1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38 #include "config.h"
39 #include "system.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
58
59 /* Commonly used modes. */
60
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
65
66
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70 static int label_num = 1;
71
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76 static int last_label_num;
77
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81 static int base_label_num;
82
83 /* Nonzero means do not generate NOTEs for source line numbers. */
84
85 static int no_line_numbers;
86
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
91
92 rtx global_rtl[GR_MAX];
93
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
103
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
106 rtx const_true_rtx;
107
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconstm1;
112
113 /* All references to the following fixed hard registers go through
114 these unique rtl objects. On machines where the frame-pointer and
115 arg-pointer are the same register, they use the same unique object.
116
117 After register allocation, other rtl objects which used to be pseudo-regs
118 may be clobbered to refer to the frame-pointer register.
119 But references that were originally to the frame-pointer can be
120 distinguished from the others because they contain frame_pointer_rtx.
121
122 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
123 tricky: until register elimination has taken place hard_frame_pointer_rtx
124 should be used if it is being set, and frame_pointer_rtx otherwise. After
125 register elimination hard_frame_pointer_rtx should always be used.
126 On machines where the two registers are same (most) then these are the
127 same.
128
129 In an inline procedure, the stack and frame pointer rtxs may not be
130 used for anything else. */
131 rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
132 rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
133 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
134 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
135 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
136
137 /* This is used to implement __builtin_return_address for some machines.
138 See for instance the MIPS port. */
139 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
140
141 /* We make one copy of (const_int C) where C is in
142 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
143 to save space during the compilation and simplify comparisons of
144 integers. */
145
146 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
147
148 /* A hash table storing CONST_INTs whose absolute value is greater
149 than MAX_SAVED_CONST_INT. */
150
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
152 htab_t const_int_htab;
153
154 /* A hash table storing memory attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
156 htab_t mem_attrs_htab;
157
158 /* A hash table storing all CONST_DOUBLEs. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
160 htab_t const_double_htab;
161
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_linenum (cfun->emit->x_last_linenum)
166 #define last_filename (cfun->emit->x_last_filename)
167 #define first_label_num (cfun->emit->x_first_label_num)
168
169 static rtx make_jump_insn_raw PARAMS ((rtx));
170 static rtx make_call_insn_raw PARAMS ((rtx));
171 static rtx find_line_note PARAMS ((rtx));
172 static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
173 int));
174 static void unshare_all_rtl_1 PARAMS ((rtx));
175 static void unshare_all_decls PARAMS ((tree));
176 static void reset_used_decls PARAMS ((tree));
177 static void mark_label_nuses PARAMS ((rtx));
178 static hashval_t const_int_htab_hash PARAMS ((const void *));
179 static int const_int_htab_eq PARAMS ((const void *,
180 const void *));
181 static hashval_t const_double_htab_hash PARAMS ((const void *));
182 static int const_double_htab_eq PARAMS ((const void *,
183 const void *));
184 static rtx lookup_const_double PARAMS ((rtx));
185 static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
186 static int mem_attrs_htab_eq PARAMS ((const void *,
187 const void *));
188 static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
189 rtx, unsigned int,
190 enum machine_mode));
191 static tree component_ref_for_mem_expr PARAMS ((tree));
192 static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
193 static void copy_rtx_if_shared_1 PARAMS ((rtx *orig));
194
195 /* Probability of the conditional branch currently proceeded by try_split.
196 Set to -1 otherwise. */
197 int split_branch_probability = -1;
198
199 /* Returns a hash code for X (which is a really a CONST_INT). */
200
201 static hashval_t
const_int_htab_hash(x)202 const_int_htab_hash (x)
203 const void *x;
204 {
205 return (hashval_t) INTVAL ((struct rtx_def *) x);
206 }
207
208 /* Returns nonzero if the value represented by X (which is really a
209 CONST_INT) is the same as that given by Y (which is really a
210 HOST_WIDE_INT *). */
211
212 static int
const_int_htab_eq(x,y)213 const_int_htab_eq (x, y)
214 const void *x;
215 const void *y;
216 {
217 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
218 }
219
220 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
221 static hashval_t
const_double_htab_hash(x)222 const_double_htab_hash (x)
223 const void *x;
224 {
225 rtx value = (rtx) x;
226 hashval_t h;
227
228 if (GET_MODE (value) == VOIDmode)
229 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
230 else
231 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
232 return h;
233 }
234
235 /* Returns nonzero if the value represented by X (really a ...)
236 is the same as that represented by Y (really a ...) */
237 static int
const_double_htab_eq(x,y)238 const_double_htab_eq (x, y)
239 const void *x;
240 const void *y;
241 {
242 rtx a = (rtx)x, b = (rtx)y;
243
244 if (GET_MODE (a) != GET_MODE (b))
245 return 0;
246 if (GET_MODE (a) == VOIDmode)
247 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
248 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
249 else
250 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
251 CONST_DOUBLE_REAL_VALUE (b));
252 }
253
254 /* Returns a hash code for X (which is a really a mem_attrs *). */
255
256 static hashval_t
mem_attrs_htab_hash(x)257 mem_attrs_htab_hash (x)
258 const void *x;
259 {
260 mem_attrs *p = (mem_attrs *) x;
261
262 return (p->alias ^ (p->align * 1000)
263 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
264 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
265 ^ (size_t) p->expr);
266 }
267
268 /* Returns nonzero if the value represented by X (which is really a
269 mem_attrs *) is the same as that given by Y (which is also really a
270 mem_attrs *). */
271
272 static int
mem_attrs_htab_eq(x,y)273 mem_attrs_htab_eq (x, y)
274 const void *x;
275 const void *y;
276 {
277 mem_attrs *p = (mem_attrs *) x;
278 mem_attrs *q = (mem_attrs *) y;
279
280 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
281 && p->size == q->size && p->align == q->align);
282 }
283
284 /* Allocate a new mem_attrs structure and insert it into the hash table if
285 one identical to it is not already in the table. We are doing this for
286 MEM of mode MODE. */
287
288 static mem_attrs *
get_mem_attrs(alias,expr,offset,size,align,mode)289 get_mem_attrs (alias, expr, offset, size, align, mode)
290 HOST_WIDE_INT alias;
291 tree expr;
292 rtx offset;
293 rtx size;
294 unsigned int align;
295 enum machine_mode mode;
296 {
297 mem_attrs attrs;
298 void **slot;
299
300 /* If everything is the default, we can just return zero.
301 This must match what the corresponding MEM_* macros return when the
302 field is not present. */
303 if (alias == 0 && expr == 0 && offset == 0
304 && (size == 0
305 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
306 && (STRICT_ALIGNMENT && mode != BLKmode
307 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
308 return 0;
309
310 attrs.alias = alias;
311 attrs.expr = expr;
312 attrs.offset = offset;
313 attrs.size = size;
314 attrs.align = align;
315
316 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
317 if (*slot == 0)
318 {
319 *slot = ggc_alloc (sizeof (mem_attrs));
320 memcpy (*slot, &attrs, sizeof (mem_attrs));
321 }
322
323 return *slot;
324 }
325
326 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
327 don't attempt to share with the various global pieces of rtl (such as
328 frame_pointer_rtx). */
329
330 rtx
gen_raw_REG(mode,regno)331 gen_raw_REG (mode, regno)
332 enum machine_mode mode;
333 int regno;
334 {
335 rtx x = gen_rtx_raw_REG (mode, regno);
336 ORIGINAL_REGNO (x) = regno;
337 return x;
338 }
339
340 /* There are some RTL codes that require special attention; the generation
341 functions do the raw handling. If you add to this list, modify
342 special_rtx in gengenrtl.c as well. */
343
344 rtx
gen_rtx_CONST_INT(mode,arg)345 gen_rtx_CONST_INT (mode, arg)
346 enum machine_mode mode ATTRIBUTE_UNUSED;
347 HOST_WIDE_INT arg;
348 {
349 void **slot;
350
351 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
352 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
353
354 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
355 if (const_true_rtx && arg == STORE_FLAG_VALUE)
356 return const_true_rtx;
357 #endif
358
359 /* Look up the CONST_INT in the hash table. */
360 slot = htab_find_slot_with_hash (const_int_htab, &arg,
361 (hashval_t) arg, INSERT);
362 if (*slot == 0)
363 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
364
365 return (rtx) *slot;
366 }
367
368 rtx
gen_int_mode(c,mode)369 gen_int_mode (c, mode)
370 HOST_WIDE_INT c;
371 enum machine_mode mode;
372 {
373 return GEN_INT (trunc_int_for_mode (c, mode));
374 }
375
376 /* CONST_DOUBLEs might be created from pairs of integers, or from
377 REAL_VALUE_TYPEs. Also, their length is known only at run time,
378 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
379
380 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
381 hash table. If so, return its counterpart; otherwise add it
382 to the hash table and return it. */
383 static rtx
lookup_const_double(real)384 lookup_const_double (real)
385 rtx real;
386 {
387 void **slot = htab_find_slot (const_double_htab, real, INSERT);
388 if (*slot == 0)
389 *slot = real;
390
391 return (rtx) *slot;
392 }
393
394 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
395 VALUE in mode MODE. */
396 rtx
const_double_from_real_value(value,mode)397 const_double_from_real_value (value, mode)
398 REAL_VALUE_TYPE value;
399 enum machine_mode mode;
400 {
401 rtx real = rtx_alloc (CONST_DOUBLE);
402 PUT_MODE (real, mode);
403
404 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
405
406 return lookup_const_double (real);
407 }
408
409 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
410 of ints: I0 is the low-order word and I1 is the high-order word.
411 Do not use this routine for non-integer modes; convert to
412 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
413
414 rtx
immed_double_const(i0,i1,mode)415 immed_double_const (i0, i1, mode)
416 HOST_WIDE_INT i0, i1;
417 enum machine_mode mode;
418 {
419 rtx value;
420 unsigned int i;
421
422 if (mode != VOIDmode)
423 {
424 int width;
425 if (GET_MODE_CLASS (mode) != MODE_INT
426 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
427 /* We can get a 0 for an error mark. */
428 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
429 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
430 abort ();
431
432 /* We clear out all bits that don't belong in MODE, unless they and
433 our sign bit are all one. So we get either a reasonable negative
434 value or a reasonable unsigned value for this mode. */
435 width = GET_MODE_BITSIZE (mode);
436 if (width < HOST_BITS_PER_WIDE_INT
437 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
438 != ((HOST_WIDE_INT) (-1) << (width - 1))))
439 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
440 else if (width == HOST_BITS_PER_WIDE_INT
441 && ! (i1 == ~0 && i0 < 0))
442 i1 = 0;
443 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
444 /* We cannot represent this value as a constant. */
445 abort ();
446
447 /* If this would be an entire word for the target, but is not for
448 the host, then sign-extend on the host so that the number will
449 look the same way on the host that it would on the target.
450
451 For example, when building a 64 bit alpha hosted 32 bit sparc
452 targeted compiler, then we want the 32 bit unsigned value -1 to be
453 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
454 The latter confuses the sparc backend. */
455
456 if (width < HOST_BITS_PER_WIDE_INT
457 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
458 i0 |= ((HOST_WIDE_INT) (-1) << width);
459
460 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
461 CONST_INT.
462
463 ??? Strictly speaking, this is wrong if we create a CONST_INT for
464 a large unsigned constant with the size of MODE being
465 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
466 in a wider mode. In that case we will mis-interpret it as a
467 negative number.
468
469 Unfortunately, the only alternative is to make a CONST_DOUBLE for
470 any constant in any mode if it is an unsigned constant larger
471 than the maximum signed integer in an int on the host. However,
472 doing this will break everyone that always expects to see a
473 CONST_INT for SImode and smaller.
474
475 We have always been making CONST_INTs in this case, so nothing
476 new is being broken. */
477
478 if (width <= HOST_BITS_PER_WIDE_INT)
479 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
480 }
481
482 /* If this integer fits in one word, return a CONST_INT. */
483 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
484 return GEN_INT (i0);
485
486 /* We use VOIDmode for integers. */
487 value = rtx_alloc (CONST_DOUBLE);
488 PUT_MODE (value, VOIDmode);
489
490 CONST_DOUBLE_LOW (value) = i0;
491 CONST_DOUBLE_HIGH (value) = i1;
492
493 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
494 XWINT (value, i) = 0;
495
496 return lookup_const_double (value);
497 }
498
499 rtx
gen_rtx_REG(mode,regno)500 gen_rtx_REG (mode, regno)
501 enum machine_mode mode;
502 unsigned int regno;
503 {
504 /* In case the MD file explicitly references the frame pointer, have
505 all such references point to the same frame pointer. This is
506 used during frame pointer elimination to distinguish the explicit
507 references to these registers from pseudos that happened to be
508 assigned to them.
