	if (need_sync)
541 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
542 		    spa, nvp, 3));
543 	else
544 		return (0);
545 }
546 
547 /*
548  * If the bootfs property value is dsobj, clear it.
549  */
550 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)551 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
552 {
553 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
554 		VERIFY(zap_remove(spa->spa_meta_objset,
555 		    spa->spa_pool_props_object,
556 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
557 		spa->spa_bootfs = 0;
558 	}
559 }
560 
561 /*
562  * ==========================================================================
563  * SPA state manipulation (open/create/destroy/import/export)
564  * ==========================================================================
565  */
566 
567 static int
spa_error_entry_compare(const void * a,const void * b)568 spa_error_entry_compare(const void *a, const void *b)
569 {
570 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
571 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
572 	int ret;
573 
574 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
575 	    sizeof (zbookmark_t));
576 
577 	if (ret < 0)
578 		return (-1);
579 	else if (ret > 0)
580 		return (1);
581 	else
582 		return (0);
583 }
584 
585 /*
586  * Utility function which retrieves copies of the current logs and
587  * re-initializes them in the process.
588  */
589 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)590 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
591 {
592 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
593 
594 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
595 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
596 
597 	avl_create(&spa->spa_errlist_scrub,
598 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
599 	    offsetof(spa_error_entry_t, se_avl));
600 	avl_create(&spa->spa_errlist_last,
601 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
602 	    offsetof(spa_error_entry_t, se_avl));
603 }
604 
605 static taskq_t *
spa_taskq_create(spa_t * spa,const char * name,enum zti_modes mode,uint_t value)606 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
607     uint_t value)
608 {
609 	uint_t flags = TASKQ_PREPOPULATE;
610 	boolean_t batch = B_FALSE;
611 
612 	switch (mode) {
613 	case zti_mode_null:
614 		return (NULL);		/* no taskq needed */
615 
616 	case zti_mode_fixed:
617 		ASSERT3U(value, >=, 1);
618 		value = MAX(value, 1);
619 		break;
620 
621 	case zti_mode_batch:
622 		batch = B_TRUE;
623 		flags |= TASKQ_THREADS_CPU_PCT;
624 		value = zio_taskq_batch_pct;
625 		break;
626 
627 	case zti_mode_online_percent:
628 		flags |= TASKQ_THREADS_CPU_PCT;
629 		break;
630 
631 	default:
632 		panic("unrecognized mode for %s taskq (%u:%u) in "
633 		    "spa_activate()",
634 		    name, mode, value);
635 		break;
636 	}
637 
638 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
639 		if (batch)
640 			flags |= TASKQ_DC_BATCH;
641 
642 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
643 		    spa->spa_proc, zio_taskq_basedc, flags));
644 	}
645 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
646 	    spa->spa_proc, flags));
647 }
648 
649 static void
spa_create_zio_taskqs(spa_t * spa)650 spa_create_zio_taskqs(spa_t *spa)
651 {
652 	for (int t = 0; t < ZIO_TYPES; t++) {
653 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
654 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
655 			enum zti_modes mode = ztip->zti_mode;
656 			uint_t value = ztip->zti_value;
657 			char name[32];
658 
659 			(void) snprintf(name, sizeof (name),
660 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
661 
662 			spa->spa_zio_taskq[t][q] =
663 			    spa_taskq_create(spa, name, mode, value);
664 		}
665 	}
666 }
667 
668 #ifdef _KERNEL
669 static void
spa_thread(void * arg)670 spa_thread(void *arg)
671 {
672 	callb_cpr_t cprinfo;
673 
674 	spa_t *spa = arg;
675 
676 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
677 	    spa->spa_name);
678 
679 	ASSERT(curproc != &p0);
680 #ifdef PORT_SOLARIS
681 	user_t *pu = PTOU(curproc);
682 
683 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
684 	    "zpool-%s", spa->spa_name);
685 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
686 
687 	/* bind this thread to the requested psrset */
688 	if (zio_taskq_psrset_bind != PS_NONE) {
689 		pool_lock();
690 		mutex_enter(&cpu_lock);
691 		mutex_enter(&pidlock);
692 		mutex_enter(&curproc->p_lock);
693 
694 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
695 		    0, NULL, NULL) == 0)  {
696 			curthread->t_bind_pset = zio_taskq_psrset_bind;
697 		} else {
698 			cmn_err(CE_WARN,
699 			    "Couldn't bind process for zfs pool \"%s\" to "
700 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
701 		}
702 
703 		mutex_exit(&curproc->p_lock);
704 		mutex_exit(&pidlock);
705 		mutex_exit(&cpu_lock);
706 		pool_unlock();
707 	}
708 
709 	if (zio_taskq_sysdc) {
710 		sysdc_thread_enter(curthread, 100, 0);
711 	}
712 #endif /* PORT_SOLARIS */
713 	spa->spa_proc = curproc;
714 
715 	spa_create_zio_taskqs(spa);
716 
717 	mutex_enter(&spa->spa_proc_lock);
718 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
719 
720 	spa->spa_proc_state = SPA_PROC_ACTIVE;
721 	cv_broadcast(&spa->spa_proc_cv);
722 
723 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
724 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
725 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
726 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
727 
728 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
729 	spa->spa_proc_state = SPA_PROC_GONE;
730 	spa->spa_proc = &p0;
731 	cv_broadcast(&spa->spa_proc_cv);
732 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
733 
734 /*	mutex_enter(curproc->p_lock);
735 	lwp_exit(curproc); */
736 }
737 #endif
738 
739 /*
740  * Activate an uninitialized pool.
741  */
742 static void
spa_activate(spa_t * spa,int mode)743 spa_activate(spa_t *spa, int mode)
744 {
745 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
746 
747 	spa->spa_state = POOL_STATE_ACTIVE;
748 	spa->spa_mode = mode;
749 
750 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
751 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
752 
753 	/* Try to create a covering process */
754 	mutex_enter(&spa->spa_proc_lock);
755 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
756 	ASSERT(spa->spa_proc == &p0);
757 	spa->spa_did = 0;
758 #if 0
759 	/* Only create a process if we're going to be around a while. */
760 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
761 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
762 		    NULL, 0) == 0) {
763 			spa->spa_proc_state = SPA_PROC_CREATED;
764 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
765 				cv_wait(&spa->spa_proc_cv,
766 				    &spa->spa_proc_lock);
767 			}
768 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
769 			ASSERT(spa->spa_proc != &p0);
770 			ASSERT(spa->spa_did != 0);
771 		} else {
772 #ifdef _KERNEL
773 			cmn_err(CE_WARN,
774 			    "Couldn't create process for zfs pool \"%s\"\n",
775 			    spa->spa_name);
776 #endif
777 		}
778 	}
779 #endif
780 	mutex_exit(&spa->spa_proc_lock);
781 
782 	/* If we didn't create a process, we need to create our taskqs. */
783 	if (spa->spa_proc == &p0) {
784 		spa_create_zio_taskqs(spa);
785 	}
786 
787 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
788 	    offsetof(vdev_t, vdev_config_dirty_node));
789 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
790 	    offsetof(vdev_t, vdev_state_dirty_node));
791 
792 	txg_list_create(&spa->spa_vdev_txg_list,
793 	    offsetof(struct vdev, vdev_txg_node));
794 
795 	avl_create(&spa->spa_errlist_scrub,
796 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
797 	    offsetof(spa_error_entry_t, se_avl));
798 	avl_create(&spa->spa_errlist_last,
799 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
800 	    offsetof(spa_error_entry_t, se_avl));
801 }
802 
803 /*
804  * Opposite of spa_activate().
805  */
806 static void
spa_deactivate(spa_t * spa)807 spa_deactivate(spa_t *spa)
808 {
809 	ASSERT(spa->spa_sync_on == B_FALSE);
810 	ASSERT(spa->spa_dsl_pool == NULL);
811 	ASSERT(spa->spa_root_vdev == NULL);
812 	ASSERT(spa->spa_async_zio_root == NULL);
813 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
814 
815 	txg_list_destroy(&spa->spa_vdev_txg_list);
816 
817 	list_destroy(&spa->spa_config_dirty_list);
818 	list_destroy(&spa->spa_state_dirty_list);
819 
820 	for (int t = 0; t < ZIO_TYPES; t++) {
821 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
822 			if (spa->spa_zio_taskq[t][q] != NULL)
823 				taskq_destroy(spa->spa_zio_taskq[t][q]);
824 			spa->spa_zio_taskq[t][q] = NULL;
825 		}
826 	}
827 
828 	metaslab_class_destroy(spa->spa_normal_class);
829 	spa->spa_normal_class = NULL;
830 
831 	metaslab_class_destroy(spa->spa_log_class);
832 	spa->spa_log_class = NULL;
833 
834 	/*
835 	 * If this was part of an import or the open otherwise failed, we may
836 	 * still have errors left in the queues.  Empty them just in case.
837 	 */
838 	spa_errlog_drain(spa);
839 
840 	avl_destroy(&spa->spa_errlist_scrub);
841 	avl_destroy(&spa->spa_errlist_last);
842 
843 	spa->spa_state = POOL_STATE_UNINITIALIZED;
844 
845 	mutex_enter(&spa->spa_proc_lock);
846 	if (spa->spa_proc_state != SPA_PROC_NONE) {
847 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
848 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
849 		cv_broadcast(&spa->spa_proc_cv);
850 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
851 			ASSERT(spa->spa_proc != &p0);
852 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
853 		}
854 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
855 		spa->spa_proc_state = SPA_PROC_NONE;
856 	}
857 	ASSERT(spa->spa_proc == &p0);
858 	mutex_exit(&spa->spa_proc_lock);
859 
860 	/*
861 	 * We want to make sure spa_thread() has actually exited the ZFS
862 	 * module, so that the module can't be unloaded out from underneath
863 	 * it.
864 	 */
865 	if (spa->spa_did != 0) {
866 		thread_join(spa->spa_did);
867 		spa->spa_did = 0;
868 	}
869 }
870 
871 /*
872  * Verify a pool configuration, and construct the vdev tree appropriately.  This
873  * will create all the necessary vdevs in the appropriate layout, with each vdev
874  * in the CLOSED state.  This will prep the pool before open/creation/import.
875  * All vdev validation is done by the vdev_alloc() routine.
876  */
877 static int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)878 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
879     uint_t id, int atype)
880 {
881 	nvlist_t **child;
882 	uint_t children;
883 	int error;
884 
885 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
886 		return (error);
887 
888 	if ((*vdp)->vdev_ops->vdev_op_leaf)
889 		return (0);
890 
891 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
892 	    &child, &children);
893 
894 	if (error == ENOENT)
895 		return (0);
896 
897 	if (error) {
898 		vdev_free(*vdp);
899 		*vdp = NULL;
900 		return (EINVAL);
901 	}
902 
903 	for (int c = 0; c < children; c++) {
904 		vdev_t *vd;
905 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
906 		    atype)) != 0) {
907 			vdev_free(*vdp);
908 			*vdp = NULL;
909 			return (error);
910 		}
911 	}
912 
913 	ASSERT(*vdp != NULL);
914 
915 	return (0);
916 }
917 
918 /*
919  * Opposite of spa_load().
920  */
921 static void
spa_unload(spa_t * spa)922 spa_unload(spa_t *spa)
923 {
924 	int i;
925 
926 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
927 
928 	/*
929 	 * Stop async tasks.
930 	 */
931 	spa_async_suspend(spa);
932 
933 	/*
934 	 * Stop syncing.
935 	 */
936 	if (spa->spa_sync_on) {
937 		txg_sync_stop(spa->spa_dsl_pool);
938 		spa->spa_sync_on = B_FALSE;
939 	}
940 
941 	/*
942 	 * Wait for any outstanding async I/O to complete.
943 	 */
944 	if (spa->spa_async_zio_root != NULL) {
945 		(void) zio_wait(spa->spa_async_zio_root);
946 		spa->spa_async_zio_root = NULL;
947 	}
948 
949 	/*
950 	 * Close the dsl pool.
951 	 */
952 	if (spa->spa_dsl_pool) {
953 		dsl_pool_close(spa->spa_dsl_pool);
954 		spa->spa_dsl_pool = NULL;
955 		spa->spa_meta_objset = NULL;
956 	}
957 
958 	ddt_unload(spa);
959 
960 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
961 
962 	/*
963 	 * Drop and purge level 2 cache
964 	 */
965 	spa_l2cache_drop(spa);
966 
967 	/*
968 	 * Close all vdevs.
969 	 */
970 	if (spa->spa_root_vdev)
971 		vdev_free(spa->spa_root_vdev);
972 	ASSERT(spa->spa_root_vdev == NULL);
973 
974 	for (i = 0; i < spa->spa_spares.sav_count; i++)
975 		vdev_free(spa->spa_spares.sav_vdevs[i]);
976 	if (spa->spa_spares.sav_vdevs) {
977 		kmem_free(spa->spa_spares.sav_vdevs,
978 		    spa->spa_spares.sav_count * sizeof (void *));
979 		spa->spa_spares.sav_vdevs = NULL;
980 	}
981 	if (spa->spa_spares.sav_config) {
982 		nvlist_free(spa->spa_spares.sav_config);
983 		spa->spa_spares.sav_config = NULL;
984 	}
985 	spa->spa_spares.sav_count = 0;
986 
987 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
988 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
989 	if (spa->spa_l2cache.sav_vdevs) {
990 		kmem_free(spa->spa_l2cache.sav_vdevs,
991 		    spa->spa_l2cache.sav_count * sizeof (void *));
992 		spa->spa_l2cache.sav_vdevs = NULL;
993 	}
994 	if (spa->spa_l2cache.sav_config) {
995 		nvlist_free(spa->spa_l2cache.sav_config);
996 		spa->spa_l2cache.sav_config = NULL;
997 	}
998 	spa->spa_l2cache.sav_count = 0;
999 
1000 	spa->spa_async_suspended = 0;
1001 
1002 	spa_config_exit(spa, SCL_ALL, FTAG);
1003 }
1004 
1005 /*
1006  * Load (or re-load) the current list of vdevs describing the active spares for
1007  * this pool.  When this is called, we have some form of basic information in
1008  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1009  * then re-generate a more complete list including status information.
1010  */
1011 static void
spa_load_spares(spa_t * spa)1012 spa_load_spares(spa_t *spa)
1013 {
1014 	nvlist_t **spares;
1015 	uint_t nspares;
1016 	int i;
1017 	vdev_t *vd, *tvd;
1018 
1019 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1020 
1021 	/*
1022 	 * First, close and free any existing spare vdevs.
1023 	 */
1024 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1025 		vd = spa->spa_spares.sav_vdevs[i];
1026 
1027 		/* Undo the call to spa_activate() below */
1028 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1029 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1030 			spa_spare_remove(tvd);
1031 		vdev_close(vd);
1032 		vdev_free(vd);
1033 	}
1034 
1035 	if (spa->spa_spares.sav_vdevs)
1036 		kmem_free(spa->spa_spares.sav_vdevs,
1037 		    spa->spa_spares.sav_count * sizeof (void *));
1038 
1039 	if (spa->spa_spares.sav_config == NULL)
1040 		nspares = 0;
1041 	else
1042 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1043 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1044 
1045 	spa->spa_spares.sav_count = (int)nspares;
1046 	spa->spa_spares.sav_vdevs = NULL;
1047 
1048 	if (nspares == 0)
1049 		return;
1050 
1051 	/*
1052 	 * Construct the array of vdevs, opening them to get status in the
1053 	 * process.   For each spare, there is potentially two different vdev_t
1054 	 * structures associated with it: one in the list of spares (used only
1055 	 * for basic validation purposes) and one in the active vdev
1056 	 * configuration (if it's spared in).  During this phase we open and
1057 	 * validate each vdev on the spare list.  If the vdev also exists in the
1058 	 * active configuration, then we also mark this vdev as an active spare.
1059 	 */
1060 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1061 	    KM_SLEEP);
1062 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1063 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1064 		    VDEV_ALLOC_SPARE) == 0);
1065 		ASSERT(vd != NULL);
1066 
1067 		spa->spa_spares.sav_vdevs[i] = vd;
1068 
1069 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1070 		    B_FALSE)) != NULL) {
1071 			if (!tvd->vdev_isspare)
1072 				spa_spare_add(tvd);
1073 
1074 			/*
1075 			 * We only mark the spare active if we were successfully
1076 			 * able to load the vdev.  Otherwise, importing a pool
1077 			 * with a bad active spare would result in strange
1078 			 * behavior, because multiple pool would think the spare
1079 			 * is actively in use.
1080 			 *
1081 			 * There is a vulnerability here to an equally bizarre
1082 			 * circumstance, where a dead active spare is later
1083 			 * brought back to life (onlined or otherwise).  Given
1084 			 * the rarity of this scenario, and the extra complexity
1085 			 * it adds, we ignore the possibility.
1086 			 */
1087 			if (!vdev_is_dead(tvd))
1088 				spa_spare_activate(tvd);
1089 		}
1090 
1091 		vd->vdev_top = vd;
1092 		vd->vdev_aux = &spa->spa_spares;
1093 
1094 		if (vdev_open(vd) != 0)
1095 			continue;
1096 
1097 		if (vdev_validate_aux(vd) == 0)
1098 			spa_spare_add(vd);
1099 	}
1100 
1101 	/*
1102 	 * Recompute the stashed list of spares, with status information
1103 	 * this time.
1104 	 */
1105 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1106 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1107 
1108 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1109 	    KM_SLEEP);
1110 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1111 		spares[i] = vdev_config_generate(spa,
1112 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
1113 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1114 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1115 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1116 		nvlist_free(spares[i]);
1117 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1118 }
1119 
1120 /*
1121  * Load (or re-load) the current list of vdevs describing the active l2cache for
1122  * this pool.  When this is called, we have some form of basic information in
1123  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1124  * then re-generate a more complete list including status information.
1125  * Devices which are already active have their details maintained, and are
1126  * not re-opened.
1127  */
1128 static void
spa_load_l2cache(spa_t * spa)1129 spa_load_l2cache(spa_t *spa)
1130 {
1131 	nvlist_t **l2cache;
1132 	uint_t nl2cache;
1133 	int i, j, oldnvdevs;
1134 	uint64_t guid;
1135 	vdev_t *vd, **oldvdevs, **newvdevs;
1136 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1137 
1138 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1139 
1140 	if (sav->sav_config != NULL) {
1141 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1142 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1143 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1144 	} else {
1145 		nl2cache = 0;
1146 	}
1147 
1148 	oldvdevs = sav->sav_vdevs;
1149 	oldnvdevs = sav->sav_count;
1150 	sav->sav_vdevs = NULL;
1151 	sav->sav_count = 0;
1152 
1153 	/*
1154 	 * Process new nvlist of vdevs.
1155 	 */
1156 	for (i = 0; i < nl2cache; i++) {
1157 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1158 		    &guid) == 0);
1159 
1160 		newvdevs[i] = NULL;
1161 		for (j = 0; j < oldnvdevs; j++) {
1162 			vd = oldvdevs[j];
1163 			if (vd != NULL && guid == vd->vdev_guid) {
1164 				/*
1165 				 * Retain previous vdev for add/remove ops.
1166 				 */
1167 				newvdevs[i] = vd;
1168 				oldvdevs[j] = NULL;
1169 				break;
1170 			}
1171 		}
1172 
1173 		if (newvdevs[i] == NULL) {
1174 			/*
1175 			 * Create new vdev
1176 			 */
1177 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1178 			    VDEV_ALLOC_L2CACHE) == 0);
1179 			ASSERT(vd != NULL);
1180 			newvdevs[i] = vd;
1181 
1182 			/*
1183 			 * Commit this vdev as an l2cache device,
1184 			 * even if it fails to open.
