1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced.  The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 **     CREATE TABLE
17 **     DROP TABLE
18 **     CREATE INDEX
19 **     DROP INDEX
20 **     creating ID lists
21 **     BEGIN TRANSACTION
22 **     COMMIT
23 **     ROLLBACK
24 */
25 #include "sqliteInt.h"
26 
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33   int iDb;               /* The database containing the table to be locked */
34   int iTab;              /* The root page of the table to be locked */
35   u8 isWriteLock;        /* True for write lock.  False for a read lock */
36   const char *zLockName; /* Name of the table */
37 };
38 
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired.  The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
sqlite3TableLock(Parse * pParse,int iDb,int iTab,u8 isWriteLock,const char * zName)49 void sqlite3TableLock(
50   Parse *pParse,     /* Parsing context */
51   int iDb,           /* Index of the database containing the table to lock */
52   int iTab,          /* Root page number of the table to be locked */
53   u8 isWriteLock,    /* True for a write lock */
54   const char *zName  /* Name of the table to be locked */
55 ){
56   Parse *pToplevel = sqlite3ParseToplevel(pParse);
57   int i;
58   int nBytes;
59   TableLock *p;
60   assert( iDb>=0 );
61 
62   if( iDb==1 ) return;
63   if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64   for(i=0; i<pToplevel->nTableLock; i++){
65     p = &pToplevel->aTableLock[i];
66     if( p->iDb==iDb && p->iTab==iTab ){
67       p->isWriteLock = (p->isWriteLock || isWriteLock);
68       return;
69     }
70   }
71 
72   nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73   pToplevel->aTableLock =
74       sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75   if( pToplevel->aTableLock ){
76     p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77     p->iDb = iDb;
78     p->iTab = iTab;
79     p->isWriteLock = isWriteLock;
80     p->zLockName = zName;
81   }else{
82     pToplevel->nTableLock = 0;
83     sqlite3OomFault(pToplevel->db);
84   }
85 }
86 
87 /*
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
90 */
codeTableLocks(Parse * pParse)91 static void codeTableLocks(Parse *pParse){
92   int i;
93   Vdbe *pVdbe;
94 
95   pVdbe = sqlite3GetVdbe(pParse);
96   assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
97 
98   for(i=0; i<pParse->nTableLock; i++){
99     TableLock *p = &pParse->aTableLock[i];
100     int p1 = p->iDb;
101     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102                       p->zLockName, P4_STATIC);
103   }
104 }
105 #else
106   #define codeTableLocks(x)
107 #endif
108 
109 /*
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
113 */
114 #if SQLITE_MAX_ATTACHED>30
sqlite3DbMaskAllZero(yDbMask m)115 int sqlite3DbMaskAllZero(yDbMask m){
116   int i;
117   for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118   return 1;
119 }
120 #endif
121 
122 /*
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared.  This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
128 **
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
131 */
sqlite3FinishCoding(Parse * pParse)132 void sqlite3FinishCoding(Parse *pParse){
133   sqlite3 *db;
134   Vdbe *v;
135 
136   assert( pParse->pToplevel==0 );
137   db = pParse->db;
138   if( pParse->nested ) return;
139   if( db->mallocFailed || pParse->nErr ){
140     if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141     return;
142   }
143 
144   /* Begin by generating some termination code at the end of the
145   ** vdbe program
146   */
147   v = sqlite3GetVdbe(pParse);
148   assert( !pParse->isMultiWrite
149        || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150   if( v ){
151     sqlite3VdbeAddOp0(v, OP_Halt);
152 
153 #if SQLITE_USER_AUTHENTICATION
154     if( pParse->nTableLock>0 && db->init.busy==0 ){
155       sqlite3UserAuthInit(db);
156       if( db->auth.authLevel<UAUTH_User ){
157         sqlite3ErrorMsg(pParse, "user not authenticated");
158         pParse->rc = SQLITE_AUTH_USER;
159         return;
160       }
161     }
162 #endif
163 
164     /* The cookie mask contains one bit for each database file open.
165     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
166     ** set for each database that is used.  Generate code to start a
167     ** transaction on each used database and to verify the schema cookie
168     ** on each used database.
169     */
170     if( db->mallocFailed==0
171      && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
172     ){
173       int iDb, i;
174       assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175       sqlite3VdbeJumpHere(v, 0);
176       for(iDb=0; iDb<db->nDb; iDb++){
177         Schema *pSchema;
178         if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179         sqlite3VdbeUsesBtree(v, iDb);
180         pSchema = db->aDb[iDb].pSchema;
181         sqlite3VdbeAddOp4Int(v,
182           OP_Transaction,                    /* Opcode */
183           iDb,                               /* P1 */
184           DbMaskTest(pParse->writeMask,iDb), /* P2 */
185           pSchema->schema_cookie,            /* P3 */
186           pSchema->iGeneration               /* P4 */
187         );
188         if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189         VdbeComment((v,
190               "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
191       }
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193       for(i=0; i<pParse->nVtabLock; i++){
194         char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195         sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
196       }
197       pParse->nVtabLock = 0;
198 #endif
199 
200       /* Once all the cookies have been verified and transactions opened,
201       ** obtain the required table-locks. This is a no-op unless the
202       ** shared-cache feature is enabled.
203       */
204       codeTableLocks(pParse);
205 
206       /* Initialize any AUTOINCREMENT data structures required.
207       */
208       sqlite3AutoincrementBegin(pParse);
209 
210       /* Code constant expressions that where factored out of inner loops */
211       if( pParse->pConstExpr ){
212         ExprList *pEL = pParse->pConstExpr;
213         pParse->okConstFactor = 0;
214         for(i=0; i<pEL->nExpr; i++){
215           sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
216         }
217       }
218 
219       /* Finally, jump back to the beginning of the executable code. */
220       sqlite3VdbeGoto(v, 1);
221     }
222   }
223 
224 
225   /* Get the VDBE program ready for execution
226   */
227   if( v && pParse->nErr==0 && !db->mallocFailed ){
228     assert( pParse->iCacheLevel==0 );  /* Disables and re-enables match */
229     /* A minimum of one cursor is required if autoincrement is used
230     *  See ticket [a696379c1f08866] */
231     if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232     sqlite3VdbeMakeReady(v, pParse);
233     pParse->rc = SQLITE_DONE;
234   }else{
235     pParse->rc = SQLITE_ERROR;
236   }
237 }
238 
239 /*
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction.  When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
246 **
247 ** Not everything is nestable.  This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
249 ** care if you decide to try to use this routine for some other purposes.
250 */
sqlite3NestedParse(Parse * pParse,const char * zFormat,...)251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252   va_list ap;
253   char *zSql;
254   char *zErrMsg = 0;
255   sqlite3 *db = pParse->db;
256   char saveBuf[PARSE_TAIL_SZ];
257 
258   if( pParse->nErr ) return;
259   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
260   va_start(ap, zFormat);
261   zSql = sqlite3VMPrintf(db, zFormat, ap);
262   va_end(ap);
263   if( zSql==0 ){
264     return;   /* A malloc must have failed */
265   }
266   pParse->nested++;
267   memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268   memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269   sqlite3RunParser(pParse, zSql, &zErrMsg);
270   sqlite3DbFree(db, zErrMsg);
271   sqlite3DbFree(db, zSql);
272   memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273   pParse->nested--;
274 }
275 
276 #if SQLITE_USER_AUTHENTICATION
277 /*
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
280 */
sqlite3UserAuthTable(const char * zTable)281 int sqlite3UserAuthTable(const char *zTable){
282   return sqlite3_stricmp(zTable, "sqlite_user")==0;
283 }
284 #endif
285 
286 /*
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table.  Return NULL if not found.
290 **
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned.  (No checking for duplicate table
293 ** names is done.)  The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
295 **
296 ** See also sqlite3LocateTable().
297 */
sqlite3FindTable(sqlite3 * db,const char * zName,const char * zDatabase)298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299   Table *p = 0;
300   int i;
301 
302   /* All mutexes are required for schema access.  Make sure we hold them. */
303   assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305   /* Only the admin user is allowed to know that the sqlite_user table
306   ** exists */
307   if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308     return 0;
309   }
310 #endif
311   while(1){
312     for(i=OMIT_TEMPDB; i<db->nDb; i++){
313       int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
314       if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315         assert( sqlite3SchemaMutexHeld(db, j, 0) );
316         p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317         if( p ) return p;
318       }
319     }
320     /* Not found.  If the name we were looking for was temp.sqlite_master
321     ** then change the name to sqlite_temp_master and try again. */
322     if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323     if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324     zName = TEMP_MASTER_NAME;
325   }
326   return 0;
327 }
328 
329 /*
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table.  Return NULL if not found.  Also leave an
333 ** error message in pParse->zErrMsg.
334 **
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
338 */
sqlite3LocateTable(Parse * pParse,u32 flags,const char * zName,const char * zDbase)339 Table *sqlite3LocateTable(
340   Parse *pParse,         /* context in which to report errors */
341   u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
342   const char *zName,     /* Name of the table we are looking for */
343   const char *zDbase     /* Name of the database.  Might be NULL */
344 ){
345   Table *p;
346 
347   /* Read the database schema. If an error occurs, leave an error message
348   ** and code in pParse and return NULL. */
349   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350     return 0;
351   }
352 
353   p = sqlite3FindTable(pParse->db, zName, zDbase);
354   if( p==0 ){
355     const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357     if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358       /* If zName is the not the name of a table in the schema created using
359       ** CREATE, then check to see if it is the name of an virtual table that
360       ** can be an eponymous virtual table. */
361       Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362       if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
363         pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
364       }
365       if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
366         return pMod->pEpoTab;
367       }
368     }
369 #endif
370     if( (flags & LOCATE_NOERR)==0 ){
371       if( zDbase ){
372         sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
373       }else{
374         sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
375       }
376       pParse->checkSchema = 1;
377     }
378   }
379 
380   return p;
381 }
382 
383 /*
384 ** Locate the table identified by *p.
385 **
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
391 */
sqlite3LocateTableItem(Parse * pParse,u32 flags,struct SrcList_item * p)392 Table *sqlite3LocateTableItem(
393   Parse *pParse,
394   u32 flags,
395   struct SrcList_item *p
396 ){
397   const char *zDb;
398   assert( p->pSchema==0 || p->zDatabase==0 );
399   if( p->pSchema ){
400     int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401     zDb = pParse->db->aDb[iDb].zDbSName;
402   }else{
403     zDb = p->zDatabase;
404   }
405   return sqlite3LocateTable(pParse, flags, p->zName, zDb);
406 }
407 
408 /*
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
413 **
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned.  (No checking
416 ** for duplicate index names is done.)  The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
419 */
sqlite3FindIndex(sqlite3 * db,const char * zName,const char * zDb)420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421   Index *p = 0;
422   int i;
423   /* All mutexes are required for schema access.  Make sure we hold them. */
424   assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425   for(i=OMIT_TEMPDB; i<db->nDb; i++){
426     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
427     Schema *pSchema = db->aDb[j].pSchema;
428     assert( pSchema );
429     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430     assert( sqlite3SchemaMutexHeld(db, j, 0) );
431     p = sqlite3HashFind(&pSchema->idxHash, zName);
432     if( p ) break;
433   }
434   return p;
435 }
436 
437 /*
438 ** Reclaim the memory used by an index
439 */
freeIndex(sqlite3 * db,Index * p)440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442   sqlite3DeleteIndexSamples(db, p);
443 #endif
444   sqlite3ExprDelete(db, p->pPartIdxWhere);
445   sqlite3ExprListDelete(db, p->aColExpr);
446   sqlite3DbFree(db, p->zColAff);
447   if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449   sqlite3_free(p->aiRowEst);
450 #endif
451   sqlite3DbFree(db, p);
452 }
453 
454 /*
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
459 */
sqlite3UnlinkAndDeleteIndex(sqlite3 * db,int iDb,const char * zIdxName)460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461   Index *pIndex;
462   Hash *pHash;
463 
464   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465   pHash = &db->aDb[iDb].pSchema->idxHash;
466   pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467   if( ALWAYS(pIndex) ){
468     if( pIndex->pTable->pIndex==pIndex ){
469       pIndex->pTable->pIndex = pIndex->pNext;
470     }else{
471       Index *p;
472       /* Justification of ALWAYS();  The index must be on the list of
473       ** indices. */
474       p = pIndex->pTable->pIndex;
475       while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476       if( ALWAYS(p && p->pNext==pIndex) ){
477         p->pNext = pIndex->pNext;
478       }
479     }
480     freeIndex(db, pIndex);
481   }
482   db->flags |= SQLITE_InternChanges;
483 }
484 
485 /*
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list.  Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
489 **
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
492 */
sqlite3CollapseDatabaseArray(sqlite3 * db)493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494   int i, j;
495   for(i=j=2; i<db->nDb; i++){
496     struct Db *pDb = &db->aDb[i];
497     if( pDb->pBt==0 ){
498       sqlite3DbFree(db, pDb->zDbSName);
499       pDb->zDbSName = 0;
500       continue;
501     }
502     if( j<i ){
503       db->aDb[j] = db->aDb[i];
504     }
505     j++;
506   }
507   db->nDb = j;
508   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
509     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
510     sqlite3DbFree(db, db->aDb);
511     db->aDb = db->aDbStatic;
512   }
513 }
514 
515 /*
516 ** Reset the schema for the database at index iDb.  Also reset the
517 ** TEMP schema.
518 */
sqlite3ResetOneSchema(sqlite3 * db,int iDb)519 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
520   Db *pDb;
521   assert( iDb<db->nDb );
522 
523   /* Case 1:  Reset the single schema identified by iDb */
524   pDb = &db->aDb[iDb];
525   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
526   assert( pDb->pSchema!=0 );
527   sqlite3SchemaClear(pDb->pSchema);
528 
529   /* If any database other than TEMP is reset, then also reset TEMP
530   ** since TEMP might be holding triggers that reference tables in the
531   ** other database.
532   */
533   if( iDb!=1 ){
534     pDb = &db->aDb[1];
535     assert( pDb->pSchema!=0 );
536     sqlite3SchemaClear(pDb->pSchema);
537   }
538   return;
539 }
540 
541 /*
542 ** Erase all schema information from all attached databases (including
543 ** "main" and "temp") for a single database connection.
544 */
sqlite3ResetAllSchemasOfConnection(sqlite3 * db)545 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
546   int i;
547   sqlite3BtreeEnterAll(db);
548   for(i=0; i<db->nDb; i++){
549     Db *pDb = &db->aDb[i];
550     if( pDb->pSchema ){
551       sqlite3SchemaClear(pDb->pSchema);
552     }
553   }
554   db->flags &= ~SQLITE_InternChanges;
555   sqlite3VtabUnlockList(db);
556   sqlite3BtreeLeaveAll(db);
557   sqlite3CollapseDatabaseArray(db);
558 }
559 
560 /*
561 ** This routine is called when a commit occurs.
562 */
sqlite3CommitInternalChanges(sqlite3 * db)563 void sqlite3CommitInternalChanges(sqlite3 *db){
564   db->flags &= ~SQLITE_InternChanges;
565 }
566 
567 /*
568 ** Delete memory allocated for the column names of a table or view (the
569 ** Table.aCol[] array).
570 */
sqlite3DeleteColumnNames(sqlite3 * db,Table * pTable)571 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
572   int i;
573   Column *pCol;
574   assert( pTable!=0 );
575   if( (pCol = pTable->aCol)!=0 ){
576     for(i=0; i<pTable->nCol; i++, pCol++){
577       sqlite3DbFree(db, pCol->zName);
578       sqlite3ExprDelete(db, pCol->pDflt);
579       sqlite3DbFree(db, pCol->zColl);
580     }
581     sqlite3DbFree(db, pTable->aCol);
582   }
583 }
584 
585 /*
586 ** Remove the memory data structures associated with the given
587 ** Table.  No changes are made to disk by this routine.
588 **
589 ** This routine just deletes the data structure.  It does not unlink
590 ** the table data structure from the hash table.  But it does destroy
591 ** memory structures of the indices and foreign keys associated with
592 ** the table.
593 **
594 ** The db parameter is optional.  It is needed if the Table object
595 ** contains lookaside memory.  (Table objects in the schema do not use
596 ** lookaside memory, but some ephemeral Table objects do.)  Or the
597 ** db parameter can be used with db->pnBytesFreed to measure the memory
598 ** used by the Table object.
599 */
deleteTable(sqlite3 * db,Table * pTable)600 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
601   Index *pIndex, *pNext;
602   TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
603 
604   /* Record the number of outstanding lookaside allocations in schema Tables
605   ** prior to doing any free() operations.  Since schema Tables do not use
606   ** lookaside, this number should not change. */
607   TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
608                          db->lookaside.nOut : 0 );
609 
610   /* Delete all indices associated with this table. */
611   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
612     pNext = pIndex->pNext;
613     assert( pIndex->pSchema==pTable->pSchema
614          || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
615     if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
616       char *zName = pIndex->zName;
617       TESTONLY ( Index *pOld = ) sqlite3HashInsert(
618          &pIndex->pSchema->idxHash, zName, 0
619       );
620       assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
621       assert( pOld==pIndex || pOld==0 );
622     }
623     freeIndex(db, pIndex);
624   }
625 
626   /* Delete any foreign keys attached to this table. */
627   sqlite3FkDelete(db, pTable);
628 
629   /* Delete the Table structure itself.
630   */
631   sqlite3DeleteColumnNames(db, pTable);
632   sqlite3DbFree(db, pTable->zName);
633   sqlite3DbFree(db, pTable->zColAff);
634   sqlite3SelectDelete(db, pTable->pSelect);
635   sqlite3ExprListDelete(db, pTable->pCheck);
636 #ifndef SQLITE_OMIT_VIRTUALTABLE
637   sqlite3VtabClear(db, pTable);
638 #endif
639   sqlite3DbFree(db, pTable);
640 
641   /* Verify that no lookaside memory was used by schema tables */
642   assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
643 }
sqlite3DeleteTable(sqlite3 * db,Table * pTable)644 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
645   /* Do not delete the table until the reference count reaches zero. */
646   if( !pTable ) return;
647   if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
648   deleteTable(db, pTable);
649 }
650 
651 
652 /*
653 ** Unlink the given table from the hash tables and the delete the
654 ** table structure with all its indices and foreign keys.
655 */
sqlite3UnlinkAndDeleteTable(sqlite3 * db,int iDb,const char * zTabName)656 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
657   Table *p;
658   Db *pDb;
659 
660   assert( db!=0 );
661   assert( iDb>=0 && iDb<db->nDb );
662   assert( zTabName );
663   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
664   testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
665   pDb = &db->aDb[iDb];
666   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
667   sqlite3DeleteTable(db, p);
668   db->flags |= SQLITE_InternChanges;
669 }
670 
671 /*
672 ** Given a token, return a string that consists of the text of that
673 ** token.  Space to hold the returned string
674 ** is obtained from sqliteMalloc() and must be freed by the calling
675 ** function.
676 **
677 ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
678 ** surround the body of the token are removed.
679 **
680 ** Tokens are often just pointers into the original SQL text and so
681 ** are not \000 terminated and are not persistent.  The returned string
682 ** is \000 terminated and is persistent.