509
510 If we have eliminated the frame pointer or arg pointer, we will
511 be using it as a normal register, for example as a spill
512 register. In such cases, we might be accessing it in a mode that
513 is not Pmode and therefore cannot use the pre-allocated rtx.
514
515 Also don't do this when we are making new REGs in reload, since
516 we don't want to get confused with the real pointers. */
517
518 if (mode == Pmode && !reload_in_progress)
519 {
520 if (regno == FRAME_POINTER_REGNUM
521 && (!reload_completed || frame_pointer_needed))
522 return frame_pointer_rtx;
523 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
524 if (regno == HARD_FRAME_POINTER_REGNUM
525 && (!reload_completed || frame_pointer_needed))
526 return hard_frame_pointer_rtx;
527 #endif
528 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
529 if (regno == ARG_POINTER_REGNUM)
530 return arg_pointer_rtx;
531 #endif
532 #ifdef RETURN_ADDRESS_POINTER_REGNUM
533 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
534 return return_address_pointer_rtx;
535 #endif
536 if (regno == PIC_OFFSET_TABLE_REGNUM
537 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
538 return pic_offset_table_rtx;
539 if (regno == STACK_POINTER_REGNUM)
540 return stack_pointer_rtx;
541 }
542
543 #if 0
544 /* If the per-function register table has been set up, try to re-use
545 an existing entry in that table to avoid useless generation of RTL.
546
547 This code is disabled for now until we can fix the various backends
548 which depend on having non-shared hard registers in some cases. Long
549 term we want to re-enable this code as it can significantly cut down
550 on the amount of useless RTL that gets generated.
551
552 We'll also need to fix some code that runs after reload that wants to
553 set ORIGINAL_REGNO. */
554
555 if (cfun
556 && cfun->emit
557 && regno_reg_rtx
558 && regno < FIRST_PSEUDO_REGISTER
559 && reg_raw_mode[regno] == mode)
560 return regno_reg_rtx[regno];
561 #endif
562
563 return gen_raw_REG (mode, regno);
564 }
565
566 rtx
gen_rtx_MEM(mode,addr)567 gen_rtx_MEM (mode, addr)
568 enum machine_mode mode;
569 rtx addr;
570 {
571 rtx rt = gen_rtx_raw_MEM (mode, addr);
572
573 /* This field is not cleared by the mere allocation of the rtx, so
574 we clear it here. */
575 MEM_ATTRS (rt) = 0;
576
577 return rt;
578 }
579
580 rtx
gen_rtx_SUBREG(mode,reg,offset)581 gen_rtx_SUBREG (mode, reg, offset)
582 enum machine_mode mode;
583 rtx reg;
584 int offset;
585 {
586 /* This is the most common failure type.
587 Catch it early so we can see who does it. */
588 if ((offset % GET_MODE_SIZE (mode)) != 0)
589 abort ();
590
591 /* This check isn't usable right now because combine will
592 throw arbitrary crap like a CALL into a SUBREG in
593 gen_lowpart_for_combine so we must just eat it. */
594 #if 0
595 /* Check for this too. */
596 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
597 abort ();
598 #endif
599 return gen_rtx_raw_SUBREG (mode, reg, offset);
600 }
601
602 /* Generate a SUBREG representing the least-significant part of REG if MODE
603 is smaller than mode of REG, otherwise paradoxical SUBREG. */
604
605 rtx
gen_lowpart_SUBREG(mode,reg)606 gen_lowpart_SUBREG (mode, reg)
607 enum machine_mode mode;
608 rtx reg;
609 {
610 enum machine_mode inmode;
611
612 inmode = GET_MODE (reg);
613 if (inmode == VOIDmode)
614 inmode = mode;
615 return gen_rtx_SUBREG (mode, reg,
616 subreg_lowpart_offset (mode, inmode));
617 }
618
619 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
620 **
621 ** This routine generates an RTX of the size specified by
622 ** <code>, which is an RTX code. The RTX structure is initialized
623 ** from the arguments <element1> through <elementn>, which are
624 ** interpreted according to the specific RTX type's format. The
625 ** special machine mode associated with the rtx (if any) is specified
626 ** in <mode>.
627 **
628 ** gen_rtx can be invoked in a way which resembles the lisp-like
629 ** rtx it will generate. For example, the following rtx structure:
630 **
631 ** (plus:QI (mem:QI (reg:SI 1))
632 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
633 **
634 ** ...would be generated by the following C code:
635 **
636 ** gen_rtx (PLUS, QImode,
637 ** gen_rtx (MEM, QImode,
638 ** gen_rtx (REG, SImode, 1)),
639 ** gen_rtx (MEM, QImode,
640 ** gen_rtx (PLUS, SImode,
641 ** gen_rtx (REG, SImode, 2),
642 ** gen_rtx (REG, SImode, 3)))),
643 */
644
645 /*VARARGS2*/
646 rtx
gen_rtx(enum rtx_code code,enum machine_mode mode,...)647 gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
648 {
649 int i; /* Array indices... */
650 const char *fmt; /* Current rtx's format... */
651 rtx rt_val; /* RTX to return to caller... */
652
653 VA_OPEN (p, mode);
654 VA_FIXEDARG (p, enum rtx_code, code);
655 VA_FIXEDARG (p, enum machine_mode, mode);
656
657 switch (code)
658 {
659 case CONST_INT:
660 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
661 break;
662
663 case CONST_DOUBLE:
664 {
665 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
666 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
667
668 rt_val = immed_double_const (arg0, arg1, mode);
669 }
670 break;
671
672 case REG:
673 rt_val = gen_rtx_REG (mode, va_arg (p, int));
674 break;
675
676 case MEM:
677 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
678 break;
679
680 default:
681 rt_val = rtx_alloc (code); /* Allocate the storage space. */
682 rt_val->mode = mode; /* Store the machine mode... */
683
684 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
685 for (i = 0; i < GET_RTX_LENGTH (code); i++)
686 {
687 switch (*fmt++)
688 {
689 case '0': /* Unused field. */
690 break;
691
692 case 'i': /* An integer? */
693 XINT (rt_val, i) = va_arg (p, int);
694 break;
695
696 case 'w': /* A wide integer? */
697 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
698 break;
699
700 case 's': /* A string? */
701 XSTR (rt_val, i) = va_arg (p, char *);
702 break;
703
704 case 'e': /* An expression? */
705 case 'u': /* An insn? Same except when printing. */
706 XEXP (rt_val, i) = va_arg (p, rtx);
707 break;
708
709 case 'E': /* An RTX vector? */
710 XVEC (rt_val, i) = va_arg (p, rtvec);
711 break;
712
713 case 'b': /* A bitmap? */
714 XBITMAP (rt_val, i) = va_arg (p, bitmap);
715 break;
716
717 case 't': /* A tree? */
718 XTREE (rt_val, i) = va_arg (p, tree);
719 break;
720
721 default:
722 abort ();
723 }
724 }
725 break;
726 }
727
728 VA_CLOSE (p);
729 return rt_val;
730 }
731
732 /* gen_rtvec (n, [rt1, ..., rtn])
733 **
734 ** This routine creates an rtvec and stores within it the
735 ** pointers to rtx's which are its arguments.
736 */
737
738 /*VARARGS1*/
739 rtvec
gen_rtvec(int n,...)740 gen_rtvec VPARAMS ((int n, ...))
741 {
742 int i, save_n;
743 rtx *vector;
744
745 VA_OPEN (p, n);
746 VA_FIXEDARG (p, int, n);
747
748 if (n == 0)
749 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
750
751 vector = (rtx *) alloca (n * sizeof (rtx));
752
753 for (i = 0; i < n; i++)
754 vector[i] = va_arg (p, rtx);
755
756 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
757 save_n = n;
758 VA_CLOSE (p);
759
760 return gen_rtvec_v (save_n, vector);
761 }
762
763 rtvec
gen_rtvec_v(n,argp)764 gen_rtvec_v (n, argp)
765 int n;
766 rtx *argp;
767 {
768 int i;
769 rtvec rt_val;
770
771 if (n == 0)
772 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
773
774 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
775
776 for (i = 0; i < n; i++)
777 rt_val->elem[i] = *argp++;
778
779 return rt_val;
780 }
781
782 /* Generate a REG rtx for a new pseudo register of mode MODE.
783 This pseudo is assigned the next sequential register number. */
784
785 rtx
gen_reg_rtx(mode)786 gen_reg_rtx (mode)
787 enum machine_mode mode;
788 {
789 struct function *f = cfun;
790 rtx val;
791
792 /* Don't let anything called after initial flow analysis create new
793 registers. */
794 if (no_new_pseudos)
795 abort ();
796
797 if (generating_concat_p
798 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
799 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
800 {
801 /* For complex modes, don't make a single pseudo.
802 Instead, make a CONCAT of two pseudos.
803 This allows noncontiguous allocation of the real and imaginary parts,
804 which makes much better code. Besides, allocating DCmode
805 pseudos overstrains reload on some machines like the 386. */
806 rtx realpart, imagpart;
807 enum machine_mode partmode = GET_MODE_INNER (mode);
808
809 realpart = gen_reg_rtx (partmode);
810 imagpart = gen_reg_rtx (partmode);
811 return gen_rtx_CONCAT (mode, realpart, imagpart);
812 }
813
814 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
815 enough to have an element for this pseudo reg number. */
816
817 if (reg_rtx_no == f->emit->regno_pointer_align_length)
818 {
819 int old_size = f->emit->regno_pointer_align_length;
820 char *new;
821 rtx *new1;
822 tree *new2;
823
824 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
825 memset (new + old_size, 0, old_size);
826 f->emit->regno_pointer_align = (unsigned char *) new;
827
828 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
829 old_size * 2 * sizeof (rtx));
830 memset (new1 + old_size, 0, old_size * sizeof (rtx));
831 regno_reg_rtx = new1;
832
833 new2 = (tree *) ggc_realloc (f->emit->regno_decl,
834 old_size * 2 * sizeof (tree));
835 memset (new2 + old_size, 0, old_size * sizeof (tree));
836 f->emit->regno_decl = new2;
837
838 f->emit->regno_pointer_align_length = old_size * 2;
839 }
840
841 val = gen_raw_REG (mode, reg_rtx_no);
842 regno_reg_rtx[reg_rtx_no++] = val;
843 return val;
844 }
845
846 /* Identify REG (which may be a CONCAT) as a user register. */
847
848 void
mark_user_reg(reg)849 mark_user_reg (reg)
850 rtx reg;
851 {
852 if (GET_CODE (reg) == CONCAT)
853 {
854 REG_USERVAR_P (XEXP (reg, 0)) = 1;
855 REG_USERVAR_P (XEXP (reg, 1)) = 1;
856 }
857 else if (GET_CODE (reg) == REG)
858 REG_USERVAR_P (reg) = 1;
859 else
860 abort ();
861 }
862
863 /* Identify REG as a probable pointer register and show its alignment
864 as ALIGN, if nonzero. */
865
866 void
mark_reg_pointer(reg,align)867 mark_reg_pointer (reg, align)
868 rtx reg;
869 int align;
870 {
871 if (! REG_POINTER (reg))
872 {
873 REG_POINTER (reg) = 1;
874
875 if (align)
876 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
877 }
878 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
879 /* We can no-longer be sure just how aligned this pointer is */
880 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
881 }
882
883 /* Return 1 plus largest pseudo reg number used in the current function. */
884
885 int
max_reg_num()886 max_reg_num ()
887 {
888 return reg_rtx_no;
889 }
890
891 /* Return 1 + the largest label number used so far in the current function. */
892
893 int
max_label_num()894 max_label_num ()
895 {
896 if (last_label_num && label_num == base_label_num)
897 return last_label_num;
898 return label_num;
899 }
900
901 /* Return first label number used in this function (if any were used). */
902
903 int
get_first_label_num()904 get_first_label_num ()
905 {
906 return first_label_num;
907 }
908
909 /* Return the final regno of X, which is a SUBREG of a hard
910 register. */
911 int
subreg_hard_regno(x,check_mode)912 subreg_hard_regno (x, check_mode)
913 rtx x;
914 int check_mode;
915 {
916 enum machine_mode mode = GET_MODE (x);
917 unsigned int byte_offset, base_regno, final_regno;
918 rtx reg = SUBREG_REG (x);
919
920 /* This is where we attempt to catch illegal subregs
921 created by the compiler. */
922 if (GET_CODE (x) != SUBREG
923 || GET_CODE (reg) != REG)
924 abort ();
925 base_regno = REGNO (reg);
926 if (base_regno >= FIRST_PSEUDO_REGISTER)
927 abort ();
928 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
929 abort ();
930 #ifdef ENABLE_CHECKING
931 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
932 SUBREG_BYTE (x), mode))
933 abort ();
934 #endif
935 /* Catch non-congruent offsets too. */
936 byte_offset = SUBREG_BYTE (x);
937 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
938 abort ();
939
940 final_regno = subreg_regno (x);
941
942 return final_regno;
943 }
944
945 /* Return a value representing some low-order bits of X, where the number
946 of low-order bits is given by MODE. Note that no conversion is done
947 between floating-point and fixed-point values, rather, the bit
948 representation is returned.
