1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4 * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5 */
6
7 #include <stdlib.h>
8 #include <stdbool.h>
9 #include <unistd.h>
10 #include <sched.h>
11 #include <errno.h>
12 #include <string.h>
13 #include <sys/mman.h>
14 #include <sys/wait.h>
15 #include <asm/unistd.h>
16 #include <as-layout.h>
17 #include <init.h>
18 #include <kern_util.h>
19 #include <mem.h>
20 #include <os.h>
21 #include <ptrace_user.h>
22 #include <registers.h>
23 #include <skas.h>
24 #include <sysdep/stub.h>
25 #include <linux/threads.h>
26 #include <timetravel.h>
27 #include "../internal.h"
28
is_skas_winch(int pid,int fd,void * data)29 int is_skas_winch(int pid, int fd, void *data)
30 {
31 return pid == getpgrp();
32 }
33
ptrace_reg_name(int idx)34 static const char *ptrace_reg_name(int idx)
35 {
36 #define R(n) case HOST_##n: return #n
37
38 switch (idx) {
39 #ifdef __x86_64__
40 R(BX);
41 R(CX);
42 R(DI);
43 R(SI);
44 R(DX);
45 R(BP);
46 R(AX);
47 R(R8);
48 R(R9);
49 R(R10);
50 R(R11);
51 R(R12);
52 R(R13);
53 R(R14);
54 R(R15);
55 R(ORIG_AX);
56 R(CS);
57 R(SS);
58 R(EFLAGS);
59 #elif defined(__i386__)
60 R(IP);
61 R(SP);
62 R(EFLAGS);
63 R(AX);
64 R(BX);
65 R(CX);
66 R(DX);
67 R(SI);
68 R(DI);
69 R(BP);
70 R(CS);
71 R(SS);
72 R(DS);
73 R(FS);
74 R(ES);
75 R(GS);
76 R(ORIG_AX);
77 #endif
78 }
79 return "";
80 }
81
ptrace_dump_regs(int pid)82 static int ptrace_dump_regs(int pid)
83 {
84 unsigned long regs[MAX_REG_NR];
85 int i;
86
87 if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
88 return -errno;
89
90 printk(UM_KERN_ERR "Stub registers -\n");
91 for (i = 0; i < ARRAY_SIZE(regs); i++) {
92 const char *regname = ptrace_reg_name(i);
93
94 printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
95 }
96
97 return 0;
98 }
99
100 /*
101 * Signals that are OK to receive in the stub - we'll just continue it.
102 * SIGWINCH will happen when UML is inside a detached screen.
103 */
104 #define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
105
106 /* Signals that the stub will finish with - anything else is an error */
107 #define STUB_DONE_MASK (1 << SIGTRAP)
108
wait_stub_done(int pid)109 void wait_stub_done(int pid)
110 {
111 int n, status, err;
112
113 while (1) {
114 CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
115 if ((n < 0) || !WIFSTOPPED(status))
116 goto bad_wait;
117
118 if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
119 break;
120
121 err = ptrace(PTRACE_CONT, pid, 0, 0);
122 if (err) {
123 printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
124 __func__, errno);
125 fatal_sigsegv();
126 }
127 }
128
129 if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
130 return;
131
132 bad_wait:
133 err = ptrace_dump_regs(pid);
134 if (err)
135 printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
136 -err);
137 printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
138 __func__, pid, n, errno, status);
139 fatal_sigsegv();
140 }
141
142 extern unsigned long current_stub_stack(void);
143
get_skas_faultinfo(int pid,struct faultinfo * fi,unsigned long * aux_fp_regs)144 static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs)
145 {
146 int err;
147
148 err = get_fp_registers(pid, aux_fp_regs);
149 if (err < 0) {
150 printk(UM_KERN_ERR "save_fp_registers returned %d\n",
151 err);
152 fatal_sigsegv();
153 }
154 err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
155 if (err) {
156 printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
157 "errno = %d\n", pid, errno);
158 fatal_sigsegv();
159 }
160 wait_stub_done(pid);
161
162 /*
163 * faultinfo is prepared by the stub_segv_handler at start of
164 * the stub stack page. We just have to copy it.