683 */
sqlite3NameFromToken(sqlite3 * db,Token * pName)684 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
685   char *zName;
686   if( pName ){
687     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
688     sqlite3Dequote(zName);
689   }else{
690     zName = 0;
691   }
692   return zName;
693 }
694 
695 /*
696 ** Open the sqlite_master table stored in database number iDb for
697 ** writing. The table is opened using cursor 0.
698 */
sqlite3OpenMasterTable(Parse * p,int iDb)699 void sqlite3OpenMasterTable(Parse *p, int iDb){
700   Vdbe *v = sqlite3GetVdbe(p);
701   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
702   sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
703   if( p->nTab==0 ){
704     p->nTab = 1;
705   }
706 }
707 
708 /*
709 ** Parameter zName points to a nul-terminated buffer containing the name
710 ** of a database ("main", "temp" or the name of an attached db). This
711 ** function returns the index of the named database in db->aDb[], or
712 ** -1 if the named db cannot be found.
713 */
sqlite3FindDbName(sqlite3 * db,const char * zName)714 int sqlite3FindDbName(sqlite3 *db, const char *zName){
715   int i = -1;         /* Database number */
716   if( zName ){
717     Db *pDb;
718     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
719       if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
720       /* "main" is always an acceptable alias for the primary database
721       ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
722       if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
723     }
724   }
725   return i;
726 }
727 
728 /*
729 ** The token *pName contains the name of a database (either "main" or
730 ** "temp" or the name of an attached db). This routine returns the
731 ** index of the named database in db->aDb[], or -1 if the named db
732 ** does not exist.
733 */
sqlite3FindDb(sqlite3 * db,Token * pName)734 int sqlite3FindDb(sqlite3 *db, Token *pName){
735   int i;                               /* Database number */
736   char *zName;                         /* Name we are searching for */
737   zName = sqlite3NameFromToken(db, pName);
738   i = sqlite3FindDbName(db, zName);
739   sqlite3DbFree(db, zName);
740   return i;
741 }
742 
743 /* The table or view or trigger name is passed to this routine via tokens
744 ** pName1 and pName2. If the table name was fully qualified, for example:
745 **
746 ** CREATE TABLE xxx.yyy (...);
747 **
748 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
749 ** the table name is not fully qualified, i.e.:
750 **
751 ** CREATE TABLE yyy(...);
752 **
753 ** Then pName1 is set to "yyy" and pName2 is "".
754 **
755 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
756 ** pName2) that stores the unqualified table name.  The index of the
757 ** database "xxx" is returned.
758 */
sqlite3TwoPartName(Parse * pParse,Token * pName1,Token * pName2,Token ** pUnqual)759 int sqlite3TwoPartName(
760   Parse *pParse,      /* Parsing and code generating context */
761   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
762   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
763   Token **pUnqual     /* Write the unqualified object name here */
764 ){
765   int iDb;                    /* Database holding the object */
766   sqlite3 *db = pParse->db;
767 
768   assert( pName2!=0 );
769   if( pName2->n>0 ){
770     if( db->init.busy ) {
771       sqlite3ErrorMsg(pParse, "corrupt database");
772       return -1;
773     }
774     *pUnqual = pName2;
775     iDb = sqlite3FindDb(db, pName1);
776     if( iDb<0 ){
777       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
778       return -1;
779     }
780   }else{
781     assert( db->init.iDb==0 || db->init.busy || (db->flags & SQLITE_Vacuum)!=0);
782     iDb = db->init.iDb;
783     *pUnqual = pName1;
784   }
785   return iDb;
786 }
787 
788 /*
789 ** This routine is used to check if the UTF-8 string zName is a legal
790 ** unqualified name for a new schema object (table, index, view or
791 ** trigger). All names are legal except those that begin with the string
792 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
793 ** is reserved for internal use.
794 */
sqlite3CheckObjectName(Parse * pParse,const char * zName)795 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
796   if( !pParse->db->init.busy && pParse->nested==0
797           && (pParse->db->flags & SQLITE_WriteSchema)==0
798           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
799     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
800     return SQLITE_ERROR;
801   }
802   return SQLITE_OK;
803 }
804 
805 /*
806 ** Return the PRIMARY KEY index of a table
807 */
sqlite3PrimaryKeyIndex(Table * pTab)808 Index *sqlite3PrimaryKeyIndex(Table *pTab){
809   Index *p;
810   for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
811   return p;
812 }
813 
814 /*
815 ** Return the column of index pIdx that corresponds to table
816 ** column iCol.  Return -1 if not found.
817 */
sqlite3ColumnOfIndex(Index * pIdx,i16 iCol)818 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
819   int i;
820   for(i=0; i<pIdx->nColumn; i++){
821     if( iCol==pIdx->aiColumn[i] ) return i;
822   }
823   return -1;
824 }
825 
826 /*
827 ** Begin constructing a new table representation in memory.  This is
828 ** the first of several action routines that get called in response
829 ** to a CREATE TABLE statement.  In particular, this routine is called
830 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
831 ** flag is true if the table should be stored in the auxiliary database
832 ** file instead of in the main database file.  This is normally the case
833 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
834 ** CREATE and TABLE.
835 **
836 ** The new table record is initialized and put in pParse->pNewTable.
837 ** As more of the CREATE TABLE statement is parsed, additional action
838 ** routines will be called to add more information to this record.
839 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
840 ** is called to complete the construction of the new table record.
841 */
sqlite3StartTable(Parse * pParse,Token * pName1,Token * pName2,int isTemp,int isView,int isVirtual,int noErr)842 void sqlite3StartTable(
843   Parse *pParse,   /* Parser context */
844   Token *pName1,   /* First part of the name of the table or view */
845   Token *pName2,   /* Second part of the name of the table or view */
846   int isTemp,      /* True if this is a TEMP table */
847   int isView,      /* True if this is a VIEW */
848   int isVirtual,   /* True if this is a VIRTUAL table */
849   int noErr        /* Do nothing if table already exists */
850 ){
851   Table *pTable;
852   char *zName = 0; /* The name of the new table */
853   sqlite3 *db = pParse->db;
854   Vdbe *v;
855   int iDb;         /* Database number to create the table in */
856   Token *pName;    /* Unqualified name of the table to create */
857 
858   if( db->init.busy && db->init.newTnum==1 ){
859     /* Special case:  Parsing the sqlite_master or sqlite_temp_master schema */
860     iDb = db->init.iDb;
861     zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
862     pName = pName1;
863   }else{
864     /* The common case */
865     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
866     if( iDb<0 ) return;
867     if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
868       /* If creating a temp table, the name may not be qualified. Unless
869       ** the database name is "temp" anyway.  */
870       sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
871       return;
872     }
873     if( !OMIT_TEMPDB && isTemp ) iDb = 1;
874     zName = sqlite3NameFromToken(db, pName);
875   }
876   pParse->sNameToken = *pName;
877   if( zName==0 ) return;
878   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
879     goto begin_table_error;
880   }
881   if( db->init.iDb==1 ) isTemp = 1;
882 #ifndef SQLITE_OMIT_AUTHORIZATION
883   assert( isTemp==0 || isTemp==1 );
884   assert( isView==0 || isView==1 );
885   {
886     static const u8 aCode[] = {
887        SQLITE_CREATE_TABLE,
888        SQLITE_CREATE_TEMP_TABLE,
889        SQLITE_CREATE_VIEW,
890        SQLITE_CREATE_TEMP_VIEW
891     };
892     char *zDb = db->aDb[iDb].zDbSName;
893     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
894       goto begin_table_error;
895     }
896     if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
897                                        zName, 0, zDb) ){
898       goto begin_table_error;
899     }
900   }
901 #endif
902 
903   /* Make sure the new table name does not collide with an existing
904   ** index or table name in the same database.  Issue an error message if
905   ** it does. The exception is if the statement being parsed was passed
906   ** to an sqlite3_declare_vtab() call. In that case only the column names
907   ** and types will be used, so there is no need to test for namespace
908   ** collisions.
909   */
910   if( !IN_DECLARE_VTAB ){
911     char *zDb = db->aDb[iDb].zDbSName;
912     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
913       goto begin_table_error;
914     }
915     pTable = sqlite3FindTable(db, zName, zDb);
916     if( pTable ){
917       if( !noErr ){
918         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
919       }else{
920         assert( !db->init.busy || CORRUPT_DB );
921         sqlite3CodeVerifySchema(pParse, iDb);
922       }
923       goto begin_table_error;
924     }
925     if( sqlite3FindIndex(db, zName, zDb)!=0 ){
926       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
927       goto begin_table_error;
928     }
929   }
930 
931   pTable = sqlite3DbMallocZero(db, sizeof(Table));
932   if( pTable==0 ){
933     assert( db->mallocFailed );
934     pParse->rc = SQLITE_NOMEM_BKPT;
935     pParse->nErr++;
936     goto begin_table_error;
937   }
938   pTable->zName = zName;
939   pTable->iPKey = -1;
940   pTable->pSchema = db->aDb[iDb].pSchema;
941   pTable->nTabRef = 1;
942 #ifdef SQLITE_DEFAULT_ROWEST
943   pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
944 #else
945   pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
946 #endif
947   assert( pParse->pNewTable==0 );
948   pParse->pNewTable = pTable;
949 
950   /* If this is the magic sqlite_sequence table used by autoincrement,
951   ** then record a pointer to this table in the main database structure
952   ** so that INSERT can find the table easily.
953   */
954 #ifndef SQLITE_OMIT_AUTOINCREMENT
955   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
956     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
957     pTable->pSchema->pSeqTab = pTable;
958   }
959 #endif
960 
961   /* Begin generating the code that will insert the table record into
962   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
963   ** and allocate the record number for the table entry now.  Before any
964   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
965   ** indices to be created and the table record must come before the
966   ** indices.  Hence, the record number for the table must be allocated
967   ** now.
968   */
969   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
970     int addr1;
971     int fileFormat;
972     int reg1, reg2, reg3;
973     /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
974     static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
975     sqlite3BeginWriteOperation(pParse, 1, iDb);
976 
977 #ifndef SQLITE_OMIT_VIRTUALTABLE
978     if( isVirtual ){
979       sqlite3VdbeAddOp0(v, OP_VBegin);
980     }
981 #endif
982 
983     /* If the file format and encoding in the database have not been set,
984     ** set them now.
985     */
986     reg1 = pParse->regRowid = ++pParse->nMem;
987     reg2 = pParse->regRoot = ++pParse->nMem;
988     reg3 = ++pParse->nMem;
989     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
990     sqlite3VdbeUsesBtree(v, iDb);
991     addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
992     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
993                   1 : SQLITE_MAX_FILE_FORMAT;
994     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
995     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
996     sqlite3VdbeJumpHere(v, addr1);
997 
998     /* This just creates a place-holder record in the sqlite_master table.
999     ** The record created does not contain anything yet.  It will be replaced
1000     ** by the real entry in code generated at sqlite3EndTable().
1001     **
1002     ** The rowid for the new entry is left in register pParse->regRowid.
1003     ** The root page number of the new table is left in reg pParse->regRoot.
1004     ** The rowid and root page number values are needed by the code that
1005     ** sqlite3EndTable will generate.
1006     */
1007 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1008     if( isView || isVirtual ){
1009       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1010     }else
1011 #endif
1012     {
1013       pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1014     }
1015     sqlite3OpenMasterTable(pParse, iDb);
1016     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1017     sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1018     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1019     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1020     sqlite3VdbeAddOp0(v, OP_Close);
1021   }
1022 
1023   /* Normal (non-error) return. */
1024   return;
1025 
1026   /* If an error occurs, we jump here */
1027 begin_table_error:
1028   sqlite3DbFree(db, zName);
1029   return;
1030 }
1031 
1032 /* Set properties of a table column based on the (magical)
1033 ** name of the column.
1034 */
1035 #if SQLITE_ENABLE_HIDDEN_COLUMNS
sqlite3ColumnPropertiesFromName(Table * pTab,Column * pCol)1036 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1037   if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1038     pCol->colFlags |= COLFLAG_HIDDEN;
1039   }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1040     pTab->tabFlags |= TF_OOOHidden;
1041   }
1042 }
1043 #endif
1044 
1045 
1046 /*
1047 ** Add a new column to the table currently being constructed.
1048 **
1049 ** The parser calls this routine once for each column declaration
1050 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
1051 ** first to get things going.  Then this routine is called for each
1052 ** column.
1053 */
sqlite3AddColumn(Parse * pParse,Token * pName,Token * pType)1054 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1055   Table *p;
1056   int i;
1057   char *z;
1058   char *zType;
1059   Column *pCol;
1060   sqlite3 *db = pParse->db;
1061   if( (p = pParse->pNewTable)==0 ) return;
1062 #if SQLITE_MAX_COLUMN
1063   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1064     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1065     return;
1066   }
1067 #endif
1068   z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1069   if( z==0 ) return;
1070   memcpy(z, pName->z, pName->n);
1071   z[pName->n] = 0;
1072   sqlite3Dequote(z);
1073   for(i=0; i<p->nCol; i++){
1074     if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1075       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1076       sqlite3DbFree(db, z);
1077       return;
1078     }
1079   }
1080   if( (p->nCol & 0x7)==0 ){
1081     Column *aNew;
1082     aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1083     if( aNew==0 ){
1084       sqlite3DbFree(db, z);
1085       return;
1086     }
1087     p->aCol = aNew;
1088   }
1089   pCol = &p->aCol[p->nCol];
1090   memset(pCol, 0, sizeof(p->aCol[0]));
1091   pCol->zName = z;
1092   sqlite3ColumnPropertiesFromName(p, pCol);
1093 
1094   if( pType->n==0 ){
1095     /* If there is no type specified, columns have the default affinity
1096     ** 'BLOB'. */
1097     pCol->affinity = SQLITE_AFF_BLOB;
1098     pCol->szEst = 1;
1099   }else{
1100     zType = z + sqlite3Strlen30(z) + 1;
1101     memcpy(zType, pType->z, pType->n);
1102     zType[pType->n] = 0;
1103     sqlite3Dequote(zType);
1104     pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1105     pCol->colFlags |= COLFLAG_HASTYPE;
1106   }
1107   p->nCol++;
1108   pParse->constraintName.n = 0;
1109 }
1110 
1111 /*
1112 ** This routine is called by the parser while in the middle of
1113 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
1114 ** been seen on a column.  This routine sets the notNull flag on
1115 ** the column currently under construction.
1116 */
sqlite3AddNotNull(Parse * pParse,int onError)1117 void sqlite3AddNotNull(Parse *pParse, int onError){
1118   Table *p;
1119   p = pParse->pNewTable;
1120   if( p==0 || NEVER(p->nCol<1) ) return;
1121   p->aCol[p->nCol-1].notNull = (u8)onError;
1122   p->tabFlags |= TF_HasNotNull;
1123 }
1124 
1125 /*
1126 ** Scan the column type name zType (length nType) and return the
1127 ** associated affinity type.
1128 **
1129 ** This routine does a case-independent search of zType for the
1130 ** substrings in the following table. If one of the substrings is
1131 ** found, the corresponding affinity is returned. If zType contains
1132 ** more than one of the substrings, entries toward the top of
1133 ** the table take priority. For example, if zType is 'BLOBINT',
1134 ** SQLITE_AFF_INTEGER is returned.
1135 **
1136 ** Substring     | Affinity
1137 ** --------------------------------
1138 ** 'INT'         | SQLITE_AFF_INTEGER
1139 ** 'CHAR'        | SQLITE_AFF_TEXT
1140 ** 'CLOB'        | SQLITE_AFF_TEXT
1141 ** 'TEXT'        | SQLITE_AFF_TEXT
1142 ** 'BLOB'        | SQLITE_AFF_BLOB
1143 ** 'REAL'        | SQLITE_AFF_REAL
1144 ** 'FLOA'        | SQLITE_AFF_REAL
1145 ** 'DOUB'        | SQLITE_AFF_REAL
1146 **
1147 ** If none of the substrings in the above table are found,
1148 ** SQLITE_AFF_NUMERIC is returned.
1149 */
sqlite3AffinityType(const char * zIn,u8 * pszEst)1150 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1151   u32 h = 0;
1152   char aff = SQLITE_AFF_NUMERIC;
1153   const char *zChar = 0;
1154 
1155   assert( zIn!=0 );
1156   while( zIn[0] ){
1157     h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1158     zIn++;
1159     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
1160       aff = SQLITE_AFF_TEXT;
1161       zChar = zIn;
1162     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
1163       aff = SQLITE_AFF_TEXT;
1164     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
1165       aff = SQLITE_AFF_TEXT;
1166     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
1167         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1168       aff = SQLITE_AFF_BLOB;
1169       if( zIn[0]=='(' ) zChar = zIn;
1170 #ifndef SQLITE_OMIT_FLOATING_POINT
1171     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
1172         && aff==SQLITE_AFF_NUMERIC ){
1173       aff = SQLITE_AFF_REAL;
1174     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
1175         && aff==SQLITE_AFF_NUMERIC ){
1176       aff = SQLITE_AFF_REAL;
1177     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
1178         && aff==SQLITE_AFF_NUMERIC ){
1179       aff = SQLITE_AFF_REAL;
1180 #endif
1181     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
1182       aff = SQLITE_AFF_INTEGER;
1183       break;
1184     }
1185   }
1186 
1187   /* If pszEst is not NULL, store an estimate of the field size.  The
1188   ** estimate is scaled so that the size of an integer is 1.  */
1189   if( pszEst ){
1190     *pszEst = 1;   /* default size is approx 4 bytes */
1191     if( aff<SQLITE_AFF_NUMERIC ){
1192       if( zChar ){
1193         while( zChar[0] ){
1194           if( sqlite3Isdigit(zChar[0]) ){
1195             int v = 0;
1196             sqlite3GetInt32(zChar, &v);
1197             v = v/4 + 1;
1198             if( v>255 ) v = 255;
1199             *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1200             break;
1201           }
1202           zChar++;
1203         }
1204       }else{
1205         *pszEst = 5;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
1206       }
1207     }
1208   }
1209   return aff;
1210 }
1211 
1212 /*
1213 ** The expression is the default value for the most recently added column
1214 ** of the table currently under construction.
1215 **
1216 ** Default value expressions must be constant.  Raise an exception if this
1217 ** is not the case.
1218 **
1219 ** This routine is called by the parser while in the middle of
1220 ** parsing a CREATE TABLE statement.
1221 */
sqlite3AddDefaultValue(Parse * pParse,ExprSpan * pSpan)1222 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1223   Table *p;
1224   Column *pCol;
1225   sqlite3 *db = pParse->db;
1226   p = pParse->pNewTable;
1227   if( p!=0 ){
1228     pCol = &(p->aCol[p->nCol-1]);
1229     if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1230       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1231           pCol->zName);
1232     }else{
1233       /* A copy of pExpr is used instead of the original, as pExpr contains
1234       ** tokens that point to volatile memory. The 'span' of the expression
1235       ** is required by pragma table_info.
