xref: /openbsd/gnu/usr.bin/gcc/gcc/ssa-dce.c (revision c87b03e5)
1 /* Dead-code elimination pass for the GNU compiler.
2    Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
3    Written by Jeffrey D. Oldham <oldham@codesourcery.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA.  */
21 
22 /* Dead-code elimination is the removal of instructions which have no
23    impact on the program's output.  "Dead instructions" have no impact
24    on the program's output, while "necessary instructions" may have
25    impact on the output.
26 
27    The algorithm consists of three phases:
28    1) marking as necessary all instructions known to be necessary,
29       e.g., writing a value to memory,
30    2) propagating necessary instructions, e.g., the instructions
31       giving values to operands in necessary instructions, and
32    3) removing dead instructions (except replacing dead conditionals
33       with unconditional jumps).
34 
35    Side Effects:
36    The last step can require adding labels, deleting insns, and
37    modifying basic block structures.  Some conditional jumps may be
38    converted to unconditional jumps so the control-flow graph may be
39    out-of-date.
40 
41    Edges from some infinite loops to the exit block can be added to
42    the control-flow graph, but will be removed after this pass is
43    complete.
44 
45    It Does Not Perform:
46    We decided to not simultaneously perform jump optimization and dead
47    loop removal during dead-code elimination.  Thus, all jump
48    instructions originally present remain after dead-code elimination
49    but 1) unnecessary conditional jump instructions are changed to
50    unconditional jump instructions and 2) all unconditional jump
51    instructions remain.
52 
53    Assumptions:
54    1) SSA has been performed.
55    2) The basic block and control-flow graph structures are accurate.
56    3) The flow graph permits constructing an edge_list.
57    4) note rtxes should be saved.
58 
59    Unfinished:
60    When replacing unnecessary conditional jumps with unconditional
61    jumps, the control-flow graph is not updated.  It should be.
62 
63    References:
64    Building an Optimizing Compiler
65    Robert Morgan
66    Butterworth-Heinemann, 1998
67    Section 8.9
68 */
69 
70 #include "config.h"
71 #include "system.h"
72 
73 #include "rtl.h"
74 #include "hard-reg-set.h"
75 #include "basic-block.h"
76 #include "ssa.h"
77 #include "insn-config.h"
78 #include "recog.h"
79 #include "output.h"
80 
81 
82 /* A map from blocks to the edges on which they are control dependent.  */
83 typedef struct {
84   /* An dynamically allocated array.  The Nth element corresponds to
85      the block with index N + 2.  The Ith bit in the bitmap is set if
86      that block is dependent on the Ith edge.  */
87   bitmap *data;
88   /* The number of elements in the array.  */
89   int length;
90 } control_dependent_block_to_edge_map_s, *control_dependent_block_to_edge_map;
91 
92 /* Local function prototypes.  */
93 static control_dependent_block_to_edge_map control_dependent_block_to_edge_map_create
94   PARAMS((size_t num_basic_blocks));
95 static void set_control_dependent_block_to_edge_map_bit
96   PARAMS ((control_dependent_block_to_edge_map c, basic_block bb,
97 	   int edge_index));
98 static void control_dependent_block_to_edge_map_free
99   PARAMS ((control_dependent_block_to_edge_map c));
100 static void find_all_control_dependences
101   PARAMS ((struct edge_list *el, dominance_info pdom,
102 	   control_dependent_block_to_edge_map cdbte));
103 static void find_control_dependence