949
950 This function handles the cases in common between gen_lowpart, below,
951 and two variants in cse.c and combine.c. These are the cases that can
952 be safely handled at all points in the compilation.
953
954 If this is not a case we can handle, return 0. */
955
956 rtx
gen_lowpart_common(mode,x)957 gen_lowpart_common (mode, x)
958 enum machine_mode mode;
959 rtx x;
960 {
961 int msize = GET_MODE_SIZE (mode);
962 int xsize = GET_MODE_SIZE (GET_MODE (x));
963 int offset = 0;
964
965 if (GET_MODE (x) == mode)
966 return x;
967
968 /* MODE must occupy no more words than the mode of X. */
969 if (GET_MODE (x) != VOIDmode
970 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
971 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
972 return 0;
973
974 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
975 if (GET_MODE_CLASS (mode) == MODE_FLOAT
976 && GET_MODE (x) != VOIDmode && msize > xsize)
977 return 0;
978
979 offset = subreg_lowpart_offset (mode, GET_MODE (x));
980
981 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
982 && (GET_MODE_CLASS (mode) == MODE_INT
983 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
984 {
985 /* If we are getting the low-order part of something that has been
986 sign- or zero-extended, we can either just use the object being
987 extended or make a narrower extension. If we want an even smaller
988 piece than the size of the object being extended, call ourselves
989 recursively.
990
991 This case is used mostly by combine and cse. */
992
993 if (GET_MODE (XEXP (x, 0)) == mode)
994 return XEXP (x, 0);
995 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
996 return gen_lowpart_common (mode, XEXP (x, 0));
997 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
998 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
999 }
1000 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
1001 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
1002 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
1003 else if ((GET_MODE_CLASS (mode) == MODE_VECTOR_INT
1004 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
1005 && GET_MODE (x) == VOIDmode)
1006 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
1007 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1008 from the low-order part of the constant. */
1009 else if ((GET_MODE_CLASS (mode) == MODE_INT
1010 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1011 && GET_MODE (x) == VOIDmode
1012 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1013 {
1014 /* If MODE is twice the host word size, X is already the desired
1015 representation. Otherwise, if MODE is wider than a word, we can't
1016 do this. If MODE is exactly a word, return just one CONST_INT. */
1017
1018 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1019 return x;
1020 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1021 return 0;
1022 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1023 return (GET_CODE (x) == CONST_INT ? x
1024 : GEN_INT (CONST_DOUBLE_LOW (x)));
1025 else
1026 {
1027 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1028 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1029 : CONST_DOUBLE_LOW (x));
1030
1031 /* Sign extend to HOST_WIDE_INT. */
1032 val = trunc_int_for_mode (val, mode);
1033
1034 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
1035 : GEN_INT (val));
1036 }
1037 }
1038
1039 /* The floating-point emulator can handle all conversions between
1040 FP and integer operands. This simplifies reload because it
1041 doesn't have to deal with constructs like (subreg:DI
1042 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1043 /* Single-precision floats are always 32-bits and double-precision
1044 floats are always 64-bits. */
1045
1046 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1047 && GET_MODE_BITSIZE (mode) == 32
1048 && GET_CODE (x) == CONST_INT)
1049 {
1050 REAL_VALUE_TYPE r;
1051 long i = INTVAL (x);
1052
1053 real_from_target (&r, &i, mode);
1054 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1055 }
1056 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
1057 && GET_MODE_BITSIZE (mode) == 64
1058 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1059 && GET_MODE (x) == VOIDmode)
1060 {
1061 REAL_VALUE_TYPE r;
1062 HOST_WIDE_INT low, high;
1063 long i[2];
1064
1065 if (GET_CODE (x) == CONST_INT)
1066 {
1067 low = INTVAL (x);
1068 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1069 }
1070 else
1071 {
1072 low = CONST_DOUBLE_LOW (x);
1073 high = CONST_DOUBLE_HIGH (x);
1074 }
1075
1076 if (HOST_BITS_PER_WIDE_INT > 32)
1077 high = low >> 31 >> 1;
1078
1079 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1080 target machine. */
1081 if (WORDS_BIG_ENDIAN)
1082 i[0] = high, i[1] = low;
1083 else
1084 i[0] = low, i[1] = high;
1085
1086 real_from_target (&r, i, mode);
1087 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1088 }
1089 else if ((GET_MODE_CLASS (mode) == MODE_INT
1090 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1091 && GET_CODE (x) == CONST_DOUBLE
1092 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1093 {
1094 REAL_VALUE_TYPE r;
1095 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1096 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1097
1098 /* Convert 'r' into an array of four 32-bit words in target word
1099 order. */
1100 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1101 switch (GET_MODE_BITSIZE (GET_MODE (x)))
1102 {
1103 case 32:
1104 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1105 i[1] = 0;
1106 i[2] = 0;
1107 i[3 - 3 * endian] = 0;
1108 break;
1109 case 64:
1110 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1111 i[2 - 2 * endian] = 0;
1112 i[3 - 2 * endian] = 0;
1113 break;
1114 case 96:
1115 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1116 i[3 - 3 * endian] = 0;
1117 break;
1118 case 128:
1119 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1120 break;
1121 default:
1122 abort ();
1123 }
1124 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1125 and return it. */
1126 #if HOST_BITS_PER_WIDE_INT == 32
1127 return immed_double_const (i[3 * endian], i[1 + endian], mode);
1128 #else
1129 if (HOST_BITS_PER_WIDE_INT != 64)
1130 abort ();
1131
1132 return immed_double_const ((((unsigned long) i[3 * endian])
1133 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1134 (((unsigned long) i[2 - endian])
1135 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
1136 mode);
1137 #endif
1138 }
1139
1140 /* Otherwise, we can't do this. */
1141 return 0;
1142 }
1143
1144 /* Return the real part (which has mode MODE) of a complex value X.
1145 This always comes at the low address in memory. */
1146
1147 rtx
gen_realpart(mode,x)1148 gen_realpart (mode, x)
1149 enum machine_mode mode;
1150 rtx x;
1151 {
1152 if (WORDS_BIG_ENDIAN
1153 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1154 && REG_P (x)
1155 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1156 internal_error
1157 ("can't access real part of complex value in hard register");
1158 else if (WORDS_BIG_ENDIAN)
1159 return gen_highpart (mode, x);
1160 else
1161 return gen_lowpart (mode, x);
1162 }
1163
1164 /* Return the imaginary part (which has mode MODE) of a complex value X.
1165 This always comes at the high address in memory. */
1166
1167 rtx
gen_imagpart(mode,x)1168 gen_imagpart (mode, x)
1169 enum machine_mode mode;
1170 rtx x;
1171 {
1172 if (WORDS_BIG_ENDIAN)
1173 return gen_lowpart (mode, x);
1174 else if (! WORDS_BIG_ENDIAN
1175 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1176 && REG_P (x)
1177 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1178 internal_error
1179 ("can't access imaginary part of complex value in hard register");
1180 else
1181 return gen_highpart (mode, x);
1182 }
1183
1184 /* Return 1 iff X, assumed to be a SUBREG,
1185 refers to the real part of the complex value in its containing reg.
1186 Complex values are always stored with the real part in the first word,
1187 regardless of WORDS_BIG_ENDIAN. */
1188
1189 int
subreg_realpart_p(x)1190 subreg_realpart_p (x)
1191 rtx x;
1192 {
1193 if (GET_CODE (x) != SUBREG)
1194 abort ();
1195
1196 return ((unsigned int) SUBREG_BYTE (x)
1197 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
1198 }
1199
1200 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1201 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1202 least-significant part of X.
1203 MODE specifies how big a part of X to return;
1204 it usually should not be larger than a word.
1205 If X is a MEM whose address is a QUEUED, the value may be so also. */
1206
1207 rtx
gen_lowpart(mode,x)1208 gen_lowpart (mode, x)
1209 enum machine_mode mode;
1210 rtx x;
1211 {
1212 rtx result = gen_lowpart_common (mode, x);
1213
1214 if (result)
1215 return result;
1216 else if (GET_CODE (x) == REG)
1217 {
1218 /* Must be a hard reg that's not valid in MODE. */
1219 result = gen_lowpart_common (mode, copy_to_reg (x));
1220 if (result == 0)
1221 abort ();
1222 return result;
1223 }
1224 else if (GET_CODE (x) == MEM)
1225 {
1226 /* The only additional case we can do is MEM. */
1227 int offset = 0;
1228 if (WORDS_BIG_ENDIAN)
1229 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1230 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1231
1232 if (BYTES_BIG_ENDIAN)
1233 /* Adjust the address so that the address-after-the-data
1234 is unchanged. */
1235 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1236 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1237
1238 return adjust_address (x, mode, offset);
1239 }
1240 else if (GET_CODE (x) == ADDRESSOF)
1241 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1242 else
1243 abort ();
1244 }
1245
1246 /* Like `gen_lowpart', but refer to the most significant part.
1247 This is used to access the imaginary part of a complex number. */
1248
1249 rtx
gen_highpart(mode,x)1250 gen_highpart (mode, x)
1251 enum machine_mode mode;
1252 rtx x;
1253 {
1254 unsigned int msize = GET_MODE_SIZE (mode);
1255 rtx result;
1256
1257 /* This case loses if X is a subreg. To catch bugs early,
1258 complain if an invalid MODE is used even in other cases. */
1259 if (msize > UNITS_PER_WORD
1260 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
1261 abort ();
1262
1263 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1264 subreg_highpart_offset (mode, GET_MODE (x)));
1265
1266 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1267 the target if we have a MEM. gen_highpart must return a valid operand,
1268 emitting code if necessary to do so. */
1269 if (result != NULL_RTX && GET_CODE (result) == MEM)
1270 result = validize_mem (result);
1271
1272 if (!result)
1273 abort ();
1274 return result;
1275 }
1276
1277 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1278 be VOIDmode constant. */
1279 rtx
gen_highpart_mode(outermode,innermode,exp)1280 gen_highpart_mode (outermode, innermode, exp)
1281 enum machine_mode outermode, innermode;
1282 rtx exp;
1283 {
1284 if (GET_MODE (exp) != VOIDmode)
1285 {
1286 if (GET_MODE (exp) != innermode)
1287 abort ();
1288 return gen_highpart (outermode, exp);
1289 }
1290 return simplify_gen_subreg (outermode, exp, innermode,
1291 subreg_highpart_offset (outermode, innermode));
1292 }
1293
1294 /* Return offset in bytes to get OUTERMODE low part
1295 of the value in mode INNERMODE stored in memory in target format. */
1296
1297 unsigned int
subreg_lowpart_offset(outermode,innermode)1298 subreg_lowpart_offset (outermode, innermode)
1299 enum machine_mode outermode, innermode;
1300 {
1301 unsigned int offset = 0;
1302 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1303
1304 if (difference > 0)
1305 {
1306 if (WORDS_BIG_ENDIAN)
1307 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1308 if (BYTES_BIG_ENDIAN)
1309 offset += difference % UNITS_PER_WORD;
1310 }
1311
1312 return offset;
1313 }
1314
1315 /* Return offset in bytes to get OUTERMODE high part
1316 of the value in mode INNERMODE stored in memory in target format. */
1317 unsigned int
subreg_highpart_offset(outermode,innermode)1318 subreg_highpart_offset (outermode, innermode)
1319 enum machine_mode outermode, innermode;
1320 {
1321 unsigned int offset = 0;
1322 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1323
1324 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1325 abort ();
1326
1327 if (difference > 0)
1328 {
1329 if (! WORDS_BIG_ENDIAN)
1330 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1331 if (! BYTES_BIG_ENDIAN)
1332 offset += difference % UNITS_PER_WORD;
1333 }
1334
1335 return offset;
1336 }
1337
1338 /* Return 1 iff X, assumed to be a SUBREG,
1339 refers to the least significant part of its containing reg.
1340 If X is not a SUBREG, always return 1 (it is its own low part!). */
1341
1342 int
subreg_lowpart_p(x)1343 subreg_lowpart_p (x)
1344 rtx x;
1345 {
1346 if (GET_CODE (x) != SUBREG)
1347 return 1;
1348 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1349 return 0;
1350
1351 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1352 == SUBREG_BYTE (x));
1353 }
1354
1355
1356 /* Helper routine for all the constant cases of operand_subword.
1357 Some places invoke this directly. */
1358
1359 rtx
constant_subword(op,offset,mode)1360 constant_subword (op, offset, mode)
1361 rtx op;
1362 int offset;
1363 enum machine_mode mode;
1364 {
1365 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
1366 HOST_WIDE_INT val;
1367
1368 /* If OP is already an integer word, return it. */
1369 if (GET_MODE_CLASS (mode) == MODE_INT
1370 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1371 return op;
1372
1373 /* The output is some bits, the width of the target machine's word.