1185 			 */
1186 			spa_l2cache_add(vd);
1187 
1188 			vd->vdev_top = vd;
1189 			vd->vdev_aux = sav;
1190 
1191 			spa_l2cache_activate(vd);
1192 
1193 			if (vdev_open(vd) != 0)
1194 				continue;
1195 
1196 			(void) vdev_validate_aux(vd);
1197 
1198 			if (!vdev_is_dead(vd))
1199 				l2arc_add_vdev(spa, vd);
1200 		}
1201 	}
1202 
1203 	/*
1204 	 * Purge vdevs that were dropped
1205 	 */
1206 	for (i = 0; i < oldnvdevs; i++) {
1207 		uint64_t pool;
1208 
1209 		vd = oldvdevs[i];
1210 		if (vd != NULL) {
1211 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1212 			    pool != 0ULL && l2arc_vdev_present(vd))
1213 				l2arc_remove_vdev(vd);
1214 			(void) vdev_close(vd);
1215 			spa_l2cache_remove(vd);
1216 		}
1217 	}
1218 
1219 	if (oldvdevs)
1220 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1221 
1222 	if (sav->sav_config == NULL)
1223 		goto out;
1224 
1225 	sav->sav_vdevs = newvdevs;
1226 	sav->sav_count = (int)nl2cache;
1227 
1228 	/*
1229 	 * Recompute the stashed list of l2cache devices, with status
1230 	 * information this time.
1231 	 */
1232 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1233 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1234 
1235 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1236 	for (i = 0; i < sav->sav_count; i++)
1237 		l2cache[i] = vdev_config_generate(spa,
1238 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1239 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1240 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1241 out:
1242 	for (i = 0; i < sav->sav_count; i++)
1243 		nvlist_free(l2cache[i]);
1244 	if (sav->sav_count)
1245 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1246 }
1247 
1248 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)1249 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1250 {
1251 	dmu_buf_t *db;
1252 	char *packed = NULL;
1253 	size_t nvsize = 0;
1254 	int error;
1255 	*value = NULL;
1256 
1257 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1258 	nvsize = *(uint64_t *)db->db_data;
1259 	dmu_buf_rele(db, FTAG);
1260 
1261 	packed = kmem_alloc(nvsize, KM_SLEEP);
1262 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1263 	    DMU_READ_PREFETCH);
1264 	if (error == 0)
1265 		error = nvlist_unpack(packed, nvsize, value, 0);
1266 	kmem_free(packed, nvsize);
1267 
1268 	return (error);
1269 }
1270 
1271 /*
1272  * Checks to see if the given vdev could not be opened, in which case we post a
1273  * sysevent to notify the autoreplace code that the device has been removed.
1274  */
1275 static void
spa_check_removed(vdev_t * vd)1276 spa_check_removed(vdev_t *vd)
1277 {
1278 	for (int c = 0; c < vd->vdev_children; c++)
1279 		spa_check_removed(vd->vdev_child[c]);
1280 
1281 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1282 		zfs_post_autoreplace(vd->vdev_spa, vd);
1283 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1284 	}
1285 }
1286 
1287 /*
1288  * Load the slog device state from the config object since it's possible
1289  * that the label does not contain the most up-to-date information.
1290  */
1291 void
spa_load_log_state(spa_t * spa,nvlist_t * nv)1292 spa_load_log_state(spa_t *spa, nvlist_t *nv)
1293 {
1294 	vdev_t *ovd, *rvd = spa->spa_root_vdev;
1295 
1296 	/*
1297 	 * Load the original root vdev tree from the passed config.
1298 	 */
1299 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1300 	VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1301 
1302 	for (int c = 0; c < rvd->vdev_children; c++) {
1303 		vdev_t *cvd = rvd->vdev_child[c];
1304 		if (cvd->vdev_islog)
1305 			vdev_load_log_state(cvd, ovd->vdev_child[c]);
1306 	}
1307 	vdev_free(ovd);
1308 	spa_config_exit(spa, SCL_ALL, FTAG);
1309 }
1310 
1311 /*
1312  * Check for missing log devices
1313  */
1314 int
spa_check_logs(spa_t * spa)1315 spa_check_logs(spa_t *spa)
1316 {
1317 	switch (spa->spa_log_state) {
1318 	case SPA_LOG_MISSING:
1319 		/* need to recheck in case slog has been restored */
1320 	case SPA_LOG_UNKNOWN:
1321 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1322 		    DS_FIND_CHILDREN)) {
1323 			spa_set_log_state(spa, SPA_LOG_MISSING);
1324 			return (1);
1325 		}
1326 		break;
1327 	}
1328 	return (0);
1329 }
1330 
1331 static boolean_t
spa_passivate_log(spa_t * spa)1332 spa_passivate_log(spa_t *spa)
1333 {
1334 	vdev_t *rvd = spa->spa_root_vdev;
1335 	boolean_t slog_found = B_FALSE;
1336 
1337 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1338 
1339 	if (!spa_has_slogs(spa))
1340 		return (B_FALSE);
1341 
1342 	for (int c = 0; c < rvd->vdev_children; c++) {
1343 		vdev_t *tvd = rvd->vdev_child[c];
1344 		metaslab_group_t *mg = tvd->vdev_mg;
1345 
1346 		if (tvd->vdev_islog) {
1347 			metaslab_group_passivate(mg);
1348 			slog_found = B_TRUE;
1349 		}
1350 	}
1351 
1352 	return (slog_found);
1353 }
1354 
1355 static void
spa_activate_log(spa_t * spa)1356 spa_activate_log(spa_t *spa)
1357 {
1358 	vdev_t *rvd = spa->spa_root_vdev;
1359 
1360 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1361 
1362 	for (int c = 0; c < rvd->vdev_children; c++) {
1363 		vdev_t *tvd = rvd->vdev_child[c];
1364 		metaslab_group_t *mg = tvd->vdev_mg;
1365 
1366 		if (tvd->vdev_islog)
1367 			metaslab_group_activate(mg);
1368 	}
1369 }
1370 
1371 int
spa_offline_log(spa_t * spa)1372 spa_offline_log(spa_t *spa)
1373 {
1374 	int error = 0;
1375 
1376 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1377 	    NULL, DS_FIND_CHILDREN)) == 0) {
1378 
1379 		/*
1380 		 * We successfully offlined the log device, sync out the
1381 		 * current txg so that the "stubby" block can be removed
1382 		 * by zil_sync().
1383 		 */
1384 		txg_wait_synced(spa->spa_dsl_pool, 0);
1385 	}
1386 	return (error);
1387 }
1388 
1389 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)1390 spa_aux_check_removed(spa_aux_vdev_t *sav)
1391 {
1392 	for (int i = 0; i < sav->sav_count; i++)
1393 		spa_check_removed(sav->sav_vdevs[i]);
1394 }
1395 
1396 void
spa_claim_notify(zio_t * zio)1397 spa_claim_notify(zio_t *zio)
1398 {
1399 	spa_t *spa = zio->io_spa;
1400 
1401 	if (zio->io_error)
1402 		return;
1403 
1404 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1405 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1406 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1407 	mutex_exit(&spa->spa_props_lock);
1408 }
1409 
1410 typedef struct spa_load_error {
1411 	uint64_t	sle_meta_count;
1412 	uint64_t	sle_data_count;
1413 } spa_load_error_t;
1414 
1415 static void
spa_load_verify_done(zio_t * zio)1416 spa_load_verify_done(zio_t *zio)
1417 {
1418 	blkptr_t *bp = zio->io_bp;
1419 	spa_load_error_t *sle = zio->io_private;
1420 	dmu_object_type_t type = BP_GET_TYPE(bp);
1421 	int error = zio->io_error;
1422 
1423 	if (error) {
1424 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1425 		    type != DMU_OT_INTENT_LOG)
1426 			atomic_add_64(&sle->sle_meta_count, 1);
1427 		else
1428 			atomic_add_64(&sle->sle_data_count, 1);
1429 	}
1430 	zio_data_buf_free(zio->io_data, zio->io_size);
1431 }
1432 
1433 /*ARGSUSED*/
1434 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_t * zb,const dnode_phys_t * dnp,void * arg)1435 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1436     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1437 {
1438 	if (bp != NULL) {
1439 		zio_t *rio = arg;
1440 		size_t size = BP_GET_PSIZE(bp);
1441 		void *data = zio_data_buf_alloc(size);
1442 
1443 		zio_nowait(zio_read(rio, spa, bp, data, size,
1444 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1445 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1446 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1447 	}
1448 	return (0);
1449 }
1450 
1451 static int
spa_load_verify(spa_t * spa)1452 spa_load_verify(spa_t *spa)
1453 {
1454 	zio_t *rio;
1455 	spa_load_error_t sle = { 0 };
1456 	zpool_rewind_policy_t policy;
1457 	boolean_t verify_ok = B_FALSE;
1458 	int error;
1459 
1460 	zpool_get_rewind_policy(spa->spa_config, &policy);
1461 
1462 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1463 		return (0);
1464 
1465 	rio = zio_root(spa, NULL, &sle,
1466 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1467 
1468 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1469 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1470 
1471 	(void) zio_wait(rio);
1472 
1473 	spa->spa_load_meta_errors = sle.sle_meta_count;
1474 	spa->spa_load_data_errors = sle.sle_data_count;
1475 
1476 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1477 	    sle.sle_data_count <= policy.zrp_maxdata) {
1478 		verify_ok = B_TRUE;
1479 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1480 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1481 	} else {
1482 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1483 	}
1484 
1485 	if (error) {
1486 		if (error != ENXIO && error != EIO)
1487 			error = EIO;
1488 		return (error);
1489 	}
1490 
1491 	return (verify_ok ? 0 : EIO);
1492 }
1493 
1494 /*
1495  * Find a value in the pool props object.
1496  */
1497 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)1498 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1499 {
1500 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1501 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1502 }
1503 
1504 /*
1505  * Find a value in the pool directory object.
1506  */
1507 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val)1508 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1509 {
1510 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1511 	    name, sizeof (uint64_t), 1, val));
1512 }
1513 
1514 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)1515 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1516 {
1517 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1518 	return (err);
1519 }
1520 
1521 /*
1522  * Fix up config after a partly-completed split.  This is done with the
1523  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1524  * pool have that entry in their config, but only the splitting one contains
1525  * a list of all the guids of the vdevs that are being split off.
1526  *
1527  * This function determines what to do with that list: either rejoin
1528  * all the disks to the pool, or complete the splitting process.  To attempt
1529  * the rejoin, each disk that is offlined is marked online again, and
1530  * we do a reopen() call.  If the vdev label for every disk that was
1531  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1532  * then we call vdev_split() on each disk, and complete the split.
1533  *
1534  * Otherwise we leave the config alone, with all the vdevs in place in
1535  * the original pool.
1536  */
1537 static void
spa_try_repair(spa_t * spa,nvlist_t * config)1538 spa_try_repair(spa_t *spa, nvlist_t *config)
1539 {
1540 	uint_t extracted;
1541 	uint64_t *glist;
1542 	uint_t i, gcount;
1543 	nvlist_t *nvl;
1544 	vdev_t **vd;
1545 	boolean_t attempt_reopen;
1546 
1547 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1548 		return;
1549 
1550 	/* check that the config is complete */
1551 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1552 	    &glist, &gcount) != 0)
1553 		return;
1554 
1555 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1556 
1557 	/* attempt to online all the vdevs & validate */
1558 	attempt_reopen = B_TRUE;
1559 	for (i = 0; i < gcount; i++) {
1560 		if (glist[i] == 0)	/* vdev is hole */
1561 			continue;
1562 
1563 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1564 		if (vd[i] == NULL) {
1565 			/*
1566 			 * Don't bother attempting to reopen the disks;
1567 			 * just do the split.
1568 			 */
1569 			attempt_reopen = B_FALSE;
1570 		} else {
1571 			/* attempt to re-online it */
1572 			vd[i]->vdev_offline = B_FALSE;
1573 		}
1574 	}
1575 
1576 	if (attempt_reopen) {
1577 		vdev_reopen(spa->spa_root_vdev);
1578 
1579 		/* check each device to see what state it's in */
1580 		for (extracted = 0, i = 0; i < gcount; i++) {
1581 			if (vd[i] != NULL &&
1582 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1583 				break;
1584 			++extracted;
1585 		}
1586 	}
1587 
1588 	/*
1589 	 * If every disk has been moved to the new pool, or if we never
1590 	 * even attempted to look at them, then we split them off for
1591 	 * good.
1592 	 */
1593 	if (!attempt_reopen || gcount == extracted) {
1594 		for (i = 0; i < gcount; i++)
1595 			if (vd[i] != NULL)
1596 				vdev_split(vd[i]);
1597 		vdev_reopen(spa->spa_root_vdev);
1598 	}
1599 
1600 	kmem_free(vd, gcount * sizeof (vdev_t *));
1601 }
1602 
1603 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type,boolean_t mosconfig)1604 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1605     boolean_t mosconfig)
1606 {
1607 	nvlist_t *config = spa->spa_config;
1608 	char *ereport = FM_EREPORT_ZFS_POOL;
1609 	int error;
1610 	uint64_t pool_guid;
1611 	nvlist_t *nvl;
1612 
1613 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1614 		return (EINVAL);
1615 
1616 	/*
1617 	 * Versioning wasn't explicitly added to the label until later, so if
1618 	 * it's not present treat it as the initial version.
1619 	 */
1620 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1621 	    &spa->spa_ubsync.ub_version) != 0)
1622 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1623 
1624 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1625 	    &spa->spa_config_txg);
1626 
1627 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1628 	    spa_guid_exists(pool_guid, 0)) {
1629 		error = EEXIST;
1630 	} else {
1631 		spa->spa_load_guid = pool_guid;
1632 
1633 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1634 		    &nvl) == 0) {
1635 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1636 			    KM_SLEEP) == 0);
1637 		}
1638 
1639 		error = spa_load_impl(spa, pool_guid, config, state, type,
1640 		    mosconfig, &ereport);
1641 	}
1642 
1643 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1644 	if (error && error != EBADF)
1645 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1646 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1647 	spa->spa_ena = 0;
1648 
1649 	return (error);
1650 }
1651 
1652 /*
1653  * Load an existing storage pool, using the pool's builtin spa_config as a
1654  * source of configuration information.
1655  */
1656 static int
spa_load_impl(spa_t * spa,uint64_t pool_guid,nvlist_t * config,spa_load_state_t state,spa_import_type_t type,boolean_t mosconfig,char ** ereport)1657 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1658     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1659     char **ereport)
1660 {
1661 	int error = 0;
1662 	nvlist_t *nvconfig, *nvroot = NULL;
1663 	vdev_t *rvd;
1664 	uberblock_t *ub = &spa->spa_uberblock;
1665 	uint64_t config_cache_txg = spa->spa_config_txg;
1666 	int orig_mode = spa->spa_mode;
1667 	int parse;
1668 
1669 	/*
1670 	 * If this is an untrusted config, access the pool in read-only mode.
1671 	 * This prevents things like resilvering recently removed devices.
1672 	 */
1673 	if (!mosconfig)
1674 		spa->spa_mode = FREAD;
1675 
1676 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1677 
1678 	spa->spa_load_state = state;
1679 
1680 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1681 		return (EINVAL);
1682 
1683 	parse = (type == SPA_IMPORT_EXISTING ?
1684 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1685 
1686 	/*
1687 	 * Create "The Godfather" zio to hold all async IOs
1688 	 */
1689 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1690 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1691 
1692 	/*
1693 	 * Parse the configuration into a vdev tree.  We explicitly set the
1694 	 * value that will be returned by spa_version() since parsing the
1695 	 * configuration requires knowing the version number.
1696 	 */
1697 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1698 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1699 	spa_config_exit(spa, SCL_ALL, FTAG);
1700 
1701 	if (error != 0)
1702 		return (error);
1703 
1704 	ASSERT(spa->spa_root_vdev == rvd);
1705 
1706 	if (type != SPA_IMPORT_ASSEMBLE) {
1707 		ASSERT(spa_guid(spa) == pool_guid);
1708 	}
1709 
1710 	/*
1711 	 * Try to open all vdevs, loading each label in the process.
1712 	 */
1713 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1714 	error = vdev_open(rvd);
1715 	spa_config_exit(spa, SCL_ALL, FTAG);
1716 	if (error != 0)
1717 		return (error);
1718 
1719 	/*
1720 	 * We need to validate the vdev labels against the configuration that
1721 	 * we have in hand, which is dependent on the setting of mosconfig. If
1722 	 * mosconfig is true then we're validating the vdev labels based on
1723 	 * that config.  Otherwise, we're validating against the cached config
1724 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1725 	 * later we will recursively call spa_load() and validate against
1726 	 * the vdev config.
1727 	 *
1728 	 * If we're assembling a new pool that's been split off from an
1729 	 * existing pool, the labels haven't yet been updated so we skip
1730 	 * validation for now.
1731 	 */
1732 	if (type != SPA_IMPORT_ASSEMBLE) {
1733 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1734 		error = vdev_validate(rvd);
1735 		spa_config_exit(spa, SCL_ALL, FTAG);
1736 
1737 		if (error != 0)
1738 			return (error);
1739 
1740 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1741 			return (ENXIO);
1742 	}
1743 
1744 	/*
1745 	 * Find the best uberblock.
1746 	 */
1747 	vdev_uberblock_load(NULL, rvd, ub);
1748 
1749 	/*
1750 	 * If we weren't able to find a single valid uberblock, return failure.
1751 	 */
1752 	if (ub->ub_txg == 0)
1753 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1754 
1755 	/*
1756 	 * If the pool is newer than the code, we can't open it.
1757 	 */
1758 	if (ub->ub_version > SPA_VERSION)
1759 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1760 
1761 	/*
1762 	 * If the vdev guid sum doesn't match the uberblock, we have an
1763 	 * incomplete configuration.
1764 	 */
1765 	if (mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1766 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1767 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1768 
1769 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1770 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1771 		spa_try_repair(spa, config);
1772 		spa_config_exit(spa, SCL_ALL, FTAG);
1773 		nvlist_free(spa->spa_config_splitting);
1774 		spa->spa_config_splitting = NULL;
1775 	}
1776 
1777 	/*
1778 	 * Initialize internal SPA structures.
1779 	 */
1780 	spa->spa_state = POOL_STATE_ACTIVE;
1781 	spa->spa_ubsync = spa->spa_uberblock;
1782 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1783 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1784 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1785 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1786 	spa->spa_claim_max_txg = spa->spa_first_txg;
1787 
1788 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1789 	if (error)
1790 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1791 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1792 
1793 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1794 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1795 
1796 	if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
1797 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1798 
1799 	if (!mosconfig) {
1800 		uint64_t hostid;
1801 		nvlist_t *policy = NULL;
1802 
1803 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1804 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1805 			char *hostname;
1806 			unsigned long myhostid = 0;
1807 
1808 			VERIFY(nvlist_lookup_string(nvconfig,
1809 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1810 
1811 #ifdef	_KERNEL
1812 			myhostid = zone_get_hostid(NULL);
1813 #else	/* _KERNEL */
1814 			/*
1815 			 * We're emulating the system's hostid in userland, so
1816 			 * we can't use zone_get_hostid().
1817 			 */
1818 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1819 #endif	/* _KERNEL */
1820 			if (hostid != 0 && myhostid != 0 &&
1821 			    hostid != myhostid) {
1822 				cmn_err(CE_WARN, "pool '%s' could not be "
1823 				    "loaded as it was last accessed by "
1824 				    "another system (host: %s hostid: 0x%lx). "
1825 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1826 				    spa_name(spa), hostname,
1827 				    (unsigned long)hostid);
1828 				return (EBADF);
1829 			}
1830 		}
1831 		if (nvlist_lookup_nvlist(spa->spa_config,
1832 		    ZPOOL_REWIND_POLICY, &policy) == 0)
1833 			VERIFY(nvlist_add_nvlist(nvconfig,
1834 			    ZPOOL_REWIND_POLICY, policy) == 0);
1835 
1836 		spa_config_set(spa, nvconfig);
1837 		spa_unload(spa);
1838 		spa_deactivate(spa);
1839 		spa_activate(spa, orig_mode);
1840 
1841 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
1842 	}
1843 
1844 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPLIST,
1845 	    &spa->spa_deferred_bplist_obj) != 0)
1846 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1847 
1848 	/*
1849 	 * Load the bit that tells us to use the new accounting function
1850 	 * (raid-z deflation).  If we have an older pool, this will not
1851 	 * be present.