104   PARAMS ((struct edge_list *el, int edge_index, dominance_info pdom,
105 	   control_dependent_block_to_edge_map cdbte));
106 static basic_block find_pdom
107   PARAMS ((dominance_info pdom, basic_block block));
108 static int inherently_necessary_register_1
109   PARAMS ((rtx *current_rtx, void *data));
110 static int inherently_necessary_register
111   PARAMS ((rtx current_rtx));
112 static int find_inherently_necessary
113   PARAMS ((rtx current_rtx));
114 static int propagate_necessity_through_operand
115   PARAMS ((rtx *current_rtx, void *data));
116 static void note_inherently_necessary_set
117   PARAMS ((rtx, rtx, void *));
118 
119 /* Unnecessary insns are indicated using insns' in_struct bit.  */
120 
121 /* Indicate INSN is dead-code; returns nothing.  */
122 #define KILL_INSN(INSN)		INSN_DEAD_CODE_P(INSN) = 1
123 /* Indicate INSN is necessary, i.e., not dead-code; returns nothing.  */
124 #define RESURRECT_INSN(INSN)	INSN_DEAD_CODE_P(INSN) = 0
125 /* Return nonzero if INSN is unnecessary.  */
126 #define UNNECESSARY_P(INSN)	INSN_DEAD_CODE_P(INSN)
127 static void mark_all_insn_unnecessary
128   PARAMS ((void));
129 /* Execute CODE with free variable INSN for all unnecessary insns in
130    an unspecified order, producing no output.  */
131 #define EXECUTE_IF_UNNECESSARY(INSN, CODE)	\
132 {								\
133   rtx INSN;							\
134 								\
135   for (INSN = get_insns (); INSN != NULL_RTX; INSN = NEXT_INSN (INSN))	\
136     if (INSN_DEAD_CODE_P (INSN)) {				\
137       CODE;							\
138     }								\
139 }
140 /* Find the label beginning block BB.  */
141 static rtx find_block_label
142   PARAMS ((basic_block bb));
143 /* Remove INSN, updating its basic block structure.  */
144 static void delete_insn_bb
145   PARAMS ((rtx insn));
146 
147 /* Recording which blocks are control dependent on which edges.  We
148    expect each block to be control dependent on very few edges so we
149    use a bitmap for each block recording its edges.  An array holds
150    the bitmap.  Its position 0 entry holds the bitmap for block
151    INVALID_BLOCK+1 so that all blocks, including the entry and exit
152    blocks can participate in the data structure.  */
153 
154 /* Create a control_dependent_block_to_edge_map, given the number
155    NUM_BASIC_BLOCKS of non-entry, non-exit basic blocks, e.g.,
156    n_basic_blocks.  This memory must be released using
157    control_dependent_block_to_edge_map_free ().  */
158 
159 static control_dependent_block_to_edge_map
control_dependent_block_to_edge_map_create(num_basic_blocks)160 control_dependent_block_to_edge_map_create (num_basic_blocks)
161      size_t num_basic_blocks;
162 {
163   int i;
164   control_dependent_block_to_edge_map c
165     = xmalloc (sizeof (control_dependent_block_to_edge_map_s));
166   c->length = num_basic_blocks - (INVALID_BLOCK+1);
167   c->data = xmalloc ((size_t) c->length*sizeof (bitmap));
168   for (i = 0; i < c->length; ++i)
169     c->data[i] = BITMAP_XMALLOC ();
170 
171   return c;
172 }
173 
174 /* Indicate block BB is control dependent on an edge with index
175    EDGE_INDEX in the mapping C of blocks to edges on which they are
176    control-dependent.  */
177 
178 static void
set_control_dependent_block_to_edge_map_bit(c,bb,edge_index)179 set_control_dependent_block_to_edge_map_bit (c, bb, edge_index)
180      control_dependent_block_to_edge_map c;
181      basic_block bb;
182      int edge_index;
183 {
184   if (bb->index - (INVALID_BLOCK+1) >= c->length)
185     abort ();
186 
187   bitmap_set_bit (c->data[bb->index - (INVALID_BLOCK+1)],
188 		  edge_index);
189 }
190 