1374 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1375 host can't. */
1376 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1377 && GET_MODE_CLASS (mode) == MODE_FLOAT
1378 && GET_MODE_BITSIZE (mode) == 64
1379 && GET_CODE (op) == CONST_DOUBLE)
1380 {
1381 long k[2];
1382 REAL_VALUE_TYPE rv;
1383
1384 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1385 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
1386
1387 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1388 which the words are written depends on the word endianness.
1389 ??? This is a potential portability problem and should
1390 be fixed at some point.
1391
1392 We must exercise caution with the sign bit. By definition there
1393 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1394 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1395 So we explicitly mask and sign-extend as necessary. */
1396 if (BITS_PER_WORD == 32)
1397 {
1398 val = k[offset];
1399 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1400 return GEN_INT (val);
1401 }
1402 #if HOST_BITS_PER_WIDE_INT >= 64
1403 else if (BITS_PER_WORD >= 64 && offset == 0)
1404 {
1405 val = k[! WORDS_BIG_ENDIAN];
1406 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1407 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1408 return GEN_INT (val);
1409 }
1410 #endif
1411 else if (BITS_PER_WORD == 16)
1412 {
1413 val = k[offset >> 1];
1414 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1415 val >>= 16;
1416 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1417 return GEN_INT (val);
1418 }
1419 else
1420 abort ();
1421 }
1422 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1423 && GET_MODE_CLASS (mode) == MODE_FLOAT
1424 && GET_MODE_BITSIZE (mode) > 64
1425 && GET_CODE (op) == CONST_DOUBLE)
1426 {
1427 long k[4];
1428 REAL_VALUE_TYPE rv;
1429
1430 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1431 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1432
1433 if (BITS_PER_WORD == 32)
1434 {
1435 val = k[offset];
1436 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1437 return GEN_INT (val);
1438 }
1439 #if HOST_BITS_PER_WIDE_INT >= 64
1440 else if (BITS_PER_WORD >= 64 && offset <= 1)
1441 {
1442 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
1443 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1444 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
1445 return GEN_INT (val);
1446 }
1447 #endif
1448 else
1449 abort ();
1450 }
1451
1452 /* Single word float is a little harder, since single- and double-word
1453 values often do not have the same high-order bits. We have already
1454 verified that we want the only defined word of the single-word value. */
1455 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1456 && GET_MODE_BITSIZE (mode) == 32
1457 && GET_CODE (op) == CONST_DOUBLE)
1458 {
1459 long l;
1460 REAL_VALUE_TYPE rv;
1461
1462 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1463 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
1464
1465 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1466 val = l;
1467 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1468
1469 if (BITS_PER_WORD == 16)
1470 {
1471 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
1472 val >>= 16;
1473 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
1474 }
1475
1476 return GEN_INT (val);
1477 }
1478
1479 /* The only remaining cases that we can handle are integers.
1480 Convert to proper endianness now since these cases need it.
1481 At this point, offset == 0 means the low-order word.
1482
1483 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1484 in general. However, if OP is (const_int 0), we can just return
1485 it for any word. */
1486
1487 if (op == const0_rtx)
1488 return op;
1489
1490 if (GET_MODE_CLASS (mode) != MODE_INT
1491 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
1492 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
1493 return 0;
1494
1495 if (WORDS_BIG_ENDIAN)
1496 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
1497
1498 /* Find out which word on the host machine this value is in and get
1499 it from the constant. */
1500 val = (offset / size_ratio == 0
1501 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1502 : (GET_CODE (op) == CONST_INT
1503 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1504
1505 /* Get the value we want into the low bits of val. */
1506 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
1507 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
1508
1509 val = trunc_int_for_mode (val, word_mode);
1510
1511 return GEN_INT (val);
1512 }
1513
1514 /* Return subword OFFSET of operand OP.
1515 The word number, OFFSET, is interpreted as the word number starting
1516 at the low-order address. OFFSET 0 is the low-order word if not
1517 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1518
1519 If we cannot extract the required word, we return zero. Otherwise,
1520 an rtx corresponding to the requested word will be returned.
1521
1522 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1523 reload has completed, a valid address will always be returned. After
1524 reload, if a valid address cannot be returned, we return zero.
1525
1526 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1527 it is the responsibility of the caller.
1528
1529 MODE is the mode of OP in case it is a CONST_INT.
1530
1531 ??? This is still rather broken for some cases. The problem for the
1532 moment is that all callers of this thing provide no 'goal mode' to
1533 tell us to work with. This exists because all callers were written
1534 in a word based SUBREG world.
1535 Now use of this function can be deprecated by simplify_subreg in most
1536 cases.
1537 */
1538
1539 rtx
operand_subword(op,offset,validate_address,mode)1540 operand_subword (op, offset, validate_address, mode)
1541 rtx op;
1542 unsigned int offset;
1543 int validate_address;
1544 enum machine_mode mode;
1545 {
1546 if (mode == VOIDmode)
1547 mode = GET_MODE (op);
1548
1549 if (mode == VOIDmode)
1550 abort ();
1551
1552 /* If OP is narrower than a word, fail. */
1553 if (mode != BLKmode
1554 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1555 return 0;
1556
1557 /* If we want a word outside OP, return zero. */
1558 if (mode != BLKmode
1559 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1560 return const0_rtx;
1561
1562 /* Form a new MEM at the requested address. */
1563 if (GET_CODE (op) == MEM)
1564 {
1565 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1566
1567 if (! validate_address)
1568 return new;
1569
1570 else if (reload_completed)
1571 {
1572 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1573 return 0;
1574 }
1575 else
1576 return replace_equiv_address (new, XEXP (new, 0));
1577 }
1578
1579 /* Rest can be handled by simplify_subreg. */
1580 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1581 }
1582
1583 /* Similar to `operand_subword', but never return 0. If we can't extract
1584 the required subword, put OP into a register and try again. If that fails,
1585 abort. We always validate the address in this case.
1586
1587 MODE is the mode of OP, in case it is CONST_INT. */
1588
1589 rtx
operand_subword_force(op,offset,mode)1590 operand_subword_force (op, offset, mode)
1591 rtx op;
1592 unsigned int offset;
1593 enum machine_mode mode;
1594 {
1595 rtx result = operand_subword (op, offset, 1, mode);
1596
1597 if (result)
1598 return result;
1599
1600 if (mode != BLKmode && mode != VOIDmode)
1601 {
1602 /* If this is a register which can not be accessed by words, copy it
1603 to a pseudo register. */
1604 if (GET_CODE (op) == REG)
1605 op = copy_to_reg (op);
1606 else
1607 op = force_reg (mode, op);
1608 }
1609
1610 result = operand_subword (op, offset, 1, mode);
1611 if (result == 0)
1612 abort ();
1613
1614 return result;
1615 }
1616
1617 /* Given a compare instruction, swap the operands.
1618 A test instruction is changed into a compare of 0 against the operand. */
1619
1620 void
reverse_comparison(insn)1621 reverse_comparison (insn)
1622 rtx insn;
1623 {
1624 rtx body = PATTERN (insn);
1625 rtx comp;
1626
1627 if (GET_CODE (body) == SET)
1628 comp = SET_SRC (body);
1629 else
1630 comp = SET_SRC (XVECEXP (body, 0, 0));
1631
1632 if (GET_CODE (comp) == COMPARE)
1633 {
1634 rtx op0 = XEXP (comp, 0);
1635 rtx op1 = XEXP (comp, 1);
1636 XEXP (comp, 0) = op1;
1637 XEXP (comp, 1) = op0;
1638 }
1639 else
1640 {
1641 rtx new = gen_rtx_COMPARE (VOIDmode,
1642 CONST0_RTX (GET_MODE (comp)), comp);
1643 if (GET_CODE (body) == SET)
1644 SET_SRC (body) = new;
1645 else
1646 SET_SRC (XVECEXP (body, 0, 0)) = new;
1647 }
1648 }
1649
1650 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1651 or (2) a component ref of something variable. Represent the later with
1652 a NULL expression. */
1653
1654 static tree
component_ref_for_mem_expr(ref)1655 component_ref_for_mem_expr (ref)
1656 tree ref;
1657 {
1658 tree inner = TREE_OPERAND (ref, 0);
1659
1660 if (TREE_CODE (inner) == COMPONENT_REF)
1661 inner = component_ref_for_mem_expr (inner);
1662 else
1663 {
1664 tree placeholder_ptr = 0;
1665
1666 /* Now remove any conversions: they don't change what the underlying
1667 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1668 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1669 || TREE_CODE (inner) == NON_LVALUE_EXPR
1670 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1671 || TREE_CODE (inner) == SAVE_EXPR
1672 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
1673 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1674 inner = find_placeholder (inner, &placeholder_ptr);
1675 else
1676 inner = TREE_OPERAND (inner, 0);
1677
1678 if (! DECL_P (inner))
1679 inner = NULL_TREE;
1680 }
1681
1682 if (inner == TREE_OPERAND (ref, 0))
1683 return ref;
1684 else
1685 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1686 TREE_OPERAND (ref, 1));
1687 }
1688
1689 /* Given REF, a MEM, and T, either the type of X or the expression
1690 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1691 if we are making a new object of this type. BITPOS is nonzero if
1692 there is an offset outstanding on T that will be applied later. */
1693
1694 void
set_mem_attributes_minus_bitpos(ref,t,objectp,bitpos)1695 set_mem_attributes_minus_bitpos (ref, t, objectp, bitpos)
1696 rtx ref;
1697 tree t;
1698 int objectp;
1699 HOST_WIDE_INT bitpos;
1700 {
1701 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1702 tree expr = MEM_EXPR (ref);
1703 rtx offset = MEM_OFFSET (ref);
1704 rtx size = MEM_SIZE (ref);
1705 unsigned int align = MEM_ALIGN (ref);
1706 HOST_WIDE_INT apply_bitpos = 0;
1707 tree type;
1708
1709 /* It can happen that type_for_mode was given a mode for which there
1710 is no language-level type. In which case it returns NULL, which
1711 we can see here. */
1712 if (t == NULL_TREE)
1713 return;
1714
1715 type = TYPE_P (t) ? t : TREE_TYPE (t);
1716
1717 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1718 wrong answer, as it assumes that DECL_RTL already has the right alias
1719 info. Callers should not set DECL_RTL until after the call to
1720 set_mem_attributes. */
1721 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1722 abort ();
1723
1724 /* Get the alias set from the expression or type (perhaps using a
1725 front-end routine) and use it. */
1726 alias = get_alias_set (t);
1727
1728 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1729 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1730 RTX_UNCHANGING_P (ref)
1731 |= ((lang_hooks.honor_readonly
1732 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1733 || (! TYPE_P (t) && TREE_CONSTANT (t)));
1734
1735 /* If we are making an object of this type, or if this is a DECL, we know
1736 that it is a scalar if the type is not an aggregate. */
1737 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1738 MEM_SCALAR_P (ref) = 1;
1739
1740 /* We can set the alignment from the type if we are making an object,
1741 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1742 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1743 align = MAX (align, TYPE_ALIGN (type));
1744
1745 /* If the size is known, we can set that. */
1746 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1747 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1748
1749 /* If T is not a type, we may be able to deduce some more information about
1750 the expression. */
1751 if (! TYPE_P (t))
1752 {
1753 maybe_set_unchanging (ref, t);
1754 if (TREE_THIS_VOLATILE (t))
1755 MEM_VOLATILE_P (ref) = 1;
1756
1757 /* Now remove any conversions: they don't change what the underlying
1758 object is. Likewise for SAVE_EXPR. */
1759 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1760 || TREE_CODE (t) == NON_LVALUE_EXPR
1761 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1762 || TREE_CODE (t) == SAVE_EXPR)
1763 t = TREE_OPERAND (t, 0);
1764
1765 /* If this expression can't be addressed (e.g., it contains a reference
1766 to a non-addressable field), show we don't change its alias set. */
1767 if (! can_address_p (t))
1768 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1769
1770 /* If this is a decl, set the attributes of the MEM from it. */
1771 if (DECL_P (t))
1772 {
1773 expr = t;
1774 offset = const0_rtx;
1775 apply_bitpos = bitpos;
1776 size = (DECL_SIZE_UNIT (t)
1777 && host_integerp (DECL_SIZE_UNIT (t), 1)
1778 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1779 align = DECL_ALIGN (t);
1780 }
1781
1782 /* If this is a constant, we know the alignment. */
1783 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1784 {
1785 align = TYPE_ALIGN (type);
1786 #ifdef CONSTANT_ALIGNMENT
1787 align = CONSTANT_ALIGNMENT (t, align);
1788 #endif
1789 }
1790
1791 /* If this is a field reference and not a bit-field, record it. */
1792 /* ??? There is some information that can be gleened from bit-fields,
1793 such as the word offset in the structure that might be modified.