165 */
166 memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
167
168 err = put_fp_registers(pid, aux_fp_regs);
169 if (err < 0) {
170 printk(UM_KERN_ERR "put_fp_registers returned %d\n",
171 err);
172 fatal_sigsegv();
173 }
174 }
175
handle_segv(int pid,struct uml_pt_regs * regs,unsigned long * aux_fp_regs)176 static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
177 {
178 get_skas_faultinfo(pid, ®s->faultinfo, aux_fp_regs);
179 segv(regs->faultinfo, 0, 1, NULL);
180 }
181
handle_trap(int pid,struct uml_pt_regs * regs)182 static void handle_trap(int pid, struct uml_pt_regs *regs)
183 {
184 if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
185 fatal_sigsegv();
186
187 handle_syscall(regs);
188 }
189
190 extern char __syscall_stub_start[];
191
192 /**
193 * userspace_tramp() - userspace trampoline
194 * @stack: pointer to the new userspace stack page
195 *
196 * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed.
197 * This function will run on a temporary stack page.
198 * It ptrace()'es itself, then
199 * Two pages are mapped into the userspace address space:
200 * - STUB_CODE (with EXEC), which contains the skas stub code
201 * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel.
202 * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process.
203 * And last the process stops itself to give control to the UML kernel for this userspace process.
204 *
205 * Return: Always zero, otherwise the current userspace process is ended with non null exit() call
206 */
userspace_tramp(void * stack)207 static int userspace_tramp(void *stack)
208 {
209 struct sigaction sa;
210 void *addr;
211 int fd;
212 unsigned long long offset;
213 unsigned long segv_handler = STUB_CODE +
214 (unsigned long) stub_segv_handler -
215 (unsigned long) __syscall_stub_start;
216
217 ptrace(PTRACE_TRACEME, 0, 0, 0);
218
219 signal(SIGTERM, SIG_DFL);
220 signal(SIGWINCH, SIG_IGN);
221
222 fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset);
223 addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
224 PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
225 if (addr == MAP_FAILED) {
226 os_info("mapping mmap stub at 0x%lx failed, errno = %d\n",
227 STUB_CODE, errno);
228 exit(1);
229 }
230
231 fd = phys_mapping(uml_to_phys(stack), &offset);
232 addr = mmap((void *) STUB_DATA,
233 STUB_DATA_PAGES * UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
234 MAP_FIXED | MAP_SHARED, fd, offset);
235 if (addr == MAP_FAILED) {
236 os_info("mapping segfault stack at 0x%lx failed, errno = %d\n",
237 STUB_DATA, errno);
238 exit(1);
239 }
240
241 set_sigstack((void *) STUB_DATA, STUB_DATA_PAGES * UM_KERN_PAGE_SIZE);
242 sigemptyset(&sa.sa_mask);
243 sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
244 sa.sa_sigaction = (void *) segv_handler;
245 sa.sa_restorer = NULL;
246 if (sigaction(SIGSEGV, &sa, NULL) < 0) {
247 os_info("%s - setting SIGSEGV handler failed - errno = %d\n",
248 __func__, errno);
249 exit(1);
250 }
251
252 kill(os_getpid(), SIGSTOP);
253 return 0;
254 }
255
256 int userspace_pid[NR_CPUS];
257
258 /**
259 * start_userspace() - prepare a new userspace process
260 * @stub_stack: pointer to the stub stack.
261 *
262 * Setups a new temporary stack page that is used while userspace_tramp() runs
263 * Clones the kernel process into a new userspace process, with FDs only.
264 *
265 * Return: When positive: the process id of the new userspace process,
266 * when negative: an error number.
267 * FIXME: can PIDs become negative?!