191 /* Execute CODE for each edge (given number EDGE_NUMBER within the
192    CODE) for which the block containing INSN is control dependent,
193    returning no output.  CDBTE is the mapping of blocks to edges on
194    which they are control-dependent.  */
195 
196 #define EXECUTE_IF_CONTROL_DEPENDENT(CDBTE, INSN, EDGE_NUMBER, CODE) \
197 	EXECUTE_IF_SET_IN_BITMAP \
198 	  (CDBTE->data[BLOCK_NUM (INSN) - (INVALID_BLOCK+1)], 0, \
199 	  EDGE_NUMBER, CODE)
200 
201 /* Destroy a control_dependent_block_to_edge_map C.  */
202 
203 static void
control_dependent_block_to_edge_map_free(c)204 control_dependent_block_to_edge_map_free (c)
205      control_dependent_block_to_edge_map c;
206 {
207   int i;
208   for (i = 0; i < c->length; ++i)
209     BITMAP_XFREE (c->data[i]);
210   free ((PTR) c);
211 }
212 
213 /* Record all blocks' control dependences on all edges in the edge
214    list EL, ala Morgan, Section 3.6.  The mapping PDOM of blocks to
215    their postdominators are used, and results are stored in CDBTE,
216    which should be empty.  */
217 
218 static void
find_all_control_dependences(el,pdom,cdbte)219 find_all_control_dependences (el, pdom, cdbte)
220    struct edge_list *el;
221    dominance_info pdom;
222    control_dependent_block_to_edge_map cdbte;
223 {
224   int i;
225 
226   for (i = 0; i < NUM_EDGES (el); ++i)
227     find_control_dependence (el, i, pdom, cdbte);
228 }
229 
230 /* Determine all blocks' control dependences on the given edge with
231    edge_list EL index EDGE_INDEX, ala Morgan, Section 3.6.  The
232    mapping PDOM of blocks to their postdominators are used, and
233    results are stored in CDBTE, which is assumed to be initialized
234    with zeros in each (block b', edge) position.  */
235 
236 static void
find_control_dependence(el,edge_index,pdom,cdbte)237 find_control_dependence (el, edge_index, pdom, cdbte)
238    struct edge_list *el;
239    int edge_index;
240    dominance_info pdom;
241    control_dependent_block_to_edge_map cdbte;
242 {
243   basic_block current_block;
244   basic_block ending_block;
245 
246   if (INDEX_EDGE_PRED_BB (el, edge_index) == EXIT_BLOCK_PTR)
247     abort ();
248   ending_block =
249     (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
250     ? ENTRY_BLOCK_PTR->next_bb
251     : find_pdom (pdom, INDEX_EDGE_PRED_BB (el, edge_index));
252 
253   for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
254        current_block != ending_block && current_block != EXIT_BLOCK_PTR;
255        current_block = find_pdom (pdom, current_block))
256     {
257       set_control_dependent_block_to_edge_map_bit (cdbte,
258 						   current_block,
259 						   edge_index);
260     }
261 }
262 
263 /* Find the immediate postdominator PDOM of the specified basic block
264    BLOCK.  This function is necessary because some blocks have
265    negative numbers.  */
266 
267 static basic_block
find_pdom(pdom,block)268 find_pdom (pdom, block)
269      dominance_info pdom;
270      basic_block block;
271 {
272   if (!block)
273     abort ();
274   if (block->index == INVALID_BLOCK)
275     abort ();
276 
277   if (block == ENTRY_BLOCK_PTR)
278     return ENTRY_BLOCK_PTR->next_bb;
279   else if (block == EXIT_BLOCK_PTR)
280     return EXIT_BLOCK_PTR;
281   else
282     {
283       basic_block bb = get_immediate_dominator (pdom, block);
284       if (!bb)
285 	return EXIT_BLOCK_PTR;
286       return bb;
287     }
288 }
289 
290 /* Determine if the given CURRENT_RTX uses a hard register not
291    converted to SSA.  Returns nonzero only if it uses such a hard
292    register.  DATA is not used.