1794 But skip it for now. */
1795 else if (TREE_CODE (t) == COMPONENT_REF
1796 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1797 {
1798 expr = component_ref_for_mem_expr (t);
1799 offset = const0_rtx;
1800 apply_bitpos = bitpos;
1801 /* ??? Any reason the field size would be different than
1802 the size we got from the type? */
1803 }
1804
1805 /* If this is an array reference, look for an outer field reference. */
1806 else if (TREE_CODE (t) == ARRAY_REF)
1807 {
1808 tree off_tree = size_zero_node;
1809 /* We can't modify t, because we use it at the end of the
1810 function. */
1811 tree t2 = t;
1812
1813 do
1814 {
1815 tree index = TREE_OPERAND (t2, 1);
1816 tree array = TREE_OPERAND (t2, 0);
1817 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1818 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1819 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1820
1821 /* We assume all arrays have sizes that are a multiple of a byte.
1822 First subtract the lower bound, if any, in the type of the
1823 index, then convert to sizetype and multiply by the size of the
1824 array element. */
1825 if (low_bound != 0 && ! integer_zerop (low_bound))
1826 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1827 index, low_bound));
1828
1829 /* If the index has a self-referential type, pass it to a
1830 WITH_RECORD_EXPR; if the component size is, pass our
1831 component to one. */
1832 if (! TREE_CONSTANT (index)
1833 && contains_placeholder_p (index))
1834 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t2);
1835 if (! TREE_CONSTANT (unit_size)
1836 && contains_placeholder_p (unit_size))
1837 unit_size = build (WITH_RECORD_EXPR, sizetype,
1838 unit_size, array);
1839
1840 off_tree
1841 = fold (build (PLUS_EXPR, sizetype,
1842 fold (build (MULT_EXPR, sizetype,
1843 index,
1844 unit_size)),
1845 off_tree));
1846 t2 = TREE_OPERAND (t2, 0);
1847 }
1848 while (TREE_CODE (t2) == ARRAY_REF);
1849
1850 if (DECL_P (t2))
1851 {
1852 expr = t2;
1853 offset = NULL;
1854 if (host_integerp (off_tree, 1))
1855 {
1856 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1857 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1858 align = DECL_ALIGN (t2);
1859 if (aoff && aoff < align)
1860 align = aoff;
1861 offset = GEN_INT (ioff);
1862 apply_bitpos = bitpos;
1863 }
1864 }
1865 else if (TREE_CODE (t2) == COMPONENT_REF)
1866 {
1867 expr = component_ref_for_mem_expr (t2);
1868 if (host_integerp (off_tree, 1))
1869 {
1870 offset = GEN_INT (tree_low_cst (off_tree, 1));
1871 apply_bitpos = bitpos;
1872 }
1873 /* ??? Any reason the field size would be different than
1874 the size we got from the type? */
1875 }
1876 else if (flag_argument_noalias > 1
1877 && TREE_CODE (t2) == INDIRECT_REF
1878 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1879 {
1880 expr = t2;
1881 offset = NULL;
1882 }
1883 }
1884
1885 /* If this is a Fortran indirect argument reference, record the
1886 parameter decl. */
1887 else if (flag_argument_noalias > 1
1888 && TREE_CODE (t) == INDIRECT_REF
1889 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1890 {
1891 expr = t;
1892 offset = NULL;
1893 }
1894 }
1895
1896 /* If we modified OFFSET based on T, then subtract the outstanding
1897 bit position offset. Similarly, increase the size of the accessed
1898 object to contain the negative offset. */
1899 if (apply_bitpos)
1900 {
1901 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1902 if (size)
1903 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1904 }
1905
1906 /* Now set the attributes we computed above. */
1907 MEM_ATTRS (ref)
1908 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1909
1910 /* If this is already known to be a scalar or aggregate, we are done. */
1911 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1912 return;
1913
1914 /* If it is a reference into an aggregate, this is part of an aggregate.
1915 Otherwise we don't know. */
1916 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1917 || TREE_CODE (t) == ARRAY_RANGE_REF
1918 || TREE_CODE (t) == BIT_FIELD_REF)
1919 MEM_IN_STRUCT_P (ref) = 1;
1920 }
1921
1922 void
set_mem_attributes(ref,t,objectp)1923 set_mem_attributes (ref, t, objectp)
1924 rtx ref;
1925 tree t;
1926 int objectp;
1927 {
1928 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1929 }
1930
1931 /* Set the alias set of MEM to SET. */
1932
1933 void
set_mem_alias_set(mem,set)1934 set_mem_alias_set (mem, set)
1935 rtx mem;
1936 HOST_WIDE_INT set;
1937 {
1938 #ifdef ENABLE_CHECKING
1939 /* If the new and old alias sets don't conflict, something is wrong. */
1940 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1941 abort ();
1942 #endif
1943
1944 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1945 MEM_SIZE (mem), MEM_ALIGN (mem),
1946 GET_MODE (mem));
1947 }
1948
1949 /* Set the alignment of MEM to ALIGN bits. */
1950
1951 void
set_mem_align(mem,align)1952 set_mem_align (mem, align)
1953 rtx mem;
1954 unsigned int align;
1955 {
1956 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1957 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1958 GET_MODE (mem));
1959 }
1960
1961 /* Set the expr for MEM to EXPR. */
1962
1963 void
set_mem_expr(mem,expr)1964 set_mem_expr (mem, expr)
1965 rtx mem;
1966 tree expr;
1967 {
1968 MEM_ATTRS (mem)
1969 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1970 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1971 }
1972
1973 /* Set the offset of MEM to OFFSET. */
1974
1975 void
set_mem_offset(mem,offset)1976 set_mem_offset (mem, offset)
1977 rtx mem, offset;
1978 {
1979 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1980 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1981 GET_MODE (mem));
1982 }
1983
1984 /* Set the size of MEM to SIZE. */
1985
1986 void
set_mem_size(mem,size)1987 set_mem_size (mem, size)
1988 rtx mem, size;
1989 {
1990 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1991 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1992 GET_MODE (mem));
1993 }
1994
1995 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1996 and its address changed to ADDR. (VOIDmode means don't change the mode.
1997 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1998 returned memory location is required to be valid. The memory
1999 attributes are not changed. */
2000
2001 static rtx
change_address_1(memref,mode,addr,validate)2002 change_address_1 (memref, mode, addr, validate)
2003 rtx memref;
2004 enum machine_mode mode;
2005 rtx addr;
2006 int validate;
2007 {
2008 rtx new;
2009
2010 if (GET_CODE (memref) != MEM)
2011 abort ();
2012 if (mode == VOIDmode)
2013 mode = GET_MODE (memref);
2014 if (addr == 0)
2015 addr = XEXP (memref, 0);
2016
2017 if (validate)
2018 {
2019 if (reload_in_progress || reload_completed)
2020 {
2021 if (! memory_address_p (mode, addr))
2022 abort ();
2023 }
2024 else
2025 addr = memory_address (mode, addr);
2026 }
2027
2028 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2029 return memref;
2030
2031 new = gen_rtx_MEM (mode, addr);
2032 MEM_COPY_ATTRIBUTES (new, memref);
2033 return new;
2034 }
2035
2036 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2037 way we are changing MEMREF, so we only preserve the alias set. */
2038
2039 rtx
change_address(memref,mode,addr)2040 change_address (memref, mode, addr)
2041 rtx memref;
2042 enum machine_mode mode;
2043 rtx addr;
2044 {
2045 rtx new = change_address_1 (memref, mode, addr, 1);
2046 enum machine_mode mmode = GET_MODE (new);
2047
2048 MEM_ATTRS (new)
2049 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2050 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2051 (mmode == BLKmode ? BITS_PER_UNIT
2052 : GET_MODE_ALIGNMENT (mmode)),
2053 mmode);
2054
2055 return new;
2056 }
2057
2058 /* Return a memory reference like MEMREF, but with its mode changed
2059 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2060 nonzero, the memory address is forced to be valid.
2061 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2062 and caller is responsible for adjusting MEMREF base register. */
2063
2064 rtx
adjust_address_1(memref,mode,offset,validate,adjust)2065 adjust_address_1 (memref, mode, offset, validate, adjust)
2066 rtx memref;
2067 enum machine_mode mode;
2068 HOST_WIDE_INT offset;
2069 int validate, adjust;
2070 {
2071 rtx addr = XEXP (memref, 0);
2072 rtx new;
2073 rtx memoffset = MEM_OFFSET (memref);
2074 rtx size = 0;
2075 unsigned int memalign = MEM_ALIGN (memref);
2076
2077 /* ??? Prefer to create garbage instead of creating shared rtl.
2078 This may happen even if offset is nonzero -- consider
2079 (plus (plus reg reg) const_int) -- so do this always. */
2080 addr = copy_rtx (addr);
2081
2082 if (adjust)
2083 {
2084 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2085 object, we can merge it into the LO_SUM. */
2086 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2087 && offset >= 0
2088 && (unsigned HOST_WIDE_INT) offset
2089 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2090 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2091 plus_constant (XEXP (addr, 1), offset));
2092 else
2093 addr = plus_constant (addr, offset);
2094 }
2095
2096 new = change_address_1 (memref, mode, addr, validate);
2097
2098 /* Compute the new values of the memory attributes due to this adjustment.
2099 We add the offsets and update the alignment. */
2100 if (memoffset)
2101 memoffset = GEN_INT (offset + INTVAL (memoffset));
2102
2103 /* Compute the new alignment by taking the MIN of the alignment and the
2104 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2105 if zero. */
2106 if (offset != 0)
2107 memalign
2108 = MIN (memalign,
2109 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2110
2111 /* We can compute the size in a number of ways. */
2112 if (GET_MODE (new) != BLKmode)
2113 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2114 else if (MEM_SIZE (memref))
2115 size = plus_constant (MEM_SIZE (memref), -offset);
2116
2117 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2118 memoffset, size, memalign, GET_MODE (new));
2119
2120 /* At some point, we should validate that this offset is within the object,
2121 if all the appropriate values are known. */
2122 return new;
2123 }
2124
2125 /* Return a memory reference like MEMREF, but with its mode changed
2126 to MODE and its address changed to ADDR, which is assumed to be
2127 MEMREF offseted by OFFSET bytes. If VALIDATE is
2128 nonzero, the memory address is forced to be valid. */
2129
2130 rtx
adjust_automodify_address_1(memref,mode,addr,offset,validate)2131 adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2132 rtx memref;
2133 enum machine_mode mode;
2134 rtx addr;
2135 HOST_WIDE_INT offset;
2136 int validate;
2137 {
2138 memref = change_address_1 (memref, VOIDmode, addr, validate);
2139 return adjust_address_1 (memref, mode, offset, validate, 0);
2140 }
2141
2142 /* Return a memory reference like MEMREF, but whose address is changed by
2143 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2144 known to be in OFFSET (possibly 1). */
2145
2146 rtx
offset_address(memref,offset,pow2)2147 offset_address (memref, offset, pow2)
2148 rtx memref;
2149 rtx offset;
2150 HOST_WIDE_INT pow2;
2151 {
2152 rtx new, addr = XEXP (memref, 0);
2153
2154 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2155
2156 /* At this point we don't know _why_ the address is invalid. It
2157 could have secondary memory refereces, multiplies or anything.
2158
2159 However, if we did go and rearrange things, we can wind up not
2160 being able to recognize the magic around pic_offset_table_rtx.