1852 	 */
1853 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
1854 	if (error != 0 && error != ENOENT)
1855 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1856 
1857 	/*
1858 	 * Load the persistent error log.  If we have an older pool, this will
1859 	 * not be present.
1860 	 */
1861 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
1862 	if (error != 0 && error != ENOENT)
1863 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1864 
1865 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
1866 	    &spa->spa_errlog_scrub);
1867 	if (error != 0 && error != ENOENT)
1868 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1869 
1870 	/*
1871 	 * Load the history object.  If we have an older pool, this
1872 	 * will not be present.
1873 	 */
1874 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
1875 	if (error != 0 && error != ENOENT)
1876 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1877 
1878 	/*
1879 	 * If we're assembling the pool from the split-off vdevs of
1880 	 * an existing pool, we don't want to attach the spares & cache
1881 	 * devices.
1882 	 */
1883 
1884 	/*
1885 	 * Load any hot spares for this pool.
1886 	 */
1887 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
1888 	if (error != 0 && error != ENOENT)
1889 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1890 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1891 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1892 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1893 		    &spa->spa_spares.sav_config) != 0)
1894 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1895 
1896 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1897 		spa_load_spares(spa);
1898 		spa_config_exit(spa, SCL_ALL, FTAG);
1899 	} else if (error == 0) {
1900 		spa->spa_spares.sav_sync = B_TRUE;
1901 	}
1902 
1903 	/*
1904 	 * Load any level 2 ARC devices for this pool.
1905 	 */
1906 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
1907 	    &spa->spa_l2cache.sav_object);
1908 	if (error != 0 && error != ENOENT)
1909 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1910 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1911 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1912 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1913 		    &spa->spa_l2cache.sav_config) != 0)
1914 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1915 
1916 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1917 		spa_load_l2cache(spa);
1918 		spa_config_exit(spa, SCL_ALL, FTAG);
1919 	} else if (error == 0) {
1920 		spa->spa_l2cache.sav_sync = B_TRUE;
1921 	}
1922 
1923 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1924 
1925 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
1926 	if (error && error != ENOENT)
1927 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1928 
1929 	if (error == 0) {
1930 		uint64_t autoreplace;
1931 
1932 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
1933 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
1934 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
1935 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
1936 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
1937 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
1938 		    &spa->spa_dedup_ditto);
1939 
1940 		spa->spa_autoreplace = (autoreplace != 0);
1941 	}
1942 
1943 	/*
1944 	 * If the 'autoreplace' property is set, then post a resource notifying
1945 	 * the ZFS DE that it should not issue any faults for unopenable
1946 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1947 	 * unopenable vdevs so that the normal autoreplace handler can take
1948 	 * over.
1949 	 */
1950 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
1951 		spa_check_removed(spa->spa_root_vdev);
1952 		/*
1953 		 * For the import case, this is done in spa_import(), because
1954 		 * at this point we're using the spare definitions from
1955 		 * the MOS config, not necessarily from the userland config.
1956 		 */
1957 		if (state != SPA_LOAD_IMPORT) {
1958 			spa_aux_check_removed(&spa->spa_spares);
1959 			spa_aux_check_removed(&spa->spa_l2cache);
1960 		}
1961 	}
1962 
1963 	/*
1964 	 * Load the vdev state for all toplevel vdevs.
1965 	 */
1966 	vdev_load(rvd);
1967 
1968 	/*
1969 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1970 	 */
1971 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1972 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1973 	spa_config_exit(spa, SCL_ALL, FTAG);
1974 
1975 	/*
1976 	 * Check the state of the root vdev.  If it can't be opened, it
1977 	 * indicates one or more toplevel vdevs are faulted.
1978 	 */
1979 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1980 		return (ENXIO);
1981 
1982 	/*
1983 	 * Load the DDTs (dedup tables).
1984 	 */
1985 	error = ddt_load(spa);
1986 	if (error != 0)
1987 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1988 
1989 	spa_update_dspace(spa);
1990 
1991 	if (state != SPA_LOAD_TRYIMPORT) {
1992 		error = spa_load_verify(spa);
1993 		if (error)
1994 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
1995 			    error));
1996 	}
1997 
1998 	/*
1999 	 * Load the intent log state and check log integrity.  If we're
2000 	 * assembling a pool from a split, the log is not transferred over.
2001 	 */
2002 	if (type != SPA_IMPORT_ASSEMBLE) {
2003 		VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE,
2004 		    &nvroot) == 0);
2005 		spa_load_log_state(spa, nvroot);
2006 		nvlist_free(nvconfig);
2007 
2008 		if (spa_check_logs(spa)) {
2009 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2010 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2011 		}
2012 	}
2013 
2014 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2015 	    spa->spa_load_max_txg == UINT64_MAX)) {
2016 		dmu_tx_t *tx;
2017 		int need_update = B_FALSE;
2018 
2019 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2020 
2021 		/*
2022 		 * Claim log blocks that haven't been committed yet.
2023 		 * This must all happen in a single txg.
2024 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2025 		 * invoked from zil_claim_log_block()'s i/o done callback.
2026 		 * Price of rollback is that we abandon the log.
2027 		 */
2028 		spa->spa_claiming = B_TRUE;
2029 
2030 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2031 		    spa_first_txg(spa));
2032 		(void) dmu_objset_find(spa_name(spa),
2033 		    zil_claim, tx, DS_FIND_CHILDREN);
2034 		dmu_tx_commit(tx);
2035 
2036 		spa->spa_claiming = B_FALSE;
2037 
2038 		spa_set_log_state(spa, SPA_LOG_GOOD);
2039 		spa->spa_sync_on = B_TRUE;
2040 		txg_sync_start(spa->spa_dsl_pool);
2041 
2042 		/*
2043 		 * Wait for all claims to sync.  We sync up to the highest
2044 		 * claimed log block birth time so that claimed log blocks
2045 		 * don't appear to be from the future.  spa_claim_max_txg
2046 		 * will have been set for us by either zil_check_log_chain()
2047 		 * (invoked from spa_check_logs()) or zil_claim() above.
2048 		 */
2049 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2050 
2051 		/*
2052 		 * If the config cache is stale, or we have uninitialized
2053 		 * metaslabs (see spa_vdev_add()), then update the config.
2054 		 *
2055 		 * If spa_load_verbatim is true, trust the current
2056 		 * in-core spa_config and update the disk labels.
2057 		 */
2058 		if (config_cache_txg != spa->spa_config_txg ||
2059 		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim ||
2060 		    state == SPA_LOAD_RECOVER)
2061 			need_update = B_TRUE;
2062 
2063 		for (int c = 0; c < rvd->vdev_children; c++)
2064 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2065 				need_update = B_TRUE;
2066 
2067 		/*
2068 		 * Update the config cache asychronously in case we're the
2069 		 * root pool, in which case the config cache isn't writable yet.
2070 		 */
2071 		if (need_update)
2072 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2073 
2074 		/*
2075 		 * Check all DTLs to see if anything needs resilvering.
2076 		 */
2077 		if (vdev_resilver_needed(rvd, NULL, NULL))
2078 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2079 
2080 		/*
2081 		 * Delete any inconsistent datasets.
2082 		 */
2083 		(void) dmu_objset_find(spa_name(spa),
2084 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2085 
2086 		/*
2087 		 * Clean up any stale temporary dataset userrefs.
2088 		 */
2089 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2090 	}
2091 
2092 	return (0);
2093 }
2094 
2095 static int
spa_load_retry(spa_t * spa,spa_load_state_t state,int mosconfig)2096 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2097 {
2098 	spa_unload(spa);
2099 	spa_deactivate(spa);
2100 
2101 	spa->spa_load_max_txg--;
2102 
2103 	spa_activate(spa, spa_mode_global);
2104 	spa_async_suspend(spa);
2105 
2106 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2107 }
2108 
2109 static int
spa_load_best(spa_t * spa,spa_load_state_t state,int mosconfig,uint64_t max_request,int rewind_flags)2110 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2111     uint64_t max_request, int rewind_flags)
2112 {
2113 	nvlist_t *config = NULL;
2114 	int load_error, rewind_error;
2115 	uint64_t safe_rewind_txg;
2116 	uint64_t min_txg;
2117 
2118 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2119 		spa->spa_load_max_txg = spa->spa_load_txg;
2120 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2121 	} else {
2122 		spa->spa_load_max_txg = max_request;
2123 	}
2124 
2125 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2126 	    mosconfig);
2127 	if (load_error == 0)
2128 		return (0);
2129 
2130 	if (spa->spa_root_vdev != NULL)
2131 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2132 
2133 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2134 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2135 
2136 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2137 		nvlist_free(config);
2138 		return (load_error);
2139 	}
2140 
2141 	/* Price of rolling back is discarding txgs, including log */
2142 	if (state == SPA_LOAD_RECOVER)
2143 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2144 
2145 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2146 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2147 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2148 	    TXG_INITIAL : safe_rewind_txg;
2149 
2150 	/*
2151 	 * Continue as long as we're finding errors, we're still within
2152 	 * the acceptable rewind range, and we're still finding uberblocks
2153 	 */
2154 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2155 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2156 		if (spa->spa_load_max_txg < safe_rewind_txg)
2157 			spa->spa_extreme_rewind = B_TRUE;
2158 		rewind_error = spa_load_retry(spa, state, mosconfig);
2159 	}
2160 
2161 	if (config)
2162 		spa_rewind_data_to_nvlist(spa, config);
2163 
2164 	spa->spa_extreme_rewind = B_FALSE;
2165 	spa->spa_load_max_txg = UINT64_MAX;
2166 
2167 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2168 		spa_config_set(spa, config);
2169 
2170 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2171 }
2172 
2173 /*
2174  * Pool Open/Import
2175  *
2176  * The import case is identical to an open except that the configuration is sent
2177  * down from userland, instead of grabbed from the configuration cache.  For the
2178  * case of an open, the pool configuration will exist in the
2179  * POOL_STATE_UNINITIALIZED state.
2180  *
2181  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2182  * the same time open the pool, without having to keep around the spa_t in some
2183  * ambiguous state.
2184  */
2185 static int
spa_open_common(const char * pool,spa_t ** spapp,void * tag,nvlist_t * nvpolicy,nvlist_t ** config)2186 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2187     nvlist_t **config)
2188 {
2189 	spa_t *spa;
2190 	zpool_rewind_policy_t policy;
2191 	spa_load_state_t state = SPA_LOAD_OPEN;
2192 	int error;
2193 	int locked = B_FALSE;
2194 
2195 	*spapp = NULL;
2196 
2197 	/*
2198 	 * As disgusting as this is, we need to support recursive calls to this
2199 	 * function because dsl_dir_open() is called during spa_load(), and ends
2200 	 * up calling spa_open() again.  The real fix is to figure out how to
2201 	 * avoid dsl_dir_open() calling this in the first place.
2202 	 */
2203 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2204 		mutex_enter(&spa_namespace_lock);
2205 		locked = B_TRUE;
2206 	}
2207 
2208 	if ((spa = spa_lookup(pool)) == NULL) {
2209 		if (locked)
2210 			mutex_exit(&spa_namespace_lock);
2211 		return (ENOENT);
2212 	}
2213 
2214 	zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, &policy);
2215 	if (policy.zrp_request & ZPOOL_DO_REWIND)
2216 		state = SPA_LOAD_RECOVER;
2217 
2218 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2219 
2220 		spa_activate(spa, spa_mode_global);
2221 
2222 		if (spa->spa_last_open_failed && (policy.zrp_request &
2223 		    (ZPOOL_NO_REWIND | ZPOOL_NEVER_REWIND))) {
2224 			if (config != NULL && spa->spa_config)
2225 				VERIFY(nvlist_dup(spa->spa_config,
2226 				    config, KM_SLEEP) == 0);
2227 			spa_deactivate(spa);
2228 			if (locked)
2229 				mutex_exit(&spa_namespace_lock);
2230 			return (spa->spa_last_open_failed);
2231 		}
2232 
2233 		if (state != SPA_LOAD_RECOVER)
2234 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2235 
2236 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2237 		    policy.zrp_request);
2238 
2239 		if (error == EBADF) {
2240 			/*
2241 			 * If vdev_validate() returns failure (indicated by
2242 			 * EBADF), it indicates that one of the vdevs indicates
2243 			 * that the pool has been exported or destroyed.  If
2244 			 * this is the case, the config cache is out of sync and
2245 			 * we should remove the pool from the namespace.
2246 			 */
2247 			spa_unload(spa);
2248 			spa_deactivate(spa);
2249 			spa_config_sync(spa, B_TRUE, B_TRUE);
2250 			spa_remove(spa);
2251 			if (locked)
2252 				mutex_exit(&spa_namespace_lock);
2253 			return (ENOENT);
2254 		}
2255 
2256 		if (error) {
2257 			/*
2258 			 * We can't open the pool, but we still have useful
2259 			 * information: the state of each vdev after the
2260 			 * attempted vdev_open().  Return this to the user.
2261 			 */
2262 			if (config != NULL && spa->spa_config)
2263 				VERIFY(nvlist_dup(spa->spa_config, config,
2264 				    KM_SLEEP) == 0);
2265 			spa_unload(spa);
2266 			spa_deactivate(spa);
2267 			spa->spa_last_open_failed = error;
2268 			if (locked)
2269 				mutex_exit(&spa_namespace_lock);
2270 			*spapp = NULL;
2271 			return (error);
2272 		}
2273 
2274 	}
2275 
2276 	spa_open_ref(spa, tag);
2277 
2278 
2279 	if (config != NULL)
2280 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2281 
2282 	if (locked) {
2283 		spa->spa_last_open_failed = 0;
2284 		spa->spa_last_ubsync_txg = 0;
2285 		spa->spa_load_txg = 0;
2286 		mutex_exit(&spa_namespace_lock);
2287 	}
2288 
2289 	*spapp = spa;
2290 
2291 	return (0);
2292 }
2293 
2294 int
spa_open_rewind(const char * name,spa_t ** spapp,void * tag,nvlist_t * policy,nvlist_t ** config)2295 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2296     nvlist_t **config)
2297 {
2298 	return (spa_open_common(name, spapp, tag, policy, config));
2299 }
2300 
2301 int
spa_open(const char * name,spa_t ** spapp,void * tag)2302 spa_open(const char *name, spa_t **spapp, void *tag)
2303 {
2304 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2305 }
2306 
2307 /*
2308  * Lookup the given spa_t, incrementing the inject count in the process,
2309  * preventing it from being exported or destroyed.
2310  */
2311 spa_t *
spa_inject_addref(char * name)2312 spa_inject_addref(char *name)
2313 {
2314 	spa_t *spa;
2315 
2316 	mutex_enter(&spa_namespace_lock);
2317 	if ((spa = spa_lookup(name)) == NULL) {
2318 		mutex_exit(&spa_namespace_lock);
2319 		return (NULL);
2320 	}
2321 	spa->spa_inject_ref++;
2322 	mutex_exit(&spa_namespace_lock);
2323 
2324 	return (spa);
2325 }
2326 
2327 void
spa_inject_delref(spa_t * spa)2328 spa_inject_delref(spa_t *spa)
2329 {
2330 	mutex_enter(&spa_namespace_lock);
2331 	spa->spa_inject_ref--;
2332 	mutex_exit(&spa_namespace_lock);
2333 }
2334 
2335 /*
2336  * Add spares device information to the nvlist.
2337  */
2338 static void
spa_add_spares(spa_t * spa,nvlist_t * config)2339 spa_add_spares(spa_t *spa, nvlist_t *config)
2340 {
2341 	nvlist_t **spares;
2342 	uint_t i, nspares;
2343 	nvlist_t *nvroot;
2344 	uint64_t guid;
2345 	vdev_stat_t *vs;
2346 	uint_t vsc;
2347 	uint64_t pool;
2348 
2349 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2350 
2351 	if (spa->spa_spares.sav_count == 0)
2352 		return;
2353 
2354 	VERIFY(nvlist_lookup_nvlist(config,
2355 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2356 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2357 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2358 	if (nspares != 0) {
2359 		VERIFY(nvlist_add_nvlist_array(nvroot,
2360 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2361 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2362 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2363 
2364 		/*
2365 		 * Go through and find any spares which have since been
2366 		 * repurposed as an active spare.  If this is the case, update
2367 		 * their status appropriately.
2368 		 */
2369 		for (i = 0; i < nspares; i++) {
2370 			VERIFY(nvlist_lookup_uint64(spares[i],
2371 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2372 			if (spa_spare_exists(guid, &pool, NULL) &&
2373 			    pool != 0ULL) {
2374 				VERIFY(nvlist_lookup_uint64_array(
2375 				    spares[i], ZPOOL_CONFIG_STATS,
2376 				    (uint64_t **)&vs, &vsc) == 0);
2377 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2378 				vs->vs_aux = VDEV_AUX_SPARED;
2379 			}
2380 		}
2381 	}
2382 }
2383 
2384 /*
2385  * Add l2cache device information to the nvlist, including vdev stats.
2386  */
2387 static void
spa_add_l2cache(spa_t * spa,nvlist_t * config)2388 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2389 {
2390 	nvlist_t **l2cache;
2391 	uint_t i, j, nl2cache;
2392 	nvlist_t *nvroot;
2393 	uint64_t guid;
2394 	vdev_t *vd;
2395 	vdev_stat_t *vs;
2396 	uint_t vsc;
2397 
2398 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2399 
2400 	if (spa->spa_l2cache.sav_count == 0)
2401 		return;
2402 
2403 	VERIFY(nvlist_lookup_nvlist(config,
2404 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2405 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2406 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2407 	if (nl2cache != 0) {
2408 		VERIFY(nvlist_add_nvlist_array(nvroot,
2409 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2410 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2411 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2412 
2413 		/*
2414 		 * Update level 2 cache device stats.
2415 		 */
2416 
2417 		for (i = 0; i < nl2cache; i++) {
2418 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2419 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2420 
2421 			vd = NULL;
2422 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2423 				if (guid ==
2424 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2425 					vd = spa->spa_l2cache.sav_vdevs[j];
2426 					break;
2427 				}
2428 			}
2429 			ASSERT(vd != NULL);
2430 
2431 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2432 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
2433 			vdev_get_stats(vd, vs);
2434 		}
2435 	}
2436 }
2437 
2438 int
spa_get_stats(const char * name,nvlist_t ** config,char * altroot,size_t buflen)2439 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2440 {
2441 	int error;
2442 	spa_t *spa;
2443 
2444 	*config = NULL;
2445 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2446 
2447 	if (spa != NULL) {
2448 		/*
2449 		 * This still leaves a window of inconsistency where the spares
2450 		 * or l2cache devices could change and the config would be
2451 		 * self-inconsistent.
2452 		 */
2453 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2454 
2455 		if (*config != NULL) {
2456 			VERIFY(nvlist_add_uint64(*config,
2457 			    ZPOOL_CONFIG_ERRCOUNT,
2458 			    spa_get_errlog_size(spa)) == 0);
2459 
2460 			if (spa_suspended(spa))
2461 				VERIFY(nvlist_add_uint64(*config,
2462 				    ZPOOL_CONFIG_SUSPENDED,
2463 				    spa->spa_failmode) == 0);
2464 
2465 			spa_add_spares(spa, *config);
2466 			spa_add_l2cache(spa, *config);
2467 		}
2468 	}
2469 
2470 	/*
2471 	 * We want to get the alternate root even for faulted pools, so we cheat
2472 	 * and call spa_lookup() directly.