293 
294    The program counter (PC) is not considered inherently necessary
295    since code should be position-independent and thus not depend on
296    particular PC values.  */
297 
298 static int
inherently_necessary_register_1(current_rtx,data)299 inherently_necessary_register_1 (current_rtx, data)
300      rtx *current_rtx;
301      void *data ATTRIBUTE_UNUSED;
302 {
303   rtx x = *current_rtx;
304 
305   if (x == NULL_RTX)
306     return 0;
307   switch (GET_CODE (x))
308     {
309     case CLOBBER:
310       /* Do not traverse the rest of the clobber.  */
311       return -1;
312       break;
313     case PC:
314       return 0;
315       break;
316     case REG:
317       if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)) || x == pc_rtx)
318 	return 0;
319       else
320 	return !0;
321       break;
322     default:
323       return 0;
324       break;
325     }
326 }
327 
328 /* Return nonzero if the insn CURRENT_RTX is inherently necessary.  */
329 
330 static int
inherently_necessary_register(current_rtx)331 inherently_necessary_register (current_rtx)
332      rtx current_rtx;
333 {
334   return for_each_rtx (&current_rtx,
335 		       &inherently_necessary_register_1, NULL);
336 }
337 
338 
339 /* Called via note_stores for each store in an insn.  Note whether
340    or not a particular store is inherently necessary.  Store a
341    nonzero value in inherently_necessary_p if such a store is found.  */
342 
343 static void
note_inherently_necessary_set(dest,set,data)344 note_inherently_necessary_set (dest, set, data)
345      rtx set ATTRIBUTE_UNUSED;
346      rtx dest;
347      void *data;
348 {
349   int *inherently_necessary_set_p = (int *) data;
350 
351   while (GET_CODE (dest) == SUBREG
352 	 || GET_CODE (dest) == STRICT_LOW_PART
353 	 || GET_CODE (dest) == ZERO_EXTRACT
354 	 || GET_CODE (dest) == SIGN_EXTRACT)
355     dest = XEXP (dest, 0);
356 
357   if (GET_CODE (dest) == MEM
358       || GET_CODE (dest) == UNSPEC
359       || GET_CODE (dest) == UNSPEC_VOLATILE)
360     *inherently_necessary_set_p = 1;
361 }
362 
363 /* Mark X as inherently necessary if appropriate.  For example,
364    function calls and storing values into memory are inherently
365    necessary.  This function is to be used with for_each_rtx ().
366    Return nonzero iff inherently necessary.  */
367 
368 static int
find_inherently_necessary(x)369 find_inherently_necessary (x)
370      rtx x;
371 {
372   if (x == NULL_RTX)
373     return 0;
374   else if (inherently_necessary_register (x))
375     return !0;
376   else
377     switch (GET_CODE (x))
378       {
379       case CALL_INSN:
380       case BARRIER:
381       case PREFETCH:
382 	return !0;
383       case CODE_LABEL:
384       case NOTE:
385 	return 0;
386       case JUMP_INSN:
387 	return JUMP_TABLE_DATA_P (x) || computed_jump_p (x) != 0;
388       case INSN:
389 	{
390 	  int inherently_necessary_set = 0;
391 	  note_stores (PATTERN (x),
392 		       note_inherently_necessary_set,
393 		       &inherently_necessary_set);
394 
395 	  /* If we found an inherently necessary set or an asm
396 	     instruction, then we consider this insn inherently
397 	     necessary.  */
398 	  return (inherently_necessary_set
399 		  || GET_CODE (PATTERN (x)) == ASM_INPUT
400 		  || asm_noperands (PATTERN (x)) >= 0);
401 	}
402       default:
403 	/* Found an impossible insn type.  */
404 	abort ();
405 	break;
406       }
407 }
408 
409 /* Propagate necessity through REG and SUBREG operands of CURRENT_RTX.