2161 This stuff is fragile, and is yet another example of why it is
2162 bad to expose PIC machinery too early. */
2163 if (! memory_address_p (GET_MODE (memref), new)
2164 && GET_CODE (addr) == PLUS
2165 && XEXP (addr, 0) == pic_offset_table_rtx)
2166 {
2167 addr = force_reg (GET_MODE (addr), addr);
2168 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2169 }
2170
2171 update_temp_slot_address (XEXP (memref, 0), new);
2172 new = change_address_1 (memref, VOIDmode, new, 1);
2173
2174 /* Update the alignment to reflect the offset. Reset the offset, which
2175 we don't know. */
2176 MEM_ATTRS (new)
2177 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2178 MIN (MEM_ALIGN (memref),
2179 (unsigned HOST_WIDE_INT) pow2 * BITS_PER_UNIT),
2180 GET_MODE (new));
2181 return new;
2182 }
2183
2184 /* Return a memory reference like MEMREF, but with its address changed to
2185 ADDR. The caller is asserting that the actual piece of memory pointed
2186 to is the same, just the form of the address is being changed, such as
2187 by putting something into a register. */
2188
2189 rtx
replace_equiv_address(memref,addr)2190 replace_equiv_address (memref, addr)
2191 rtx memref;
2192 rtx addr;
2193 {
2194 /* change_address_1 copies the memory attribute structure without change
2195 and that's exactly what we want here. */
2196 update_temp_slot_address (XEXP (memref, 0), addr);
2197 return change_address_1 (memref, VOIDmode, addr, 1);
2198 }
2199
2200 /* Likewise, but the reference is not required to be valid. */
2201
2202 rtx
replace_equiv_address_nv(memref,addr)2203 replace_equiv_address_nv (memref, addr)
2204 rtx memref;
2205 rtx addr;
2206 {
2207 return change_address_1 (memref, VOIDmode, addr, 0);
2208 }
2209
2210 /* Return a memory reference like MEMREF, but with its mode widened to
2211 MODE and offset by OFFSET. This would be used by targets that e.g.
2212 cannot issue QImode memory operations and have to use SImode memory
2213 operations plus masking logic. */
2214
2215 rtx
widen_memory_access(memref,mode,offset)2216 widen_memory_access (memref, mode, offset)
2217 rtx memref;
2218 enum machine_mode mode;
2219 HOST_WIDE_INT offset;
2220 {
2221 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2222 tree expr = MEM_EXPR (new);
2223 rtx memoffset = MEM_OFFSET (new);
2224 unsigned int size = GET_MODE_SIZE (mode);
2225
2226 /* If we don't know what offset we were at within the expression, then
2227 we can't know if we've overstepped the bounds. */
2228 if (! memoffset)
2229 expr = NULL_TREE;
2230
2231 while (expr)
2232 {
2233 if (TREE_CODE (expr) == COMPONENT_REF)
2234 {
2235 tree field = TREE_OPERAND (expr, 1);
2236
2237 if (! DECL_SIZE_UNIT (field))
2238 {
2239 expr = NULL_TREE;
2240 break;
2241 }
2242
2243 /* Is the field at least as large as the access? If so, ok,
2244 otherwise strip back to the containing structure. */
2245 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2246 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2247 && INTVAL (memoffset) >= 0)
2248 break;
2249
2250 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2251 {
2252 expr = NULL_TREE;
2253 break;
2254 }
2255
2256 expr = TREE_OPERAND (expr, 0);
2257 memoffset = (GEN_INT (INTVAL (memoffset)
2258 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2259 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2260 / BITS_PER_UNIT)));
2261 }
2262 /* Similarly for the decl. */
2263 else if (DECL_P (expr)
2264 && DECL_SIZE_UNIT (expr)
2265 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2266 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2267 && (! memoffset || INTVAL (memoffset) >= 0))
2268 break;
2269 else
2270 {
2271 /* The widened memory access overflows the expression, which means
2272 that it could alias another expression. Zap it. */
2273 expr = NULL_TREE;
2274 break;
2275 }
2276 }
2277
2278 if (! expr)
2279 memoffset = NULL_RTX;
2280
2281 /* The widened memory may alias other stuff, so zap the alias set. */
2282 /* ??? Maybe use get_alias_set on any remaining expression. */
2283
2284 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2285 MEM_ALIGN (new), mode);
2286
2287 return new;
2288 }
2289
2290 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2291
2292 rtx
gen_label_rtx()2293 gen_label_rtx ()
2294 {
2295 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2296 NULL, label_num++, NULL);
2297 }
2298
2299 /* For procedure integration. */
2300
2301 /* Install new pointers to the first and last insns in the chain.
2302 Also, set cur_insn_uid to one higher than the last in use.
2303 Used for an inline-procedure after copying the insn chain. */
2304
2305 void
set_new_first_and_last_insn(first,last)2306 set_new_first_and_last_insn (first, last)
2307 rtx first, last;
2308 {
2309 rtx insn;
2310
2311 first_insn = first;
2312 last_insn = last;
2313 cur_insn_uid = 0;
2314
2315 for (insn = first; insn; insn = NEXT_INSN (insn))
2316 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2317
2318 cur_insn_uid++;
2319 }
2320
2321 /* Set the range of label numbers found in the current function.
2322 This is used when belatedly compiling an inline function. */
2323
2324 void
set_new_first_and_last_label_num(first,last)2325 set_new_first_and_last_label_num (first, last)
2326 int first, last;
2327 {
2328 base_label_num = label_num;
2329 first_label_num = first;
2330 last_label_num = last;
2331 }
2332
2333 /* Set the last label number found in the current function.
2334 This is used when belatedly compiling an inline function. */
2335
2336 void
set_new_last_label_num(last)2337 set_new_last_label_num (last)
2338 int last;
2339 {
2340 base_label_num = label_num;
2341 last_label_num = last;
2342 }
2343
2344 /* Restore all variables describing the current status from the structure *P.
2345 This is used after a nested function. */
2346
2347 void
restore_emit_status(p)2348 restore_emit_status (p)
2349 struct function *p ATTRIBUTE_UNUSED;
2350 {
2351 last_label_num = 0;
2352 }
2353
2354 /* Go through all the RTL insn bodies and copy any invalid shared
2355 structure. This routine should only be called once. */
2356
2357 void
unshare_all_rtl(fndecl,insn)2358 unshare_all_rtl (fndecl, insn)
2359 tree fndecl;
2360 rtx insn;
2361 {
2362 tree decl;
2363
2364 /* Make sure that virtual parameters are not shared. */
2365 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2366 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2367
2368 /* Make sure that virtual stack slots are not shared. */
2369 unshare_all_decls (DECL_INITIAL (fndecl));
2370
2371 /* Unshare just about everything else. */
2372 unshare_all_rtl_1 (insn);
2373
2374 /* Make sure the addresses of stack slots found outside the insn chain
2375 (such as, in DECL_RTL of a variable) are not shared
2376 with the insn chain.
2377
2378 This special care is necessary when the stack slot MEM does not
2379 actually appear in the insn chain. If it does appear, its address
2380 is unshared from all else at that point. */
2381 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2382 }
2383
2384 /* Go through all the RTL insn bodies and copy any invalid shared
2385 structure, again. This is a fairly expensive thing to do so it
2386 should be done sparingly. */
2387
2388 void
unshare_all_rtl_again(insn)2389 unshare_all_rtl_again (insn)
2390 rtx insn;
2391 {
2392 rtx p;
2393 tree decl;
2394
2395 for (p = insn; p; p = NEXT_INSN (p))
2396 if (INSN_P (p))
2397 {
2398 reset_used_flags (PATTERN (p));
2399 reset_used_flags (REG_NOTES (p));
2400 reset_used_flags (LOG_LINKS (p));
2401 }
2402
2403 /* Make sure that virtual stack slots are not shared. */
2404 reset_used_decls (DECL_INITIAL (cfun->decl));
2405
2406 /* Make sure that virtual parameters are not shared. */
2407 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2408 reset_used_flags (DECL_RTL (decl));
2409
2410 reset_used_flags (stack_slot_list);
2411
2412 unshare_all_rtl (cfun->decl, insn);
2413 }
2414
2415 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2416 Assumes the mark bits are cleared at entry. */
2417
2418 static void
unshare_all_rtl_1(insn)2419 unshare_all_rtl_1 (insn)
2420 rtx insn;
2421 {
2422 for (; insn; insn = NEXT_INSN (insn))
2423 if (INSN_P (insn))
2424 {
2425 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2426 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2427 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2428 }
2429 }
2430
2431 /* Go through all virtual stack slots of a function and copy any
2432 shared structure. */
2433 static void
unshare_all_decls(blk)2434 unshare_all_decls (blk)
2435 tree blk;
2436 {
2437 tree t;
2438
2439 /* Copy shared decls. */
2440 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2441 if (DECL_RTL_SET_P (t))
2442 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2443
2444 /* Now process sub-blocks. */
2445 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2446 unshare_all_decls (t);
2447 }
2448
2449 /* Go through all virtual stack slots of a function and mark them as
2450 not shared. */
2451 static void
reset_used_decls(blk)2452 reset_used_decls (blk)
2453 tree blk;
2454 {
2455 tree t;
2456
2457 /* Mark decls. */
2458 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2459 if (DECL_RTL_SET_P (t))
2460 reset_used_flags (DECL_RTL (t));
2461
2462 /* Now process sub-blocks. */
2463 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2464 reset_used_decls (t);
2465 }
2466
2467 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2468 placed in the result directly, rather than being copied. MAY_SHARE is
2469 either a MEM of an EXPR_LIST of MEMs. */
2470
2471 rtx
copy_most_rtx(orig,may_share)2472 copy_most_rtx (orig, may_share)
2473 rtx orig;
2474 rtx may_share;
2475 {
2476 rtx copy;
2477 int i, j;
2478 RTX_CODE code;
2479 const char *format_ptr;
2480
2481 if (orig == may_share
2482 || (GET_CODE (may_share) == EXPR_LIST
2483 && in_expr_list_p (may_share, orig)))
2484 return orig;
2485
2486 code = GET_CODE (orig);
2487
2488 switch (code)
2489 {
2490 case REG:
2491 case QUEUED:
2492 case CONST_INT:
2493 case CONST_DOUBLE:
2494 case CONST_VECTOR:
2495 case SYMBOL_REF:
2496 case CODE_LABEL:
2497 case PC:
2498 case CC0:
2499 return orig;
2500 default:
2501 break;
2502 }
2503
2504 copy = rtx_alloc (code);
2505 PUT_MODE (copy, GET_MODE (orig));
2506 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2507 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2508 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2509 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2510 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2511
2512 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2513
2514 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2515 {
2516 switch (*format_ptr++)
2517 {
2518 case 'e':
2519 XEXP (copy, i) = XEXP (orig, i);
2520 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2521 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2522 break;
2523
2524 case 'u':
2525 XEXP (copy, i) = XEXP (orig, i);
2526 break;
2527
2528 case 'E':
2529 case 'V':
2530 XVEC (copy, i) = XVEC (orig, i);
2531 if (XVEC (orig, i) != NULL)
2532 {
2533 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2534 for (j = 0; j < XVECLEN (copy, i); j++)
2535 XVECEXP (copy, i, j)
2536 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2537 }
2538 break;
2539
2540 case 'w':
2541 XWINT (copy, i) = XWINT (orig, i);
2542 break;
2543
2544 case 'n':
2545 case 'i':
2546 XINT (copy, i) = XINT (orig, i);
2547 break;
2548
2549 case 't':
2550 XTREE (copy, i) = XTREE (orig, i);
2551 break;
2552
2553 case 's':
2554 case 'S':
2555 XSTR (copy, i) = XSTR (orig, i);
2556 break;
2557
2558 case '0':
2559 /* Copy this through the wide int field; that's safest. */
2560 X0WINT (copy, i) = X0WINT (orig, i);
2561 break;
2562
2563 default:
2564 abort ();
2565 }
2566 }
2567 return copy;
2568 }
2569
2570 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2571 Recursively does the same for subexpressions. */
2572
2573 rtx
copy_rtx_if_shared(orig)2574 copy_rtx_if_shared (orig)
2575 rtx orig;
2576 {
2577 copy_rtx_if_shared_1 (&orig);
2578 return orig;
2579 }
2580
2581 static void
copy_rtx_if_shared_1(orig1)2582 copy_rtx_if_shared_1 (orig1)
2583 rtx *orig1;
2584 {
2585 rtx x;
2586 int i;
2587 enum rtx_code code;
2588 rtx *last_ptr;
2589 const char *format_ptr;
2590 int copied = 0;
2591 int length;
2592
2593 /* Repeat is used to turn tail-recursion into iteration. */
2594 repeat:
2595 x = *orig1;
2596
2597 if (x == 0)
2598 return;
2599
2600 code = GET_CODE (x);
2601
2602 /* These types may be freely shared. */
2603
2604 switch (code)
2605 {
2606 case REG:
2607 case QUEUED:
2608 case CONST_INT:
2609 case CONST_DOUBLE:
2610 case CONST_VECTOR:
2611 case SYMBOL_REF:
2612 case CODE_LABEL:
2613 case PC:
2614 case CC0:
2615 case SCRATCH:
2616 /* SCRATCH must be shared because they represent distinct values. */
2617 return;
2618
2619 case CONST:
2620 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2621 a LABEL_REF, it isn't sharable. */
2622 if (GET_CODE (XEXP (x, 0)) == PLUS
2623 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2624 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2625 return;
2626 break;
2627
2628 case INSN:
2629 case JUMP_INSN:
2630 case CALL_INSN:
2631 case NOTE:
2632 case BARRIER:
2633 /* The chain of insns is not being copied. */
2634 return;
2635
2636 case MEM:
2637 /* A MEM is allowed to be shared if its address is constant.
2638
2639 We used to allow sharing of MEMs which referenced
2640 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2641 that can lose. instantiate_virtual_regs will not unshare
2642 the MEMs, and combine may change the structure of the address
2643 because it looks safe and profitable in one context, but
2644 in some other context it creates unrecognizable RTL. */
2645 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
2646 return;
2647
2648 break;
2649
2650 default:
2651 break;
2652 }
2653
2654 /* This rtx may not be shared. If it has already been seen,
2655 replace it with a copy of itself. */
2656
2657 if (RTX_FLAG (x, used))
2658 {
2659 rtx copy;
2660
2661 copy = rtx_alloc (code);
2662 memcpy (copy, x,
2663 (sizeof (*copy) - sizeof (copy->fld)
2664 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
2665 x = copy;
2666 copied = 1;
2667 }
2668 RTX_FLAG (x, used) = 1;
2669
2670 /* Now scan the subexpressions recursively.