1236       */
1237       Expr x;
1238       sqlite3ExprDelete(db, pCol->pDflt);
1239       memset(&x, 0, sizeof(x));
1240       x.op = TK_SPAN;
1241       x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1242                                     (int)(pSpan->zEnd - pSpan->zStart));
1243       x.pLeft = pSpan->pExpr;
1244       x.flags = EP_Skip;
1245       pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1246       sqlite3DbFree(db, x.u.zToken);
1247     }
1248   }
1249   sqlite3ExprDelete(db, pSpan->pExpr);
1250 }
1251 
1252 /*
1253 ** Backwards Compatibility Hack:
1254 **
1255 ** Historical versions of SQLite accepted strings as column names in
1256 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
1257 **
1258 **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1259 **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1260 **
1261 ** This is goofy.  But to preserve backwards compatibility we continue to
1262 ** accept it.  This routine does the necessary conversion.  It converts
1263 ** the expression given in its argument from a TK_STRING into a TK_ID
1264 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1265 ** If the epxression is anything other than TK_STRING, the expression is
1266 ** unchanged.
1267 */
sqlite3StringToId(Expr * p)1268 static void sqlite3StringToId(Expr *p){
1269   if( p->op==TK_STRING ){
1270     p->op = TK_ID;
1271   }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1272     p->pLeft->op = TK_ID;
1273   }
1274 }
1275 
1276 /*
1277 ** Designate the PRIMARY KEY for the table.  pList is a list of names
1278 ** of columns that form the primary key.  If pList is NULL, then the
1279 ** most recently added column of the table is the primary key.
1280 **
1281 ** A table can have at most one primary key.  If the table already has
1282 ** a primary key (and this is the second primary key) then create an
1283 ** error.
1284 **
1285 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1286 ** then we will try to use that column as the rowid.  Set the Table.iPKey
1287 ** field of the table under construction to be the index of the
1288 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
1289 ** no INTEGER PRIMARY KEY.
1290 **
1291 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1292 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
1293 */
sqlite3AddPrimaryKey(Parse * pParse,ExprList * pList,int onError,int autoInc,int sortOrder)1294 void sqlite3AddPrimaryKey(
1295   Parse *pParse,    /* Parsing context */
1296   ExprList *pList,  /* List of field names to be indexed */
1297   int onError,      /* What to do with a uniqueness conflict */
1298   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
1299   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1300 ){
1301   Table *pTab = pParse->pNewTable;
1302   Column *pCol = 0;
1303   int iCol = -1, i;
1304   int nTerm;
1305   if( pTab==0 ) goto primary_key_exit;
1306   if( pTab->tabFlags & TF_HasPrimaryKey ){
1307     sqlite3ErrorMsg(pParse,
1308       "table \"%s\" has more than one primary key", pTab->zName);
1309     goto primary_key_exit;
1310   }
1311   pTab->tabFlags |= TF_HasPrimaryKey;
1312   if( pList==0 ){
1313     iCol = pTab->nCol - 1;
1314     pCol = &pTab->aCol[iCol];
1315     pCol->colFlags |= COLFLAG_PRIMKEY;
1316     nTerm = 1;
1317   }else{
1318     nTerm = pList->nExpr;
1319     for(i=0; i<nTerm; i++){
1320       Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1321       assert( pCExpr!=0 );
1322       sqlite3StringToId(pCExpr);
1323       if( pCExpr->op==TK_ID ){
1324         const char *zCName = pCExpr->u.zToken;
1325         for(iCol=0; iCol<pTab->nCol; iCol++){
1326           if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1327             pCol = &pTab->aCol[iCol];
1328             pCol->colFlags |= COLFLAG_PRIMKEY;
1329             break;
1330           }
1331         }
1332       }
1333     }
1334   }
1335   if( nTerm==1
1336    && pCol
1337    && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1338    && sortOrder!=SQLITE_SO_DESC
1339   ){
1340     pTab->iPKey = iCol;
1341     pTab->keyConf = (u8)onError;
1342     assert( autoInc==0 || autoInc==1 );
1343     pTab->tabFlags |= autoInc*TF_Autoincrement;
1344     if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1345   }else if( autoInc ){
1346 #ifndef SQLITE_OMIT_AUTOINCREMENT
1347     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1348        "INTEGER PRIMARY KEY");
1349 #endif
1350   }else{
1351     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1352                            0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1353     pList = 0;
1354   }
1355 
1356 primary_key_exit:
1357   sqlite3ExprListDelete(pParse->db, pList);
1358   return;
1359 }
1360 
1361 /*
1362 ** Add a new CHECK constraint to the table currently under construction.
1363 */
sqlite3AddCheckConstraint(Parse * pParse,Expr * pCheckExpr)1364 void sqlite3AddCheckConstraint(
1365   Parse *pParse,    /* Parsing context */
1366   Expr *pCheckExpr  /* The check expression */
1367 ){
1368 #ifndef SQLITE_OMIT_CHECK
1369   Table *pTab = pParse->pNewTable;
1370   sqlite3 *db = pParse->db;
1371   if( pTab && !IN_DECLARE_VTAB
1372    && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1373   ){
1374     pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1375     if( pParse->constraintName.n ){
1376       sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1377     }
1378   }else
1379 #endif
1380   {
1381     sqlite3ExprDelete(pParse->db, pCheckExpr);
1382   }
1383 }
1384 
1385 /*
1386 ** Set the collation function of the most recently parsed table column
1387 ** to the CollSeq given.
1388 */
sqlite3AddCollateType(Parse * pParse,Token * pToken)1389 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1390   Table *p;
1391   int i;
1392   char *zColl;              /* Dequoted name of collation sequence */
1393   sqlite3 *db;
1394 
1395   if( (p = pParse->pNewTable)==0 ) return;
1396   i = p->nCol-1;
1397   db = pParse->db;
1398   zColl = sqlite3NameFromToken(db, pToken);
1399   if( !zColl ) return;
1400 
1401   if( sqlite3LocateCollSeq(pParse, zColl) ){
1402     Index *pIdx;
1403     sqlite3DbFree(db, p->aCol[i].zColl);
1404     p->aCol[i].zColl = zColl;
1405 
1406     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1407     ** then an index may have been created on this column before the
1408     ** collation type was added. Correct this if it is the case.
1409     */
1410     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1411       assert( pIdx->nKeyCol==1 );
1412       if( pIdx->aiColumn[0]==i ){
1413         pIdx->azColl[0] = p->aCol[i].zColl;
1414       }
1415     }
1416   }else{
1417     sqlite3DbFree(db, zColl);
1418   }
1419 }
1420 
1421 /*
1422 ** This function returns the collation sequence for database native text
1423 ** encoding identified by the string zName, length nName.
1424 **
1425 ** If the requested collation sequence is not available, or not available
1426 ** in the database native encoding, the collation factory is invoked to
1427 ** request it. If the collation factory does not supply such a sequence,
1428 ** and the sequence is available in another text encoding, then that is
1429 ** returned instead.
1430 **
1431 ** If no versions of the requested collations sequence are available, or
1432 ** another error occurs, NULL is returned and an error message written into
1433 ** pParse.
1434 **
1435 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
1436 ** invokes the collation factory if the named collation cannot be found
1437 ** and generates an error message.
1438 **
1439 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1440 */
sqlite3LocateCollSeq(Parse * pParse,const char * zName)1441 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1442   sqlite3 *db = pParse->db;
1443   u8 enc = ENC(db);
1444   u8 initbusy = db->init.busy;
1445   CollSeq *pColl;
1446 
1447   pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1448   if( !initbusy && (!pColl || !pColl->xCmp) ){
1449     pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1450   }
1451 
1452   return pColl;
1453 }
1454 
1455 
1456 /*
1457 ** Generate code that will increment the schema cookie.
1458 **
1459 ** The schema cookie is used to determine when the schema for the
1460 ** database changes.  After each schema change, the cookie value
1461 ** changes.  When a process first reads the schema it records the
1462 ** cookie.  Thereafter, whenever it goes to access the database,
1463 ** it checks the cookie to make sure the schema has not changed
1464 ** since it was last read.
1465 **
1466 ** This plan is not completely bullet-proof.  It is possible for
1467 ** the schema to change multiple times and for the cookie to be
1468 ** set back to prior value.  But schema changes are infrequent
1469 ** and the probability of hitting the same cookie value is only
1470 ** 1 chance in 2^32.  So we're safe enough.
1471 **
1472 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1473 ** the schema-version whenever the schema changes.
1474 */
sqlite3ChangeCookie(Parse * pParse,int iDb)1475 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1476   sqlite3 *db = pParse->db;
1477   Vdbe *v = pParse->pVdbe;
1478   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1479   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1480                     db->aDb[iDb].pSchema->schema_cookie+1);
1481 }
1482 
1483 /*
1484 ** Measure the number of characters needed to output the given
1485 ** identifier.  The number returned includes any quotes used
1486 ** but does not include the null terminator.
1487 **
1488 ** The estimate is conservative.  It might be larger that what is
1489 ** really needed.
1490 */
identLength(const char * z)1491 static int identLength(const char *z){
1492   int n;
1493   for(n=0; *z; n++, z++){
1494     if( *z=='"' ){ n++; }
1495   }
1496   return n + 2;
1497 }
1498 
1499 /*
1500 ** The first parameter is a pointer to an output buffer. The second
1501 ** parameter is a pointer to an integer that contains the offset at
1502 ** which to write into the output buffer. This function copies the
1503 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1504 ** to the specified offset in the buffer and updates *pIdx to refer
1505 ** to the first byte after the last byte written before returning.
1506 **
1507 ** If the string zSignedIdent consists entirely of alpha-numeric
1508 ** characters, does not begin with a digit and is not an SQL keyword,
1509 ** then it is copied to the output buffer exactly as it is. Otherwise,
1510 ** it is quoted using double-quotes.
1511 */
identPut(char * z,int * pIdx,char * zSignedIdent)1512 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1513   unsigned char *zIdent = (unsigned char*)zSignedIdent;
1514   int i, j, needQuote;
1515   i = *pIdx;
1516 
1517   for(j=0; zIdent[j]; j++){
1518     if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1519   }
1520   needQuote = sqlite3Isdigit(zIdent[0])
1521             || sqlite3KeywordCode(zIdent, j)!=TK_ID
1522             || zIdent[j]!=0
1523             || j==0;
1524 
1525   if( needQuote ) z[i++] = '"';
1526   for(j=0; zIdent[j]; j++){
1527     z[i++] = zIdent[j];
1528     if( zIdent[j]=='"' ) z[i++] = '"';
1529   }
1530   if( needQuote ) z[i++] = '"';
1531   z[i] = 0;
1532   *pIdx = i;
1533 }
1534 
1535 /*
1536 ** Generate a CREATE TABLE statement appropriate for the given
1537 ** table.  Memory to hold the text of the statement is obtained
1538 ** from sqliteMalloc() and must be freed by the calling function.
1539 */
createTableStmt(sqlite3 * db,Table * p)1540 static char *createTableStmt(sqlite3 *db, Table *p){
1541   int i, k, n;
1542   char *zStmt;
1543   char *zSep, *zSep2, *zEnd;
1544   Column *pCol;
1545   n = 0;
1546   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1547     n += identLength(pCol->zName) + 5;
1548   }
1549   n += identLength(p->zName);
1550   if( n<50 ){
1551     zSep = "";
1552     zSep2 = ",";
1553     zEnd = ")";
1554   }else{
1555     zSep = "\n  ";
1556     zSep2 = ",\n  ";
1557     zEnd = "\n)";
1558   }
1559   n += 35 + 6*p->nCol;
1560   zStmt = sqlite3DbMallocRaw(0, n);
1561   if( zStmt==0 ){
1562     sqlite3OomFault(db);
1563     return 0;
1564   }
1565   sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1566   k = sqlite3Strlen30(zStmt);
1567   identPut(zStmt, &k, p->zName);
1568   zStmt[k++] = '(';
1569   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1570     static const char * const azType[] = {
1571         /* SQLITE_AFF_BLOB    */ "",
1572         /* SQLITE_AFF_TEXT    */ " TEXT",
1573         /* SQLITE_AFF_NUMERIC */ " NUM",
1574         /* SQLITE_AFF_INTEGER */ " INT",
1575         /* SQLITE_AFF_REAL    */ " REAL"
1576     };
1577     int len;
1578     const char *zType;
1579 
1580     sqlite3_snprintf(n-k, &zStmt[k], zSep);
1581     k += sqlite3Strlen30(&zStmt[k]);
1582     zSep = zSep2;
1583     identPut(zStmt, &k, pCol->zName);
1584     assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1585     assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1586     testcase( pCol->affinity==SQLITE_AFF_BLOB );
1587     testcase( pCol->affinity==SQLITE_AFF_TEXT );
1588     testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1589     testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1590     testcase( pCol->affinity==SQLITE_AFF_REAL );
1591 
1592     zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1593     len = sqlite3Strlen30(zType);
1594     assert( pCol->affinity==SQLITE_AFF_BLOB
1595             || pCol->affinity==sqlite3AffinityType(zType, 0) );
1596     memcpy(&zStmt[k], zType, len);
1597     k += len;
1598     assert( k<=n );
1599   }
1600   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1601   return zStmt;
1602 }
1603 
1604 /*
1605 ** Resize an Index object to hold N columns total.  Return SQLITE_OK
1606 ** on success and SQLITE_NOMEM on an OOM error.
1607 */
resizeIndexObject(sqlite3 * db,Index * pIdx,int N)1608 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1609   char *zExtra;
1610   int nByte;
1611   if( pIdx->nColumn>=N ) return SQLITE_OK;
1612   assert( pIdx->isResized==0 );
1613   nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1614   zExtra = sqlite3DbMallocZero(db, nByte);
1615   if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1616   memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1617   pIdx->azColl = (const char**)zExtra;
1618   zExtra += sizeof(char*)*N;
1619   memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1620   pIdx->aiColumn = (i16*)zExtra;
1621   zExtra += sizeof(i16)*N;
1622   memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1623   pIdx->aSortOrder = (u8*)zExtra;
1624   pIdx->nColumn = N;
1625   pIdx->isResized = 1;
1626   return SQLITE_OK;
1627 }
1628 
1629 /*
1630 ** Estimate the total row width for a table.
1631 */
estimateTableWidth(Table * pTab)1632 static void estimateTableWidth(Table *pTab){
1633   unsigned wTable = 0;
1634   const Column *pTabCol;
1635   int i;
1636   for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1637     wTable += pTabCol->szEst;
1638   }
1639   if( pTab->iPKey<0 ) wTable++;
1640   pTab->szTabRow = sqlite3LogEst(wTable*4);
1641 }
1642 
1643 /*
1644 ** Estimate the average size of a row for an index.
1645 */
estimateIndexWidth(Index * pIdx)1646 static void estimateIndexWidth(Index *pIdx){
1647   unsigned wIndex = 0;
1648   int i;
1649   const Column *aCol = pIdx->pTable->aCol;
1650   for(i=0; i<pIdx->nColumn; i++){
1651     i16 x = pIdx->aiColumn[i];
1652     assert( x<pIdx->pTable->nCol );
1653     wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1654   }
1655   pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1656 }
1657 
1658 /* Return true if value x is found any of the first nCol entries of aiCol[]
1659 */
hasColumn(const i16 * aiCol,int nCol,int x)1660 static int hasColumn(const i16 *aiCol, int nCol, int x){
1661   while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1662   return 0;
1663 }
1664 
1665 /*
1666 ** This routine runs at the end of parsing a CREATE TABLE statement that
1667 ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
1668 ** internal schema data structures and the generated VDBE code so that they
1669 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1670 ** Changes include:
1671 **
1672 **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1673 **     (2)  Convert the OP_CreateTable into an OP_CreateIndex.  There is
1674 **          no rowid btree for a WITHOUT ROWID.  Instead, the canonical
1675 **          data storage is a covering index btree.
1676 **     (3)  Bypass the creation of the sqlite_master table entry
1677 **          for the PRIMARY KEY as the primary key index is now
1678 **          identified by the sqlite_master table entry of the table itself.
1679 **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
1680 **          schema to the rootpage from the main table.
1681 **     (5)  Add all table columns to the PRIMARY KEY Index object
1682 **          so that the PRIMARY KEY is a covering index.  The surplus
1683 **          columns are part of KeyInfo.nXField and are not used for
1684 **          sorting or lookup or uniqueness checks.
1685 **     (6)  Replace the rowid tail on all automatically generated UNIQUE
1686 **          indices with the PRIMARY KEY columns.
1687 **
1688 ** For virtual tables, only (1) is performed.
1689 */
convertToWithoutRowidTable(Parse * pParse,Table * pTab)1690 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1691   Index *pIdx;
1692   Index *pPk;
1693   int nPk;
1694   int i, j;
1695   sqlite3 *db = pParse->db;
1696   Vdbe *v = pParse->pVdbe;
1697 
1698   /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1699   */
1700   if( !db->init.imposterTable ){
1701     for(i=0; i<pTab->nCol; i++){
1702       if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1703         pTab->aCol[i].notNull = OE_Abort;
1704       }
1705     }
1706   }
1707 
1708   /* The remaining transformations only apply to b-tree tables, not to
1709   ** virtual tables */
1710   if( IN_DECLARE_VTAB ) return;
1711 
1712   /* Convert the OP_CreateTable opcode that would normally create the
1713   ** root-page for the table into an OP_CreateIndex opcode.  The index
1714   ** created will become the PRIMARY KEY index.
1715   */
1716   if( pParse->addrCrTab ){
1717     assert( v );
1718     sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1719   }
1720 
1721   /* Locate the PRIMARY KEY index.  Or, if this table was originally
1722   ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1723   */
1724   if( pTab->iPKey>=0 ){
1725     ExprList *pList;
1726     Token ipkToken;
1727     sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1728     pList = sqlite3ExprListAppend(pParse, 0,
1729                   sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1730     if( pList==0 ) return;
1731     pList->a[0].sortOrder = pParse->iPkSortOrder;
1732     assert( pParse->pNewTable==pTab );
1733     sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1734                        SQLITE_IDXTYPE_PRIMARYKEY);
1735     if( db->mallocFailed ) return;
1736     pPk = sqlite3PrimaryKeyIndex(pTab);
1737     pTab->iPKey = -1;
1738   }else{
1739     pPk = sqlite3PrimaryKeyIndex(pTab);
1740 
1741     /*
1742     ** Remove all redundant columns from the PRIMARY KEY.  For example, change
1743     ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
1744     ** code assumes the PRIMARY KEY contains no repeated columns.
1745     */
1746     for(i=j=1; i<pPk->nKeyCol; i++){
1747       if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1748         pPk->nColumn--;
1749       }else{
1750         pPk->aiColumn[j++] = pPk->aiColumn[i];
1751       }
1752     }
1753     pPk->nKeyCol = j;
1754   }
1755   assert( pPk!=0 );
1756   pPk->isCovering = 1;
1757   if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1758   nPk = pPk->nKeyCol;
1759 
1760   /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1761   ** table entry. This is only required if currently generating VDBE
1762   ** code for a CREATE TABLE (not when parsing one as part of reading
1763   ** a database schema).  */
1764   if( v && pPk->tnum>0 ){
1765     assert( db->init.busy==0 );
1766     sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1767   }
1768 
1769   /* The root page of the PRIMARY KEY is the table root page */
1770   pPk->tnum = pTab->tnum;
1771 
1772   /* Update the in-memory representation of all UNIQUE indices by converting
1773   ** the final rowid column into one or more columns of the PRIMARY KEY.