410    This function is called with for_each_rtx () on necessary
411    instructions.  The DATA must be a varray of unprocessed
412    instructions.  */
413 
414 static int
propagate_necessity_through_operand(current_rtx,data)415 propagate_necessity_through_operand (current_rtx, data)
416      rtx *current_rtx;
417      void *data;
418 {
419   rtx x = *current_rtx;
420   varray_type *unprocessed_instructions = (varray_type *) data;
421 
422   if (x == NULL_RTX)
423     return 0;
424   switch ( GET_CODE (x))
425     {
426     case REG:
427       if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)))
428 	{
429 	  rtx insn = VARRAY_RTX (ssa_definition, REGNO (x));
430 	  if (insn != NULL_RTX && UNNECESSARY_P (insn))
431 	    {
432 	      RESURRECT_INSN (insn);
433 	      VARRAY_PUSH_RTX (*unprocessed_instructions, insn);
434 	    }
435 	}
436       return 0;
437 
438     default:
439       return 0;
440     }
441 }
442 
443 /* Indicate all insns initially assumed to be unnecessary.  */
444 
445 static void
mark_all_insn_unnecessary()446 mark_all_insn_unnecessary ()
447 {
448   rtx insn;
449   for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
450     KILL_INSN (insn);
451 }
452 
453 /* Find the label beginning block BB, adding one if necessary.  */
454 
455 static rtx
find_block_label(bb)456 find_block_label (bb)
457      basic_block bb;
458 {
459   rtx insn = bb->head;
460   if (LABEL_P (insn))
461     return insn;
462   else
463     {
464       rtx new_label = emit_label_before (gen_label_rtx (), insn);
465       if (insn == bb->head)
466 	bb->head = new_label;
467       return new_label;
468     }
469 }
470 
471 /* Remove INSN, updating its basic block structure.  */
472 
473 static void
delete_insn_bb(insn)474 delete_insn_bb (insn)
475      rtx insn;
476 {
477   if (!insn)
478     abort ();
479 
480   /* Do not actually delete anything that is not an INSN.
481 
482      We can get here because we only consider INSNs as
483      potentially necessary.  We leave it to later passes
484      to remove unnecessary notes, unused labels, etc.  */
485   if (! INSN_P (insn))
486     return;
487 
488   delete_insn (insn);
489 }
490 
491 /* Perform the dead-code elimination.  */
492 
493 void
ssa_eliminate_dead_code()494 ssa_eliminate_dead_code ()
495 {
496   rtx insn;
497   basic_block bb;
498   /* Necessary instructions with operands to explore.  */
499   varray_type unprocessed_instructions;
500   /* Map element (b,e) is nonzero if the block is control dependent on
501      edge.  "cdbte" abbreviates control dependent block to edge.  */
502   control_dependent_block_to_edge_map cdbte;
503  /* Element I is the immediate postdominator of block I.  */
504   dominance_info pdom;
505   struct edge_list *el;
506 
507   /* Initialize the data structures.  */
508   mark_all_insn_unnecessary ();
509   VARRAY_RTX_INIT (unprocessed_instructions, 64,
510 		   "unprocessed instructions");
511   cdbte = control_dependent_block_to_edge_map_create (last_basic_block);
512 
513   /* Prepare for use of BLOCK_NUM ().  */
514   connect_infinite_loops_to_exit ();
515 
516   /* Compute control dependence.  */
517   pdom = calculate_dominance_info (CDI_POST_DOMINATORS);
518   el = create_edge_list ();
519   find_all_control_dependences (el, pdom, cdbte);
520 
521   /* Find inherently necessary instructions.  */