2671 We can store any replaced subexpressions directly into X
2672 since we know X is not shared! Any vectors in X
2673 must be copied if X was copied. */
2674
2675 format_ptr = GET_RTX_FORMAT (code);
2676 length = GET_RTX_LENGTH (code);
2677 last_ptr = NULL;
2678
2679 for (i = 0; i < length; i++)
2680 {
2681 switch (*format_ptr++)
2682 {
2683 case 'e':
2684 if (last_ptr)
2685 copy_rtx_if_shared_1 (last_ptr);
2686 last_ptr = &XEXP (x, i);
2687 break;
2688
2689 case 'E':
2690 if (XVEC (x, i) != NULL)
2691 {
2692 int j;
2693 int len = XVECLEN (x, i);
2694
2695 /* Copy the vector iff I copied the rtx and the length is nonzero. */
2696 if (copied && len > 0)
2697 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2698
2699 /* Call recsusively on all inside the vector. */
2700 for (j = 0; j < len; j++)
2701 {
2702 if (last_ptr)
2703 copy_rtx_if_shared_1 (last_ptr);
2704 last_ptr = &XVECEXP (x, i, j);
2705 }
2706 }
2707 break;
2708 }
2709 }
2710 *orig1 = x;
2711 if (last_ptr)
2712 {
2713 orig1 = last_ptr;
2714 goto repeat;
2715 }
2716 return;
2717 }
2718
2719 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2720 to look for shared sub-parts. */
2721
2722 void
reset_used_flags(x)2723 reset_used_flags (x)
2724 rtx x;
2725 {
2726 int i, j;
2727 enum rtx_code code;
2728 const char *format_ptr;
2729 int length;
2730
2731 /* Repeat is used to turn tail-recursion into iteration. */
2732 repeat:
2733 if (x == 0)
2734 return;
2735
2736 code = GET_CODE (x);
2737
2738 /* These types may be freely shared so we needn't do any resetting
2739 for them. */
2740
2741 switch (code)
2742 {
2743 case REG:
2744 case QUEUED:
2745 case CONST_INT:
2746 case CONST_DOUBLE:
2747 case CONST_VECTOR:
2748 case SYMBOL_REF:
2749 case CODE_LABEL:
2750 case PC:
2751 case CC0:
2752 return;
2753
2754 case INSN:
2755 case JUMP_INSN:
2756 case CALL_INSN:
2757 case NOTE:
2758 case LABEL_REF:
2759 case BARRIER:
2760 /* The chain of insns is not being copied. */
2761 return;
2762
2763 default:
2764 break;
2765 }
2766
2767 RTX_FLAG (x, used) = 0;
2768
2769 format_ptr = GET_RTX_FORMAT (code);
2770 length = GET_RTX_LENGTH (code);
2771
2772 for (i = 0; i < length; i++)
2773 {
2774 switch (*format_ptr++)
2775 {
2776 case 'e':
2777 if (i == length-1)
2778 {
2779 x = XEXP (x, i);
2780 goto repeat;
2781 }
2782 reset_used_flags (XEXP (x, i));
2783 break;
2784
2785 case 'E':
2786 for (j = 0; j < XVECLEN (x, i); j++)
2787 reset_used_flags (XVECEXP (x, i, j));
2788 break;
2789 }
2790 }
2791 }
2792
2793 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2794 Return X or the rtx for the pseudo reg the value of X was copied into.
2795 OTHER must be valid as a SET_DEST. */
2796
2797 rtx
make_safe_from(x,other)2798 make_safe_from (x, other)
2799 rtx x, other;
2800 {
2801 while (1)
2802 switch (GET_CODE (other))
2803 {
2804 case SUBREG:
2805 other = SUBREG_REG (other);
2806 break;
2807 case STRICT_LOW_PART:
2808 case SIGN_EXTEND:
2809 case ZERO_EXTEND:
2810 other = XEXP (other, 0);
2811 break;
2812 default:
2813 goto done;
2814 }
2815 done:
2816 if ((GET_CODE (other) == MEM
2817 && ! CONSTANT_P (x)
2818 && GET_CODE (x) != REG
2819 && GET_CODE (x) != SUBREG)
2820 || (GET_CODE (other) == REG
2821 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2822 || reg_mentioned_p (other, x))))
2823 {
2824 rtx temp = gen_reg_rtx (GET_MODE (x));
2825 emit_move_insn (temp, x);
2826 return temp;
2827 }
2828 return x;
2829 }
2830
2831 /* Emission of insns (adding them to the doubly-linked list). */
2832
2833 /* Return the first insn of the current sequence or current function. */
2834
2835 rtx
get_insns()2836 get_insns ()
2837 {
2838 return first_insn;
2839 }
2840
2841 /* Specify a new insn as the first in the chain. */
2842
2843 void
set_first_insn(insn)2844 set_first_insn (insn)
2845 rtx insn;
2846 {
2847 if (PREV_INSN (insn) != 0)
2848 abort ();
2849 first_insn = insn;
2850 }
2851
2852 /* Return the last insn emitted in current sequence or current function. */
2853
2854 rtx
get_last_insn()2855 get_last_insn ()
2856 {
2857 return last_insn;
2858 }
2859
2860 /* Specify a new insn as the last in the chain. */
2861
2862 void
set_last_insn(insn)2863 set_last_insn (insn)
2864 rtx insn;
2865 {
2866 if (NEXT_INSN (insn) != 0)
2867 abort ();
2868 last_insn = insn;
2869 }
2870
2871 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2872
2873 rtx
get_last_insn_anywhere()2874 get_last_insn_anywhere ()
2875 {
2876 struct sequence_stack *stack;
2877 if (last_insn)
2878 return last_insn;
2879 for (stack = seq_stack; stack; stack = stack->next)
2880 if (stack->last != 0)
2881 return stack->last;
2882 return 0;
2883 }
2884
2885 /* Return the first nonnote insn emitted in current sequence or current
2886 function. This routine looks inside SEQUENCEs. */
2887
2888 rtx
get_first_nonnote_insn()2889 get_first_nonnote_insn ()
2890 {
2891 rtx insn = first_insn;
2892
2893 if (insn)
2894 {
2895 if (NOTE_P (insn))
2896 for (insn = next_insn (insn);
2897 insn && NOTE_P (insn);
2898 insn = next_insn (insn))
2899 continue;
2900 else
2901 {
2902 if (GET_CODE (insn) == INSN
2903 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2904 insn = XVECEXP (PATTERN (insn), 0, 0);
2905 }
2906 }
2907
2908 return insn;
2909 }
2910
2911 /* Return the last nonnote insn emitted in current sequence or current
2912 function. This routine looks inside SEQUENCEs. */
2913
2914 rtx
get_last_nonnote_insn()2915 get_last_nonnote_insn ()
2916 {
2917 rtx insn = last_insn;
2918
2919 if (insn)
2920 {
2921 if (NOTE_P (insn))
2922 for (insn = previous_insn (insn);
2923 insn && NOTE_P (insn);
2924 insn = previous_insn (insn))
2925 continue;
2926 else
2927 {
2928 if (GET_CODE (insn) == INSN
2929 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2930 insn = XVECEXP (PATTERN (insn), 0,
2931 XVECLEN (PATTERN (insn), 0) - 1);
2932 }
2933 }
2934
2935 return insn;
2936 }
2937
2938 /* Return a number larger than any instruction's uid in this function. */
2939
2940 int
get_max_uid()2941 get_max_uid ()
2942 {
2943 return cur_insn_uid;
2944 }
2945
2946 /* Renumber instructions so that no instruction UIDs are wasted. */
2947
2948 void
renumber_insns(stream)2949 renumber_insns (stream)
2950 FILE *stream;
2951 {
2952 rtx insn;
2953
2954 /* If we're not supposed to renumber instructions, don't. */
2955 if (!flag_renumber_insns)
2956 return;
2957
2958 /* If there aren't that many instructions, then it's not really
2959 worth renumbering them. */
2960 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2961 return;
2962
2963 cur_insn_uid = 1;
2964
2965 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2966 {
2967 if (stream)
2968 fprintf (stream, "Renumbering insn %d to %d\n",
2969 INSN_UID (insn), cur_insn_uid);
2970 INSN_UID (insn) = cur_insn_uid++;
2971 }
2972 }
2973
2974 /* Return the next insn. If it is a SEQUENCE, return the first insn
2975 of the sequence. */
2976
2977 rtx
next_insn(insn)2978 next_insn (insn)
2979 rtx insn;
2980 {
2981 if (insn)
2982 {
2983 insn = NEXT_INSN (insn);
2984 if (insn && GET_CODE (insn) == INSN
2985 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2986 insn = XVECEXP (PATTERN (insn), 0, 0);
2987 }
2988
2989 return insn;
2990 }
2991
2992 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2993 of the sequence. */
2994
2995 rtx
previous_insn(insn)2996 previous_insn (insn)
2997 rtx insn;
2998 {
2999 if (insn)
3000 {
3001 insn = PREV_INSN (insn);
3002 if (insn && GET_CODE (insn) == INSN
3003 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3004 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3005 }
3006
3007 return insn;
3008 }
3009
3010 /* Return the next insn after INSN that is not a NOTE. This routine does not
3011 look inside SEQUENCEs. */
3012
3013 rtx
next_nonnote_insn(insn)3014 next_nonnote_insn (insn)
3015 rtx insn;
3016 {
3017 while (insn)
3018 {
3019 insn = NEXT_INSN (insn);
3020 if (insn == 0 || GET_CODE (insn) != NOTE)
3021 break;
3022 }
3023
3024 return insn;
3025 }
3026
3027 /* Return the previous insn before INSN that is not a NOTE. This routine does
3028 not look inside SEQUENCEs. */
3029
3030 rtx
prev_nonnote_insn(insn)3031 prev_nonnote_insn (insn)
3032 rtx insn;
3033 {
3034 while (insn)
3035 {
3036 insn = PREV_INSN (insn);
3037 if (insn == 0 || GET_CODE (insn) != NOTE)
3038 break;
3039 }
3040
3041 return insn;
3042 }
3043
3044 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3045 or 0, if there is none. This routine does not look inside
3046 SEQUENCEs. */
3047
3048 rtx
next_real_insn(insn)3049 next_real_insn (insn)
3050 rtx insn;
3051 {
3052 while (insn)
3053 {
3054 insn = NEXT_INSN (insn);
3055 if (insn == 0 || GET_CODE (insn) == INSN
3056 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3057 break;
3058 }
3059
3060 return insn;
3061 }
3062
3063 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3064 or 0, if there is none. This routine does not look inside
3065 SEQUENCEs. */
3066
3067 rtx
prev_real_insn(insn)3068 prev_real_insn (insn)
3069 rtx insn;
3070 {
3071 while (insn)
3072 {
3073 insn = PREV_INSN (insn);
3074 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3075 || GET_CODE (insn) == JUMP_INSN)
3076 break;
3077 }
3078
3079 return insn;
3080 }
3081
3082 /* Find the next insn after INSN that really does something. This routine
3083 does not look inside SEQUENCEs. Until reload has completed, this is the
3084 same as next_real_insn. */
3085
3086 int
active_insn_p(insn)3087 active_insn_p (insn)
3088 rtx insn;
3089 {
3090 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3091 || (GET_CODE (insn) == INSN
3092 && (! reload_completed
3093 || (GET_CODE (PATTERN (insn)) != USE
3094 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3095 }
3096
3097 rtx
next_active_insn(insn)3098 next_active_insn (insn)
3099 rtx insn;
3100 {
3101 while (insn)
3102 {
3103 insn = NEXT_INSN (insn);
3104 if (insn == 0 || active_insn_p (insn))
3105 break;
3106 }
3107
3108 return insn;
3109 }
3110
3111 /* Find the last insn before INSN that really does something. This routine
3112 does not look inside SEQUENCEs. Until reload has completed, this is the
3113 same as prev_real_insn. */
3114
3115 rtx
prev_active_insn(insn)3116 prev_active_insn (insn)
3117 rtx insn;
3118 {
3119 while (insn)
3120 {
3121 insn = PREV_INSN (insn);
3122 if (insn == 0 || active_insn_p (insn))
3123 break;
3124 }
3125
3126 return insn;
3127 }
3128
3129 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3130
3131 rtx
next_label(insn)3132 next_label (insn)
3133 rtx insn;
3134 {
3135 while (insn)
3136 {
3137 insn = NEXT_INSN (insn);
3138 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3139 break;
3140 }
3141
3142 return insn;
3143 }
3144
3145 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3146
3147 rtx
prev_label(insn)3148 prev_label (insn)
3149 rtx insn;
3150 {
3151 while (insn)
3152 {
3153 insn = PREV_INSN (insn);
3154 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3155 break;
3156 }
3157
3158 return insn;
3159 }
3160
3161 #ifdef HAVE_cc0
3162 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3163 and REG_CC_USER notes so we can find it. */
3164
3165 void
link_cc0_insns(insn)3166 link_cc0_insns (insn)
3167 rtx insn;
3168 {
3169 rtx user = next_nonnote_insn (insn);
3170
3171 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3172 user = XVECEXP (PATTERN (user), 0, 0);
3173
3174 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3175 REG_NOTES (user));
3176 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3177 }
3178
3179 /* Return the next insn that uses CC0 after INSN, which is assumed to
3180 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3181 applied to the result of this function should yield INSN).