1774   */
1775   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1776     int n;
1777     if( IsPrimaryKeyIndex(pIdx) ) continue;
1778     for(i=n=0; i<nPk; i++){
1779       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1780     }
1781     if( n==0 ){
1782       /* This index is a superset of the primary key */
1783       pIdx->nColumn = pIdx->nKeyCol;
1784       continue;
1785     }
1786     if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1787     for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1788       if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1789         pIdx->aiColumn[j] = pPk->aiColumn[i];
1790         pIdx->azColl[j] = pPk->azColl[i];
1791         j++;
1792       }
1793     }
1794     assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1795     assert( pIdx->nColumn>=j );
1796   }
1797 
1798   /* Add all table columns to the PRIMARY KEY index
1799   */
1800   if( nPk<pTab->nCol ){
1801     if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1802     for(i=0, j=nPk; i<pTab->nCol; i++){
1803       if( !hasColumn(pPk->aiColumn, j, i) ){
1804         assert( j<pPk->nColumn );
1805         pPk->aiColumn[j] = i;
1806         pPk->azColl[j] = sqlite3StrBINARY;
1807         j++;
1808       }
1809     }
1810     assert( pPk->nColumn==j );
1811     assert( pTab->nCol==j );
1812   }else{
1813     pPk->nColumn = pTab->nCol;
1814   }
1815 }
1816 
1817 /*
1818 ** This routine is called to report the final ")" that terminates
1819 ** a CREATE TABLE statement.
1820 **
1821 ** The table structure that other action routines have been building
1822 ** is added to the internal hash tables, assuming no errors have
1823 ** occurred.
1824 **
1825 ** An entry for the table is made in the master table on disk, unless
1826 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
1827 ** it means we are reading the sqlite_master table because we just
1828 ** connected to the database or because the sqlite_master table has
1829 ** recently changed, so the entry for this table already exists in
1830 ** the sqlite_master table.  We do not want to create it again.
1831 **
1832 ** If the pSelect argument is not NULL, it means that this routine
1833 ** was called to create a table generated from a
1834 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
1835 ** the new table will match the result set of the SELECT.
1836 */
sqlite3EndTable(Parse * pParse,Token * pCons,Token * pEnd,u8 tabOpts,Select * pSelect)1837 void sqlite3EndTable(
1838   Parse *pParse,          /* Parse context */
1839   Token *pCons,           /* The ',' token after the last column defn. */
1840   Token *pEnd,            /* The ')' before options in the CREATE TABLE */
1841   u8 tabOpts,             /* Extra table options. Usually 0. */
1842   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
1843 ){
1844   Table *p;                 /* The new table */
1845   sqlite3 *db = pParse->db; /* The database connection */
1846   int iDb;                  /* Database in which the table lives */
1847   Index *pIdx;              /* An implied index of the table */
1848 
1849   if( pEnd==0 && pSelect==0 ){
1850     return;
1851   }
1852   assert( !db->mallocFailed );
1853   p = pParse->pNewTable;
1854   if( p==0 ) return;
1855 
1856   assert( !db->init.busy || !pSelect );
1857 
1858   /* If the db->init.busy is 1 it means we are reading the SQL off the
1859   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1860   ** So do not write to the disk again.  Extract the root page number
1861   ** for the table from the db->init.newTnum field.  (The page number
1862   ** should have been put there by the sqliteOpenCb routine.)
1863   **
1864   ** If the root page number is 1, that means this is the sqlite_master
1865   ** table itself.  So mark it read-only.
1866   */
1867   if( db->init.busy ){
1868     p->tnum = db->init.newTnum;
1869     if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1870   }
1871 
1872   /* Special processing for WITHOUT ROWID Tables */
1873   if( tabOpts & TF_WithoutRowid ){
1874     if( (p->tabFlags & TF_Autoincrement) ){
1875       sqlite3ErrorMsg(pParse,
1876           "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1877       return;
1878     }
1879     if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1880       sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1881     }else{
1882       p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1883       convertToWithoutRowidTable(pParse, p);
1884     }
1885   }
1886 
1887   iDb = sqlite3SchemaToIndex(db, p->pSchema);
1888 
1889 #ifndef SQLITE_OMIT_CHECK
1890   /* Resolve names in all CHECK constraint expressions.
1891   */
1892   if( p->pCheck ){
1893     sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1894   }
1895 #endif /* !defined(SQLITE_OMIT_CHECK) */
1896 
1897   /* Estimate the average row size for the table and for all implied indices */
1898   estimateTableWidth(p);
1899   for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1900     estimateIndexWidth(pIdx);
1901   }
1902 
1903   /* If not initializing, then create a record for the new table
1904   ** in the SQLITE_MASTER table of the database.
1905   **
1906   ** If this is a TEMPORARY table, write the entry into the auxiliary
1907   ** file instead of into the main database file.
1908   */
1909   if( !db->init.busy ){
1910     int n;
1911     Vdbe *v;
1912     char *zType;    /* "view" or "table" */
1913     char *zType2;   /* "VIEW" or "TABLE" */
1914     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
1915 
1916     v = sqlite3GetVdbe(pParse);
1917     if( NEVER(v==0) ) return;
1918 
1919     sqlite3VdbeAddOp1(v, OP_Close, 0);
1920 
1921     /*
1922     ** Initialize zType for the new view or table.
1923     */
1924     if( p->pSelect==0 ){
1925       /* A regular table */
1926       zType = "table";
1927       zType2 = "TABLE";
1928 #ifndef SQLITE_OMIT_VIEW
1929     }else{
1930       /* A view */
1931       zType = "view";
1932       zType2 = "VIEW";
1933 #endif
1934     }
1935 
1936     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1937     ** statement to populate the new table. The root-page number for the
1938     ** new table is in register pParse->regRoot.
1939     **
1940     ** Once the SELECT has been coded by sqlite3Select(), it is in a
1941     ** suitable state to query for the column names and types to be used
1942     ** by the new table.
1943     **
1944     ** A shared-cache write-lock is not required to write to the new table,
1945     ** as a schema-lock must have already been obtained to create it. Since
1946     ** a schema-lock excludes all other database users, the write-lock would
1947     ** be redundant.
1948     */
1949     if( pSelect ){
1950       SelectDest dest;    /* Where the SELECT should store results */
1951       int regYield;       /* Register holding co-routine entry-point */
1952       int addrTop;        /* Top of the co-routine */
1953       int regRec;         /* A record to be insert into the new table */
1954       int regRowid;       /* Rowid of the next row to insert */
1955       int addrInsLoop;    /* Top of the loop for inserting rows */
1956       Table *pSelTab;     /* A table that describes the SELECT results */
1957 
1958       regYield = ++pParse->nMem;
1959       regRec = ++pParse->nMem;
1960       regRowid = ++pParse->nMem;
1961       assert(pParse->nTab==1);
1962       sqlite3MayAbort(pParse);
1963       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1964       sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1965       pParse->nTab = 2;
1966       addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1967       sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1968       sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1969       sqlite3Select(pParse, pSelect, &dest);
1970       sqlite3VdbeEndCoroutine(v, regYield);
1971       sqlite3VdbeJumpHere(v, addrTop - 1);
1972       if( pParse->nErr ) return;
1973       pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1974       if( pSelTab==0 ) return;
1975       assert( p->aCol==0 );
1976       p->nCol = pSelTab->nCol;
1977       p->aCol = pSelTab->aCol;
1978       pSelTab->nCol = 0;
1979       pSelTab->aCol = 0;
1980       sqlite3DeleteTable(db, pSelTab);
1981       addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1982       VdbeCoverage(v);
1983       sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1984       sqlite3TableAffinity(v, p, 0);
1985       sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1986       sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1987       sqlite3VdbeGoto(v, addrInsLoop);
1988       sqlite3VdbeJumpHere(v, addrInsLoop);
1989       sqlite3VdbeAddOp1(v, OP_Close, 1);
1990     }
1991 
1992     /* Compute the complete text of the CREATE statement */
1993     if( pSelect ){
1994       zStmt = createTableStmt(db, p);
1995     }else{
1996       Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1997       n = (int)(pEnd2->z - pParse->sNameToken.z);
1998       if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1999       zStmt = sqlite3MPrintf(db,
2000           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2001       );
2002     }
2003 
2004     /* A slot for the record has already been allocated in the
2005     ** SQLITE_MASTER table.  We just need to update that slot with all
2006     ** the information we've collected.
2007     */
2008     sqlite3NestedParse(pParse,
2009       "UPDATE %Q.%s "
2010          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2011        "WHERE rowid=#%d",
2012       db->aDb[iDb].zDbSName, MASTER_NAME,
2013       zType,
2014       p->zName,
2015       p->zName,
2016       pParse->regRoot,
2017       zStmt,
2018       pParse->regRowid
2019     );
2020     sqlite3DbFree(db, zStmt);
2021     sqlite3ChangeCookie(pParse, iDb);
2022 
2023 #ifndef SQLITE_OMIT_AUTOINCREMENT
2024     /* Check to see if we need to create an sqlite_sequence table for
2025     ** keeping track of autoincrement keys.
2026     */
2027     if( (p->tabFlags & TF_Autoincrement)!=0 ){
2028       Db *pDb = &db->aDb[iDb];
2029       assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2030       if( pDb->pSchema->pSeqTab==0 ){
2031         sqlite3NestedParse(pParse,
2032           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2033           pDb->zDbSName
2034         );
2035       }
2036     }
2037 #endif
2038 
2039     /* Reparse everything to update our internal data structures */
2040     sqlite3VdbeAddParseSchemaOp(v, iDb,
2041            sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2042   }
2043 
2044 
2045   /* Add the table to the in-memory representation of the database.
2046   */
2047   if( db->init.busy ){
2048     Table *pOld;
2049     Schema *pSchema = p->pSchema;
2050     assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2051     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2052     if( pOld ){
2053       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
2054       sqlite3OomFault(db);
2055       return;
2056     }
2057     pParse->pNewTable = 0;
2058     db->flags |= SQLITE_InternChanges;
2059 
2060 #ifndef SQLITE_OMIT_ALTERTABLE
2061     if( !p->pSelect ){
2062       const char *zName = (const char *)pParse->sNameToken.z;
2063       int nName;
2064       assert( !pSelect && pCons && pEnd );
2065       if( pCons->z==0 ){
2066         pCons = pEnd;
2067       }
2068       nName = (int)((const char *)pCons->z - zName);
2069       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2070     }
2071 #endif
2072   }
2073 }
2074 
2075 #ifndef SQLITE_OMIT_VIEW
2076 /*
2077 ** The parser calls this routine in order to create a new VIEW
2078 */
sqlite3CreateView(Parse * pParse,Token * pBegin,Token * pName1,Token * pName2,ExprList * pCNames,Select * pSelect,int isTemp,int noErr)2079 void sqlite3CreateView(
2080   Parse *pParse,     /* The parsing context */
2081   Token *pBegin,     /* The CREATE token that begins the statement */
2082   Token *pName1,     /* The token that holds the name of the view */
2083   Token *pName2,     /* The token that holds the name of the view */
2084   ExprList *pCNames, /* Optional list of view column names */
2085   Select *pSelect,   /* A SELECT statement that will become the new view */
2086   int isTemp,        /* TRUE for a TEMPORARY view */
2087   int noErr          /* Suppress error messages if VIEW already exists */
2088 ){
2089   Table *p;
2090   int n;
2091   const char *z;
2092   Token sEnd;
2093   DbFixer sFix;
2094   Token *pName = 0;
2095   int iDb;
2096   sqlite3 *db = pParse->db;
2097 
2098   if( pParse->nVar>0 ){
2099     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2100     goto create_view_fail;
2101   }
2102   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2103   p = pParse->pNewTable;
2104   if( p==0 || pParse->nErr ) goto create_view_fail;
2105   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2106   iDb = sqlite3SchemaToIndex(db, p->pSchema);
2107   sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2108   if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2109 
2110   /* Make a copy of the entire SELECT statement that defines the view.
2111   ** This will force all the Expr.token.z values to be dynamically
2112   ** allocated rather than point to the input string - which means that
2113   ** they will persist after the current sqlite3_exec() call returns.
2114   */
2115   p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2116   p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2117   if( db->mallocFailed ) goto create_view_fail;
2118 
2119   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
2120   ** the end.
2121   */
2122   sEnd = pParse->sLastToken;
2123   assert( sEnd.z[0]!=0 );
2124   if( sEnd.z[0]!=';' ){
2125     sEnd.z += sEnd.n;
2126   }
2127   sEnd.n = 0;
2128   n = (int)(sEnd.z - pBegin->z);
2129   assert( n>0 );
2130   z = pBegin->z;
2131   while( sqlite3Isspace(z[n-1]) ){ n--; }
2132   sEnd.z = &z[n-1];
2133   sEnd.n = 1;
2134 
2135   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2136   sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2137 
2138 create_view_fail:
2139   sqlite3SelectDelete(db, pSelect);
2140   sqlite3ExprListDelete(db, pCNames);
2141   return;
2142 }
2143 #endif /* SQLITE_OMIT_VIEW */
2144 
2145 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2146 /*
2147 ** The Table structure pTable is really a VIEW.  Fill in the names of
2148 ** the columns of the view in the pTable structure.  Return the number
2149 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
2150 */
sqlite3ViewGetColumnNames(Parse * pParse,Table * pTable)2151 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2152   Table *pSelTab;   /* A fake table from which we get the result set */
2153   Select *pSel;     /* Copy of the SELECT that implements the view */
2154   int nErr = 0;     /* Number of errors encountered */
2155   int n;            /* Temporarily holds the number of cursors assigned */
2156   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
2157 #ifndef SQLITE_OMIT_AUTHORIZATION
2158   sqlite3_xauth xAuth;       /* Saved xAuth pointer */
2159 #endif
2160 
2161   assert( pTable );
2162 
2163 #ifndef SQLITE_OMIT_VIRTUALTABLE
2164   if( sqlite3VtabCallConnect(pParse, pTable) ){
2165     return SQLITE_ERROR;
2166   }
2167   if( IsVirtual(pTable) ) return 0;
2168 #endif
2169 
2170 #ifndef SQLITE_OMIT_VIEW
2171   /* A positive nCol means the columns names for this view are
2172   ** already known.
2173   */
2174   if( pTable->nCol>0 ) return 0;
2175 
2176   /* A negative nCol is a special marker meaning that we are currently
2177   ** trying to compute the column names.  If we enter this routine with
2178   ** a negative nCol, it means two or more views form a loop, like this:
2179   **
2180   **     CREATE VIEW one AS SELECT * FROM two;
2181   **     CREATE VIEW two AS SELECT * FROM one;
2182   **
2183   ** Actually, the error above is now caught prior to reaching this point.
2184   ** But the following test is still important as it does come up
2185   ** in the following:
2186   **
2187   **     CREATE TABLE main.ex1(a);
2188   **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2189   **     SELECT * FROM temp.ex1;
2190   */
2191   if( pTable->nCol<0 ){
2192     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2193     return 1;
2194   }
2195   assert( pTable->nCol>=0 );
2196 
2197   /* If we get this far, it means we need to compute the table names.
2198   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2199   ** "*" elements in the results set of the view and will assign cursors
2200   ** to the elements of the FROM clause.  But we do not want these changes
2201   ** to be permanent.  So the computation is done on a copy of the SELECT
2202   ** statement that defines the view.
2203   */
2204   assert( pTable->pSelect );
2205   pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2206   if( pSel ){
2207     n = pParse->nTab;
2208     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2209     pTable->nCol = -1;
2210     db->lookaside.bDisable++;
2211 #ifndef SQLITE_OMIT_AUTHORIZATION
2212     xAuth = db->xAuth;
2213     db->xAuth = 0;
2214     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2215     db->xAuth = xAuth;
2216 #else
2217     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2218 #endif
2219     pParse->nTab = n;
2220     if( pTable->pCheck ){
2221       /* CREATE VIEW name(arglist) AS ...
2222       ** The names of the columns in the table are taken from
2223       ** arglist which is stored in pTable->pCheck.  The pCheck field
2224       ** normally holds CHECK constraints on an ordinary table, but for
2225       ** a VIEW it holds the list of column names.
2226       */
2227       sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2228                                  &pTable->nCol, &pTable->aCol);
2229       if( db->mallocFailed==0
2230        && pParse->nErr==0
2231        && pTable->nCol==pSel->pEList->nExpr
2232       ){
2233         sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2234       }
2235     }else if( pSelTab ){
2236       /* CREATE VIEW name AS...  without an argument list.  Construct
2237       ** the column names from the SELECT statement that defines the view.
2238       */
2239       assert( pTable->aCol==0 );
2240       pTable->nCol = pSelTab->nCol;
2241       pTable->aCol = pSelTab->aCol;
2242       pSelTab->nCol = 0;
2243       pSelTab->aCol = 0;
2244       assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2245     }else{
2246       pTable->nCol = 0;
2247       nErr++;
2248     }
2249     sqlite3DeleteTable(db, pSelTab);
2250     sqlite3SelectDelete(db, pSel);
2251     db->lookaside.bDisable--;
2252   } else {
2253     nErr++;
2254   }
2255   pTable->pSchema->schemaFlags |= DB_UnresetViews;
2256 #endif /* SQLITE_OMIT_VIEW */
2257   return nErr;
2258 }
2259 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2260 
2261 #ifndef SQLITE_OMIT_VIEW
2262 /*
2263 ** Clear the column names from every VIEW in database idx.
2264 */
sqliteViewResetAll(sqlite3 * db,int idx)2265 static void sqliteViewResetAll(sqlite3 *db, int idx){
2266   HashElem *i;
2267   assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2268   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2269   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2270     Table *pTab = sqliteHashData(i);
2271     if( pTab->pSelect ){
2272       sqlite3DeleteColumnNames(db, pTab);
2273       pTab->aCol = 0;
2274       pTab->nCol = 0;
2275     }
2276   }
2277   DbClearProperty(db, idx, DB_UnresetViews);
2278 }
2279 #else
2280 # define sqliteViewResetAll(A,B)
2281 #endif /* SQLITE_OMIT_VIEW */
2282 
2283 /*
2284 ** This function is called by the VDBE to adjust the internal schema
2285 ** used by SQLite when the btree layer moves a table root page. The
2286 ** root-page of a table or index in database iDb has changed from iFrom
2287 ** to iTo.
2288 **
2289 ** Ticket #1728:  The symbol table might still contain information
2290 ** on tables and/or indices that are the process of being deleted.
2291 ** If you are unlucky, one of those deleted indices or tables might
2292 ** have the same rootpage number as the real table or index that is
2293 ** being moved.  So we cannot stop searching after the first match
2294 ** because the first match might be for one of the deleted indices
2295 ** or tables and not the table/index that is actually being moved.
2296 ** We must continue looping until all tables and indices with
2297 ** rootpage==iFrom have been converted to have a rootpage of iTo
2298 ** in order to be certain that we got the right one.