2473 	 */
2474 	if (altroot) {
2475 		if (spa == NULL) {
2476 			mutex_enter(&spa_namespace_lock);
2477 			spa = spa_lookup(name);
2478 			if (spa)
2479 				spa_altroot(spa, altroot, buflen);
2480 			else
2481 				altroot[0] = '\0';
2482 			spa = NULL;
2483 			mutex_exit(&spa_namespace_lock);
2484 		} else {
2485 			spa_altroot(spa, altroot, buflen);
2486 		}
2487 	}
2488 
2489 	if (spa != NULL) {
2490 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2491 		spa_close(spa, FTAG);
2492 	}
2493 
2494 	return (error);
2495 }
2496 
2497 /*
2498  * Validate that the auxiliary device array is well formed.  We must have an
2499  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2500  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2501  * specified, as long as they are well-formed.
2502  */
2503 static int
spa_validate_aux_devs(spa_t * spa,nvlist_t * nvroot,uint64_t crtxg,int mode,spa_aux_vdev_t * sav,const char * config,uint64_t version,vdev_labeltype_t label)2504 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2505     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2506     vdev_labeltype_t label)
2507 {
2508 	nvlist_t **dev;
2509 	uint_t i, ndev;
2510 	vdev_t *vd;
2511 	int error;
2512 
2513 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2514 
2515 	/*
2516 	 * It's acceptable to have no devs specified.
2517 	 */
2518 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2519 		return (0);
2520 
2521 	if (ndev == 0)
2522 		return (EINVAL);
2523 
2524 	/*
2525 	 * Make sure the pool is formatted with a version that supports this
2526 	 * device type.
2527 	 */
2528 	if (spa_version(spa) < version)
2529 		return (ENOTSUP);
2530 
2531 	/*
2532 	 * Set the pending device list so we correctly handle device in-use
2533 	 * checking.
2534 	 */
2535 	sav->sav_pending = dev;
2536 	sav->sav_npending = ndev;
2537 
2538 	for (i = 0; i < ndev; i++) {
2539 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2540 		    mode)) != 0)
2541 			goto out;
2542 
2543 		if (!vd->vdev_ops->vdev_op_leaf) {
2544 			vdev_free(vd);
2545 			error = EINVAL;
2546 			goto out;
2547 		}
2548 
2549 		/*
2550 		 * The L2ARC currently only supports disk devices in
2551 		 * kernel context.  For user-level testing, we allow it.
2552 		 */
2553 #ifdef _KERNEL
2554 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2555 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2556 			error = ENOTBLK;
2557 			goto out;
2558 		}
2559 #endif
2560 		vd->vdev_top = vd;
2561 
2562 		if ((error = vdev_open(vd)) == 0 &&
2563 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2564 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2565 			    vd->vdev_guid) == 0);
2566 		}
2567 
2568 		vdev_free(vd);
2569 
2570 		if (error &&
2571 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2572 			goto out;
2573 		else
2574 			error = 0;
2575 	}
2576 
2577 out:
2578 	sav->sav_pending = NULL;
2579 	sav->sav_npending = 0;
2580 	return (error);
2581 }
2582 
2583 static int
spa_validate_aux(spa_t * spa,nvlist_t * nvroot,uint64_t crtxg,int mode)2584 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2585 {
2586 	int error;
2587 
2588 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2589 
2590 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2591 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2592 	    VDEV_LABEL_SPARE)) != 0) {
2593 		return (error);
2594 	}
2595 
2596 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2597 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2598 	    VDEV_LABEL_L2CACHE));
2599 }
2600 
2601 static void
spa_set_aux_vdevs(spa_aux_vdev_t * sav,nvlist_t ** devs,int ndevs,const char * config)2602 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2603     const char *config)
2604 {
2605 	int i;
2606 
2607 	if (sav->sav_config != NULL) {
2608 		nvlist_t **olddevs;
2609 		uint_t oldndevs;
2610 		nvlist_t **newdevs;
2611 
2612 		/*
2613 		 * Generate new dev list by concatentating with the
2614 		 * current dev list.
2615 		 */
2616 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2617 		    &olddevs, &oldndevs) == 0);
2618 
2619 		newdevs = kmem_alloc(sizeof (void *) *
2620 		    (ndevs + oldndevs), KM_SLEEP);
2621 		for (i = 0; i < oldndevs; i++)
2622 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2623 			    KM_SLEEP) == 0);
2624 		for (i = 0; i < ndevs; i++)
2625 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2626 			    KM_SLEEP) == 0);
2627 
2628 		VERIFY(nvlist_remove(sav->sav_config, config,
2629 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2630 
2631 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2632 		    config, newdevs, ndevs + oldndevs) == 0);
2633 		for (i = 0; i < oldndevs + ndevs; i++)
2634 			nvlist_free(newdevs[i]);
2635 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2636 	} else {
2637 		/*
2638 		 * Generate a new dev list.
2639 		 */
2640 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2641 		    KM_SLEEP) == 0);
2642 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2643 		    devs, ndevs) == 0);
2644 	}
2645 }
2646 
2647 /*
2648  * Stop and drop level 2 ARC devices
2649  */
2650 void
spa_l2cache_drop(spa_t * spa)2651 spa_l2cache_drop(spa_t *spa)
2652 {
2653 	vdev_t *vd;
2654 	int i;
2655 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2656 
2657 	for (i = 0; i < sav->sav_count; i++) {
2658 		uint64_t pool;
2659 
2660 		vd = sav->sav_vdevs[i];
2661 		ASSERT(vd != NULL);
2662 
2663 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2664 		    pool != 0ULL && l2arc_vdev_present(vd))
2665 			l2arc_remove_vdev(vd);
2666 		if (vd->vdev_isl2cache)
2667 			spa_l2cache_remove(vd);
2668 		vdev_clear_stats(vd);
2669 		(void) vdev_close(vd);
2670 	}
2671 }
2672 
2673 /*
2674  * Pool Creation
2675  */
2676 int
spa_create(const char * pool,nvlist_t * nvroot,nvlist_t * props,const char * history_str,nvlist_t * zplprops)2677 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2678     const char *history_str, nvlist_t *zplprops)
2679 {
2680 	spa_t *spa;
2681 	char *altroot = NULL;
2682 	vdev_t *rvd;
2683 	dsl_pool_t *dp;
2684 	dmu_tx_t *tx;
2685 	int error = 0;
2686 	uint64_t txg = TXG_INITIAL;
2687 	nvlist_t **spares, **l2cache;
2688 	uint_t nspares, nl2cache;
2689 	uint64_t version;
2690 
2691 	/*
2692 	 * If this pool already exists, return failure.
2693 	 */
2694 	mutex_enter(&spa_namespace_lock);
2695 	if (spa_lookup(pool) != NULL) {
2696 		mutex_exit(&spa_namespace_lock);
2697 		return (EEXIST);
2698 	}
2699 
2700 	/*
2701 	 * Allocate a new spa_t structure.
2702 	 */
2703 	(void) nvlist_lookup_string(props,
2704 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2705 	spa = spa_add(pool, NULL, altroot);
2706 	spa_activate(spa, spa_mode_global);
2707 
2708 	if (props && (error = spa_prop_validate(spa, props))) {
2709 		spa_deactivate(spa);
2710 		spa_remove(spa);
2711 		mutex_exit(&spa_namespace_lock);
2712 		return (error);
2713 	}
2714 
2715 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2716 	    &version) != 0)
2717 		version = SPA_VERSION;
2718 	ASSERT(version <= SPA_VERSION);
2719 
2720 	spa->spa_first_txg = txg;
2721 	spa->spa_uberblock.ub_txg = txg - 1;
2722 	spa->spa_uberblock.ub_version = version;
2723 	spa->spa_ubsync = spa->spa_uberblock;
2724 
2725 	/*
2726 	 * Create "The Godfather" zio to hold all async IOs
2727 	 */
2728 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2729 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2730 
2731 	/*
2732 	 * Create the root vdev.
2733 	 */
2734 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2735 
2736 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2737 
2738 	ASSERT(error != 0 || rvd != NULL);
2739 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2740 
2741 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2742 		error = EINVAL;
2743 
2744 	if (error == 0 &&
2745 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2746 	    (error = spa_validate_aux(spa, nvroot, txg,
2747 	    VDEV_ALLOC_ADD)) == 0) {
2748 		for (int c = 0; c < rvd->vdev_children; c++) {
2749 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2750 			vdev_expand(rvd->vdev_child[c], txg);
2751 		}
2752 	}
2753 
2754 	spa_config_exit(spa, SCL_ALL, FTAG);
2755 
2756 	if (error != 0) {
2757 		spa_unload(spa);
2758 		spa_deactivate(spa);
2759 		spa_remove(spa);
2760 		mutex_exit(&spa_namespace_lock);
2761 		return (error);
2762 	}
2763 
2764 	/*
2765 	 * Get the list of spares, if specified.
2766 	 */
2767 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2768 	    &spares, &nspares) == 0) {
2769 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2770 		    KM_SLEEP) == 0);
2771 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2772 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2773 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2774 		spa_load_spares(spa);
2775 		spa_config_exit(spa, SCL_ALL, FTAG);
2776 		spa->spa_spares.sav_sync = B_TRUE;
2777 	}
2778 
2779 	/*
2780 	 * Get the list of level 2 cache devices, if specified.
2781 	 */
2782 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2783 	    &l2cache, &nl2cache) == 0) {
2784 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2785 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2786 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2787 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2788 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2789 		spa_load_l2cache(spa);
2790 		spa_config_exit(spa, SCL_ALL, FTAG);
2791 		spa->spa_l2cache.sav_sync = B_TRUE;
2792 	}
2793 
2794 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2795 	spa->spa_meta_objset = dp->dp_meta_objset;
2796 
2797 	/*
2798 	 * Create DDTs (dedup tables).
2799 	 */
2800 	ddt_create(spa);
2801 
2802 	spa_update_dspace(spa);
2803 
2804 	tx = dmu_tx_create_assigned(dp, txg);
2805 
2806 	/*
2807 	 * Create the pool config object.
2808 	 */
2809 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2810 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2811 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2812 
2813 	if (zap_add(spa->spa_meta_objset,
2814 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2815 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2816 		cmn_err(CE_PANIC, "failed to add pool config");
2817 	}
2818 
2819 	/* Newly created pools with the right version are always deflated. */
2820 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2821 		spa->spa_deflate = TRUE;
2822 		if (zap_add(spa->spa_meta_objset,
2823 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2824 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2825 			cmn_err(CE_PANIC, "failed to add deflate");
2826 		}
2827 	}
2828 
2829 	/*
2830 	 * Create the deferred-free bplist object.  Turn off compression
2831 	 * because sync-to-convergence takes longer if the blocksize
2832 	 * keeps changing.
2833 	 */
2834 	spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset,
2835 	    1 << 14, tx);
2836 	dmu_object_set_compress(spa->spa_meta_objset,
2837 	    spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx);
2838 
2839 	if (zap_add(spa->spa_meta_objset,
2840 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2841 	    sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) {
2842 		cmn_err(CE_PANIC, "failed to add bplist");
2843 	}
2844 
2845 	/*
2846 	 * Create the pool's history object.
2847 	 */
2848 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2849 		spa_history_create_obj(spa, tx);
2850 
2851 	/*
2852 	 * Set pool properties.
2853 	 */
2854 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2855 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2856 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2857 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2858 
2859 	if (props != NULL) {
2860 		spa_configfile_set(spa, props, B_FALSE);
2861 		spa_sync_props(spa, props, CRED(), tx);
2862 	}
2863 
2864 	dmu_tx_commit(tx);
2865 
2866 	spa->spa_sync_on = B_TRUE;
2867 	txg_sync_start(spa->spa_dsl_pool);
2868 
2869 	/*
2870 	 * We explicitly wait for the first transaction to complete so that our
2871 	 * bean counters are appropriately updated.
2872 	 */
2873 	txg_wait_synced(spa->spa_dsl_pool, txg);
2874 
2875 	spa_config_sync(spa, B_FALSE, B_TRUE);
2876 
2877 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2878 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2879 	spa_history_log_version(spa, LOG_POOL_CREATE);
2880 
2881 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2882 
2883 	mutex_exit(&spa_namespace_lock);
2884 
2885 	return (0);
2886 }
2887 
2888 #ifdef _KERNEL
2889 /*
2890  * Get the root pool information from the root disk, then import the root pool
2891  * during the system boot up time.
2892  */
2893 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2894 
2895 static nvlist_t *
spa_generate_rootconf(char * devpath,char * devid,uint64_t * guid)2896 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2897 {
2898 	nvlist_t *config;
2899 	nvlist_t *nvtop, *nvroot;
2900 	uint64_t pgid;
2901 
2902 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2903 		return (NULL);
2904 
2905 	/*
2906 	 * Add this top-level vdev to the child array.
2907 	 */
2908 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2909 	    &nvtop) == 0);
2910 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2911 	    &pgid) == 0);
2912 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2913 
2914 	/*
2915 	 * Put this pool's top-level vdevs into a root vdev.
2916 	 */
2917 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2918 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2919 	    VDEV_TYPE_ROOT) == 0);
2920 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2921 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2922 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2923 	    &nvtop, 1) == 0);
2924 
2925 	/*
2926 	 * Replace the existing vdev_tree with the new root vdev in
2927 	 * this pool's configuration (remove the old, add the new).
2928 	 */
2929 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2930 	nvlist_free(nvroot);
2931 	return (config);
2932 }
2933 
2934 /*
2935  * Walk the vdev tree and see if we can find a device with "better"
2936  * configuration. A configuration is "better" if the label on that
2937  * device has a more recent txg.
2938  */
2939 static void
spa_alt_rootvdev(vdev_t * vd,vdev_t ** avd,uint64_t * txg)2940 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2941 {
2942 	for (int c = 0; c < vd->vdev_children; c++)
2943 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2944 
2945 	if (vd->vdev_ops->vdev_op_leaf) {
2946 		nvlist_t *label;
2947 		uint64_t label_txg;
2948 
2949 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2950 		    &label) != 0)
2951 			return;
2952 
2953 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2954 		    &label_txg) == 0);
2955 
2956 		/*
2957 		 * Do we have a better boot device?
2958 		 */
2959 		if (label_txg > *txg) {
2960 			*txg = label_txg;
2961 			*avd = vd;
2962 		}
2963 		nvlist_free(label);
2964 	}
2965 }
2966 
2967 /*
2968  * Import a root pool.
2969  *
2970  * For x86. devpath_list will consist of devid and/or physpath name of
2971  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2972  * The GRUB "findroot" command will return the vdev we should boot.
2973  *
2974  * For Sparc, devpath_list consists the physpath name of the booting device
2975  * no matter the rootpool is a single device pool or a mirrored pool.
2976  * e.g.
2977  *	"/pci@1f,0/ide@d/disk@0,0:a"
2978  */
2979 int
spa_import_rootpool(char * devpath,char * devid)2980 spa_import_rootpool(char *devpath, char *devid)
2981 {
2982 	spa_t *spa;
2983 	vdev_t *rvd, *bvd, *avd = NULL;
2984 	nvlist_t *config, *nvtop;
2985 	uint64_t guid, txg;
2986 	char *pname;
2987 	int error;
2988 
2989 	/*
2990 	 * Read the label from the boot device and generate a configuration.
2991 	 */
2992 	config = spa_generate_rootconf(devpath, devid, &guid);
2993 #if defined(_OBP) && defined(_KERNEL)
2994 	if (config == NULL) {
2995 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
2996 			/* iscsi boot */
2997 			get_iscsi_bootpath_phy(devpath);
2998 			config = spa_generate_rootconf(devpath, devid, &guid);
2999 		}
3000 	}
3001 #endif
3002 	if (config == NULL) {
3003 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3004 		    devpath);
3005 		return (EIO);
3006 	}
3007 
3008 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3009 	    &pname) == 0);
3010 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3011 
3012 	mutex_enter(&spa_namespace_lock);
3013 	if ((spa = spa_lookup(pname)) != NULL) {
3014 		/*
3015 		 * Remove the existing root pool from the namespace so that we
3016 		 * can replace it with the correct config we just read in.
3017 		 */
3018 		spa_remove(spa);
3019 	}
3020 
3021 	spa = spa_add(pname, config, NULL);
3022 	spa->spa_is_root = B_TRUE;
3023 	spa->spa_load_verbatim = B_TRUE;
3024 
3025 	/*
3026 	 * Build up a vdev tree based on the boot device's label config.
3027 	 */
3028 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3029 	    &nvtop) == 0);
3030 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3031 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3032 	    VDEV_ALLOC_ROOTPOOL);
3033 	spa_config_exit(spa, SCL_ALL, FTAG);
3034 	if (error) {
3035 		mutex_exit(&spa_namespace_lock);
3036 		nvlist_free(config);
3037 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3038 		    pname);
3039 		return (error);
3040 	}
3041 
3042 	/*
3043 	 * Get the boot vdev.
3044 	 */
3045 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3046 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3047 		    (u_longlong_t)guid);
3048 		error = ENOENT;
3049 		goto out;
3050 	}
3051 
3052 	/*
3053 	 * Determine if there is a better boot device.
3054 	 */
3055 	avd = bvd;
3056 	spa_alt_rootvdev(rvd, &avd, &txg);
3057 	if (avd != bvd) {
3058 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3059 		    "try booting from '%s'", avd->vdev_path);
3060 		error = EINVAL;
3061 		goto out;
3062 	}
3063 
3064 	/*
3065 	 * If the boot device is part of a spare vdev then ensure that
3066 	 * we're booting off the active spare.
3067 	 */
3068 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3069 	    !bvd->vdev_isspare) {
3070 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3071 		    "try booting from '%s'",
3072 		    bvd->vdev_parent->vdev_child[1]->vdev_path);
3073 		error = EINVAL;
3074 		goto out;
3075 	}
3076 
3077 	error = 0;
3078 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3079 out:
3080 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3081 	vdev_free(rvd);
3082 	spa_config_exit(spa, SCL_ALL, FTAG);
3083 	mutex_exit(&spa_namespace_lock);
3084 
3085 	nvlist_free(config);
3086 	return (error);
3087 }
3088 
3089 #endif
3090 
3091 /*
3092  * Take a pool and insert it into the namespace as if it had been loaded at
3093  * boot.
3094  */
3095 int
spa_import_verbatim(const char * pool,nvlist_t * config,nvlist_t * props)3096 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
3097 {
3098 	spa_t *spa;
3099 	char *altroot = NULL;
3100 
3101 	mutex_enter(&spa_namespace_lock);
3102 	if (spa_lookup(pool) != NULL) {
3103 		mutex_exit(&spa_namespace_lock);
3104 		return (EEXIST);
3105 	}
3106 
3107 	(void) nvlist_lookup_string(props,
3108 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3109 	spa = spa_add(pool, config, altroot);
3110 
3111 	spa->spa_load_verbatim = B_TRUE;
3112 
3113 	if (props != NULL)
3114 		spa_configfile_set(spa, props, B_FALSE);
3115 
3116 	spa_config_sync(spa, B_FALSE, B_TRUE);
3117 
3118 	mutex_exit(&spa_namespace_lock);
3119 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3120 
3121 	return (0);
3122 }
3123 
3124 /*
3125  * Import a non-root pool into the system.
3126  */
3127 int
spa_import(const char * pool,nvlist_t * config,nvlist_t * props)3128 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
3129 {
3130 	spa_t *spa;
3131 	char *altroot = NULL;
3132 	spa_load_state_t state = SPA_LOAD_IMPORT;
3133 	zpool_rewind_policy_t policy;
3134 	int error;
3135 	nvlist_t *nvroot;
3136 	nvlist_t **spares, **l2cache;
3137 	uint_t nspares, nl2cache;
3138 
3139 	/*
3140 	 * If a pool with this name exists, return failure.
3141 	 */
3142 	mutex_enter(&spa_namespace_lock);
3143 	if (spa_lookup(pool) != NULL) {
3144 		mutex_exit(&spa_namespace_lock);
3145 		return (EEXIST);
3146 	}
3147 
3148 	zpool_get_rewind_policy(config, &policy);
3149 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3150 		state = SPA_LOAD_RECOVER;
3151 
3152 	/*
3153 	 * Create and initialize the spa structure.