268 */
start_userspace(unsigned long stub_stack)269 int start_userspace(unsigned long stub_stack)
270 {
271 void *stack;
272 unsigned long sp;
273 int pid, status, n, flags, err;
274
275 /* setup a temporary stack page */
276 stack = mmap(NULL, UM_KERN_PAGE_SIZE,
277 PROT_READ | PROT_WRITE | PROT_EXEC,
278 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
279 if (stack == MAP_FAILED) {
280 err = -errno;
281 printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
282 __func__, errno);
283 return err;
284 }
285
286 /* set stack pointer to the end of the stack page, so it can grow downwards */
287 sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
288
289 flags = CLONE_FILES | SIGCHLD;
290
291 /* clone into new userspace process */
292 pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
293 if (pid < 0) {
294 err = -errno;
295 printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
296 __func__, errno);
297 return err;
298 }
299
300 do {
301 CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
302 if (n < 0) {
303 err = -errno;
304 printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
305 __func__, errno);
306 goto out_kill;
307 }
308 } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
309
310 if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
311 err = -EINVAL;
312 printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
313 __func__, status);
314 goto out_kill;
315 }
316
317 if (ptrace(PTRACE_SETOPTIONS, pid, NULL,
318 (void *) PTRACE_O_TRACESYSGOOD) < 0) {
319 err = -errno;
320 printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
321 __func__, errno);
322 goto out_kill;
323 }
324
325 if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
326 err = -errno;
327 printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
328 __func__, errno);
329 goto out_kill;
330 }
331
332 return pid;
333
334 out_kill:
335 os_kill_ptraced_process(pid, 1);
336 return err;
337 }
338
userspace(struct uml_pt_regs * regs,unsigned long * aux_fp_regs)339 void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
340 {
341 int err, status, op, pid = userspace_pid[0];
342 siginfo_t si;
343
344 /* Handle any immediate reschedules or signals */
345 interrupt_end();
346
347 while (1) {
348 time_travel_print_bc_msg();
349
350 current_mm_sync();
351
352 /* Flush out any pending syscalls */
353 err = syscall_stub_flush(current_mm_id());
354 if (err) {
355 if (err == -ENOMEM)
356 report_enomem();
357
358 printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
359 __func__, -err);
360 fatal_sigsegv();
361 }
362
363 /*
364 * This can legitimately fail if the process loads a
365 * bogus value into a segment register. It will
366 * segfault and PTRACE_GETREGS will read that value
367 * out of the process. However, PTRACE_SETREGS will
368 * fail. In this case, there is nothing to do but
369 * just kill the process.
370 */
371 if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
372 printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
373 __func__, errno);
374 fatal_sigsegv();
375 }
376
377 if (put_fp_registers(pid, regs->fp)) {
378 printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
379 __func__, errno);
380 fatal_sigsegv();
381 }
382
383 if (singlestepping())
384 op = PTRACE_SYSEMU_SINGLESTEP;
385 else
386 op = PTRACE_SYSEMU;
387
388 if (ptrace(op, pid, 0, 0)) {
389 printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
390 __func__, op, errno);
391 fatal_sigsegv();
392 }
393
394 CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
395 if (err < 0) {
396 printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
397 __func__, errno);
398 fatal_sigsegv();
399 }
400
401 regs->is_user = 1;
402 if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
403 printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
404 __func__, errno);
405 fatal_sigsegv();
406 }
407
408 if (get_fp_registers(pid, regs->fp)) {
409 printk(UM_KERN_ERR "%s - get_fp_registers failed, errno = %d\n",
410 __func__, errno);
411 fatal_sigsegv();
412 }
413
414 UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
415
416 if (WIFSTOPPED(status)) {
417 int sig = WSTOPSIG(status);
418
419 /* These signal handlers need the si argument.
420 * The SIGIO and SIGALARM handlers which constitute the
421 * majority of invocations, do not use it.