2299 */
2300 #ifndef SQLITE_OMIT_AUTOVACUUM
sqlite3RootPageMoved(sqlite3 * db,int iDb,int iFrom,int iTo)2301 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2302   HashElem *pElem;
2303   Hash *pHash;
2304   Db *pDb;
2305 
2306   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2307   pDb = &db->aDb[iDb];
2308   pHash = &pDb->pSchema->tblHash;
2309   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2310     Table *pTab = sqliteHashData(pElem);
2311     if( pTab->tnum==iFrom ){
2312       pTab->tnum = iTo;
2313     }
2314   }
2315   pHash = &pDb->pSchema->idxHash;
2316   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2317     Index *pIdx = sqliteHashData(pElem);
2318     if( pIdx->tnum==iFrom ){
2319       pIdx->tnum = iTo;
2320     }
2321   }
2322 }
2323 #endif
2324 
2325 /*
2326 ** Write code to erase the table with root-page iTable from database iDb.
2327 ** Also write code to modify the sqlite_master table and internal schema
2328 ** if a root-page of another table is moved by the btree-layer whilst
2329 ** erasing iTable (this can happen with an auto-vacuum database).
2330 */
destroyRootPage(Parse * pParse,int iTable,int iDb)2331 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2332   Vdbe *v = sqlite3GetVdbe(pParse);
2333   int r1 = sqlite3GetTempReg(pParse);
2334   assert( iTable>1 );
2335   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2336   sqlite3MayAbort(pParse);
2337 #ifndef SQLITE_OMIT_AUTOVACUUM
2338   /* OP_Destroy stores an in integer r1. If this integer
2339   ** is non-zero, then it is the root page number of a table moved to
2340   ** location iTable. The following code modifies the sqlite_master table to
2341   ** reflect this.
2342   **
2343   ** The "#NNN" in the SQL is a special constant that means whatever value
2344   ** is in register NNN.  See grammar rules associated with the TK_REGISTER
2345   ** token for additional information.
2346   */
2347   sqlite3NestedParse(pParse,
2348      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2349      pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2350 #endif
2351   sqlite3ReleaseTempReg(pParse, r1);
2352 }
2353 
2354 /*
2355 ** Write VDBE code to erase table pTab and all associated indices on disk.
2356 ** Code to update the sqlite_master tables and internal schema definitions
2357 ** in case a root-page belonging to another table is moved by the btree layer
2358 ** is also added (this can happen with an auto-vacuum database).
2359 */
destroyTable(Parse * pParse,Table * pTab)2360 static void destroyTable(Parse *pParse, Table *pTab){
2361 #ifdef SQLITE_OMIT_AUTOVACUUM
2362   Index *pIdx;
2363   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2364   destroyRootPage(pParse, pTab->tnum, iDb);
2365   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2366     destroyRootPage(pParse, pIdx->tnum, iDb);
2367   }
2368 #else
2369   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2370   ** is not defined), then it is important to call OP_Destroy on the
2371   ** table and index root-pages in order, starting with the numerically
2372   ** largest root-page number. This guarantees that none of the root-pages
2373   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2374   ** following were coded:
2375   **
2376   ** OP_Destroy 4 0
2377   ** ...
2378   ** OP_Destroy 5 0
2379   **
2380   ** and root page 5 happened to be the largest root-page number in the
2381   ** database, then root page 5 would be moved to page 4 by the
2382   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2383   ** a free-list page.
2384   */
2385   int iTab = pTab->tnum;
2386   int iDestroyed = 0;
2387 
2388   while( 1 ){
2389     Index *pIdx;
2390     int iLargest = 0;
2391 
2392     if( iDestroyed==0 || iTab<iDestroyed ){
2393       iLargest = iTab;
2394     }
2395     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2396       int iIdx = pIdx->tnum;
2397       assert( pIdx->pSchema==pTab->pSchema );
2398       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2399         iLargest = iIdx;
2400       }
2401     }
2402     if( iLargest==0 ){
2403       return;
2404     }else{
2405       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2406       assert( iDb>=0 && iDb<pParse->db->nDb );
2407       destroyRootPage(pParse, iLargest, iDb);
2408       iDestroyed = iLargest;
2409     }
2410   }
2411 #endif
2412 }
2413 
2414 /*
2415 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2416 ** after a DROP INDEX or DROP TABLE command.
2417 */
sqlite3ClearStatTables(Parse * pParse,int iDb,const char * zType,const char * zName)2418 static void sqlite3ClearStatTables(
2419   Parse *pParse,         /* The parsing context */
2420   int iDb,               /* The database number */
2421   const char *zType,     /* "idx" or "tbl" */
2422   const char *zName      /* Name of index or table */
2423 ){
2424   int i;
2425   const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2426   for(i=1; i<=4; i++){
2427     char zTab[24];
2428     sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2429     if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2430       sqlite3NestedParse(pParse,
2431         "DELETE FROM %Q.%s WHERE %s=%Q",
2432         zDbName, zTab, zType, zName
2433       );
2434     }
2435   }
2436 }
2437 
2438 /*
2439 ** Generate code to drop a table.
2440 */
sqlite3CodeDropTable(Parse * pParse,Table * pTab,int iDb,int isView)2441 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2442   Vdbe *v;
2443   sqlite3 *db = pParse->db;
2444   Trigger *pTrigger;
2445   Db *pDb = &db->aDb[iDb];
2446 
2447   v = sqlite3GetVdbe(pParse);
2448   assert( v!=0 );
2449   sqlite3BeginWriteOperation(pParse, 1, iDb);
2450 
2451 #ifndef SQLITE_OMIT_VIRTUALTABLE
2452   if( IsVirtual(pTab) ){
2453     sqlite3VdbeAddOp0(v, OP_VBegin);
2454   }
2455 #endif
2456 
2457   /* Drop all triggers associated with the table being dropped. Code
2458   ** is generated to remove entries from sqlite_master and/or
2459   ** sqlite_temp_master if required.
2460   */
2461   pTrigger = sqlite3TriggerList(pParse, pTab);
2462   while( pTrigger ){
2463     assert( pTrigger->pSchema==pTab->pSchema ||
2464         pTrigger->pSchema==db->aDb[1].pSchema );
2465     sqlite3DropTriggerPtr(pParse, pTrigger);
2466     pTrigger = pTrigger->pNext;
2467   }
2468 
2469 #ifndef SQLITE_OMIT_AUTOINCREMENT
2470   /* Remove any entries of the sqlite_sequence table associated with
2471   ** the table being dropped. This is done before the table is dropped
2472   ** at the btree level, in case the sqlite_sequence table needs to
2473   ** move as a result of the drop (can happen in auto-vacuum mode).
2474   */
2475   if( pTab->tabFlags & TF_Autoincrement ){
2476     sqlite3NestedParse(pParse,
2477       "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2478       pDb->zDbSName, pTab->zName
2479     );
2480   }
2481 #endif
2482 
2483   /* Drop all SQLITE_MASTER table and index entries that refer to the
2484   ** table. The program name loops through the master table and deletes
2485   ** every row that refers to a table of the same name as the one being
2486   ** dropped. Triggers are handled separately because a trigger can be
2487   ** created in the temp database that refers to a table in another
2488   ** database.
2489   */
2490   sqlite3NestedParse(pParse,
2491       "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2492       pDb->zDbSName, MASTER_NAME, pTab->zName);
2493   if( !isView && !IsVirtual(pTab) ){
2494     destroyTable(pParse, pTab);
2495   }
2496 
2497   /* Remove the table entry from SQLite's internal schema and modify
2498   ** the schema cookie.
2499   */
2500   if( IsVirtual(pTab) ){
2501     sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2502   }
2503   sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2504   sqlite3ChangeCookie(pParse, iDb);
2505   sqliteViewResetAll(db, iDb);
2506 }
2507 
2508 /*
2509 ** This routine is called to do the work of a DROP TABLE statement.
2510 ** pName is the name of the table to be dropped.
2511 */
sqlite3DropTable(Parse * pParse,SrcList * pName,int isView,int noErr)2512 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2513   Table *pTab;
2514   Vdbe *v;
2515   sqlite3 *db = pParse->db;
2516   int iDb;
2517 
2518   if( db->mallocFailed ){
2519     goto exit_drop_table;
2520   }
2521   assert( pParse->nErr==0 );
2522   assert( pName->nSrc==1 );
2523   if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2524   if( noErr ) db->suppressErr++;
2525   assert( isView==0 || isView==LOCATE_VIEW );
2526   pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2527   if( noErr ) db->suppressErr--;
2528 
2529   if( pTab==0 ){
2530     if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2531     goto exit_drop_table;
2532   }
2533   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2534   assert( iDb>=0 && iDb<db->nDb );
2535 
2536   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2537   ** it is initialized.
2538   */
2539   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2540     goto exit_drop_table;
2541   }
2542 #ifndef SQLITE_OMIT_AUTHORIZATION
2543   {
2544     int code;
2545     const char *zTab = SCHEMA_TABLE(iDb);
2546     const char *zDb = db->aDb[iDb].zDbSName;
2547     const char *zArg2 = 0;
2548     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2549       goto exit_drop_table;
2550     }
2551     if( isView ){
2552       if( !OMIT_TEMPDB && iDb==1 ){
2553         code = SQLITE_DROP_TEMP_VIEW;
2554       }else{
2555         code = SQLITE_DROP_VIEW;
2556       }
2557 #ifndef SQLITE_OMIT_VIRTUALTABLE
2558     }else if( IsVirtual(pTab) ){
2559       code = SQLITE_DROP_VTABLE;
2560       zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2561 #endif
2562     }else{
2563       if( !OMIT_TEMPDB && iDb==1 ){
2564         code = SQLITE_DROP_TEMP_TABLE;
2565       }else{
2566         code = SQLITE_DROP_TABLE;
2567       }
2568     }
2569     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2570       goto exit_drop_table;
2571     }
2572     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2573       goto exit_drop_table;
2574     }
2575   }
2576 #endif
2577   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2578     && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2579     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2580     goto exit_drop_table;
2581   }
2582 
2583 #ifndef SQLITE_OMIT_VIEW
2584   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2585   ** on a table.
2586   */
2587   if( isView && pTab->pSelect==0 ){
2588     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2589     goto exit_drop_table;
2590   }
2591   if( !isView && pTab->pSelect ){
2592     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2593     goto exit_drop_table;
2594   }
2595 #endif
2596 
2597   /* Generate code to remove the table from the master table
2598   ** on disk.
2599   */
2600   v = sqlite3GetVdbe(pParse);
2601   if( v ){
2602     sqlite3BeginWriteOperation(pParse, 1, iDb);
2603     sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2604     sqlite3FkDropTable(pParse, pName, pTab);
2605     sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2606   }
2607 
2608 exit_drop_table:
2609   sqlite3SrcListDelete(db, pName);
2610 }
2611 
2612 /*
2613 ** This routine is called to create a new foreign key on the table
2614 ** currently under construction.  pFromCol determines which columns
2615 ** in the current table point to the foreign key.  If pFromCol==0 then
2616 ** connect the key to the last column inserted.  pTo is the name of
2617 ** the table referred to (a.k.a the "parent" table).  pToCol is a list
2618 ** of tables in the parent pTo table.  flags contains all
2619 ** information about the conflict resolution algorithms specified
2620 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2621 **
2622 ** An FKey structure is created and added to the table currently
2623 ** under construction in the pParse->pNewTable field.
2624 **
2625 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
2626 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2627 */
sqlite3CreateForeignKey(Parse * pParse,ExprList * pFromCol,Token * pTo,ExprList * pToCol,int flags)2628 void sqlite3CreateForeignKey(
2629   Parse *pParse,       /* Parsing context */
2630   ExprList *pFromCol,  /* Columns in this table that point to other table */
2631   Token *pTo,          /* Name of the other table */
2632   ExprList *pToCol,    /* Columns in the other table */
2633   int flags            /* Conflict resolution algorithms. */
2634 ){
2635   sqlite3 *db = pParse->db;
2636 #ifndef SQLITE_OMIT_FOREIGN_KEY
2637   FKey *pFKey = 0;
2638   FKey *pNextTo;
2639   Table *p = pParse->pNewTable;
2640   int nByte;
2641   int i;
2642   int nCol;
2643   char *z;
2644 
2645   assert( pTo!=0 );
2646   if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2647   if( pFromCol==0 ){
2648     int iCol = p->nCol-1;
2649     if( NEVER(iCol<0) ) goto fk_end;
2650     if( pToCol && pToCol->nExpr!=1 ){
2651       sqlite3ErrorMsg(pParse, "foreign key on %s"
2652          " should reference only one column of table %T",
2653          p->aCol[iCol].zName, pTo);
2654       goto fk_end;
2655     }
2656     nCol = 1;
2657   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2658     sqlite3ErrorMsg(pParse,
2659         "number of columns in foreign key does not match the number of "
2660         "columns in the referenced table");
2661     goto fk_end;
2662   }else{
2663     nCol = pFromCol->nExpr;
2664   }
2665   nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2666   if( pToCol ){
2667     for(i=0; i<pToCol->nExpr; i++){
2668       nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2669     }
2670   }
2671   pFKey = sqlite3DbMallocZero(db, nByte );
2672   if( pFKey==0 ){
2673     goto fk_end;
2674   }
2675   pFKey->pFrom = p;
2676   pFKey->pNextFrom = p->pFKey;
2677   z = (char*)&pFKey->aCol[nCol];
2678   pFKey->zTo = z;
2679   memcpy(z, pTo->z, pTo->n);
2680   z[pTo->n] = 0;
2681   sqlite3Dequote(z);
2682   z += pTo->n+1;
2683   pFKey->nCol = nCol;
2684   if( pFromCol==0 ){
2685     pFKey->aCol[0].iFrom = p->nCol-1;
2686   }else{
2687     for(i=0; i<nCol; i++){
2688       int j;
2689       for(j=0; j<p->nCol; j++){
2690         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2691           pFKey->aCol[i].iFrom = j;
2692           break;
2693         }
2694       }
2695       if( j>=p->nCol ){
2696         sqlite3ErrorMsg(pParse,
2697           "unknown column \"%s\" in foreign key definition",
2698           pFromCol->a[i].zName);
2699         goto fk_end;
2700       }
2701     }
2702   }
2703   if( pToCol ){
2704     for(i=0; i<nCol; i++){
2705       int n = sqlite3Strlen30(pToCol->a[i].zName);
2706       pFKey->aCol[i].zCol = z;
2707       memcpy(z, pToCol->a[i].zName, n);
2708       z[n] = 0;
2709       z += n+1;
2710     }
2711   }
2712   pFKey->isDeferred = 0;
2713   pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
2714   pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
2715 
2716   assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2717   pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2718       pFKey->zTo, (void *)pFKey
2719   );
2720   if( pNextTo==pFKey ){
2721     sqlite3OomFault(db);
2722     goto fk_end;
2723   }
2724   if( pNextTo ){
2725     assert( pNextTo->pPrevTo==0 );
2726     pFKey->pNextTo = pNextTo;
2727     pNextTo->pPrevTo = pFKey;
2728   }
2729 
2730   /* Link the foreign key to the table as the last step.
2731   */
2732   p->pFKey = pFKey;
2733   pFKey = 0;
2734 
2735 fk_end:
2736   sqlite3DbFree(db, pFKey);
2737 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2738   sqlite3ExprListDelete(db, pFromCol);
2739   sqlite3ExprListDelete(db, pToCol);
2740 }
2741 
2742 /*
2743 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2744 ** clause is seen as part of a foreign key definition.  The isDeferred
2745 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2746 ** The behavior of the most recently created foreign key is adjusted
2747 ** accordingly.
2748 */
sqlite3DeferForeignKey(Parse * pParse,int isDeferred)2749 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2750 #ifndef SQLITE_OMIT_FOREIGN_KEY
2751   Table *pTab;
2752   FKey *pFKey;
2753   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2754   assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2755   pFKey->isDeferred = (u8)isDeferred;
2756 #endif
2757 }
2758 
2759 /*
2760 ** Generate code that will erase and refill index *pIdx.  This is
2761 ** used to initialize a newly created index or to recompute the
2762 ** content of an index in response to a REINDEX command.
2763 **
2764 ** if memRootPage is not negative, it means that the index is newly
2765 ** created.  The register specified by memRootPage contains the
2766 ** root page number of the index.  If memRootPage is negative, then
2767 ** the index already exists and must be cleared before being refilled and
2768 ** the root page number of the index is taken from pIndex->tnum.
2769 */
sqlite3RefillIndex(Parse * pParse,Index * pIndex,int memRootPage)2770 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2771   Table *pTab = pIndex->pTable;  /* The table that is indexed */
2772   int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
2773   int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
2774   int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
2775   int addr1;                     /* Address of top of loop */
2776   int addr2;                     /* Address to jump to for next iteration */
2777   int tnum;                      /* Root page of index */
2778   int iPartIdxLabel;             /* Jump to this label to skip a row */
2779   Vdbe *v;                       /* Generate code into this virtual machine */
2780   KeyInfo *pKey;                 /* KeyInfo for index */
2781   int regRecord;                 /* Register holding assembled index record */
2782   sqlite3 *db = pParse->db;      /* The database connection */
2783   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2784 
2785 #ifndef SQLITE_OMIT_AUTHORIZATION
2786   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2787       db->aDb[iDb].zDbSName ) ){
2788     return;
2789   }
2790 #endif
2791 
2792   /* Require a write-lock on the table to perform this operation */
2793   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2794 
2795   v = sqlite3GetVdbe(pParse);
2796   if( v==0 ) return;
2797   if( memRootPage>=0 ){
2798     tnum = memRootPage;
2799   }else{
2800     tnum = pIndex->tnum;
2801   }
2802   pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2803   assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2804 
2805   /* Open the sorter cursor if we are to use one. */
2806   iSorter = pParse->nTab++;
2807   sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2808                     sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2809 
2810   /* Open the table. Loop through all rows of the table, inserting index
2811   ** records into the sorter. */
2812   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2813   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2814   regRecord = sqlite3GetTempReg(pParse);
2815 
2816   sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2817   sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2818   sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2819   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2820   sqlite3VdbeJumpHere(v, addr1);
2821   if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2822   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2823                     (char *)pKey, P4_KEYINFO);
2824   sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2825 
2826   addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2827   if( IsUniqueIndex(pIndex) ){
2828     int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2829     sqlite3VdbeGoto(v, j2);
2830     addr2 = sqlite3VdbeCurrentAddr(v);
2831     sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2832                          pIndex->nKeyCol); VdbeCoverage(v);
2833     sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2834   }else{
2835     addr2 = sqlite3VdbeCurrentAddr(v);
2836   }
2837   sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2838   sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2839   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2840   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2841   sqlite3ReleaseTempReg(pParse, regRecord);
2842   sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2843   sqlite3VdbeJumpHere(v, addr1);
2844 
2845   sqlite3VdbeAddOp1(v, OP_Close, iTab);
2846   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2847   sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2848 }
2849 
2850 /*
2851 ** Allocate heap space to hold an Index object with nCol columns.
2852 **
2853 ** Increase the allocation size to provide an extra nExtra bytes
2854 ** of 8-byte aligned space after the Index object and return a
2855 ** pointer to this extra space in *ppExtra.