3154 	 */
3155 	(void) nvlist_lookup_string(props,
3156 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3157 	spa = spa_add(pool, config, altroot);
3158 	spa_activate(spa, spa_mode_global);
3159 
3160 	/*
3161 	 * Don't start async tasks until we know everything is healthy.
3162 	 */
3163 	spa_async_suspend(spa);
3164 
3165 	/*
3166 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3167 	 * because the user-supplied config is actually the one to trust when
3168 	 * doing an import.
3169 	 */
3170 	if (state != SPA_LOAD_RECOVER)
3171 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3172 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3173 	    policy.zrp_request);
3174 
3175 	/*
3176 	 * Propagate anything learned about failing or best txgs
3177 	 * back to caller
3178 	 */
3179 	spa_rewind_data_to_nvlist(spa, config);
3180 
3181 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3182 	/*
3183 	 * Toss any existing sparelist, as it doesn't have any validity
3184 	 * anymore, and conflicts with spa_has_spare().
3185 	 */
3186 	if (spa->spa_spares.sav_config) {
3187 		nvlist_free(spa->spa_spares.sav_config);
3188 		spa->spa_spares.sav_config = NULL;
3189 		spa_load_spares(spa);
3190 	}
3191 	if (spa->spa_l2cache.sav_config) {
3192 		nvlist_free(spa->spa_l2cache.sav_config);
3193 		spa->spa_l2cache.sav_config = NULL;
3194 		spa_load_l2cache(spa);
3195 	}
3196 
3197 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3198 	    &nvroot) == 0);
3199 	if (error == 0)
3200 		error = spa_validate_aux(spa, nvroot, -1ULL,
3201 		    VDEV_ALLOC_SPARE);
3202 	if (error == 0)
3203 		error = spa_validate_aux(spa, nvroot, -1ULL,
3204 		    VDEV_ALLOC_L2CACHE);
3205 	spa_config_exit(spa, SCL_ALL, FTAG);
3206 
3207 	if (props != NULL)
3208 		spa_configfile_set(spa, props, B_FALSE);
3209 
3210 	if (error != 0 || (props && spa_writeable(spa) &&
3211 	    (error = spa_prop_set(spa, props)))) {
3212 		spa_unload(spa);
3213 		spa_deactivate(spa);
3214 		spa_remove(spa);
3215 		mutex_exit(&spa_namespace_lock);
3216 		return (error);
3217 	}
3218 
3219 	spa_async_resume(spa);
3220 
3221 	/*
3222 	 * Override any spares and level 2 cache devices as specified by
3223 	 * the user, as these may have correct device names/devids, etc.
3224 	 */
3225 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3226 	    &spares, &nspares) == 0) {
3227 		if (spa->spa_spares.sav_config)
3228 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3229 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3230 		else
3231 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3232 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3233 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3234 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3235 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3236 		spa_load_spares(spa);
3237 		spa_config_exit(spa, SCL_ALL, FTAG);
3238 		spa->spa_spares.sav_sync = B_TRUE;
3239 	}
3240 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3241 	    &l2cache, &nl2cache) == 0) {
3242 		if (spa->spa_l2cache.sav_config)
3243 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3244 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3245 		else
3246 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3247 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3248 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3249 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3250 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3251 		spa_load_l2cache(spa);
3252 		spa_config_exit(spa, SCL_ALL, FTAG);
3253 		spa->spa_l2cache.sav_sync = B_TRUE;
3254 	}
3255 
3256 	/*
3257 	 * Check for any removed devices.
3258 	 */
3259 	if (spa->spa_autoreplace) {
3260 		spa_aux_check_removed(&spa->spa_spares);
3261 		spa_aux_check_removed(&spa->spa_l2cache);
3262 	}
3263 
3264 	if (spa_writeable(spa)) {
3265 		/*
3266 		 * Update the config cache to include the newly-imported pool.
3267 		 */
3268 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3269 	}
3270 
3271 	/*
3272 	 * It's possible that the pool was expanded while it was exported.
3273 	 * We kick off an async task to handle this for us.
3274 	 */
3275 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3276 
3277 	mutex_exit(&spa_namespace_lock);
3278 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3279 
3280 	return (0);
3281 }
3282 
3283 nvlist_t *
spa_tryimport(nvlist_t * tryconfig)3284 spa_tryimport(nvlist_t *tryconfig)
3285 {
3286 	nvlist_t *config = NULL;
3287 	char *poolname;
3288 	spa_t *spa;
3289 	uint64_t state;
3290 	int error;
3291 
3292 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3293 		return (NULL);
3294 
3295 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3296 		return (NULL);
3297 
3298 	/*
3299 	 * Create and initialize the spa structure.
3300 	 */
3301 	mutex_enter(&spa_namespace_lock);
3302 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3303 	spa_activate(spa, FREAD);
3304 
3305 	/*
3306 	 * Pass off the heavy lifting to spa_load().
3307 	 * Pass TRUE for mosconfig because the user-supplied config
3308 	 * is actually the one to trust when doing an import.
3309 	 */
3310 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3311 
3312 	/*
3313 	 * If 'tryconfig' was at least parsable, return the current config.
3314 	 */
3315 	if (spa->spa_root_vdev != NULL) {
3316 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3317 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3318 		    poolname) == 0);
3319 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3320 		    state) == 0);
3321 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3322 		    spa->spa_uberblock.ub_timestamp) == 0);
3323 
3324 		/*
3325 		 * If the bootfs property exists on this pool then we
3326 		 * copy it out so that external consumers can tell which
3327 		 * pools are bootable.
3328 		 */
3329 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3330 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3331 
3332 			/*
3333 			 * We have to play games with the name since the
3334 			 * pool was opened as TRYIMPORT_NAME.
3335 			 */
3336 			if (dsl_dsobj_to_dsname(spa_name(spa),
3337 			    spa->spa_bootfs, tmpname) == 0) {
3338 				char *cp;
3339 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3340 
3341 				cp = strchr(tmpname, '/');
3342 				if (cp == NULL) {
3343 					(void) strlcpy(dsname, tmpname,
3344 					    MAXPATHLEN);
3345 				} else {
3346 					(void) snprintf(dsname, MAXPATHLEN,
3347 					    "%s/%s", poolname, ++cp);
3348 				}
3349 				VERIFY(nvlist_add_string(config,
3350 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3351 				kmem_free(dsname, MAXPATHLEN);
3352 			}
3353 			kmem_free(tmpname, MAXPATHLEN);
3354 		}
3355 
3356 		/*
3357 		 * Add the list of hot spares and level 2 cache devices.
3358 		 */
3359 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3360 		spa_add_spares(spa, config);
3361 		spa_add_l2cache(spa, config);
3362 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3363 	}
3364 
3365 	spa_unload(spa);
3366 	spa_deactivate(spa);
3367 	spa_remove(spa);
3368 	mutex_exit(&spa_namespace_lock);
3369 
3370 	return (config);
3371 }
3372 
3373 /*
3374  * Pool export/destroy
3375  *
3376  * The act of destroying or exporting a pool is very simple.  We make sure there
3377  * is no more pending I/O and any references to the pool are gone.  Then, we
3378  * update the pool state and sync all the labels to disk, removing the
3379  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3380  * we don't sync the labels or remove the configuration cache.
3381  */
3382 static int
spa_export_common(char * pool,int new_state,nvlist_t ** oldconfig,boolean_t force,boolean_t hardforce)3383 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3384     boolean_t force, boolean_t hardforce)
3385 {
3386 	spa_t *spa;
3387 
3388 	if (oldconfig)
3389 		*oldconfig = NULL;
3390 
3391 	if (!(spa_mode_global & FWRITE))
3392 		return (EROFS);
3393 
3394 	mutex_enter(&spa_namespace_lock);
3395 	if ((spa = spa_lookup(pool)) == NULL) {
3396 		mutex_exit(&spa_namespace_lock);
3397 		return (ENOENT);
3398 	}
3399 
3400 	/*
3401 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3402 	 * reacquire the namespace lock, and see if we can export.
3403 	 */
3404 	spa_open_ref(spa, FTAG);
3405 	mutex_exit(&spa_namespace_lock);
3406 	spa_async_suspend(spa);
3407 	mutex_enter(&spa_namespace_lock);
3408 	spa_close(spa, FTAG);
3409 
3410 	/*
3411 	 * The pool will be in core if it's openable,
3412 	 * in which case we can modify its state.
3413 	 */
3414 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3415 		/*
3416 		 * Objsets may be open only because they're dirty, so we
3417 		 * have to force it to sync before checking spa_refcnt.
3418 		 */
3419 		txg_wait_synced(spa->spa_dsl_pool, 0);
3420 
3421 		/*
3422 		 * A pool cannot be exported or destroyed if there are active
3423 		 * references.  If we are resetting a pool, allow references by
3424 		 * fault injection handlers.
3425 		 */
3426 		if (!spa_refcount_zero(spa) ||
3427 		    (spa->spa_inject_ref != 0 &&
3428 		    new_state != POOL_STATE_UNINITIALIZED)) {
3429 			spa_async_resume(spa);
3430 			mutex_exit(&spa_namespace_lock);
3431 			return (EBUSY);
3432 		}
3433 
3434 		/*
3435 		 * A pool cannot be exported if it has an active shared spare.
3436 		 * This is to prevent other pools stealing the active spare
3437 		 * from an exported pool. At user's own will, such pool can
3438 		 * be forcedly exported.
3439 		 */
3440 		if (!force && new_state == POOL_STATE_EXPORTED &&
3441 		    spa_has_active_shared_spare(spa)) {
3442 			spa_async_resume(spa);
3443 			mutex_exit(&spa_namespace_lock);
3444 			return (EXDEV);
3445 		}
3446 
3447 		/*
3448 		 * We want this to be reflected on every label,
3449 		 * so mark them all dirty.  spa_unload() will do the
3450 		 * final sync that pushes these changes out.
3451 		 */
3452 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3453 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3454 			spa->spa_state = new_state;
3455 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
3456 			vdev_config_dirty(spa->spa_root_vdev);
3457 			spa_config_exit(spa, SCL_ALL, FTAG);
3458 		}
3459 	}
3460 
3461 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3462 
3463 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3464 		spa_unload(spa);
3465 		spa_deactivate(spa);
3466 	}
3467 
3468 	if (oldconfig && spa->spa_config)
3469 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3470 
3471 	if (new_state != POOL_STATE_UNINITIALIZED) {
3472 		if (!hardforce)
3473 			spa_config_sync(spa, B_TRUE, B_TRUE);
3474 		spa_remove(spa);
3475 	}
3476 	mutex_exit(&spa_namespace_lock);
3477 
3478 	return (0);
3479 }
3480 
3481 /*
3482  * Destroy a storage pool.
3483  */
3484 int
spa_destroy(char * pool)3485 spa_destroy(char *pool)
3486 {
3487 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3488 	    B_FALSE, B_FALSE));
3489 }
3490 
3491 /*
3492  * Export a storage pool.
3493  */
3494 int
spa_export(char * pool,nvlist_t ** oldconfig,boolean_t force,boolean_t hardforce)3495 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3496     boolean_t hardforce)
3497 {
3498 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3499 	    force, hardforce));
3500 }
3501 
3502 /*
3503  * Similar to spa_export(), this unloads the spa_t without actually removing it
3504  * from the namespace in any way.
3505  */
3506 int
spa_reset(char * pool)3507 spa_reset(char *pool)
3508 {
3509 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3510 	    B_FALSE, B_FALSE));
3511 }
3512 
3513 /*
3514  * ==========================================================================
3515  * Device manipulation
3516  * ==========================================================================
3517  */
3518 
3519 /*
3520  * Add a device to a storage pool.
3521  */
3522 int
spa_vdev_add(spa_t * spa,nvlist_t * nvroot)3523 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3524 {
3525 	uint64_t txg, id;
3526 	int error;
3527 	vdev_t *rvd = spa->spa_root_vdev;
3528 	vdev_t *vd, *tvd;
3529 	nvlist_t **spares, **l2cache;
3530 	uint_t nspares, nl2cache;
3531 
3532 	txg = spa_vdev_enter(spa);
3533 
3534 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3535 	    VDEV_ALLOC_ADD)) != 0)
3536 		return (spa_vdev_exit(spa, NULL, txg, error));
3537 
3538 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3539 
3540 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3541 	    &nspares) != 0)
3542 		nspares = 0;
3543 
3544 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3545 	    &nl2cache) != 0)
3546 		nl2cache = 0;
3547 
3548 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3549 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3550 
3551 	if (vd->vdev_children != 0 &&
3552 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3553 		return (spa_vdev_exit(spa, vd, txg, error));
3554 
3555 	/*
3556 	 * We must validate the spares and l2cache devices after checking the
3557 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3558 	 */
3559 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3560 		return (spa_vdev_exit(spa, vd, txg, error));
3561 
3562 	/*
3563 	 * Transfer each new top-level vdev from vd to rvd.
3564 	 */
3565 	for (int c = 0; c < vd->vdev_children; c++) {
3566 
3567 		/*
3568 		 * Set the vdev id to the first hole, if one exists.
3569 		 */
3570 		for (id = 0; id < rvd->vdev_children; id++) {
3571 			if (rvd->vdev_child[id]->vdev_ishole) {
3572 				vdev_free(rvd->vdev_child[id]);
3573 				break;
3574 			}
3575 		}
3576 		tvd = vd->vdev_child[c];
3577 		vdev_remove_child(vd, tvd);
3578 		tvd->vdev_id = id;
3579 		vdev_add_child(rvd, tvd);
3580 		vdev_config_dirty(tvd);
3581 	}
3582 
3583 	if (nspares != 0) {
3584 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3585 		    ZPOOL_CONFIG_SPARES);
3586 		spa_load_spares(spa);
3587 		spa->spa_spares.sav_sync = B_TRUE;
3588 	}
3589 
3590 	if (nl2cache != 0) {
3591 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3592 		    ZPOOL_CONFIG_L2CACHE);
3593 		spa_load_l2cache(spa);
3594 		spa->spa_l2cache.sav_sync = B_TRUE;
3595 	}
3596 
3597 	/*
3598 	 * We have to be careful when adding new vdevs to an existing pool.
3599 	 * If other threads start allocating from these vdevs before we
3600 	 * sync the config cache, and we lose power, then upon reboot we may
3601 	 * fail to open the pool because there are DVAs that the config cache
3602 	 * can't translate.  Therefore, we first add the vdevs without
3603 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3604 	 * and then let spa_config_update() initialize the new metaslabs.
3605 	 *
3606 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3607 	 * if we lose power at any point in this sequence, the remaining
3608 	 * steps will be completed the next time we load the pool.
3609 	 */
3610 	(void) spa_vdev_exit(spa, vd, txg, 0);
3611 
3612 	mutex_enter(&spa_namespace_lock);
3613 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3614 	mutex_exit(&spa_namespace_lock);
3615 
3616 	return (0);
3617 }
3618 
3619 /*
3620  * Attach a device to a mirror.  The arguments are the path to any device
3621  * in the mirror, and the nvroot for the new device.  If the path specifies
3622  * a device that is not mirrored, we automatically insert the mirror vdev.
3623  *
3624  * If 'replacing' is specified, the new device is intended to replace the
3625  * existing device; in this case the two devices are made into their own
3626  * mirror using the 'replacing' vdev, which is functionally identical to
3627  * the mirror vdev (it actually reuses all the same ops) but has a few
3628  * extra rules: you can't attach to it after it's been created, and upon
3629  * completion of resilvering, the first disk (the one being replaced)
3630  * is automatically detached.
3631  */
3632 int
spa_vdev_attach(spa_t * spa,uint64_t guid,nvlist_t * nvroot,int replacing)3633 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3634 {
3635 	uint64_t txg, open_txg;
3636 	vdev_t *rvd = spa->spa_root_vdev;
3637 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3638 	vdev_ops_t *pvops;
3639 	char *oldvdpath, *newvdpath;
3640 	int newvd_isspare;
3641 	int error;
3642 
3643 	txg = spa_vdev_enter(spa);
3644 
3645 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3646 
3647 	if (oldvd == NULL)
3648 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3649 
3650 	if (!oldvd->vdev_ops->vdev_op_leaf)
3651 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3652 
3653 	pvd = oldvd->vdev_parent;
3654 
3655 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3656 	    VDEV_ALLOC_ADD)) != 0)
3657 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3658 
3659 	if (newrootvd->vdev_children != 1)
3660 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3661 
3662 	newvd = newrootvd->vdev_child[0];
3663 
3664 	if (!newvd->vdev_ops->vdev_op_leaf)
3665 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3666 
3667 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3668 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3669 
3670 	/*
3671 	 * Spares can't replace logs
3672 	 */
3673 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3674 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3675 
3676 	if (!replacing) {
3677 		/*
3678 		 * For attach, the only allowable parent is a mirror or the root
3679 		 * vdev.
3680 		 */
3681 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3682 		    pvd->vdev_ops != &vdev_root_ops)
3683 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3684 
3685 		pvops = &vdev_mirror_ops;
3686 	} else {
3687 		/*
3688 		 * Active hot spares can only be replaced by inactive hot
3689 		 * spares.
3690 		 */
3691 		if (pvd->vdev_ops == &vdev_spare_ops &&
3692 		    pvd->vdev_child[1] == oldvd &&
3693 		    !spa_has_spare(spa, newvd->vdev_guid))
3694 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3695 
3696 		/*
3697 		 * If the source is a hot spare, and the parent isn't already a
3698 		 * spare, then we want to create a new hot spare.  Otherwise, we
3699 		 * want to create a replacing vdev.  The user is not allowed to
3700 		 * attach to a spared vdev child unless the 'isspare' state is
3701 		 * the same (spare replaces spare, non-spare replaces
3702 		 * non-spare).
3703 		 */
3704 		if (pvd->vdev_ops == &vdev_replacing_ops)
3705 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3706 		else if (pvd->vdev_ops == &vdev_spare_ops &&
3707 		    newvd->vdev_isspare != oldvd->vdev_isspare)
3708 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3709 		else if (pvd->vdev_ops != &vdev_spare_ops &&
3710 		    newvd->vdev_isspare)
3711 			pvops = &vdev_spare_ops;
3712 		else
3713 			pvops = &vdev_replacing_ops;
3714 	}
3715 
3716 	/*
3717 	 * Make sure the new device is big enough.
3718 	 */
3719 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3720 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3721 
3722 	/*
3723 	 * The new device cannot have a higher alignment requirement
3724 	 * than the top-level vdev.
3725 	 */
3726 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3727 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3728 
3729 	/*
3730 	 * If this is an in-place replacement, update oldvd's path and devid
3731 	 * to make it distinguishable from newvd, and unopenable from now on.
3732 	 */
3733 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3734 		size_t plen = strlen(newvd->vdev_path) + 5;
3735 		spa_strfree(oldvd->vdev_path);
3736 		oldvd->vdev_path = kmem_alloc(plen, KM_SLEEP);
3737 		snprintf(oldvd->vdev_path, plen, "%s/%s",
3738 		    newvd->vdev_path, "old");
3739 		if (oldvd->vdev_devid != NULL) {
3740 			spa_strfree(oldvd->vdev_devid);
3741 			oldvd->vdev_devid = NULL;
3742 		}
3743 	}
3744 
3745 	/*
3746 	 * If the parent is not a mirror, or if we're replacing, insert the new
3747 	 * mirror/replacing/spare vdev above oldvd.
3748 	 */
3749 	if (pvd->vdev_ops != pvops)
3750 		pvd = vdev_add_parent(oldvd, pvops);
3751 
3752 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3753 	ASSERT(pvd->vdev_ops == pvops);
3754 	ASSERT(oldvd->vdev_parent == pvd);
3755 
3756 	/*
3757 	 * Extract the new device from its root and add it to pvd.