522   for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
523     if (find_inherently_necessary (insn))
524       {
525 	RESURRECT_INSN (insn);
526 	VARRAY_PUSH_RTX (unprocessed_instructions, insn);
527       }
528 
529   /* Propagate necessity using the operands of necessary instructions.  */
530   while (VARRAY_ACTIVE_SIZE (unprocessed_instructions) > 0)
531     {
532       rtx current_instruction;
533       int edge_number;
534 
535       current_instruction = VARRAY_TOP_RTX (unprocessed_instructions);
536       VARRAY_POP (unprocessed_instructions);
537 
538       /* Make corresponding control dependent edges necessary.  */
539       /* Assume the only JUMP_INSN is the block's last insn.  It appears
540 	 that the last instruction of the program need not be a
541 	 JUMP_INSN.  */
542 
543       if (INSN_P (current_instruction)
544 	  && !JUMP_TABLE_DATA_P (current_instruction))
545 	{
546 	  /* Notes and labels contain no interesting operands.  */
547 	  EXECUTE_IF_CONTROL_DEPENDENT
548 	    (cdbte, current_instruction, edge_number,
549 	    {
550 	      rtx jump_insn = (INDEX_EDGE_PRED_BB (el, edge_number))->end;
551 	      if (GET_CODE (jump_insn) == JUMP_INSN
552 		  && UNNECESSARY_P (jump_insn))
553 		{
554 		  RESURRECT_INSN (jump_insn);
555 		  VARRAY_PUSH_RTX (unprocessed_instructions, jump_insn);
556 		}
557 	    });
558 
559 	  /* Propagate through the operands.  */
560 	  for_each_rtx (&current_instruction,
561 			&propagate_necessity_through_operand,
562 			(PTR) &unprocessed_instructions);
563 
564 	  /* PHI nodes are somewhat special in that each PHI alternative
565 	     has data and control dependencies.  The data dependencies
566 	     are handled via propagate_necessity_through_operand.  We
567 	     handle the control dependency here.
568 
569 	     We consider the control dependent edges leading to the
570 	     predecessor block associated with each PHI alternative
571 	     as necessary.  */
572 	  if (PHI_NODE_P (current_instruction))
573 	    {
574 	      rtvec phi_vec = XVEC (SET_SRC (PATTERN (current_instruction)), 0);
575 	      int num_elem = GET_NUM_ELEM (phi_vec);
576 	      int v;
577 
578 	      for (v = num_elem - 2; v >= 0; v -= 2)
579 		{
580 		  basic_block bb;
581 
582 		  bb = BASIC_BLOCK (INTVAL (RTVEC_ELT (phi_vec, v + 1)));
583 		  EXECUTE_IF_CONTROL_DEPENDENT
584 		    (cdbte, bb->end, edge_number,
585 		    {
586 		      rtx jump_insn;
587 
588 		      jump_insn = (INDEX_EDGE_PRED_BB (el, edge_number))->end;
589 		      if (((GET_CODE (jump_insn) == JUMP_INSN))
590 			  && UNNECESSARY_P (jump_insn))
591 			{
592 			  RESURRECT_INSN (jump_insn);
593 			  VARRAY_PUSH_RTX (unprocessed_instructions, jump_insn);
594 			}
595 		    });
596 
597 		}
598 	    }
599 	}
600     }
601 
602   /* Remove the unnecessary instructions.  */
603   EXECUTE_IF_UNNECESSARY (insn,
604   {
605     if (any_condjump_p (insn))
606       {
607 	basic_block bb = BLOCK_FOR_INSN (insn);
608 	basic_block pdom_bb = find_pdom (pdom, bb);
609 	rtx lbl;
610 	edge e;
611 
612 	/* Egad.  The immediate post dominator is the exit block.  We
613 	   would like to optimize this conditional jump to jump directly
614 	   to the exit block.  That can be difficult as we may not have
615 	   a suitable CODE_LABEL that allows us to fall unmolested into
616 	   the exit block.