2856 */
sqlite3AllocateIndexObject(sqlite3 * db,i16 nCol,int nExtra,char ** ppExtra)2857 Index *sqlite3AllocateIndexObject(
2858   sqlite3 *db,         /* Database connection */
2859   i16 nCol,            /* Total number of columns in the index */
2860   int nExtra,          /* Number of bytes of extra space to alloc */
2861   char **ppExtra       /* Pointer to the "extra" space */
2862 ){
2863   Index *p;            /* Allocated index object */
2864   int nByte;           /* Bytes of space for Index object + arrays */
2865 
2866   nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
2867           ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
2868           ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
2869                  sizeof(i16)*nCol +            /* Index.aiColumn   */
2870                  sizeof(u8)*nCol);             /* Index.aSortOrder */
2871   p = sqlite3DbMallocZero(db, nByte + nExtra);
2872   if( p ){
2873     char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2874     p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2875     p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2876     p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
2877     p->aSortOrder = (u8*)pExtra;
2878     p->nColumn = nCol;
2879     p->nKeyCol = nCol - 1;
2880     *ppExtra = ((char*)p) + nByte;
2881   }
2882   return p;
2883 }
2884 
2885 /*
2886 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
2887 ** and pTblList is the name of the table that is to be indexed.  Both will
2888 ** be NULL for a primary key or an index that is created to satisfy a
2889 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
2890 ** as the table to be indexed.  pParse->pNewTable is a table that is
2891 ** currently being constructed by a CREATE TABLE statement.
2892 **
2893 ** pList is a list of columns to be indexed.  pList will be NULL if this
2894 ** is a primary key or unique-constraint on the most recent column added
2895 ** to the table currently under construction.
2896 */
sqlite3CreateIndex(Parse * pParse,Token * pName1,Token * pName2,SrcList * pTblName,ExprList * pList,int onError,Token * pStart,Expr * pPIWhere,int sortOrder,int ifNotExist,u8 idxType)2897 void sqlite3CreateIndex(
2898   Parse *pParse,     /* All information about this parse */
2899   Token *pName1,     /* First part of index name. May be NULL */
2900   Token *pName2,     /* Second part of index name. May be NULL */
2901   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2902   ExprList *pList,   /* A list of columns to be indexed */
2903   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2904   Token *pStart,     /* The CREATE token that begins this statement */
2905   Expr *pPIWhere,    /* WHERE clause for partial indices */
2906   int sortOrder,     /* Sort order of primary key when pList==NULL */
2907   int ifNotExist,    /* Omit error if index already exists */
2908   u8 idxType         /* The index type */
2909 ){
2910   Table *pTab = 0;     /* Table to be indexed */
2911   Index *pIndex = 0;   /* The index to be created */
2912   char *zName = 0;     /* Name of the index */
2913   int nName;           /* Number of characters in zName */
2914   int i, j;
2915   DbFixer sFix;        /* For assigning database names to pTable */
2916   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
2917   sqlite3 *db = pParse->db;
2918   Db *pDb;             /* The specific table containing the indexed database */
2919   int iDb;             /* Index of the database that is being written */
2920   Token *pName = 0;    /* Unqualified name of the index to create */
2921   struct ExprList_item *pListItem; /* For looping over pList */
2922   int nExtra = 0;                  /* Space allocated for zExtra[] */
2923   int nExtraCol;                   /* Number of extra columns needed */
2924   char *zExtra = 0;                /* Extra space after the Index object */
2925   Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
2926 
2927   if( db->mallocFailed || pParse->nErr>0 ){
2928     goto exit_create_index;
2929   }
2930   if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2931     goto exit_create_index;
2932   }
2933   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2934     goto exit_create_index;
2935   }
2936 
2937   /*
2938   ** Find the table that is to be indexed.  Return early if not found.
2939   */
2940   if( pTblName!=0 ){
2941 
2942     /* Use the two-part index name to determine the database
2943     ** to search for the table. 'Fix' the table name to this db
2944     ** before looking up the table.
2945     */
2946     assert( pName1 && pName2 );
2947     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2948     if( iDb<0 ) goto exit_create_index;
2949     assert( pName && pName->z );
2950 
2951 #ifndef SQLITE_OMIT_TEMPDB
2952     /* If the index name was unqualified, check if the table
2953     ** is a temp table. If so, set the database to 1. Do not do this
2954     ** if initialising a database schema.
2955     */
2956     if( !db->init.busy ){
2957       pTab = sqlite3SrcListLookup(pParse, pTblName);
2958       if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2959         iDb = 1;
2960       }
2961     }
2962 #endif
2963 
2964     sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2965     if( sqlite3FixSrcList(&sFix, pTblName) ){
2966       /* Because the parser constructs pTblName from a single identifier,
2967       ** sqlite3FixSrcList can never fail. */
2968       assert(0);
2969     }
2970     pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2971     assert( db->mallocFailed==0 || pTab==0 );
2972     if( pTab==0 ) goto exit_create_index;
2973     if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2974       sqlite3ErrorMsg(pParse,
2975            "cannot create a TEMP index on non-TEMP table \"%s\"",
2976            pTab->zName);
2977       goto exit_create_index;
2978     }
2979     if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2980   }else{
2981     assert( pName==0 );
2982     assert( pStart==0 );
2983     pTab = pParse->pNewTable;
2984     if( !pTab ) goto exit_create_index;
2985     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2986   }
2987   pDb = &db->aDb[iDb];
2988 
2989   assert( pTab!=0 );
2990   assert( pParse->nErr==0 );
2991   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2992        && db->init.busy==0
2993 #if SQLITE_USER_AUTHENTICATION
2994        && sqlite3UserAuthTable(pTab->zName)==0
2995 #endif
2996        && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2997     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2998     goto exit_create_index;
2999   }
3000 #ifndef SQLITE_OMIT_VIEW
3001   if( pTab->pSelect ){
3002     sqlite3ErrorMsg(pParse, "views may not be indexed");
3003     goto exit_create_index;
3004   }
3005 #endif
3006 #ifndef SQLITE_OMIT_VIRTUALTABLE
3007   if( IsVirtual(pTab) ){
3008     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3009     goto exit_create_index;
3010   }
3011 #endif
3012 
3013   /*
3014   ** Find the name of the index.  Make sure there is not already another
3015   ** index or table with the same name.
3016   **
3017   ** Exception:  If we are reading the names of permanent indices from the
3018   ** sqlite_master table (because some other process changed the schema) and
3019   ** one of the index names collides with the name of a temporary table or
3020   ** index, then we will continue to process this index.
3021   **
3022   ** If pName==0 it means that we are
3023   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
3024   ** own name.
3025   */
3026   if( pName ){
3027     zName = sqlite3NameFromToken(db, pName);
3028     if( zName==0 ) goto exit_create_index;
3029     assert( pName->z!=0 );
3030     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3031       goto exit_create_index;
3032     }
3033     if( !db->init.busy ){
3034       if( sqlite3FindTable(db, zName, 0)!=0 ){
3035         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3036         goto exit_create_index;
3037       }
3038     }
3039     if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3040       if( !ifNotExist ){
3041         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3042       }else{
3043         assert( !db->init.busy );
3044         sqlite3CodeVerifySchema(pParse, iDb);
3045       }
3046       goto exit_create_index;
3047     }
3048   }else{
3049     int n;
3050     Index *pLoop;
3051     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3052     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3053     if( zName==0 ){
3054       goto exit_create_index;
3055     }
3056 
3057     /* Automatic index names generated from within sqlite3_declare_vtab()
3058     ** must have names that are distinct from normal automatic index names.
3059     ** The following statement converts "sqlite3_autoindex..." into
3060     ** "sqlite3_butoindex..." in order to make the names distinct.
3061     ** The "vtab_err.test" test demonstrates the need of this statement. */
3062     if( IN_DECLARE_VTAB ) zName[7]++;
3063   }
3064 
3065   /* Check for authorization to create an index.
3066   */
3067 #ifndef SQLITE_OMIT_AUTHORIZATION
3068   {
3069     const char *zDb = pDb->zDbSName;
3070     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3071       goto exit_create_index;
3072     }
3073     i = SQLITE_CREATE_INDEX;
3074     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3075     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3076       goto exit_create_index;
3077     }
3078   }
3079 #endif
3080 
3081   /* If pList==0, it means this routine was called to make a primary
3082   ** key out of the last column added to the table under construction.
3083   ** So create a fake list to simulate this.
3084   */
3085   if( pList==0 ){
3086     Token prevCol;
3087     sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3088     pList = sqlite3ExprListAppend(pParse, 0,
3089               sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3090     if( pList==0 ) goto exit_create_index;
3091     assert( pList->nExpr==1 );
3092     sqlite3ExprListSetSortOrder(pList, sortOrder);
3093   }else{
3094     sqlite3ExprListCheckLength(pParse, pList, "index");
3095   }
3096 
3097   /* Figure out how many bytes of space are required to store explicitly
3098   ** specified collation sequence names.
3099   */
3100   for(i=0; i<pList->nExpr; i++){
3101     Expr *pExpr = pList->a[i].pExpr;
3102     assert( pExpr!=0 );
3103     if( pExpr->op==TK_COLLATE ){
3104       nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3105     }
3106   }
3107 
3108   /*
3109   ** Allocate the index structure.
3110   */
3111   nName = sqlite3Strlen30(zName);
3112   nExtraCol = pPk ? pPk->nKeyCol : 1;
3113   pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3114                                       nName + nExtra + 1, &zExtra);
3115   if( db->mallocFailed ){
3116     goto exit_create_index;
3117   }
3118   assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3119   assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3120   pIndex->zName = zExtra;
3121   zExtra += nName + 1;
3122   memcpy(pIndex->zName, zName, nName+1);
3123   pIndex->pTable = pTab;
3124   pIndex->onError = (u8)onError;
3125   pIndex->uniqNotNull = onError!=OE_None;
3126   pIndex->idxType = idxType;
3127   pIndex->pSchema = db->aDb[iDb].pSchema;
3128   pIndex->nKeyCol = pList->nExpr;
3129   if( pPIWhere ){
3130     sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3131     pIndex->pPartIdxWhere = pPIWhere;
3132     pPIWhere = 0;
3133   }
3134   assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3135 
3136   /* Check to see if we should honor DESC requests on index columns
3137   */
3138   if( pDb->pSchema->file_format>=4 ){
3139     sortOrderMask = -1;   /* Honor DESC */
3140   }else{
3141     sortOrderMask = 0;    /* Ignore DESC */
3142   }
3143 
3144   /* Analyze the list of expressions that form the terms of the index and
3145   ** report any errors.  In the common case where the expression is exactly
3146   ** a table column, store that column in aiColumn[].  For general expressions,
3147   ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3148   **
3149   ** TODO: Issue a warning if two or more columns of the index are identical.
3150   ** TODO: Issue a warning if the table primary key is used as part of the
3151   ** index key.
3152   */
3153   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3154     Expr *pCExpr;                  /* The i-th index expression */
3155     int requestedSortOrder;        /* ASC or DESC on the i-th expression */
3156     const char *zColl;             /* Collation sequence name */
3157 
3158     sqlite3StringToId(pListItem->pExpr);
3159     sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3160     if( pParse->nErr ) goto exit_create_index;
3161     pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3162     if( pCExpr->op!=TK_COLUMN ){
3163       if( pTab==pParse->pNewTable ){
3164         sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3165                                 "UNIQUE constraints");
3166         goto exit_create_index;
3167       }
3168       if( pIndex->aColExpr==0 ){
3169         ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3170         pIndex->aColExpr = pCopy;
3171         if( !db->mallocFailed ){
3172           assert( pCopy!=0 );
3173           pListItem = &pCopy->a[i];
3174         }
3175       }
3176       j = XN_EXPR;
3177       pIndex->aiColumn[i] = XN_EXPR;
3178       pIndex->uniqNotNull = 0;
3179     }else{
3180       j = pCExpr->iColumn;
3181       assert( j<=0x7fff );
3182       if( j<0 ){
3183         j = pTab->iPKey;
3184       }else if( pTab->aCol[j].notNull==0 ){
3185         pIndex->uniqNotNull = 0;
3186       }
3187       pIndex->aiColumn[i] = (i16)j;
3188     }
3189     zColl = 0;
3190     if( pListItem->pExpr->op==TK_COLLATE ){
3191       int nColl;
3192       zColl = pListItem->pExpr->u.zToken;
3193       nColl = sqlite3Strlen30(zColl) + 1;
3194       assert( nExtra>=nColl );
3195       memcpy(zExtra, zColl, nColl);
3196       zColl = zExtra;
3197       zExtra += nColl;
3198       nExtra -= nColl;
3199     }else if( j>=0 ){
3200       zColl = pTab->aCol[j].zColl;
3201     }
3202     if( !zColl ) zColl = sqlite3StrBINARY;
3203     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3204       goto exit_create_index;
3205     }
3206     pIndex->azColl[i] = zColl;
3207     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3208     pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3209   }
3210 
3211   /* Append the table key to the end of the index.  For WITHOUT ROWID
3212   ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
3213   ** normal tables (when pPk==0) this will be the rowid.
3214   */
3215   if( pPk ){
3216     for(j=0; j<pPk->nKeyCol; j++){
3217       int x = pPk->aiColumn[j];
3218       assert( x>=0 );
3219       if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3220         pIndex->nColumn--;
3221       }else{
3222         pIndex->aiColumn[i] = x;
3223         pIndex->azColl[i] = pPk->azColl[j];
3224         pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3225         i++;
3226       }
3227     }
3228     assert( i==pIndex->nColumn );
3229   }else{
3230     pIndex->aiColumn[i] = XN_ROWID;
3231     pIndex->azColl[i] = sqlite3StrBINARY;
3232   }
3233   sqlite3DefaultRowEst(pIndex);
3234   if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3235 
3236   /* If this index contains every column of its table, then mark
3237   ** it as a covering index */
3238   assert( HasRowid(pTab)
3239       || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3240   if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3241     pIndex->isCovering = 1;
3242     for(j=0; j<pTab->nCol; j++){
3243       if( j==pTab->iPKey ) continue;
3244       if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3245       pIndex->isCovering = 0;
3246       break;
3247     }
3248   }
3249 
3250   if( pTab==pParse->pNewTable ){
3251     /* This routine has been called to create an automatic index as a
3252     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3253     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3254     ** i.e. one of:
3255     **
3256     ** CREATE TABLE t(x PRIMARY KEY, y);
3257     ** CREATE TABLE t(x, y, UNIQUE(x, y));
3258     **
3259     ** Either way, check to see if the table already has such an index. If
3260     ** so, don't bother creating this one. This only applies to
3261     ** automatically created indices. Users can do as they wish with
3262     ** explicit indices.
3263     **
3264     ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3265     ** (and thus suppressing the second one) even if they have different
3266     ** sort orders.
3267     **
3268     ** If there are different collating sequences or if the columns of
3269     ** the constraint occur in different orders, then the constraints are
3270     ** considered distinct and both result in separate indices.
3271     */
3272     Index *pIdx;
3273     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3274       int k;
3275       assert( IsUniqueIndex(pIdx) );
3276       assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3277       assert( IsUniqueIndex(pIndex) );
3278 
3279       if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3280       for(k=0; k<pIdx->nKeyCol; k++){
3281         const char *z1;
3282         const char *z2;
3283         assert( pIdx->aiColumn[k]>=0 );
3284         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3285         z1 = pIdx->azColl[k];
3286         z2 = pIndex->azColl[k];
3287         if( sqlite3StrICmp(z1, z2) ) break;
3288       }
3289       if( k==pIdx->nKeyCol ){
3290         if( pIdx->onError!=pIndex->onError ){
3291           /* This constraint creates the same index as a previous
3292           ** constraint specified somewhere in the CREATE TABLE statement.
3293           ** However the ON CONFLICT clauses are different. If both this
3294           ** constraint and the previous equivalent constraint have explicit
3295           ** ON CONFLICT clauses this is an error. Otherwise, use the
3296           ** explicitly specified behavior for the index.
3297           */
3298           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3299             sqlite3ErrorMsg(pParse,
3300                 "conflicting ON CONFLICT clauses specified", 0);
3301           }
3302           if( pIdx->onError==OE_Default ){
3303             pIdx->onError = pIndex->onError;
3304           }
3305         }
3306         if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3307         goto exit_create_index;
3308       }
3309     }
3310   }
3311 
3312   /* Link the new Index structure to its table and to the other
3313   ** in-memory database structures.
3314   */
3315   assert( pParse->nErr==0 );
3316   if( db->init.busy ){
3317     Index *p;
3318     assert( !IN_DECLARE_VTAB );
3319     assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3320     p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3321                           pIndex->zName, pIndex);
3322     if( p ){
3323       assert( p==pIndex );  /* Malloc must have failed */
3324       sqlite3OomFault(db);
3325       goto exit_create_index;
3326     }
3327     db->flags |= SQLITE_InternChanges;
3328     if( pTblName!=0 ){
3329       pIndex->tnum = db->init.newTnum;
3330     }
3331   }
3332 
3333   /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3334   ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3335   ** emit code to allocate the index rootpage on disk and make an entry for
3336   ** the index in the sqlite_master table and populate the index with
3337   ** content.  But, do not do this if we are simply reading the sqlite_master
3338   ** table to parse the schema, or if this index is the PRIMARY KEY index
3339   ** of a WITHOUT ROWID table.
3340   **
3341   ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3342   ** or UNIQUE index in a CREATE TABLE statement.  Since the table
3343   ** has just been created, it contains no data and the index initialization
3344   ** step can be skipped.
3345   */
3346   else if( HasRowid(pTab) || pTblName!=0 ){
3347     Vdbe *v;
3348     char *zStmt;
3349     int iMem = ++pParse->nMem;
3350 
3351     v = sqlite3GetVdbe(pParse);
3352     if( v==0 ) goto exit_create_index;
3353 
3354     sqlite3BeginWriteOperation(pParse, 1, iDb);
3355 
3356     /* Create the rootpage for the index using CreateIndex. But before
3357     ** doing so, code a Noop instruction and store its address in
3358     ** Index.tnum. This is required in case this index is actually a
3359     ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3360     ** that case the convertToWithoutRowidTable() routine will replace
3361     ** the Noop with a Goto to jump over the VDBE code generated below. */
3362     pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3363     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3364 
3365     /* Gather the complete text of the CREATE INDEX statement into
3366     ** the zStmt variable
3367     */
3368     if( pStart ){
3369       int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3370       if( pName->z[n-1]==';' ) n--;
3371       /* A named index with an explicit CREATE INDEX statement */
3372       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3373         onError==OE_None ? "" : " UNIQUE", n, pName->z);
3374     }else{
3375       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3376       /* zStmt = sqlite3MPrintf(""); */
3377       zStmt = 0;
3378     }
3379 
3380     /* Add an entry in sqlite_master for this index
3381     */
3382     sqlite3NestedParse(pParse,
3383         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3384         db->aDb[iDb].zDbSName, MASTER_NAME,
3385         pIndex->zName,
3386         pTab->zName,
3387         iMem,
3388         zStmt
3389     );
3390     sqlite3DbFree(db, zStmt);
3391 
3392     /* Fill the index with data and reparse the schema. Code an OP_Expire
3393     ** to invalidate all pre-compiled statements.