3758 	 */
3759 	vdev_remove_child(newrootvd, newvd);
3760 	newvd->vdev_id = pvd->vdev_children;
3761 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3762 	vdev_add_child(pvd, newvd);
3763 
3764 	tvd = newvd->vdev_top;
3765 	ASSERT(pvd->vdev_top == tvd);
3766 	ASSERT(tvd->vdev_parent == rvd);
3767 
3768 	vdev_config_dirty(tvd);
3769 
3770 	/*
3771 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3772 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3773 	 */
3774 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3775 
3776 	vdev_dtl_dirty(newvd, DTL_MISSING,
3777 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3778 
3779 	if (newvd->vdev_isspare) {
3780 		spa_spare_activate(newvd);
3781 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3782 	}
3783 
3784 	oldvdpath = spa_strdup(oldvd->vdev_path);
3785 	newvdpath = spa_strdup(newvd->vdev_path);
3786 	newvd_isspare = newvd->vdev_isspare;
3787 
3788 	/*
3789 	 * Mark newvd's DTL dirty in this txg.
3790 	 */
3791 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3792 
3793 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3794 
3795 	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3796 	    CRED(),  "%s vdev=%s %s vdev=%s",
3797 	    replacing && newvd_isspare ? "spare in" :
3798 	    replacing ? "replace" : "attach", newvdpath,
3799 	    replacing ? "for" : "to", oldvdpath);
3800 
3801 	spa_strfree(oldvdpath);
3802 	spa_strfree(newvdpath);
3803 
3804 	/*
3805 	 * Kick off a resilver to update newvd.
3806 	 */
3807 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3808 
3809 	return (0);
3810 }
3811 
3812 /*
3813  * Detach a device from a mirror or replacing vdev.
3814  * If 'replace_done' is specified, only detach if the parent
3815  * is a replacing vdev.
3816  */
3817 int
spa_vdev_detach(spa_t * spa,uint64_t guid,uint64_t pguid,int replace_done)3818 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3819 {
3820 	uint64_t txg;
3821 	int error;
3822 	vdev_t *rvd = spa->spa_root_vdev;
3823 	vdev_t *vd, *pvd, *cvd, *tvd;
3824 	boolean_t unspare = B_FALSE;
3825 	uint64_t unspare_guid;
3826 	size_t len;
3827 	char *vdpath;
3828 
3829 	txg = spa_vdev_enter(spa);
3830 
3831 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3832 
3833 	if (vd == NULL)
3834 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3835 
3836 	if (!vd->vdev_ops->vdev_op_leaf)
3837 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3838 
3839 	pvd = vd->vdev_parent;
3840 
3841 	/*
3842 	 * If the parent/child relationship is not as expected, don't do it.
3843 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3844 	 * vdev that's replacing B with C.  The user's intent in replacing
3845 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3846 	 * the replace by detaching C, the expected behavior is to end up
3847 	 * M(A,B).  But suppose that right after deciding to detach C,
3848 	 * the replacement of B completes.  We would have M(A,C), and then
3849 	 * ask to detach C, which would leave us with just A -- not what
3850 	 * the user wanted.  To prevent this, we make sure that the
3851 	 * parent/child relationship hasn't changed -- in this example,
3852 	 * that C's parent is still the replacing vdev R.
3853 	 */
3854 	if (pvd->vdev_guid != pguid && pguid != 0)
3855 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3856 
3857 	/*
3858 	 * If replace_done is specified, only remove this device if it's
3859 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3860 	 * disk can be removed.
3861 	 */
3862 	if (replace_done) {
3863 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3864 			if (vd->vdev_id != 0)
3865 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3866 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3867 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3868 		}
3869 	}
3870 
3871 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3872 	    spa_version(spa) >= SPA_VERSION_SPARES);
3873 
3874 	/*
3875 	 * Only mirror, replacing, and spare vdevs support detach.
3876 	 */
3877 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3878 	    pvd->vdev_ops != &vdev_mirror_ops &&
3879 	    pvd->vdev_ops != &vdev_spare_ops)
3880 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3881 
3882 	/*
3883 	 * If this device has the only valid copy of some data,
3884 	 * we cannot safely detach it.
3885 	 */
3886 	if (vdev_dtl_required(vd))
3887 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3888 
3889 	ASSERT(pvd->vdev_children >= 2);
3890 
3891 	/*
3892 	 * If we are detaching the second disk from a replacing vdev, then
3893 	 * check to see if we changed the original vdev's path to have "/old"
3894 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3895 	 */
3896 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3897 	    pvd->vdev_child[0]->vdev_path != NULL &&
3898 	    pvd->vdev_child[1]->vdev_path != NULL) {
3899 		ASSERT(pvd->vdev_child[1] == vd);
3900 		cvd = pvd->vdev_child[0];
3901 		len = strlen(vd->vdev_path);
3902 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3903 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3904 			spa_strfree(cvd->vdev_path);
3905 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3906 		}
3907 	}
3908 
3909 	/*
3910 	 * If we are detaching the original disk from a spare, then it implies
3911 	 * that the spare should become a real disk, and be removed from the
3912 	 * active spare list for the pool.
3913 	 */
3914 	if (pvd->vdev_ops == &vdev_spare_ops &&
3915 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3916 		unspare = B_TRUE;
3917 
3918 	/*
3919 	 * Erase the disk labels so the disk can be used for other things.
3920 	 * This must be done after all other error cases are handled,
3921 	 * but before we disembowel vd (so we can still do I/O to it).
3922 	 * But if we can't do it, don't treat the error as fatal --
3923 	 * it may be that the unwritability of the disk is the reason
3924 	 * it's being detached!
3925 	 */
3926 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3927 
3928 	/*
3929 	 * Remove vd from its parent and compact the parent's children.
3930 	 */
3931 	vdev_remove_child(pvd, vd);
3932 	vdev_compact_children(pvd);
3933 
3934 	/*
3935 	 * Remember one of the remaining children so we can get tvd below.
3936 	 */
3937 	cvd = pvd->vdev_child[0];
3938 
3939 	/*
3940 	 * If we need to remove the remaining child from the list of hot spares,
3941 	 * do it now, marking the vdev as no longer a spare in the process.
3942 	 * We must do this before vdev_remove_parent(), because that can
3943 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3944 	 * reason, we must remove the spare now, in the same txg as the detach;
3945 	 * otherwise someone could attach a new sibling, change the GUID, and
3946 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3947 	 */
3948 	if (unspare) {
3949 		ASSERT(cvd->vdev_isspare);
3950 		spa_spare_remove(cvd);
3951 		unspare_guid = cvd->vdev_guid;
3952 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3953 	}
3954 
3955 	/*
3956 	 * If the parent mirror/replacing vdev only has one child,
3957 	 * the parent is no longer needed.  Remove it from the tree.
3958 	 */
3959 	if (pvd->vdev_children == 1)
3960 		vdev_remove_parent(cvd);
3961 
3962 	/*
3963 	 * We don't set tvd until now because the parent we just removed
3964 	 * may have been the previous top-level vdev.
3965 	 */
3966 	tvd = cvd->vdev_top;
3967 	ASSERT(tvd->vdev_parent == rvd);
3968 
3969 	/*
3970 	 * Reevaluate the parent vdev state.
3971 	 */
3972 	vdev_propagate_state(cvd);
3973 
3974 	/*
3975 	 * If the 'autoexpand' property is set on the pool then automatically
3976 	 * try to expand the size of the pool. For example if the device we
3977 	 * just detached was smaller than the others, it may be possible to
3978 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3979 	 * first so that we can obtain the updated sizes of the leaf vdevs.
3980 	 */
3981 	if (spa->spa_autoexpand) {
3982 		vdev_reopen(tvd);
3983 		vdev_expand(tvd, txg);
3984 	}
3985 
3986 	vdev_config_dirty(tvd);
3987 
3988 	/*
3989 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3990 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3991 	 * But first make sure we're not on any *other* txg's DTL list, to
3992 	 * prevent vd from being accessed after it's freed.
3993 	 */
3994 	vdpath = spa_strdup(vd->vdev_path);
3995 	for (int t = 0; t < TXG_SIZE; t++)
3996 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3997 	vd->vdev_detached = B_TRUE;
3998 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3999 
4000 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4001 
4002 	error = spa_vdev_exit(spa, vd, txg, 0);
4003 
4004 	spa_history_internal_log(LOG_POOL_VDEV_DETACH, spa, NULL, CRED(),
4005 	    "vdev=%s", vdpath);
4006 	spa_strfree(vdpath);
4007 
4008 	/*
4009 	 * If this was the removal of the original device in a hot spare vdev,
4010 	 * then we want to go through and remove the device from the hot spare
4011 	 * list of every other pool.
4012 	 */
4013 	if (unspare) {
4014 		spa_t *myspa = spa;
4015 		spa = NULL;
4016 		mutex_enter(&spa_namespace_lock);
4017 		while ((spa = spa_next(spa)) != NULL) {
4018 			if (spa->spa_state != POOL_STATE_ACTIVE)
4019 				continue;
4020 			if (spa == myspa)
4021 				continue;
4022 			spa_open_ref(spa, FTAG);
4023 			mutex_exit(&spa_namespace_lock);
4024 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4025 			mutex_enter(&spa_namespace_lock);
4026 			spa_close(spa, FTAG);
4027 		}
4028 		mutex_exit(&spa_namespace_lock);
4029 	}
4030 
4031 	return (error);
4032 }
4033 
4034 /*
4035  * Split a set of devices from their mirrors, and create a new pool from them.
4036  */
4037 int
spa_vdev_split_mirror(spa_t * spa,char * newname,nvlist_t * config,nvlist_t * props,boolean_t exp)4038 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4039     nvlist_t *props, boolean_t exp)
4040 {
4041 	int error = 0;
4042 	uint64_t txg, *glist;
4043 	spa_t *newspa;
4044 	uint_t c, children, lastlog;
4045 	nvlist_t **child, *nvl, *tmp;
4046 	dmu_tx_t *tx;
4047 	char *altroot = NULL;
4048 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4049 	boolean_t activate_slog;
4050 
4051 	if (!spa_writeable(spa))
4052 		return (EROFS);
4053 
4054 	txg = spa_vdev_enter(spa);
4055 
4056 	/* clear the log and flush everything up to now */
4057 	activate_slog = spa_passivate_log(spa);
4058 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4059 	error = spa_offline_log(spa);
4060 	txg = spa_vdev_config_enter(spa);
4061 
4062 	if (activate_slog)
4063 		spa_activate_log(spa);
4064 
4065 	if (error != 0)
4066 		return (spa_vdev_exit(spa, NULL, txg, error));
4067 
4068 	/* check new spa name before going any further */
4069 	if (spa_lookup(newname) != NULL)
4070 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4071 
4072 	/*
4073 	 * scan through all the children to ensure they're all mirrors
4074 	 */
4075 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4076 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4077 	    &children) != 0)
4078 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4079 
4080 	/* first, check to ensure we've got the right child count */
4081 	rvd = spa->spa_root_vdev;
4082 	lastlog = 0;
4083 	for (c = 0; c < rvd->vdev_children; c++) {
4084 		vdev_t *vd = rvd->vdev_child[c];
4085 
4086 		/* don't count the holes & logs as children */
4087 		if (vd->vdev_islog || vd->vdev_ishole) {
4088 			if (lastlog == 0)
4089 				lastlog = c;
4090 			continue;
4091 		}
4092 
4093 		lastlog = 0;
4094 	}
4095 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4096 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4097 
4098 	/* next, ensure no spare or cache devices are part of the split */
4099 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4100 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4101 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4102 
4103 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4104 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4105 
4106 	/* then, loop over each vdev and validate it */
4107 	for (c = 0; c < children; c++) {
4108 		uint64_t is_hole = 0;
4109 
4110 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4111 		    &is_hole);
4112 
4113 		if (is_hole != 0) {
4114 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4115 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4116 				continue;
4117 			} else {
4118 				error = EINVAL;
4119 				break;
4120 			}
4121 		}
4122 
4123 		/* which disk is going to be split? */
4124 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4125 		    &glist[c]) != 0) {
4126 			error = EINVAL;
4127 			break;
4128 		}
4129 
4130 		/* look it up in the spa */
4131 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4132 		if (vml[c] == NULL) {
4133 			error = ENODEV;
4134 			break;
4135 		}
4136 
4137 		/* make sure there's nothing stopping the split */
4138 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4139 		    vml[c]->vdev_islog ||
4140 		    vml[c]->vdev_ishole ||
4141 		    vml[c]->vdev_isspare ||
4142 		    vml[c]->vdev_isl2cache ||
4143 		    !vdev_writeable(vml[c]) ||
4144 		    vml[c]->vdev_children != 0 ||
4145 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4146 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4147 			error = EINVAL;
4148 			break;
4149 		}
4150 
4151 		if (vdev_dtl_required(vml[c])) {
4152 			error = EBUSY;
4153 			break;
4154 		}
4155 
4156 		/* we need certain info from the top level */
4157 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4158 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4159 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4160 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4161 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4162 		    vml[c]->vdev_top->vdev_asize) == 0);
4163 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4164 		    vml[c]->vdev_top->vdev_ashift) == 0);
4165 	}
4166 
4167 	if (error != 0) {
4168 		kmem_free(vml, children * sizeof (vdev_t *));
4169 		kmem_free(glist, children * sizeof (uint64_t));
4170 		return (spa_vdev_exit(spa, NULL, txg, error));
4171 	}
4172 
4173 	/* stop writers from using the disks */
4174 	for (c = 0; c < children; c++) {
4175 		if (vml[c] != NULL)
4176 			vml[c]->vdev_offline = B_TRUE;
4177 	}
4178 	vdev_reopen(spa->spa_root_vdev);
4179 
4180 	/*
4181 	 * Temporarily record the splitting vdevs in the spa config.  This
4182 	 * will disappear once the config is regenerated.
4183 	 */
4184 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4185 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4186 	    glist, children) == 0);
4187 	kmem_free(glist, children * sizeof (uint64_t));
4188 
4189 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4190 	    nvl) == 0);
4191 	spa->spa_config_splitting = nvl;
4192 	vdev_config_dirty(spa->spa_root_vdev);
4193 
4194 	/* configure and create the new pool */
4195 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4196 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4197 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4198 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4199 	    spa_version(spa)) == 0);
4200 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4201 	    spa->spa_config_txg) == 0);
4202 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4203 	    spa_generate_guid(NULL)) == 0);
4204 	(void) nvlist_lookup_string(props,
4205 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4206 
4207 	/* add the new pool to the namespace */
4208 	newspa = spa_add(newname, config, altroot);
4209 	newspa->spa_config_txg = spa->spa_config_txg;
4210 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4211 
4212 	/* release the spa config lock, retaining the namespace lock */
4213 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4214 
4215 	if (zio_injection_enabled)
4216 		zio_handle_panic_injection(spa, FTAG, 1);
4217 
4218 	spa_activate(newspa, spa_mode_global);
4219 	spa_async_suspend(newspa);
4220 
4221 	/* create the new pool from the disks of the original pool */
4222 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4223 	if (error)
4224 		goto out;
4225 
4226 	/* if that worked, generate a real config for the new pool */
4227 	if (newspa->spa_root_vdev != NULL) {
4228 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4229 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4230 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4231 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4232 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4233 		    B_TRUE));
4234 	}
4235 
4236 	/* set the props */
4237 	if (props != NULL) {
4238 		spa_configfile_set(newspa, props, B_FALSE);
4239 		error = spa_prop_set(newspa, props);
4240 		if (error)
4241 			goto out;
4242 	}
4243 
4244 	/* flush everything */
4245 	txg = spa_vdev_config_enter(newspa);
4246 	vdev_config_dirty(newspa->spa_root_vdev);
4247 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4248 
4249 	if (zio_injection_enabled)
4250 		zio_handle_panic_injection(spa, FTAG, 2);
4251 
4252 	spa_async_resume(newspa);
4253 
4254 	/* finally, update the original pool's config */
4255 	txg = spa_vdev_config_enter(spa);
4256 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4257 	error = dmu_tx_assign(tx, TXG_WAIT);
4258 	if (error != 0)
4259 		dmu_tx_abort(tx);
4260 	for (c = 0; c < children; c++) {
4261 		if (vml[c] != NULL) {
4262 			vdev_split(vml[c]);
4263 			if (error == 0)
4264 				spa_history_internal_log(LOG_POOL_VDEV_DETACH,
4265 				    spa, tx, CRED(), "vdev=%s",
4266 				    vml[c]->vdev_path);
4267 			vdev_free(vml[c]);
4268 		}
4269 	}
4270 	vdev_config_dirty(spa->spa_root_vdev);
4271 	spa->spa_config_splitting = NULL;
4272 	nvlist_free(nvl);
4273 	if (error == 0)
4274 		dmu_tx_commit(tx);
4275 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4276 
4277 	if (zio_injection_enabled)
4278 		zio_handle_panic_injection(spa, FTAG, 3);
4279 
4280 	/* split is complete; log a history record */
4281 	spa_history_internal_log(LOG_POOL_SPLIT, newspa, NULL, CRED(),
4282 	    "split new pool %s from pool %s", newname, spa_name(spa));
4283 
4284 	kmem_free(vml, children * sizeof (vdev_t *));
4285 
4286 	/* if we're not going to mount the filesystems in userland, export */
4287 	if (exp)
4288 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4289 		    B_FALSE, B_FALSE);
4290 
4291 	return (error);
4292 
4293 out:
4294 	spa_unload(newspa);
4295 	spa_deactivate(newspa);
4296 	spa_remove(newspa);
4297 
4298 	txg = spa_vdev_config_enter(spa);
4299 	nvlist_free(spa->spa_config_splitting);
4300 	spa->spa_config_splitting = NULL;
4301 	(void) spa_vdev_exit(spa, NULL, txg, error);
4302 
4303 	kmem_free(vml, children * sizeof (vdev_t *));
4304 	return (error);
4305 }
4306 
4307 static nvlist_t *
spa_nvlist_lookup_by_guid(nvlist_t ** nvpp,int count,uint64_t target_guid)4308 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4309 {
4310 	for (int i = 0; i < count; i++) {
4311 		uint64_t guid;
4312 
4313 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4314 		    &guid) == 0);
4315 
4316 		if (guid == target_guid)
4317 			return (nvpp[i]);
4318 	}
4319 
4320 	return (NULL);
4321 }
4322 
4323 static void
spa_vdev_remove_aux(nvlist_t * config,char * name,nvlist_t ** dev,int count,nvlist_t * dev_to_remove)4324 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4325 	nvlist_t *dev_to_remove)
4326 {
4327 	nvlist_t **newdev = NULL;
4328 
4329 	if (count > 1)
4330 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4331 
4332 	for (int i = 0, j = 0; i < count; i++) {
4333 		if (dev[i] == dev_to_remove)
4334 			continue;
4335 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4336 	}
4337 
4338 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4339 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4340 
4341 	for (int i = 0; i < count - 1; i++)
4342 		nvlist_free(newdev[i]);
4343 
4344 	if (count > 1)
4345 		kmem_free(newdev, (count - 1) * sizeof (void *));
4346 }
4347 
4348 /*
4349  * Removing a device from the vdev namespace requires several steps
4350  * and can take a significant amount of time.  As a result we use
4351  * the spa_vdev_config_[enter/exit] functions which allow us to
4352  * grab and release the spa_config_lock while still holding the namespace
4353  * lock.  During each step the configuration is synced out.
4354  */
4355 
4356 /*
4357  * Evacuate the device.
4358  */
4359 int
spa_vdev_remove_evacuate(spa_t * spa,vdev_t * vd)4360 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4361 {
4362 	int error = 0;
4363 	uint64_t txg;
4364 
4365 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4366 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4367 	ASSERT(vd == vd->vdev_top);
4368 
4369 	/*
4370 	 * Evacuate the device.  We don't hold the config lock as writer
4371 	 * since we need to do I/O but we do keep the
4372 	 * spa_namespace_lock held.  Once this completes the device
4373 	 * should no longer have any blocks allocated on it.