422 */
423 switch (sig) {
424 case SIGSEGV:
425 case SIGTRAP:
426 case SIGILL:
427 case SIGBUS:
428 case SIGFPE:
429 case SIGWINCH:
430 ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
431 break;
432 }
433
434 switch (sig) {
435 case SIGSEGV:
436 if (PTRACE_FULL_FAULTINFO) {
437 get_skas_faultinfo(pid,
438 ®s->faultinfo, aux_fp_regs);
439 (*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
440 regs);
441 }
442 else handle_segv(pid, regs, aux_fp_regs);
443 break;
444 case SIGTRAP + 0x80:
445 handle_trap(pid, regs);
446 break;
447 case SIGTRAP:
448 relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
449 break;
450 case SIGALRM:
451 break;
452 case SIGIO:
453 case SIGILL:
454 case SIGBUS:
455 case SIGFPE:
456 case SIGWINCH:
457 block_signals_trace();
458 (*sig_info[sig])(sig, (struct siginfo *)&si, regs);
459 unblock_signals_trace();
460 break;
461 default:
462 printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
463 __func__, sig);
464 fatal_sigsegv();
465 }
466 pid = userspace_pid[0];
467 interrupt_end();
468
469 /* Avoid -ERESTARTSYS handling in host */
470 if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
471 PT_SYSCALL_NR(regs->gp) = -1;
472 }
473 }
474 }
475
new_thread(void * stack,jmp_buf * buf,void (* handler)(void))476 void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
477 {
478 (*buf)[0].JB_IP = (unsigned long) handler;
479 (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
480 sizeof(void *);
481 }
482
483 #define INIT_JMP_NEW_THREAD 0
484 #define INIT_JMP_CALLBACK 1
485 #define INIT_JMP_HALT 2
486 #define INIT_JMP_REBOOT 3
487
switch_threads(jmp_buf * me,jmp_buf * you)488 void switch_threads(jmp_buf *me, jmp_buf *you)
489 {
490 if (UML_SETJMP(me) == 0)
491 UML_LONGJMP(you, 1);
492 }
493
494 static jmp_buf initial_jmpbuf;
495
496 /* XXX Make these percpu */
497 static void (*cb_proc)(void *arg);
498 static void *cb_arg;
499 static jmp_buf *cb_back;
500
start_idle_thread(void * stack,jmp_buf * switch_buf)501 int start_idle_thread(void *stack, jmp_buf *switch_buf)
502 {
503 int n;
504
505 set_handler(SIGWINCH);
506
507 /*
508 * Can't use UML_SETJMP or UML_LONGJMP here because they save
509 * and restore signals, with the possible side-effect of
510 * trying to handle any signals which came when they were
511 * blocked, which can't be done on this stack.
512 * Signals must be blocked when jumping back here and restored
513 * after returning to the jumper.
514 */
515 n = setjmp(initial_jmpbuf);
516 switch (n) {
517 case INIT_JMP_NEW_THREAD:
518 (*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
519 (*switch_buf)[0].JB_SP = (unsigned long) stack +
520 UM_THREAD_SIZE - sizeof(void *);
521 break;
522 case INIT_JMP_CALLBACK:
523 (*cb_proc)(cb_arg);
524 longjmp(*cb_back, 1);
525 break;
526 case INIT_JMP_HALT:
527 kmalloc_ok = 0;
528 return 0;
529 case INIT_JMP_REBOOT:
530 kmalloc_ok = 0;
531 return 1;
532 default:
533 printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
534 __func__, n);
535 fatal_sigsegv();
536 }
537 longjmp(*switch_buf, 1);
538
539 /* unreachable */
540 printk(UM_KERN_ERR "impossible long jump!");
541 fatal_sigsegv();
542 return 0;
543 }
544
initial_thread_cb_skas(void (* proc)(void *),void * arg)545 void initial_thread_cb_skas(void (*proc)(void *), void *arg)
546 {
547 jmp_buf here;
548
549 cb_proc = proc;
550 cb_arg = arg;
551 cb_back = &here;
552
553 block_signals_trace();
554 if (UML_SETJMP(&here) == 0)
555 UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
556 unblock_signals_trace();
557
558 cb_proc = NULL;
559 cb_arg = NULL;
560 cb_back = NULL;
561 }
562
halt_skas(void)563 void halt_skas(void)
564 {
565 block_signals_trace();
566 UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
567 }
568
569 static bool noreboot;
570
noreboot_cmd_param(char * str,int * add)571 static int __init noreboot_cmd_param(char *str, int *add)
572 {
573 noreboot = true;
574 return 0;
575 }
576
577 __uml_setup("noreboot", noreboot_cmd_param,
578 "noreboot\n"
579 " Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
580 " This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
581 " crashes in CI\n");
582
reboot_skas(void)583 void reboot_skas(void)
584 {
585 block_signals_trace();
586 UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
587 }
588
__switch_mm(struct mm_id * mm_idp)589 void __switch_mm(struct mm_id *mm_idp)
590 {
591 userspace_pid[0] = mm_idp->pid;
592 }
593