3394     */
3395     if( pTblName ){
3396       sqlite3RefillIndex(pParse, pIndex, iMem);
3397       sqlite3ChangeCookie(pParse, iDb);
3398       sqlite3VdbeAddParseSchemaOp(v, iDb,
3399          sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3400       sqlite3VdbeAddOp0(v, OP_Expire);
3401     }
3402 
3403     sqlite3VdbeJumpHere(v, pIndex->tnum);
3404   }
3405 
3406   /* When adding an index to the list of indices for a table, make
3407   ** sure all indices labeled OE_Replace come after all those labeled
3408   ** OE_Ignore.  This is necessary for the correct constraint check
3409   ** processing (in sqlite3GenerateConstraintChecks()) as part of
3410   ** UPDATE and INSERT statements.
3411   */
3412   if( db->init.busy || pTblName==0 ){
3413     if( onError!=OE_Replace || pTab->pIndex==0
3414          || pTab->pIndex->onError==OE_Replace){
3415       pIndex->pNext = pTab->pIndex;
3416       pTab->pIndex = pIndex;
3417     }else{
3418       Index *pOther = pTab->pIndex;
3419       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3420         pOther = pOther->pNext;
3421       }
3422       pIndex->pNext = pOther->pNext;
3423       pOther->pNext = pIndex;
3424     }
3425     pIndex = 0;
3426   }
3427 
3428   /* Clean up before exiting */
3429 exit_create_index:
3430   if( pIndex ) freeIndex(db, pIndex);
3431   sqlite3ExprDelete(db, pPIWhere);
3432   sqlite3ExprListDelete(db, pList);
3433   sqlite3SrcListDelete(db, pTblName);
3434   sqlite3DbFree(db, zName);
3435 }
3436 
3437 /*
3438 ** Fill the Index.aiRowEst[] array with default information - information
3439 ** to be used when we have not run the ANALYZE command.
3440 **
3441 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3442 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
3443 ** number of rows in the table that match any particular value of the
3444 ** first column of the index.  aiRowEst[2] is an estimate of the number
3445 ** of rows that match any particular combination of the first 2 columns
3446 ** of the index.  And so forth.  It must always be the case that
3447 *
3448 **           aiRowEst[N]<=aiRowEst[N-1]
3449 **           aiRowEst[N]>=1
3450 **
3451 ** Apart from that, we have little to go on besides intuition as to
3452 ** how aiRowEst[] should be initialized.  The numbers generated here
3453 ** are based on typical values found in actual indices.
3454 */
sqlite3DefaultRowEst(Index * pIdx)3455 void sqlite3DefaultRowEst(Index *pIdx){
3456   /*                10,  9,  8,  7,  6 */
3457   LogEst aVal[] = { 33, 32, 30, 28, 26 };
3458   LogEst *a = pIdx->aiRowLogEst;
3459   int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3460   int i;
3461 
3462   /* Indexes with default row estimates should not have stat1 data */
3463   assert( !pIdx->hasStat1 );
3464 
3465   /* Set the first entry (number of rows in the index) to the estimated
3466   ** number of rows in the table, or half the number of rows in the table
3467   ** for a partial index.   But do not let the estimate drop below 10. */
3468   a[0] = pIdx->pTable->nRowLogEst;
3469   if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10;  assert( 10==sqlite3LogEst(2) );
3470   if( a[0]<33 ) a[0] = 33;                  assert( 33==sqlite3LogEst(10) );
3471 
3472   /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3473   ** 6 and each subsequent value (if any) is 5.  */
3474   memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3475   for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3476     a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
3477   }
3478 
3479   assert( 0==sqlite3LogEst(1) );
3480   if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3481 }
3482 
3483 /*
3484 ** This routine will drop an existing named index.  This routine
3485 ** implements the DROP INDEX statement.
3486 */
sqlite3DropIndex(Parse * pParse,SrcList * pName,int ifExists)3487 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3488   Index *pIndex;
3489   Vdbe *v;
3490   sqlite3 *db = pParse->db;
3491   int iDb;
3492 
3493   assert( pParse->nErr==0 );   /* Never called with prior errors */
3494   if( db->mallocFailed ){
3495     goto exit_drop_index;
3496   }
3497   assert( pName->nSrc==1 );
3498   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3499     goto exit_drop_index;
3500   }
3501   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3502   if( pIndex==0 ){
3503     if( !ifExists ){
3504       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3505     }else{
3506       sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3507     }
3508     pParse->checkSchema = 1;
3509     goto exit_drop_index;
3510   }
3511   if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3512     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3513       "or PRIMARY KEY constraint cannot be dropped", 0);
3514     goto exit_drop_index;
3515   }
3516   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3517 #ifndef SQLITE_OMIT_AUTHORIZATION
3518   {
3519     int code = SQLITE_DROP_INDEX;
3520     Table *pTab = pIndex->pTable;
3521     const char *zDb = db->aDb[iDb].zDbSName;
3522     const char *zTab = SCHEMA_TABLE(iDb);
3523     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3524       goto exit_drop_index;
3525     }
3526     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3527     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3528       goto exit_drop_index;
3529     }
3530   }
3531 #endif
3532 
3533   /* Generate code to remove the index and from the master table */
3534   v = sqlite3GetVdbe(pParse);
3535   if( v ){
3536     sqlite3BeginWriteOperation(pParse, 1, iDb);
3537     sqlite3NestedParse(pParse,
3538        "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3539        db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3540     );
3541     sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3542     sqlite3ChangeCookie(pParse, iDb);
3543     destroyRootPage(pParse, pIndex->tnum, iDb);
3544     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3545   }
3546 
3547 exit_drop_index:
3548   sqlite3SrcListDelete(db, pName);
3549 }
3550 
3551 /*
3552 ** pArray is a pointer to an array of objects. Each object in the
3553 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3554 ** to extend the array so that there is space for a new object at the end.
3555 **
3556 ** When this function is called, *pnEntry contains the current size of
3557 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3558 ** in total).
3559 **
3560 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3561 ** space allocated for the new object is zeroed, *pnEntry updated to
3562 ** reflect the new size of the array and a pointer to the new allocation
3563 ** returned. *pIdx is set to the index of the new array entry in this case.
3564 **
3565 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3566 ** unchanged and a copy of pArray returned.
3567 */
sqlite3ArrayAllocate(sqlite3 * db,void * pArray,int szEntry,int * pnEntry,int * pIdx)3568 void *sqlite3ArrayAllocate(
3569   sqlite3 *db,      /* Connection to notify of malloc failures */
3570   void *pArray,     /* Array of objects.  Might be reallocated */
3571   int szEntry,      /* Size of each object in the array */
3572   int *pnEntry,     /* Number of objects currently in use */
3573   int *pIdx         /* Write the index of a new slot here */
3574 ){
3575   char *z;
3576   int n = *pnEntry;
3577   if( (n & (n-1))==0 ){
3578     int sz = (n==0) ? 1 : 2*n;
3579     void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3580     if( pNew==0 ){
3581       *pIdx = -1;
3582       return pArray;
3583     }
3584     pArray = pNew;
3585   }
3586   z = (char*)pArray;
3587   memset(&z[n * szEntry], 0, szEntry);
3588   *pIdx = n;
3589   ++*pnEntry;
3590   return pArray;
3591 }
3592 
3593 /*
3594 ** Append a new element to the given IdList.  Create a new IdList if
3595 ** need be.
3596 **
3597 ** A new IdList is returned, or NULL if malloc() fails.
3598 */
sqlite3IdListAppend(sqlite3 * db,IdList * pList,Token * pToken)3599 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3600   int i;
3601   if( pList==0 ){
3602     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3603     if( pList==0 ) return 0;
3604   }
3605   pList->a = sqlite3ArrayAllocate(
3606       db,
3607       pList->a,
3608       sizeof(pList->a[0]),
3609       &pList->nId,
3610       &i
3611   );
3612   if( i<0 ){
3613     sqlite3IdListDelete(db, pList);
3614     return 0;
3615   }
3616   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3617   return pList;
3618 }
3619 
3620 /*
3621 ** Delete an IdList.
3622 */
sqlite3IdListDelete(sqlite3 * db,IdList * pList)3623 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3624   int i;
3625   if( pList==0 ) return;
3626   for(i=0; i<pList->nId; i++){
3627     sqlite3DbFree(db, pList->a[i].zName);
3628   }
3629   sqlite3DbFree(db, pList->a);
3630   sqlite3DbFreeNN(db, pList);
3631 }
3632 
3633 /*
3634 ** Return the index in pList of the identifier named zId.  Return -1
3635 ** if not found.
3636 */
sqlite3IdListIndex(IdList * pList,const char * zName)3637 int sqlite3IdListIndex(IdList *pList, const char *zName){
3638   int i;
3639   if( pList==0 ) return -1;
3640   for(i=0; i<pList->nId; i++){
3641     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3642   }
3643   return -1;
3644 }
3645 
3646 /*
3647 ** Expand the space allocated for the given SrcList object by
3648 ** creating nExtra new slots beginning at iStart.  iStart is zero based.
3649 ** New slots are zeroed.
3650 **
3651 ** For example, suppose a SrcList initially contains two entries: A,B.
3652 ** To append 3 new entries onto the end, do this:
3653 **
3654 **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3655 **
3656 ** After the call above it would contain:  A, B, nil, nil, nil.
3657 ** If the iStart argument had been 1 instead of 2, then the result
3658 ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
3659 ** the iStart value would be 0.  The result then would
3660 ** be: nil, nil, nil, A, B.
3661 **
3662 ** If a memory allocation fails the SrcList is unchanged.  The
3663 ** db->mallocFailed flag will be set to true.
3664 */
sqlite3SrcListEnlarge(sqlite3 * db,SrcList * pSrc,int nExtra,int iStart)3665 SrcList *sqlite3SrcListEnlarge(
3666   sqlite3 *db,       /* Database connection to notify of OOM errors */
3667   SrcList *pSrc,     /* The SrcList to be enlarged */
3668   int nExtra,        /* Number of new slots to add to pSrc->a[] */
3669   int iStart         /* Index in pSrc->a[] of first new slot */
3670 ){
3671   int i;
3672 
3673   /* Sanity checking on calling parameters */
3674   assert( iStart>=0 );
3675   assert( nExtra>=1 );
3676   assert( pSrc!=0 );
3677   assert( iStart<=pSrc->nSrc );
3678 
3679   /* Allocate additional space if needed */
3680   if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3681     SrcList *pNew;
3682     int nAlloc = pSrc->nSrc*2+nExtra;
3683     int nGot;
3684     pNew = sqlite3DbRealloc(db, pSrc,
3685                sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3686     if( pNew==0 ){
3687       assert( db->mallocFailed );
3688       return pSrc;
3689     }
3690     pSrc = pNew;
3691     nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3692     pSrc->nAlloc = nGot;
3693   }
3694 
3695   /* Move existing slots that come after the newly inserted slots
3696   ** out of the way */
3697   for(i=pSrc->nSrc-1; i>=iStart; i--){
3698     pSrc->a[i+nExtra] = pSrc->a[i];
3699   }
3700   pSrc->nSrc += nExtra;
3701 
3702   /* Zero the newly allocated slots */
3703   memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3704   for(i=iStart; i<iStart+nExtra; i++){
3705     pSrc->a[i].iCursor = -1;
3706   }
3707 
3708   /* Return a pointer to the enlarged SrcList */
3709   return pSrc;
3710 }
3711 
3712 
3713 /*
3714 ** Append a new table name to the given SrcList.  Create a new SrcList if
3715 ** need be.  A new entry is created in the SrcList even if pTable is NULL.
3716 **
3717 ** A SrcList is returned, or NULL if there is an OOM error.  The returned
3718 ** SrcList might be the same as the SrcList that was input or it might be
3719 ** a new one.  If an OOM error does occurs, then the prior value of pList
3720 ** that is input to this routine is automatically freed.
3721 **
3722 ** If pDatabase is not null, it means that the table has an optional
3723 ** database name prefix.  Like this:  "database.table".  The pDatabase
3724 ** points to the table name and the pTable points to the database name.
3725 ** The SrcList.a[].zName field is filled with the table name which might
3726 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3727 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3728 ** or with NULL if no database is specified.
3729 **
3730 ** In other words, if call like this:
3731 **
3732 **         sqlite3SrcListAppend(D,A,B,0);
3733 **
3734 ** Then B is a table name and the database name is unspecified.  If called
3735 ** like this:
3736 **
3737 **         sqlite3SrcListAppend(D,A,B,C);
3738 **
3739 ** Then C is the table name and B is the database name.  If C is defined
3740 ** then so is B.  In other words, we never have a case where:
3741 **
3742 **         sqlite3SrcListAppend(D,A,0,C);
3743 **
3744 ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
3745 ** before being added to the SrcList.
3746 */
sqlite3SrcListAppend(sqlite3 * db,SrcList * pList,Token * pTable,Token * pDatabase)3747 SrcList *sqlite3SrcListAppend(
3748   sqlite3 *db,        /* Connection to notify of malloc failures */
3749   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
3750   Token *pTable,      /* Table to append */
3751   Token *pDatabase    /* Database of the table */
3752 ){
3753   struct SrcList_item *pItem;
3754   assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
3755   assert( db!=0 );
3756   if( pList==0 ){
3757     pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3758     if( pList==0 ) return 0;
3759     pList->nAlloc = 1;
3760     pList->nSrc = 1;
3761     memset(&pList->a[0], 0, sizeof(pList->a[0]));
3762     pList->a[0].iCursor = -1;
3763   }else{
3764     pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3765   }
3766   if( db->mallocFailed ){
3767     sqlite3SrcListDelete(db, pList);
3768     return 0;
3769   }
3770   pItem = &pList->a[pList->nSrc-1];
3771   if( pDatabase && pDatabase->z==0 ){
3772     pDatabase = 0;
3773   }
3774   if( pDatabase ){
3775     pItem->zName = sqlite3NameFromToken(db, pDatabase);
3776     pItem->zDatabase = sqlite3NameFromToken(db, pTable);
3777   }else{
3778     pItem->zName = sqlite3NameFromToken(db, pTable);
3779     pItem->zDatabase = 0;
3780   }
3781   return pList;
3782 }
3783 
3784 /*
3785 ** Assign VdbeCursor index numbers to all tables in a SrcList
3786 */
sqlite3SrcListAssignCursors(Parse * pParse,SrcList * pList)3787 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3788   int i;
3789   struct SrcList_item *pItem;
3790   assert(pList || pParse->db->mallocFailed );
3791   if( pList ){
3792     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3793       if( pItem->iCursor>=0 ) break;
3794       pItem->iCursor = pParse->nTab++;
3795       if( pItem->pSelect ){
3796         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3797       }
3798     }
3799   }
3800 }
3801 
3802 /*
3803 ** Delete an entire SrcList including all its substructure.
3804 */
sqlite3SrcListDelete(sqlite3 * db,SrcList * pList)3805 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3806   int i;
3807   struct SrcList_item *pItem;
3808   if( pList==0 ) return;
3809   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3810     sqlite3DbFree(db, pItem->zDatabase);
3811     sqlite3DbFree(db, pItem->zName);
3812     sqlite3DbFree(db, pItem->zAlias);
3813     if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3814     if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3815     sqlite3DeleteTable(db, pItem->pTab);
3816     sqlite3SelectDelete(db, pItem->pSelect);
3817     sqlite3ExprDelete(db, pItem->pOn);
3818     sqlite3IdListDelete(db, pItem->pUsing);
3819   }
3820   sqlite3DbFreeNN(db, pList);
3821 }
3822 
3823 /*
3824 ** This routine is called by the parser to add a new term to the
3825 ** end of a growing FROM clause.  The "p" parameter is the part of
3826 ** the FROM clause that has already been constructed.  "p" is NULL
3827 ** if this is the first term of the FROM clause.  pTable and pDatabase
3828 ** are the name of the table and database named in the FROM clause term.
3829 ** pDatabase is NULL if the database name qualifier is missing - the
3830 ** usual case.  If the term has an alias, then pAlias points to the
3831 ** alias token.  If the term is a subquery, then pSubquery is the
3832 ** SELECT statement that the subquery encodes.  The pTable and
3833 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
3834 ** parameters are the content of the ON and USING clauses.
3835 **
3836 ** Return a new SrcList which encodes is the FROM with the new
3837 ** term added.
3838 */
sqlite3SrcListAppendFromTerm(Parse * pParse,SrcList * p,Token * pTable,Token * pDatabase,Token * pAlias,Select * pSubquery,Expr * pOn,IdList * pUsing)3839 SrcList *sqlite3SrcListAppendFromTerm(
3840   Parse *pParse,          /* Parsing context */
3841   SrcList *p,             /* The left part of the FROM clause already seen */
3842   Token *pTable,          /* Name of the table to add to the FROM clause */
3843   Token *pDatabase,       /* Name of the database containing pTable */
3844   Token *pAlias,          /* The right-hand side of the AS subexpression */
3845   Select *pSubquery,      /* A subquery used in place of a table name */
3846   Expr *pOn,              /* The ON clause of a join */
3847   IdList *pUsing          /* The USING clause of a join */
3848 ){
3849   struct SrcList_item *pItem;
3850   sqlite3 *db = pParse->db;
3851   if( !p && (pOn || pUsing) ){
3852     sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3853       (pOn ? "ON" : "USING")
3854     );
3855     goto append_from_error;
3856   }
3857   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3858   if( p==0 || NEVER(p->nSrc==0) ){
3859     goto append_from_error;
3860   }
3861   pItem = &p->a[p->nSrc-1];
3862   assert( pAlias!=0 );
3863   if( pAlias->n ){
3864     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3865   }
3866   pItem->pSelect = pSubquery;
3867   pItem->pOn = pOn;
3868   pItem->pUsing = pUsing;
3869   return p;
3870 
3871  append_from_error:
3872   assert( p==0 );
3873   sqlite3ExprDelete(db, pOn);
3874   sqlite3IdListDelete(db, pUsing);
3875   sqlite3SelectDelete(db, pSubquery);
3876   return 0;
3877 }
3878 
3879 /*
3880 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3881 ** element of the source-list passed as the second argument.
3882 */
sqlite3SrcListIndexedBy(Parse * pParse,SrcList * p,Token * pIndexedBy)3883 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3884   assert( pIndexedBy!=0 );
3885   if( p && ALWAYS(p->nSrc>0) ){
3886     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3887     assert( pItem->fg.notIndexed==0 );
3888     assert( pItem->fg.isIndexedBy==0 );
3889     assert( pItem->fg.isTabFunc==0 );
3890     if( pIndexedBy->n==1 && !pIndexedBy->z ){
3891       /* A "NOT INDEXED" clause was supplied. See parse.y
3892       ** construct "indexed_opt" for details. */
3893       pItem->fg.notIndexed = 1;
3894     }else{
3895       pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3896       pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3897     }
3898   }
3899 }
3900 
3901 /*
3902 ** Add the list of function arguments to the SrcList entry for a
3903 ** table-valued-function.
3904 */
sqlite3SrcListFuncArgs(Parse * pParse,SrcList * p,ExprList * pList)3905 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3906   if( p ){
3907     struct SrcList_item *pItem = &p->a[p->nSrc-1];
3908     assert( pItem->fg.notIndexed==0 );
3909     assert( pItem->fg.isIndexedBy==0 );
3910     assert( pItem->fg.isTabFunc==0 );
3911     pItem->u1.pFuncArg = pList;
3912     pItem->fg.isTabFunc = 1;
3913   }else{
3914     sqlite3ExprListDelete(pParse->db, pList);
3915   }
3916 }
3917 
3918 /*
3919 ** When building up a FROM clause in the parser, the join operator
3920 ** is initially attached to the left operand.  But the code generator
3921 ** expects the join operator to be on the right operand.  This routine
3922 ** Shifts all join operators from left to right for an entire FROM
3923 ** clause.