4374 	 */
4375 	if (vd->vdev_islog) {
4376 		error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
4377 		    NULL, DS_FIND_CHILDREN);
4378 	} else {
4379 		error = ENOTSUP;	/* until we have bp rewrite */
4380 	}
4381 
4382 	txg_wait_synced(spa_get_dsl(spa), 0);
4383 
4384 	if (error)
4385 		return (error);
4386 
4387 	/*
4388 	 * The evacuation succeeded.  Remove any remaining MOS metadata
4389 	 * associated with this vdev, and wait for these changes to sync.
4390 	 */
4391 	txg = spa_vdev_config_enter(spa);
4392 	vd->vdev_removing = B_TRUE;
4393 	vdev_dirty(vd, 0, NULL, txg);
4394 	vdev_config_dirty(vd);
4395 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4396 
4397 	return (0);
4398 }
4399 
4400 /*
4401  * Complete the removal by cleaning up the namespace.
4402  */
4403 void
spa_vdev_remove_from_namespace(spa_t * spa,vdev_t * vd)4404 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4405 {
4406 	vdev_t *rvd = spa->spa_root_vdev;
4407 	uint64_t id = vd->vdev_id;
4408 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4409 
4410 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4411 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4412 	ASSERT(vd == vd->vdev_top);
4413 
4414 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4415 
4416 	if (list_link_active(&vd->vdev_state_dirty_node))
4417 		vdev_state_clean(vd);
4418 	if (list_link_active(&vd->vdev_config_dirty_node))
4419 		vdev_config_clean(vd);
4420 
4421 	vdev_free(vd);
4422 
4423 	if (last_vdev) {
4424 		vdev_compact_children(rvd);
4425 	} else {
4426 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4427 		vdev_add_child(rvd, vd);
4428 	}
4429 	vdev_config_dirty(rvd);
4430 
4431 	/*
4432 	 * Reassess the health of our root vdev.
4433 	 */
4434 	vdev_reopen(rvd);
4435 }
4436 
4437 /*
4438  * Remove a device from the pool.  Currently, this supports removing only hot
4439  * spares, slogs, and level 2 ARC devices.
4440  */
4441 int
spa_vdev_remove(spa_t * spa,uint64_t guid,boolean_t unspare)4442 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4443 {
4444 	vdev_t *vd;
4445 	metaslab_group_t *mg;
4446 	nvlist_t **spares, **l2cache, *nv;
4447 	uint64_t txg = 0;
4448 	uint_t nspares, nl2cache;
4449 	int error = 0;
4450 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4451 
4452 	if (!locked)
4453 		txg = spa_vdev_enter(spa);
4454 
4455 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4456 
4457 	if (spa->spa_spares.sav_vdevs != NULL &&
4458 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4459 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4460 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4461 		/*
4462 		 * Only remove the hot spare if it's not currently in use
4463 		 * in this pool.
4464 		 */
4465 		if (vd == NULL || unspare) {
4466 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4467 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4468 			spa_load_spares(spa);
4469 			spa->spa_spares.sav_sync = B_TRUE;
4470 		} else {
4471 			error = EBUSY;
4472 		}
4473 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4474 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4475 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4476 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4477 		/*
4478 		 * Cache devices can always be removed.
4479 		 */
4480 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4481 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4482 		spa_load_l2cache(spa);
4483 		spa->spa_l2cache.sav_sync = B_TRUE;
4484 	} else if (vd != NULL && vd->vdev_islog) {
4485 		ASSERT(!locked);
4486 		ASSERT(vd == vd->vdev_top);
4487 
4488 		/*
4489 		 * XXX - Once we have bp-rewrite this should
4490 		 * become the common case.
4491 		 */
4492 
4493 		mg = vd->vdev_mg;
4494 
4495 		/*
4496 		 * Stop allocating from this vdev.
4497 		 */
4498 		metaslab_group_passivate(mg);
4499 
4500 		/*
4501 		 * Wait for the youngest allocations and frees to sync,
4502 		 * and then wait for the deferral of those frees to finish.
4503 		 */
4504 		spa_vdev_config_exit(spa, NULL,
4505 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4506 
4507 		/*
4508 		 * Attempt to evacuate the vdev.
4509 		 */
4510 		error = spa_vdev_remove_evacuate(spa, vd);
4511 
4512 		txg = spa_vdev_config_enter(spa);
4513 
4514 		/*
4515 		 * If we couldn't evacuate the vdev, unwind.
4516 		 */
4517 		if (error) {
4518 			metaslab_group_activate(mg);
4519 			return (spa_vdev_exit(spa, NULL, txg, error));
4520 		}
4521 
4522 		/*
4523 		 * Clean up the vdev namespace.
4524 		 */
4525 		spa_vdev_remove_from_namespace(spa, vd);
4526 
4527 	} else if (vd != NULL) {
4528 		/*
4529 		 * Normal vdevs cannot be removed (yet).
4530 		 */
4531 		error = ENOTSUP;
4532 	} else {
4533 		/*
4534 		 * There is no vdev of any kind with the specified guid.
4535 		 */
4536 		error = ENOENT;
4537 	}
4538 
4539 	if (!locked)
4540 		return (spa_vdev_exit(spa, NULL, txg, error));
4541 
4542 	return (error);
4543 }
4544 
4545 /*
4546  * Find any device that's done replacing, or a vdev marked 'unspare' that's
4547  * current spared, so we can detach it.
4548  */
4549 static vdev_t *
spa_vdev_resilver_done_hunt(vdev_t * vd)4550 spa_vdev_resilver_done_hunt(vdev_t *vd)
4551 {
4552 	vdev_t *newvd, *oldvd;
4553 
4554 	for (int c = 0; c < vd->vdev_children; c++) {
4555 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4556 		if (oldvd != NULL)
4557 			return (oldvd);
4558 	}
4559 
4560 	/*
4561 	 * Check for a completed replacement.
4562 	 */
4563 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
4564 		oldvd = vd->vdev_child[0];
4565 		newvd = vd->vdev_child[1];
4566 
4567 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4568 		    !vdev_dtl_required(oldvd))
4569 			return (oldvd);
4570 	}
4571 
4572 	/*
4573 	 * Check for a completed resilver with the 'unspare' flag set.
4574 	 */
4575 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
4576 		newvd = vd->vdev_child[0];
4577 		oldvd = vd->vdev_child[1];
4578 
4579 		if (newvd->vdev_unspare &&
4580 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4581 		    !vdev_dtl_required(oldvd)) {
4582 			newvd->vdev_unspare = 0;
4583 			return (oldvd);
4584 		}
4585 	}
4586 
4587 	return (NULL);
4588 }
4589 
4590 static void
spa_vdev_resilver_done(spa_t * spa)4591 spa_vdev_resilver_done(spa_t *spa)
4592 {
4593 	vdev_t *vd, *pvd, *ppvd;
4594 	uint64_t guid, sguid, pguid, ppguid;
4595 
4596 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4597 
4598 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4599 		pvd = vd->vdev_parent;
4600 		ppvd = pvd->vdev_parent;
4601 		guid = vd->vdev_guid;
4602 		pguid = pvd->vdev_guid;
4603 		ppguid = ppvd->vdev_guid;
4604 		sguid = 0;
4605 		/*
4606 		 * If we have just finished replacing a hot spared device, then
4607 		 * we need to detach the parent's first child (the original hot
4608 		 * spare) as well.
4609 		 */
4610 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
4611 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4612 			ASSERT(ppvd->vdev_children == 2);
4613 			sguid = ppvd->vdev_child[1]->vdev_guid;
4614 		}
4615 		spa_config_exit(spa, SCL_ALL, FTAG);
4616 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4617 			return;
4618 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4619 			return;
4620 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4621 	}
4622 
4623 	spa_config_exit(spa, SCL_ALL, FTAG);
4624 }
4625 
4626 /*
4627  * Update the stored path or FRU for this vdev.
4628  */
4629 int
spa_vdev_set_common(spa_t * spa,uint64_t guid,const char * value,boolean_t ispath)4630 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4631     boolean_t ispath)
4632 {
4633 	vdev_t *vd;
4634 
4635 	spa_vdev_state_enter(spa, SCL_ALL);
4636 
4637 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4638 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
4639 
4640 	if (!vd->vdev_ops->vdev_op_leaf)
4641 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4642 
4643 	if (ispath) {
4644 		spa_strfree(vd->vdev_path);
4645 		vd->vdev_path = spa_strdup(value);
4646 	} else {
4647 		if (vd->vdev_fru != NULL)
4648 			spa_strfree(vd->vdev_fru);
4649 		vd->vdev_fru = spa_strdup(value);
4650 	}
4651 
4652 	return (spa_vdev_state_exit(spa, vd, 0));
4653 }
4654 
4655 int
spa_vdev_setpath(spa_t * spa,uint64_t guid,const char * newpath)4656 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4657 {
4658 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4659 }
4660 
4661 int
spa_vdev_setfru(spa_t * spa,uint64_t guid,const char * newfru)4662 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4663 {
4664 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4665 }
4666 
4667 /*
4668  * ==========================================================================
4669  * SPA Scrubbing
4670  * ==========================================================================
4671  */
4672 
4673 int
spa_scrub(spa_t * spa,pool_scrub_type_t type)4674 spa_scrub(spa_t *spa, pool_scrub_type_t type)
4675 {
4676 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4677 
4678 	if ((uint_t)type >= POOL_SCRUB_TYPES)
4679 		return (ENOTSUP);
4680 
4681 	/*
4682 	 * If a resilver was requested, but there is no DTL on a
4683 	 * writeable leaf device, we have nothing to do.
4684 	 */
4685 	if (type == POOL_SCRUB_RESILVER &&
4686 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4687 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4688 		return (0);
4689 	}
4690 
4691 	if (type == POOL_SCRUB_EVERYTHING &&
4692 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
4693 	    spa->spa_dsl_pool->dp_scrub_isresilver)
4694 		return (EBUSY);
4695 
4696 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
4697 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
4698 	} else if (type == POOL_SCRUB_NONE) {
4699 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
4700 	} else {
4701 		return (EINVAL);
4702 	}
4703 }
4704 
4705 /*
4706  * ==========================================================================
4707  * SPA async task processing
4708  * ==========================================================================
4709  */
4710 
4711 static void
spa_async_remove(spa_t * spa,vdev_t * vd)4712 spa_async_remove(spa_t *spa, vdev_t *vd)
4713 {
4714 	if (vd->vdev_remove_wanted) {
4715 		vd->vdev_remove_wanted = 0;
4716 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4717 
4718 		/*
4719 		 * We want to clear the stats, but we don't want to do a full
4720 		 * vdev_clear() as that will cause us to throw away
4721 		 * degraded/faulted state as well as attempt to reopen the
4722 		 * device, all of which is a waste.
4723 		 */
4724 		vd->vdev_stat.vs_read_errors = 0;
4725 		vd->vdev_stat.vs_write_errors = 0;
4726 		vd->vdev_stat.vs_checksum_errors = 0;
4727 
4728 		vdev_state_dirty(vd->vdev_top);
4729 	}
4730 
4731 	for (int c = 0; c < vd->vdev_children; c++)
4732 		spa_async_remove(spa, vd->vdev_child[c]);
4733 }
4734 
4735 static void
spa_async_probe(spa_t * spa,vdev_t * vd)4736 spa_async_probe(spa_t *spa, vdev_t *vd)
4737 {
4738 	if (vd->vdev_probe_wanted) {
4739 		vd->vdev_probe_wanted = 0;
4740 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
4741 	}
4742 
4743 	for (int c = 0; c < vd->vdev_children; c++)
4744 		spa_async_probe(spa, vd->vdev_child[c]);
4745 }
4746 
4747 static void
spa_async_autoexpand(spa_t * spa,vdev_t * vd)4748 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
4749 {
4750 	sysevent_id_t eid;
4751 	nvlist_t *attr;
4752 	char *physpath;
4753 
4754 	if (!spa->spa_autoexpand)
4755 		return;
4756 
4757 	for (int c = 0; c < vd->vdev_children; c++) {
4758 		vdev_t *cvd = vd->vdev_child[c];
4759 		spa_async_autoexpand(spa, cvd);
4760 	}
4761 
4762 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
4763 		return;
4764 
4765 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4766 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
4767 
4768 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4769 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
4770 
4771 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
4772 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
4773 
4774 	nvlist_free(attr);
4775 	kmem_free(physpath, MAXPATHLEN);
4776 }
4777 
4778 static void
spa_async_thread(void * arg)4779 spa_async_thread(void *arg)
4780 {
4781 	int tasks;
4782 	spa_t *spa = arg;
4783 
4784 	ASSERT(spa->spa_sync_on);
4785 
4786 	mutex_enter(&spa->spa_async_lock);
4787 	tasks = spa->spa_async_tasks;
4788 	spa->spa_async_tasks = 0;
4789 	mutex_exit(&spa->spa_async_lock);
4790 
4791 	/*
4792 	 * See if the config needs to be updated.
4793 	 */
4794 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
4795 		uint64_t old_space, new_space;
4796 
4797 		mutex_enter(&spa_namespace_lock);
4798 		old_space = metaslab_class_get_space(spa_normal_class(spa));
4799 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4800 		new_space = metaslab_class_get_space(spa_normal_class(spa));
4801 		mutex_exit(&spa_namespace_lock);
4802 
4803 		/*
4804 		 * If the pool grew as a result of the config update,
4805 		 * then log an internal history event.
4806 		 */
4807 		if (new_space != old_space) {
4808 			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
4809 			    spa, NULL, CRED(),
4810 			    "pool '%s' size: %llu(+%llu)",
4811 			    spa_name(spa), new_space, new_space - old_space);
4812 		}
4813 	}
4814 
4815 	/*
4816 	 * See if any devices need to be marked REMOVED.
4817 	 */
4818 	if (tasks & SPA_ASYNC_REMOVE) {
4819 		spa_vdev_state_enter(spa, SCL_NONE);
4820 		spa_async_remove(spa, spa->spa_root_vdev);
4821 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
4822 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
4823 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
4824 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
4825 		(void) spa_vdev_state_exit(spa, NULL, 0);
4826 	}
4827 
4828 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
4829 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4830 		spa_async_autoexpand(spa, spa->spa_root_vdev);
4831 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4832 	}
4833 
4834 	/*
4835 	 * See if any devices need to be probed.
4836 	 */
4837 	if (tasks & SPA_ASYNC_PROBE) {
4838 		spa_vdev_state_enter(spa, SCL_NONE);
4839 		spa_async_probe(spa, spa->spa_root_vdev);
4840 		(void) spa_vdev_state_exit(spa, NULL, 0);
4841 	}
4842 
4843 	/*
4844 	 * If any devices are done replacing, detach them.
4845 	 */
4846 	if (tasks & SPA_ASYNC_RESILVER_DONE)
4847 		spa_vdev_resilver_done(spa);
4848 
4849 	/*
4850 	 * Kick off a resilver.
4851 	 */
4852 	if (tasks & SPA_ASYNC_RESILVER)
4853 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
4854 
4855 	/*
4856 	 * Let the world know that we're done.
4857 	 */
4858 	mutex_enter(&spa->spa_async_lock);
4859 	spa->spa_async_thread = NULL;
4860 	cv_broadcast(&spa->spa_async_cv);
4861 	mutex_exit(&spa->spa_async_lock);
4862 	thread_exit();
4863 }
4864 
4865 void
spa_async_suspend(spa_t * spa)4866 spa_async_suspend(spa_t *spa)
4867 {
4868 	mutex_enter(&spa->spa_async_lock);
4869 	spa->spa_async_suspended++;
4870 	while (spa->spa_async_thread != NULL)
4871 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
4872 	mutex_exit(&spa->spa_async_lock);
4873 }
4874 
4875 void
spa_async_resume(spa_t * spa)4876 spa_async_resume(spa_t *spa)
4877 {
4878 	mutex_enter(&spa->spa_async_lock);
4879 	ASSERT(spa->spa_async_suspended != 0);
4880 	spa->spa_async_suspended--;
4881 	mutex_exit(&spa->spa_async_lock);
4882 }
4883 
4884 static void
spa_async_dispatch(spa_t * spa)4885 spa_async_dispatch(spa_t *spa)
4886 {
4887 	mutex_enter(&spa->spa_async_lock);
4888 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
4889 	    spa->spa_async_thread == NULL &&
4890 	    rootdir != NULL && !vn_is_readonly(rootdir))
4891 		spa->spa_async_thread = thread_create(NULL, 0,
4892 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
4893 	mutex_exit(&spa->spa_async_lock);
4894 }
4895 
4896 void
spa_async_request(spa_t * spa,int task)4897 spa_async_request(spa_t *spa, int task)
4898 {
4899 	mutex_enter(&spa->spa_async_lock);
4900 	spa->spa_async_tasks |= task;
4901 	mutex_exit(&spa->spa_async_lock);
4902 }
4903 
4904 /*
4905  * ==========================================================================
4906  * SPA syncing routines
4907  * ==========================================================================
4908  */
4909 static void
spa_sync_deferred_bplist(spa_t * spa,bplist_t * bpl,dmu_tx_t * tx,uint64_t txg)4910 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg)
4911 {
4912 	blkptr_t blk;
4913 	uint64_t itor = 0;
4914 	uint8_t c = 1;
4915 
4916 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
4917 		ASSERT(blk.blk_birth < txg);
4918 		zio_free(spa, txg, &blk);
4919 	}
4920 
4921 	bplist_vacate(bpl, tx);
4922 
4923 	/*
4924 	 * Pre-dirty the first block so we sync to convergence faster.
4925 	 * (Usually only the first block is needed.)
4926 	 */
4927 	dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx);
4928 }
4929 
4930 static void
spa_sync_free(void * arg,const blkptr_t * bp,dmu_tx_t * tx)4931 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
4932 {
4933 	zio_t *zio = arg;
4934 
4935 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
4936 	    zio->io_flags));
4937 }
4938 
4939 static void
spa_sync_nvlist(spa_t * spa,uint64_t obj,nvlist_t * nv,dmu_tx_t * tx)4940 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
4941 {
4942 	char *packed = NULL;
4943 	size_t bufsize;
4944 	size_t nvsize = 0;
4945 	dmu_buf_t *db;
4946 
4947 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
4948 
4949 	/*
4950 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
4951 	 * information.  This avoids the dbuf_will_dirty() path and
4952 	 * saves us a pre-read to get data we don't actually care about.
4953 	 */
4954 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
4955 	packed = kmem_alloc(bufsize, KM_SLEEP);
4956 
4957 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
4958 	    KM_SLEEP) == 0);
4959 	bzero(packed + nvsize, bufsize - nvsize);
4960 
4961 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
4962 
4963 	kmem_free(packed, bufsize);
4964 
4965 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
4966 	dmu_buf_will_dirty(db, tx);
4967 	*(uint64_t *)db->db_data = nvsize;
4968 	dmu_buf_rele(db, FTAG);
4969 }
4970 
4971 static void
spa_sync_aux_dev(spa_t * spa,spa_aux_vdev_t * sav,dmu_tx_t * tx,const char * config,const char * entry)4972 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
4973     const char *config, const char *entry)
4974 {
4975 	nvlist_t *nvroot;
4976 	nvlist_t **list;
4977 	int i;
4978 
4979 	if (!sav->sav_sync)
4980 		return;
4981 
4982 	/*
4983 	 * Update the MOS nvlist describing the list of available devices.
4984 	 * spa_validate_aux() will have already made sure this nvlist is
4985 	 * valid and the vdevs are labeled appropriately.