617 
618 	   So, we just delete the conditional branch by turning it into
619 	   a deleted note.   That is safe, but just not as optimal as
620 	   it could be.  */
621 	if (pdom_bb == EXIT_BLOCK_PTR)
622 	  {
623 	    /* Since we're going to just delete the branch, we need
624 	       look at all the edges and remove all those which are not
625 	       a fallthru edge.  */
626 	    e = bb->succ;
627 	    while (e)
628 	      {
629 		edge temp = e;
630 
631 		e = e->succ_next;
632 		if ((temp->flags & EDGE_FALLTHRU) == 0)
633 		  {
634 		    /* We've found a non-fallthru edge, find any PHI nodes
635 		       at the target and clean them up.  */
636 		    if (temp->dest != EXIT_BLOCK_PTR)
637 		      {
638 		        rtx insn
639 			  = first_insn_after_basic_block_note (temp->dest);
640 
641 		        while (PHI_NODE_P (insn))
642 			  {
643 			    remove_phi_alternative (PATTERN (insn), temp->src);
644 			    insn = NEXT_INSN (insn);
645 			  }
646 		      }
647 
648 		    remove_edge (temp);
649 		  }
650 	      }
651 
652 	    /* Now "delete" the conditional jump.  */
653 	    PUT_CODE (insn, NOTE);
654 	    NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
655 	    continue;
656 	  }
657 
658 	/* We've found a conditional branch that is unnecessary.
659 
660 	   First, remove all outgoing edges from this block, updating
661 	   PHI nodes as appropriate.  */
662 	e = bb->succ;
663 	while (e)
664 	  {
665 	    edge temp = e;
666 
667 	    e = e->succ_next;
668 
669 	    if (temp->flags & EDGE_ABNORMAL)
670 	      continue;
671 
672 	    /* We found an edge that is not executable.  First simplify
673 	       the PHI nodes in the target block.  */
674 	    if (temp->dest != EXIT_BLOCK_PTR)
675 	      {
676 		rtx insn = first_insn_after_basic_block_note (temp->dest);
677 
678 		while (PHI_NODE_P (insn))
679 		  {
680 		    remove_phi_alternative (PATTERN (insn), temp->src);
681 		    insn = NEXT_INSN (insn);
682 		  }
683 	      }
684 
685 	    remove_edge (temp);
686 	  }
687 
688 	/* Create an edge from this block to the post dominator.
689 	   What about the PHI nodes at the target?  */
690 	make_edge (bb, pdom_bb, 0);
691 
692 	/* Third, transform this insn into an unconditional
693 	   jump to the label for the immediate postdominator.  */
694 	lbl = find_block_label (pdom_bb);
695 	SET_SRC (PATTERN (insn)) = gen_rtx_LABEL_REF (VOIDmode, lbl);
696 	INSN_CODE (insn) = -1;
697 	JUMP_LABEL (insn) = lbl;
698 	LABEL_NUSES (lbl)++;
699 
700 	/* A barrier must follow any unconditional jump.  Barriers
701 	   are not in basic blocks so this must occur after
702 	   deleting the conditional jump.  */
703 	emit_barrier_after (insn);
704       }
705     else if (!JUMP_P (insn))
706       delete_insn_bb (insn);
707   });
708 
709   /* Remove fake edges from the CFG.  */
710   remove_fake_edges ();
711 
712   /* Find any blocks with no successors and ensure they are followed
713      by a BARRIER.  delete_insn has the nasty habit of deleting barriers
714      when deleting insns.  */
715   FOR_EACH_BB (bb)
716     {
717       if (bb->succ == NULL)
718 	{
719 	  rtx next = NEXT_INSN (bb->end);
720 
721 	  if (!next || GET_CODE (next) != BARRIER)
722 	    emit_barrier_after (bb->end);
723 	}
724     }
725   /* Release allocated memory.  */
726   for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
727     RESURRECT_INSN (insn);
728   if (VARRAY_ACTIVE_SIZE (unprocessed_instructions) != 0)
729     abort ();
730   control_dependent_block_to_edge_map_free (cdbte);
731   free ((PTR) pdom);
732   free_edge_list (el);
733 }
734