3924 **
3925 ** Example: Suppose the join is like this:
3926 **
3927 **           A natural cross join B
3928 **
3929 ** The operator is "natural cross join".  The A and B operands are stored
3930 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
3931 ** operator with A.  This routine shifts that operator over to B.
3932 */
sqlite3SrcListShiftJoinType(SrcList * p)3933 void sqlite3SrcListShiftJoinType(SrcList *p){
3934   if( p ){
3935     int i;
3936     for(i=p->nSrc-1; i>0; i--){
3937       p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3938     }
3939     p->a[0].fg.jointype = 0;
3940   }
3941 }
3942 
3943 /*
3944 ** Generate VDBE code for a BEGIN statement.
3945 */
sqlite3BeginTransaction(Parse * pParse,int type)3946 void sqlite3BeginTransaction(Parse *pParse, int type){
3947   sqlite3 *db;
3948   Vdbe *v;
3949   int i;
3950 
3951   assert( pParse!=0 );
3952   db = pParse->db;
3953   assert( db!=0 );
3954   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3955     return;
3956   }
3957   v = sqlite3GetVdbe(pParse);
3958   if( !v ) return;
3959   if( type!=TK_DEFERRED ){
3960     for(i=0; i<db->nDb; i++){
3961       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3962       sqlite3VdbeUsesBtree(v, i);
3963     }
3964   }
3965   sqlite3VdbeAddOp0(v, OP_AutoCommit);
3966 }
3967 
3968 /*
3969 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
3970 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK.  Otherwise
3971 ** code is generated for a COMMIT.
3972 */
sqlite3EndTransaction(Parse * pParse,int eType)3973 void sqlite3EndTransaction(Parse *pParse, int eType){
3974   Vdbe *v;
3975   int isRollback;
3976 
3977   assert( pParse!=0 );
3978   assert( pParse->db!=0 );
3979   assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
3980   isRollback = eType==TK_ROLLBACK;
3981   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
3982        isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
3983     return;
3984   }
3985   v = sqlite3GetVdbe(pParse);
3986   if( v ){
3987     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
3988   }
3989 }
3990 
3991 /*
3992 ** This function is called by the parser when it parses a command to create,
3993 ** release or rollback an SQL savepoint.
3994 */
sqlite3Savepoint(Parse * pParse,int op,Token * pName)3995 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3996   char *zName = sqlite3NameFromToken(pParse->db, pName);
3997   if( zName ){
3998     Vdbe *v = sqlite3GetVdbe(pParse);
3999 #ifndef SQLITE_OMIT_AUTHORIZATION
4000     static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4001     assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4002 #endif
4003     if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4004       sqlite3DbFree(pParse->db, zName);
4005       return;
4006     }
4007     sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4008   }
4009 }
4010 
4011 /*
4012 ** Make sure the TEMP database is open and available for use.  Return
4013 ** the number of errors.  Leave any error messages in the pParse structure.
4014 */
sqlite3OpenTempDatabase(Parse * pParse)4015 int sqlite3OpenTempDatabase(Parse *pParse){
4016   sqlite3 *db = pParse->db;
4017   if( db->aDb[1].pBt==0 && !pParse->explain ){
4018     int rc;
4019     Btree *pBt;
4020     static const int flags =
4021           SQLITE_OPEN_READWRITE |
4022           SQLITE_OPEN_CREATE |
4023           SQLITE_OPEN_EXCLUSIVE |
4024           SQLITE_OPEN_DELETEONCLOSE |
4025           SQLITE_OPEN_TEMP_DB;
4026 
4027     rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4028     if( rc!=SQLITE_OK ){
4029       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4030         "file for storing temporary tables");
4031       pParse->rc = rc;
4032       return 1;
4033     }
4034     db->aDb[1].pBt = pBt;
4035     assert( db->aDb[1].pSchema );
4036     if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4037       sqlite3OomFault(db);
4038       return 1;
4039     }
4040   }
4041   return 0;
4042 }
4043 
4044 /*
4045 ** Record the fact that the schema cookie will need to be verified
4046 ** for database iDb.  The code to actually verify the schema cookie
4047 ** will occur at the end of the top-level VDBE and will be generated
4048 ** later, by sqlite3FinishCoding().
4049 */
sqlite3CodeVerifySchema(Parse * pParse,int iDb)4050 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4051   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4052 
4053   assert( iDb>=0 && iDb<pParse->db->nDb );
4054   assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4055   assert( iDb<SQLITE_MAX_ATTACHED+2 );
4056   assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4057   if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4058     DbMaskSet(pToplevel->cookieMask, iDb);
4059     if( !OMIT_TEMPDB && iDb==1 ){
4060       sqlite3OpenTempDatabase(pToplevel);
4061     }
4062   }
4063 }
4064 
4065 /*
4066 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4067 ** attached database. Otherwise, invoke it for the database named zDb only.
4068 */
sqlite3CodeVerifyNamedSchema(Parse * pParse,const char * zDb)4069 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4070   sqlite3 *db = pParse->db;
4071   int i;
4072   for(i=0; i<db->nDb; i++){
4073     Db *pDb = &db->aDb[i];
4074     if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4075       sqlite3CodeVerifySchema(pParse, i);
4076     }
4077   }
4078 }
4079 
4080 /*
4081 ** Generate VDBE code that prepares for doing an operation that
4082 ** might change the database.
4083 **
4084 ** This routine starts a new transaction if we are not already within
4085 ** a transaction.  If we are already within a transaction, then a checkpoint
4086 ** is set if the setStatement parameter is true.  A checkpoint should
4087 ** be set for operations that might fail (due to a constraint) part of
4088 ** the way through and which will need to undo some writes without having to
4089 ** rollback the whole transaction.  For operations where all constraints
4090 ** can be checked before any changes are made to the database, it is never
4091 ** necessary to undo a write and the checkpoint should not be set.
4092 */
sqlite3BeginWriteOperation(Parse * pParse,int setStatement,int iDb)4093 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4094   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4095   sqlite3CodeVerifySchema(pParse, iDb);
4096   DbMaskSet(pToplevel->writeMask, iDb);
4097   pToplevel->isMultiWrite |= setStatement;
4098 }
4099 
4100 /*
4101 ** Indicate that the statement currently under construction might write
4102 ** more than one entry (example: deleting one row then inserting another,
4103 ** inserting multiple rows in a table, or inserting a row and index entries.)
4104 ** If an abort occurs after some of these writes have completed, then it will
4105 ** be necessary to undo the completed writes.
4106 */
sqlite3MultiWrite(Parse * pParse)4107 void sqlite3MultiWrite(Parse *pParse){
4108   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4109   pToplevel->isMultiWrite = 1;
4110 }
4111 
4112 /*
4113 ** The code generator calls this routine if is discovers that it is
4114 ** possible to abort a statement prior to completion.  In order to
4115 ** perform this abort without corrupting the database, we need to make
4116 ** sure that the statement is protected by a statement transaction.
4117 **
4118 ** Technically, we only need to set the mayAbort flag if the
4119 ** isMultiWrite flag was previously set.  There is a time dependency
4120 ** such that the abort must occur after the multiwrite.  This makes
4121 ** some statements involving the REPLACE conflict resolution algorithm
4122 ** go a little faster.  But taking advantage of this time dependency
4123 ** makes it more difficult to prove that the code is correct (in
4124 ** particular, it prevents us from writing an effective
4125 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4126 ** to take the safe route and skip the optimization.
4127 */
sqlite3MayAbort(Parse * pParse)4128 void sqlite3MayAbort(Parse *pParse){
4129   Parse *pToplevel = sqlite3ParseToplevel(pParse);
4130   pToplevel->mayAbort = 1;
4131 }
4132 
4133 /*
4134 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4135 ** error. The onError parameter determines which (if any) of the statement
4136 ** and/or current transaction is rolled back.
4137 */
sqlite3HaltConstraint(Parse * pParse,int errCode,int onError,char * p4,i8 p4type,u8 p5Errmsg)4138 void sqlite3HaltConstraint(
4139   Parse *pParse,    /* Parsing context */
4140   int errCode,      /* extended error code */
4141   int onError,      /* Constraint type */
4142   char *p4,         /* Error message */
4143   i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
4144   u8 p5Errmsg       /* P5_ErrMsg type */
4145 ){
4146   Vdbe *v = sqlite3GetVdbe(pParse);
4147   assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4148   if( onError==OE_Abort ){
4149     sqlite3MayAbort(pParse);
4150   }
4151   sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4152   sqlite3VdbeChangeP5(v, p5Errmsg);
4153 }
4154 
4155 /*
4156 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4157 */
sqlite3UniqueConstraint(Parse * pParse,int onError,Index * pIdx)4158 void sqlite3UniqueConstraint(
4159   Parse *pParse,    /* Parsing context */
4160   int onError,      /* Constraint type */
4161   Index *pIdx       /* The index that triggers the constraint */
4162 ){
4163   char *zErr;
4164   int j;
4165   StrAccum errMsg;
4166   Table *pTab = pIdx->pTable;
4167 
4168   sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4169   if( pIdx->aColExpr ){
4170     sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4171   }else{
4172     for(j=0; j<pIdx->nKeyCol; j++){
4173       char *zCol;
4174       assert( pIdx->aiColumn[j]>=0 );
4175       zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4176       if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4177       sqlite3StrAccumAppendAll(&errMsg, pTab->zName);
4178       sqlite3StrAccumAppend(&errMsg, ".", 1);
4179       sqlite3StrAccumAppendAll(&errMsg, zCol);
4180     }
4181   }
4182   zErr = sqlite3StrAccumFinish(&errMsg);
4183   sqlite3HaltConstraint(pParse,
4184     IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4185                             : SQLITE_CONSTRAINT_UNIQUE,
4186     onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4187 }
4188 
4189 
4190 /*
4191 ** Code an OP_Halt due to non-unique rowid.
4192 */
sqlite3RowidConstraint(Parse * pParse,int onError,Table * pTab)4193 void sqlite3RowidConstraint(
4194   Parse *pParse,    /* Parsing context */
4195   int onError,      /* Conflict resolution algorithm */
4196   Table *pTab       /* The table with the non-unique rowid */
4197 ){
4198   char *zMsg;
4199   int rc;
4200   if( pTab->iPKey>=0 ){
4201     zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4202                           pTab->aCol[pTab->iPKey].zName);
4203     rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4204   }else{
4205     zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4206     rc = SQLITE_CONSTRAINT_ROWID;
4207   }
4208   sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4209                         P5_ConstraintUnique);
4210 }
4211 
4212 /*
4213 ** Check to see if pIndex uses the collating sequence pColl.  Return
4214 ** true if it does and false if it does not.
4215 */
4216 #ifndef SQLITE_OMIT_REINDEX
collationMatch(const char * zColl,Index * pIndex)4217 static int collationMatch(const char *zColl, Index *pIndex){
4218   int i;
4219   assert( zColl!=0 );
4220   for(i=0; i<pIndex->nColumn; i++){
4221     const char *z = pIndex->azColl[i];
4222     assert( z!=0 || pIndex->aiColumn[i]<0 );
4223     if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4224       return 1;
4225     }
4226   }
4227   return 0;
4228 }
4229 #endif
4230 
4231 /*
4232 ** Recompute all indices of pTab that use the collating sequence pColl.
4233 ** If pColl==0 then recompute all indices of pTab.
4234 */
4235 #ifndef SQLITE_OMIT_REINDEX
reindexTable(Parse * pParse,Table * pTab,char const * zColl)4236 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4237   Index *pIndex;              /* An index associated with pTab */
4238 
4239   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4240     if( zColl==0 || collationMatch(zColl, pIndex) ){
4241       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4242       sqlite3BeginWriteOperation(pParse, 0, iDb);
4243       sqlite3RefillIndex(pParse, pIndex, -1);
4244     }
4245   }
4246 }
4247 #endif
4248 
4249 /*
4250 ** Recompute all indices of all tables in all databases where the
4251 ** indices use the collating sequence pColl.  If pColl==0 then recompute
4252 ** all indices everywhere.
4253 */
4254 #ifndef SQLITE_OMIT_REINDEX
reindexDatabases(Parse * pParse,char const * zColl)4255 static void reindexDatabases(Parse *pParse, char const *zColl){
4256   Db *pDb;                    /* A single database */
4257   int iDb;                    /* The database index number */
4258   sqlite3 *db = pParse->db;   /* The database connection */
4259   HashElem *k;                /* For looping over tables in pDb */
4260   Table *pTab;                /* A table in the database */
4261 
4262   assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
4263   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4264     assert( pDb!=0 );
4265     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
4266       pTab = (Table*)sqliteHashData(k);
4267       reindexTable(pParse, pTab, zColl);
4268     }
4269   }
4270 }
4271 #endif
4272 
4273 /*
4274 ** Generate code for the REINDEX command.
4275 **
4276 **        REINDEX                            -- 1
4277 **        REINDEX  <collation>               -- 2
4278 **        REINDEX  ?<database>.?<tablename>  -- 3
4279 **        REINDEX  ?<database>.?<indexname>  -- 4
4280 **
4281 ** Form 1 causes all indices in all attached databases to be rebuilt.
4282 ** Form 2 rebuilds all indices in all databases that use the named
4283 ** collating function.  Forms 3 and 4 rebuild the named index or all
4284 ** indices associated with the named table.
4285 */
4286 #ifndef SQLITE_OMIT_REINDEX
sqlite3Reindex(Parse * pParse,Token * pName1,Token * pName2)4287 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4288   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
4289   char *z;                    /* Name of a table or index */
4290   const char *zDb;            /* Name of the database */
4291   Table *pTab;                /* A table in the database */
4292   Index *pIndex;              /* An index associated with pTab */
4293   int iDb;                    /* The database index number */
4294   sqlite3 *db = pParse->db;   /* The database connection */
4295   Token *pObjName;            /* Name of the table or index to be reindexed */
4296 
4297   /* Read the database schema. If an error occurs, leave an error message
4298   ** and code in pParse and return NULL. */
4299   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4300     return;
4301   }
4302 
4303   if( pName1==0 ){
4304     reindexDatabases(pParse, 0);
4305     return;
4306   }else if( NEVER(pName2==0) || pName2->z==0 ){
4307     char *zColl;
4308     assert( pName1->z );
4309     zColl = sqlite3NameFromToken(pParse->db, pName1);
4310     if( !zColl ) return;
4311     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4312     if( pColl ){
4313       reindexDatabases(pParse, zColl);
4314       sqlite3DbFree(db, zColl);
4315       return;
4316     }
4317     sqlite3DbFree(db, zColl);
4318   }
4319   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4320   if( iDb<0 ) return;
4321   z = sqlite3NameFromToken(db, pObjName);
4322   if( z==0 ) return;
4323   zDb = db->aDb[iDb].zDbSName;
4324   pTab = sqlite3FindTable(db, z, zDb);
4325   if( pTab ){
4326     reindexTable(pParse, pTab, 0);
4327     sqlite3DbFree(db, z);
4328     return;
4329   }
4330   pIndex = sqlite3FindIndex(db, z, zDb);
4331   sqlite3DbFree(db, z);
4332   if( pIndex ){
4333     sqlite3BeginWriteOperation(pParse, 0, iDb);
4334     sqlite3RefillIndex(pParse, pIndex, -1);
4335     return;
4336   }
4337   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4338 }
4339 #endif
4340 
4341 /*
4342 ** Return a KeyInfo structure that is appropriate for the given Index.
4343 **
4344 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4345 ** when it has finished using it.
4346 */
sqlite3KeyInfoOfIndex(Parse * pParse,Index * pIdx)4347 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4348   int i;
4349   int nCol = pIdx->nColumn;
4350   int nKey = pIdx->nKeyCol;
4351   KeyInfo *pKey;
4352   if( pParse->nErr ) return 0;
4353   if( pIdx->uniqNotNull ){
4354     pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4355   }else{
4356     pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4357   }
4358   if( pKey ){
4359     assert( sqlite3KeyInfoIsWriteable(pKey) );
4360     for(i=0; i<nCol; i++){
4361       const char *zColl = pIdx->azColl[i];
4362       pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4363                         sqlite3LocateCollSeq(pParse, zColl);
4364       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4365     }
4366     if( pParse->nErr ){
4367       sqlite3KeyInfoUnref(pKey);
4368       pKey = 0;
4369     }
4370   }
4371   return pKey;
4372 }
4373 
4374 #ifndef SQLITE_OMIT_CTE
4375 /*
4376 ** This routine is invoked once per CTE by the parser while parsing a
4377 ** WITH clause.
4378 */
sqlite3WithAdd(Parse * pParse,With * pWith,Token * pName,ExprList * pArglist,Select * pQuery)4379 With *sqlite3WithAdd(
4380   Parse *pParse,          /* Parsing context */
4381   With *pWith,            /* Existing WITH clause, or NULL */
4382   Token *pName,           /* Name of the common-table */
4383   ExprList *pArglist,     /* Optional column name list for the table */
4384   Select *pQuery          /* Query used to initialize the table */
4385 ){
4386   sqlite3 *db = pParse->db;
4387   With *pNew;
4388   char *zName;
4389 
4390   /* Check that the CTE name is unique within this WITH clause. If
4391   ** not, store an error in the Parse structure. */
4392   zName = sqlite3NameFromToken(pParse->db, pName);
4393   if( zName && pWith ){
4394     int i;
4395     for(i=0; i<pWith->nCte; i++){
4396       if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4397         sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4398       }
4399     }
4400   }
4401 
4402   if( pWith ){
4403     int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4404     pNew = sqlite3DbRealloc(db, pWith, nByte);
4405   }else{
4406     pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4407   }
4408   assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4409 
4410   if( db->mallocFailed ){
4411     sqlite3ExprListDelete(db, pArglist);
4412     sqlite3SelectDelete(db, pQuery);
4413     sqlite3DbFree(db, zName);
4414     pNew = pWith;
4415   }else{
4416     pNew->a[pNew->nCte].pSelect = pQuery;
4417     pNew->a[pNew->nCte].pCols = pArglist;
4418     pNew->a[pNew->nCte].zName = zName;
4419     pNew->a[pNew->nCte].zCteErr = 0;
4420     pNew->nCte++;
4421   }
4422 
4423   return pNew;
4424 }
4425 
4426 /*
4427 ** Free the contents of the With object passed as the second argument.
4428 */
sqlite3WithDelete(sqlite3 * db,With * pWith)4429 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4430   if( pWith ){
4431     int i;
4432     for(i=0; i<pWith->nCte; i++){
4433       struct Cte *pCte = &pWith->a[i];
4434       sqlite3ExprListDelete(db, pCte->pCols);
4435       sqlite3SelectDelete(db, pCte->pSelect);
4436       sqlite3DbFree(db, pCte->zName);
4437     }
4438     sqlite3DbFree(db, pWith);
4439   }
4440 }
4441 #endif /* !defined(SQLITE_OMIT_CTE) */
4442