4986 	 */
4987 	if (sav->sav_object == 0) {
4988 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
4989 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
4990 		    sizeof (uint64_t), tx);
4991 		VERIFY(zap_update(spa->spa_meta_objset,
4992 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
4993 		    &sav->sav_object, tx) == 0);
4994 	}
4995 
4996 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4997 	if (sav->sav_count == 0) {
4998 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
4999 	} else {
5000 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5001 		for (i = 0; i < sav->sav_count; i++)
5002 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5003 			    B_FALSE, B_FALSE, B_TRUE);
5004 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5005 		    sav->sav_count) == 0);
5006 		for (i = 0; i < sav->sav_count; i++)
5007 			nvlist_free(list[i]);
5008 		kmem_free(list, sav->sav_count * sizeof (void *));
5009 	}
5010 
5011 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5012 	nvlist_free(nvroot);
5013 
5014 	sav->sav_sync = B_FALSE;
5015 }
5016 
5017 static void
spa_sync_config_object(spa_t * spa,dmu_tx_t * tx)5018 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5019 {
5020 	nvlist_t *config;
5021 
5022 	if (list_is_empty(&spa->spa_config_dirty_list))
5023 		return;
5024 
5025 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5026 
5027 	config = spa_config_generate(spa, spa->spa_root_vdev,
5028 	    dmu_tx_get_txg(tx), B_FALSE);
5029 
5030 	spa_config_exit(spa, SCL_STATE, FTAG);
5031 
5032 	if (spa->spa_config_syncing)
5033 		nvlist_free(spa->spa_config_syncing);
5034 	spa->spa_config_syncing = config;
5035 
5036 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5037 }
5038 
5039 /*
5040  * Set zpool properties.
5041  */
5042 static void
spa_sync_props(void * arg1,void * arg2,cred_t * cr,dmu_tx_t * tx)5043 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
5044 {
5045 	spa_t *spa = arg1;
5046 	objset_t *mos = spa->spa_meta_objset;
5047 	nvlist_t *nvp = arg2;
5048 	nvpair_t *elem;
5049 	uint64_t intval;
5050 	char *strval;
5051 	zpool_prop_t prop;
5052 	const char *propname;
5053 	zprop_type_t proptype;
5054 
5055 	mutex_enter(&spa->spa_props_lock);
5056 
5057 	elem = NULL;
5058 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5059 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5060 		case ZPOOL_PROP_VERSION:
5061 			/*
5062 			 * Only set version for non-zpool-creation cases
5063 			 * (set/import). spa_create() needs special care
5064 			 * for version setting.
5065 			 */
5066 			if (tx->tx_txg != TXG_INITIAL) {
5067 				VERIFY(nvpair_value_uint64(elem,
5068 				    &intval) == 0);
5069 				ASSERT(intval <= SPA_VERSION);
5070 				ASSERT(intval >= spa_version(spa));
5071 				spa->spa_uberblock.ub_version = intval;
5072 				vdev_config_dirty(spa->spa_root_vdev);
5073 			}
5074 			break;
5075 
5076 		case ZPOOL_PROP_ALTROOT:
5077 			/*
5078 			 * 'altroot' is a non-persistent property. It should
5079 			 * have been set temporarily at creation or import time.
5080 			 */
5081 			ASSERT(spa->spa_root != NULL);
5082 			break;
5083 
5084 		case ZPOOL_PROP_CACHEFILE:
5085 			/*
5086 			 * 'cachefile' is also a non-persisitent property.
5087 			 */
5088 			break;
5089 		default:
5090 			/*
5091 			 * Set pool property values in the poolprops mos object.
5092 			 */
5093 			if (spa->spa_pool_props_object == 0) {
5094 				VERIFY((spa->spa_pool_props_object =
5095 				    zap_create(mos, DMU_OT_POOL_PROPS,
5096 				    DMU_OT_NONE, 0, tx)) > 0);
5097 
5098 				VERIFY(zap_update(mos,
5099 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5100 				    8, 1, &spa->spa_pool_props_object, tx)
5101 				    == 0);
5102 			}
5103 
5104 			/* normalize the property name */
5105 			propname = zpool_prop_to_name(prop);
5106 			proptype = zpool_prop_get_type(prop);
5107 
5108 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5109 				ASSERT(proptype == PROP_TYPE_STRING);
5110 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5111 				VERIFY(zap_update(mos,
5112 				    spa->spa_pool_props_object, propname,
5113 				    1, strlen(strval) + 1, strval, tx) == 0);
5114 
5115 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5116 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5117 
5118 				if (proptype == PROP_TYPE_INDEX) {
5119 					const char *unused;
5120 					VERIFY(zpool_prop_index_to_string(
5121 					    prop, intval, &unused) == 0);
5122 				}
5123 				VERIFY(zap_update(mos,
5124 				    spa->spa_pool_props_object, propname,
5125 				    8, 1, &intval, tx) == 0);
5126 			} else {
5127 				ASSERT(0); /* not allowed */
5128 			}
5129 
5130 			switch (prop) {
5131 			case ZPOOL_PROP_DELEGATION:
5132 				spa->spa_delegation = intval;
5133 				break;
5134 			case ZPOOL_PROP_BOOTFS:
5135 				spa->spa_bootfs = intval;
5136 				break;
5137 			case ZPOOL_PROP_FAILUREMODE:
5138 				spa->spa_failmode = intval;
5139 				break;
5140 			case ZPOOL_PROP_AUTOEXPAND:
5141 				spa->spa_autoexpand = intval;
5142 				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5143 				break;
5144 			case ZPOOL_PROP_DEDUPDITTO:
5145 				spa->spa_dedup_ditto = intval;
5146 				break;
5147 			default:
5148 				break;
5149 			}
5150 		}
5151 
5152 		/* log internal history if this is not a zpool create */
5153 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5154 		    tx->tx_txg != TXG_INITIAL) {
5155 			spa_history_internal_log(LOG_POOL_PROPSET,
5156 			    spa, tx, cr, "%s %lld %s",
5157 			    nvpair_name(elem), intval, spa_name(spa));
5158 		}
5159 	}
5160 
5161 	mutex_exit(&spa->spa_props_lock);
5162 }
5163 
5164 /*
5165  * Sync the specified transaction group.  New blocks may be dirtied as
5166  * part of the process, so we iterate until it converges.
5167  */
5168 void
spa_sync(spa_t * spa,uint64_t txg)5169 spa_sync(spa_t *spa, uint64_t txg)
5170 {
5171 	dsl_pool_t *dp = spa->spa_dsl_pool;
5172 	objset_t *mos = spa->spa_meta_objset;
5173 	bplist_t *defer_bpl = &spa->spa_deferred_bplist;
5174 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5175 	vdev_t *rvd = spa->spa_root_vdev;
5176 	vdev_t *vd;
5177 	dmu_tx_t *tx;
5178 	int error;
5179 
5180 	/*
5181 	 * Lock out configuration changes.
5182 	 */
5183 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5184 
5185 	spa->spa_syncing_txg = txg;
5186 	spa->spa_sync_pass = 0;
5187 
5188 	/*
5189 	 * If there are any pending vdev state changes, convert them
5190 	 * into config changes that go out with this transaction group.
5191 	 */
5192 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5193 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5194 		/*
5195 		 * We need the write lock here because, for aux vdevs,
5196 		 * calling vdev_config_dirty() modifies sav_config.
5197 		 * This is ugly and will become unnecessary when we
5198 		 * eliminate the aux vdev wart by integrating all vdevs
5199 		 * into the root vdev tree.
5200 		 */
5201 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5202 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5203 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5204 			vdev_state_clean(vd);
5205 			vdev_config_dirty(vd);
5206 		}
5207 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5208 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5209 	}
5210 	spa_config_exit(spa, SCL_STATE, FTAG);
5211 
5212 	VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj));
5213 
5214 	tx = dmu_tx_create_assigned(dp, txg);
5215 
5216 	/*
5217 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5218 	 * set spa_deflate if we have no raid-z vdevs.
5219 	 */
5220 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5221 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5222 		int i;
5223 
5224 		for (i = 0; i < rvd->vdev_children; i++) {
5225 			vd = rvd->vdev_child[i];
5226 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5227 				break;
5228 		}
5229 		if (i == rvd->vdev_children) {
5230 			spa->spa_deflate = TRUE;
5231 			VERIFY(0 == zap_add(spa->spa_meta_objset,
5232 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5233 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5234 		}
5235 	}
5236 
5237 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5238 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5239 		dsl_pool_create_origin(dp, tx);
5240 
5241 		/* Keeping the origin open increases spa_minref */
5242 		spa->spa_minref += 3;
5243 	}
5244 
5245 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5246 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5247 		dsl_pool_upgrade_clones(dp, tx);
5248 	}
5249 
5250 	/*
5251 	 * If anything has changed in this txg, push the deferred frees
5252 	 * from the previous txg.  If not, leave them alone so that we
5253 	 * don't generate work on an otherwise idle system.
5254 	 */
5255 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5256 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5257 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
5258 		spa_sync_deferred_bplist(spa, defer_bpl, tx, txg);
5259 
5260 	/*
5261 	 * Iterate to convergence.
5262 	 */
5263 	do {
5264 		int pass = ++spa->spa_sync_pass;
5265 
5266 		spa_sync_config_object(spa, tx);
5267 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5268 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5269 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5270 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5271 		spa_errlog_sync(spa, txg);
5272 		dsl_pool_sync(dp, txg);
5273 
5274 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5275 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5276 			bplist_sync(free_bpl, spa_sync_free, zio, tx);
5277 			VERIFY(zio_wait(zio) == 0);
5278 		} else {
5279 			bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx);
5280 		}
5281 
5282 		ddt_sync(spa, txg);
5283 
5284 		mutex_enter(&spa->spa_scrub_lock);
5285 		while (spa->spa_scrub_inflight > 0)
5286 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
5287 		mutex_exit(&spa->spa_scrub_lock);
5288 
5289 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5290 			vdev_sync(vd, txg);
5291 
5292 	} while (dmu_objset_is_dirty(mos, txg));
5293 
5294 	ASSERT(free_bpl->bpl_queue == NULL);
5295 
5296 	bplist_close(defer_bpl);
5297 
5298 	/*
5299 	 * Rewrite the vdev configuration (which includes the uberblock)
5300 	 * to commit the transaction group.
5301 	 *
5302 	 * If there are no dirty vdevs, we sync the uberblock to a few
5303 	 * random top-level vdevs that are known to be visible in the
5304 	 * config cache (see spa_vdev_add() for a complete description).
5305 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5306 	 */
5307 	for (;;) {
5308 		/*
5309 		 * We hold SCL_STATE to prevent vdev open/close/etc.
5310 		 * while we're attempting to write the vdev labels.
5311 		 */
5312 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5313 
5314 		if (list_is_empty(&spa->spa_config_dirty_list)) {
5315 			vdev_t *svd[SPA_DVAS_PER_BP];
5316 			int svdcount = 0;
5317 			int children = rvd->vdev_children;
5318 			int c0 = spa_get_random(children);
5319 
5320 			for (int c = 0; c < children; c++) {
5321 				vd = rvd->vdev_child[(c0 + c) % children];
5322 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5323 					continue;
5324 				svd[svdcount++] = vd;
5325 				if (svdcount == SPA_DVAS_PER_BP)
5326 					break;
5327 			}
5328 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5329 			if (error != 0)
5330 				error = vdev_config_sync(svd, svdcount, txg,
5331 				    B_TRUE);
5332 		} else {
5333 			error = vdev_config_sync(rvd->vdev_child,
5334 			    rvd->vdev_children, txg, B_FALSE);
5335 			if (error != 0)
5336 				error = vdev_config_sync(rvd->vdev_child,
5337 				    rvd->vdev_children, txg, B_TRUE);
5338 		}
5339 
5340 		spa_config_exit(spa, SCL_STATE, FTAG);
5341 
5342 		if (error == 0)
5343 			break;
5344 		zio_suspend(spa, NULL);
5345 		zio_resume_wait(spa);
5346 	}
5347 	dmu_tx_commit(tx);
5348 
5349 	/*
5350 	 * Clear the dirty config list.
5351 	 */
5352 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5353 		vdev_config_clean(vd);
5354 
5355 	/*
5356 	 * Now that the new config has synced transactionally,
5357 	 * let it become visible to the config cache.
5358 	 */
5359 	if (spa->spa_config_syncing != NULL) {
5360 		spa_config_set(spa, spa->spa_config_syncing);
5361 		spa->spa_config_txg = txg;
5362 		spa->spa_config_syncing = NULL;
5363 	}
5364 
5365 	spa->spa_ubsync = spa->spa_uberblock;
5366 
5367 	dsl_pool_sync_done(dp, txg);
5368 
5369 	/*
5370 	 * Update usable space statistics.
5371 	 */
5372 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5373 		vdev_sync_done(vd, txg);
5374 
5375 	spa_update_dspace(spa);
5376 
5377 	/*
5378 	 * It had better be the case that we didn't dirty anything
5379 	 * since vdev_config_sync().
5380 	 */
5381 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5382 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5383 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5384 	ASSERT(defer_bpl->bpl_queue == NULL);
5385 	ASSERT(free_bpl->bpl_queue == NULL);
5386 
5387 	spa->spa_sync_pass = 0;
5388 
5389 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5390 
5391 	spa_handle_ignored_writes(spa);
5392 
5393 	/*
5394 	 * If any async tasks have been requested, kick them off.
5395 	 */
5396 	spa_async_dispatch(spa);
5397 }
5398 
5399 /*
5400  * Sync all pools.  We don't want to hold the namespace lock across these
5401  * operations, so we take a reference on the spa_t and drop the lock during the
5402  * sync.
5403  */
5404 void
spa_sync_allpools(void)5405 spa_sync_allpools(void)
5406 {
5407 	spa_t *spa = NULL;
5408 	mutex_enter(&spa_namespace_lock);
5409 	while ((spa = spa_next(spa)) != NULL) {
5410 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
5411 			continue;
5412 		spa_open_ref(spa, FTAG);
5413 		mutex_exit(&spa_namespace_lock);
5414 		txg_wait_synced(spa_get_dsl(spa), 0);
5415 		mutex_enter(&spa_namespace_lock);
5416 		spa_close(spa, FTAG);
5417 	}
5418 	mutex_exit(&spa_namespace_lock);
5419 }
5420 
5421 /*
5422  * ==========================================================================
5423  * Miscellaneous routines
5424  * ==========================================================================
5425  */
5426 
5427 /*
5428  * Remove all pools in the system.
5429  */
5430 void
spa_evict_all(void)5431 spa_evict_all(void)
5432 {
5433 	spa_t *spa;
5434 
5435 	/*
5436 	 * Remove all cached state.  All pools should be closed now,
5437 	 * so every spa in the AVL tree should be unreferenced.
5438 	 */
5439 	mutex_enter(&spa_namespace_lock);
5440 	while ((spa = spa_next(NULL)) != NULL) {
5441 		/*
5442 		 * Stop async tasks.  The async thread may need to detach
5443 		 * a device that's been replaced, which requires grabbing
5444 		 * spa_namespace_lock, so we must drop it here.
5445 		 */
5446 		spa_open_ref(spa, FTAG);
5447 		mutex_exit(&spa_namespace_lock);
5448 		spa_async_suspend(spa);
5449 		mutex_enter(&spa_namespace_lock);
5450 		spa_close(spa, FTAG);
5451 
5452 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5453 			spa_unload(spa);
5454 			spa_deactivate(spa);
5455 		}
5456 		spa_remove(spa);
5457 	}
5458 	mutex_exit(&spa_namespace_lock);
5459 }
5460 
5461 vdev_t *
spa_lookup_by_guid(spa_t * spa,uint64_t guid,boolean_t aux)5462 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5463 {
5464 	vdev_t *vd;
5465 	int i;
5466 
5467 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5468 		return (vd);
5469 
5470 	if (aux) {
5471 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5472 			vd = spa->spa_l2cache.sav_vdevs[i];
5473 			if (vd->vdev_guid == guid)
5474 				return (vd);
5475 		}
5476 
5477 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5478 			vd = spa->spa_spares.sav_vdevs[i];
5479 			if (vd->vdev_guid == guid)
5480 				return (vd);
5481 		}
5482 	}
5483 
5484 	return (NULL);
5485 }
5486 
5487 void
spa_upgrade(spa_t * spa,uint64_t version)5488 spa_upgrade(spa_t *spa, uint64_t version)
5489 {
5490 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5491 
5492 	/*
5493 	 * This should only be called for a non-faulted pool, and since a
5494 	 * future version would result in an unopenable pool, this shouldn't be
5495 	 * possible.
5496 	 */
5497 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5498 	ASSERT(version >= spa->spa_uberblock.ub_version);
5499 
5500 	spa->spa_uberblock.ub_version = version;
5501 	vdev_config_dirty(spa->spa_root_vdev);
5502 
5503 	spa_config_exit(spa, SCL_ALL, FTAG);
5504 
5505 	txg_wait_synced(spa_get_dsl(spa), 0);
5506 }
5507 
5508 boolean_t
spa_has_spare(spa_t * spa,uint64_t guid)5509 spa_has_spare(spa_t *spa, uint64_t guid)
5510 {
5511 	int i;
5512 	uint64_t spareguid;
5513 	spa_aux_vdev_t *sav = &spa->spa_spares;
5514 
5515 	for (i = 0; i < sav->sav_count; i++)
5516 		if (sav->sav_vdevs[i]->vdev_guid == guid)
5517 			return (B_TRUE);
5518 
5519 	for (i = 0; i < sav->sav_npending; i++) {
5520 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5521 		    &spareguid) == 0 && spareguid == guid)
5522 			return (B_TRUE);
5523 	}
5524 
5525 	return (B_FALSE);
5526 }
5527 
5528 /*
5529  * Check if a pool has an active shared spare device.
5530  * Note: reference count of an active spare is 2, as a spare and as a replace
5531  */
5532 static boolean_t
spa_has_active_shared_spare(spa_t * spa)5533 spa_has_active_shared_spare(spa_t *spa)
5534 {
5535 	int i, refcnt;
5536 	uint64_t pool;
5537 	spa_aux_vdev_t *sav = &spa->spa_spares;
5538 
5539 	for (i = 0; i < sav->sav_count; i++) {
5540 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5541 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5542 		    refcnt > 2)
5543 			return (B_TRUE);
5544 	}
5545 
5546 	return (B_FALSE);
5547 }
5548 
5549 /*
5550  * Post a sysevent corresponding to the given event.  The 'name' must be one of
5551  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5552  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5553  * in the userland libzpool, as we don't want consumers to misinterpret ztest
5554  * or zdb as real changes.
5555  */
5556 void
spa_event_notify(spa_t * spa,vdev_t * vd,const char * name)5557 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5558 {
5559 #ifndef __NetBSD__
5560 #ifdef _KERNEL
5561 	sysevent_t		*ev;
5562 	sysevent_attr_list_t	*attr = NULL;
5563 	sysevent_value_t	value;
5564 	sysevent_id_t		eid;
5565 
5566 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5567 	    SE_SLEEP);
5568 
5569 	value.value_type = SE_DATA_TYPE_STRING;
5570 	value.value.sv_string = spa_name(spa);
5571 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5572 		goto done;
5573 
5574 	value.value_type = SE_DATA_TYPE_UINT64;
5575 	value.value.sv_uint64 = spa_guid(spa);
5576 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5577 		goto done;
5578 
5579 	if (vd) {
5580 		value.value_type = SE_DATA_TYPE_UINT64;
5581 		value.value.sv_uint64 = vd->vdev_guid;
5582 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5583 		    SE_SLEEP) != 0)
5584 			goto done;
5585 
5586 		if (vd->vdev_path) {
5587 			value.value_type = SE_DATA_TYPE_STRING;
5588 			value.value.sv_string = vd->vdev_path;
5589 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5590 			    &value, SE_SLEEP) != 0)
5591 				goto done;
5592 		}
5593 	}
5594 
5595 	if (sysevent_attach_attributes(ev, attr) != 0)
5596 		goto done;
5597 	attr = NULL;
5598 
5599 	(void) log_sysevent(ev, SE_SLEEP, &eid);
5600 
5601 done:
5602 	if (attr)
5603 		sysevent_free_attr(attr);
5604 	sysevent_free(ev);
5605 #endif
5606 #endif /* __NetBSD__ */
5607 }
5608