3182
3183 Normally, this is simply the next insn. However, if a REG_CC_USER note
3184 is present, it contains the insn that uses CC0.
3185
3186 Return 0 if we can't find the insn. */
3187
3188 rtx
next_cc0_user(insn)3189 next_cc0_user (insn)
3190 rtx insn;
3191 {
3192 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3193
3194 if (note)
3195 return XEXP (note, 0);
3196
3197 insn = next_nonnote_insn (insn);
3198 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3199 insn = XVECEXP (PATTERN (insn), 0, 0);
3200
3201 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3202 return insn;
3203
3204 return 0;
3205 }
3206
3207 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3208 note, it is the previous insn. */
3209
3210 rtx
prev_cc0_setter(insn)3211 prev_cc0_setter (insn)
3212 rtx insn;
3213 {
3214 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3215
3216 if (note)
3217 return XEXP (note, 0);
3218
3219 insn = prev_nonnote_insn (insn);
3220 if (! sets_cc0_p (PATTERN (insn)))
3221 abort ();
3222
3223 return insn;
3224 }
3225 #endif
3226
3227 /* Increment the label uses for all labels present in rtx. */
3228
3229 static void
mark_label_nuses(x)3230 mark_label_nuses (x)
3231 rtx x;
3232 {
3233 enum rtx_code code;
3234 int i, j;
3235 const char *fmt;
3236
3237 code = GET_CODE (x);
3238 if (code == LABEL_REF)
3239 LABEL_NUSES (XEXP (x, 0))++;
3240
3241 fmt = GET_RTX_FORMAT (code);
3242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3243 {
3244 if (fmt[i] == 'e')
3245 mark_label_nuses (XEXP (x, i));
3246 else if (fmt[i] == 'E')
3247 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3248 mark_label_nuses (XVECEXP (x, i, j));
3249 }
3250 }
3251
3252
3253 /* Try splitting insns that can be split for better scheduling.
3254 PAT is the pattern which might split.
3255 TRIAL is the insn providing PAT.
3256 LAST is nonzero if we should return the last insn of the sequence produced.
3257
3258 If this routine succeeds in splitting, it returns the first or last
3259 replacement insn depending on the value of LAST. Otherwise, it
3260 returns TRIAL. If the insn to be returned can be split, it will be. */
3261
3262 rtx
try_split(pat,trial,last)3263 try_split (pat, trial, last)
3264 rtx pat, trial;
3265 int last;
3266 {
3267 rtx before = PREV_INSN (trial);
3268 rtx after = NEXT_INSN (trial);
3269 int has_barrier = 0;
3270 rtx tem;
3271 rtx note, seq;
3272 int probability;
3273 rtx insn_last, insn;
3274 int njumps = 0;
3275
3276 if (any_condjump_p (trial)
3277 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3278 split_branch_probability = INTVAL (XEXP (note, 0));
3279 probability = split_branch_probability;
3280
3281 seq = split_insns (pat, trial);
3282
3283 split_branch_probability = -1;
3284
3285 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3286 We may need to handle this specially. */
3287 if (after && GET_CODE (after) == BARRIER)
3288 {
3289 has_barrier = 1;
3290 after = NEXT_INSN (after);
3291 }
3292
3293 if (!seq)
3294 return trial;
3295
3296 /* Avoid infinite loop if any insn of the result matches
3297 the original pattern. */
3298 insn_last = seq;
3299 while (1)
3300 {
3301 if (INSN_P (insn_last)
3302 && rtx_equal_p (PATTERN (insn_last), pat))
3303 return trial;
3304 if (!NEXT_INSN (insn_last))
3305 break;
3306 insn_last = NEXT_INSN (insn_last);
3307 }
3308
3309 /* Mark labels. */
3310 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3311 {
3312 if (GET_CODE (insn) == JUMP_INSN)
3313 {
3314 mark_jump_label (PATTERN (insn), insn, 0);
3315 njumps++;
3316 if (probability != -1
3317 && any_condjump_p (insn)
3318 && !find_reg_note (insn, REG_BR_PROB, 0))
3319 {
3320 /* We can preserve the REG_BR_PROB notes only if exactly
3321 one jump is created, otherwise the machine description
3322 is responsible for this step using
3323 split_branch_probability variable. */
3324 if (njumps != 1)
3325 abort ();
3326 REG_NOTES (insn)
3327 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3328 GEN_INT (probability),
3329 REG_NOTES (insn));
3330 }
3331 }
3332 }
3333
3334 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3335 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3336 if (GET_CODE (trial) == CALL_INSN)
3337 {
3338 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3339 if (GET_CODE (insn) == CALL_INSN)
3340 {
3341 CALL_INSN_FUNCTION_USAGE (insn)
3342 = CALL_INSN_FUNCTION_USAGE (trial);
3343 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3344 }
3345 }
3346
3347 /* Copy notes, particularly those related to the CFG. */
3348 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3349 {
3350 switch (REG_NOTE_KIND (note))
3351 {
3352 case REG_EH_REGION:
3353 insn = insn_last;
3354 while (insn != NULL_RTX)
3355 {
3356 if (GET_CODE (insn) == CALL_INSN
3357 || (flag_non_call_exceptions
3358 && may_trap_p (PATTERN (insn))))
3359 REG_NOTES (insn)
3360 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3361 XEXP (note, 0),
3362 REG_NOTES (insn));
3363 insn = PREV_INSN (insn);
3364 }
3365 break;
3366
3367 case REG_NORETURN:
3368 case REG_SETJMP:
3369 case REG_ALWAYS_RETURN:
3370 insn = insn_last;
3371 while (insn != NULL_RTX)
3372 {
3373 if (GET_CODE (insn) == CALL_INSN)
3374 REG_NOTES (insn)
3375 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3376 XEXP (note, 0),
3377 REG_NOTES (insn));
3378 insn = PREV_INSN (insn);
3379 }
3380 break;
3381
3382 case REG_NON_LOCAL_GOTO:
3383 insn = insn_last;
3384 while (insn != NULL_RTX)
3385 {
3386 if (GET_CODE (insn) == JUMP_INSN)
3387 REG_NOTES (insn)
3388 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3389 XEXP (note, 0),
3390 REG_NOTES (insn));
3391 insn = PREV_INSN (insn);
3392 }
3393 break;
3394
3395 default:
3396 break;
3397 }
3398 }
3399
3400 /* If there are LABELS inside the split insns increment the
3401 usage count so we don't delete the label. */
3402 if (GET_CODE (trial) == INSN)
3403 {
3404 insn = insn_last;
3405 while (insn != NULL_RTX)
3406 {
3407 if (GET_CODE (insn) == INSN)
3408 mark_label_nuses (PATTERN (insn));
3409
3410 insn = PREV_INSN (insn);
3411 }
3412 }
3413
3414 tem = emit_insn_after_scope (seq, trial, INSN_SCOPE (trial));
3415
3416 delete_insn (trial);
3417 if (has_barrier)
3418 emit_barrier_after (tem);
3419
3420 /* Recursively call try_split for each new insn created; by the
3421 time control returns here that insn will be fully split, so
3422 set LAST and continue from the insn after the one returned.
3423 We can't use next_active_insn here since AFTER may be a note.
3424 Ignore deleted insns, which can be occur if not optimizing. */
3425 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3426 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3427 tem = try_split (PATTERN (tem), tem, 1);
3428
3429 /* Return either the first or the last insn, depending on which was
3430 requested. */
3431 return last
3432 ? (after ? PREV_INSN (after) : last_insn)
3433 : NEXT_INSN (before);
3434 }
3435
3436 /* Make and return an INSN rtx, initializing all its slots.
3437 Store PATTERN in the pattern slots. */
3438
3439 rtx
make_insn_raw(pattern)3440 make_insn_raw (pattern)
3441 rtx pattern;
3442 {
3443 rtx insn;
3444
3445 insn = rtx_alloc (INSN);
3446
3447 INSN_UID (insn) = cur_insn_uid++;
3448 PATTERN (insn) = pattern;
3449 INSN_CODE (insn) = -1;
3450 LOG_LINKS (insn) = NULL;
3451 REG_NOTES (insn) = NULL;
3452 INSN_SCOPE (insn) = NULL;
3453 BLOCK_FOR_INSN (insn) = NULL;
3454
3455 #ifdef ENABLE_RTL_CHECKING
3456 if (insn
3457 && INSN_P (insn)
3458 && (returnjump_p (insn)
3459 || (GET_CODE (insn) == SET
3460 && SET_DEST (insn) == pc_rtx)))
3461 {
3462 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3463 debug_rtx (insn);
3464 }
3465 #endif
3466
3467 return insn;
3468 }
3469
3470 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3471
3472 static rtx
make_jump_insn_raw(pattern)3473 make_jump_insn_raw (pattern)
3474 rtx pattern;
3475 {
3476 rtx insn;
3477
3478 insn = rtx_alloc (JUMP_INSN);
3479 INSN_UID (insn) = cur_insn_uid++;
3480
3481 PATTERN (insn) = pattern;
3482 INSN_CODE (insn) = -1;
3483 LOG_LINKS (insn) = NULL;
3484 REG_NOTES (insn) = NULL;
3485 JUMP_LABEL (insn) = NULL;
3486 INSN_SCOPE (insn) = NULL;
3487 BLOCK_FOR_INSN (insn) = NULL;
3488
3489 return insn;
3490 }
3491
3492 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3493
3494 static rtx
make_call_insn_raw(pattern)3495 make_call_insn_raw (pattern)
3496 rtx pattern;
3497 {
3498 rtx insn;
3499
3500 insn = rtx_alloc (CALL_INSN);
3501 INSN_UID (insn) = cur_insn_uid++;
3502
3503 PATTERN (insn) = pattern;
3504 INSN_CODE (insn) = -1;
3505 LOG_LINKS (insn) = NULL;
3506 REG_NOTES (insn) = NULL;
3507 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3508 INSN_SCOPE (insn) = NULL;
3509 BLOCK_FOR_INSN (insn) = NULL;
3510
3511 return insn;
3512 }
3513
3514 /* Add INSN to the end of the doubly-linked list.
3515 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3516
3517 void
add_insn(insn)3518 add_insn (insn)
3519 rtx insn;
3520 {
3521 PREV_INSN (insn) = last_insn;
3522 NEXT_INSN (insn) = 0;
3523
3524 if (NULL != last_insn)
3525 NEXT_INSN (last_insn) = insn;
3526
3527 if (NULL == first_insn)
3528 first_insn = insn;
3529
3530 last_insn = insn;
3531 }
3532
3533 /* Add INSN into the doubly-linked list after insn AFTER. This and
3534 the next should be the only functions called to insert an insn once
3535 delay slots have been filled since only they know how to update a
3536 SEQUENCE. */
3537
3538 void
add_insn_after(insn,after)3539 add_insn_after (insn, after)
3540 rtx insn, after;
3541 {
3542 rtx next = NEXT_INSN (after);
3543 basic_block bb;
3544
3545 if (optimize && INSN_DELETED_P (after))
3546 abort ();
3547
3548 NEXT_INSN (insn) = next;
3549 PREV_INSN (insn) = after;
3550
3551 if (next)
3552 {
3553 PREV_INSN (next) = insn;
3554 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3555 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3556 }
3557 else if (last_insn == after)
3558 last_insn = insn;
3559 else
3560 {
3561 struct sequence_stack *stack = seq_stack;
3562 /* Scan all pending sequences too. */
3563 for (; stack; stack = stack->next)
3564 if (after == stack->last)
3565 {
3566 stack->last = insn;
3567 break;
3568 }
3569
3570 if (stack == 0)
3571 abort ();
3572 }
3573
3574 if (GET_CODE (after) != BARRIER
3575 && GET_CODE (insn) != BARRIER
3576 && (bb = BLOCK_FOR_INSN (after)))
3577 {
3578 set_block_for_insn (insn, bb);
3579 if (INSN_P (insn))
3580 bb->flags |= BB_DIRTY;
3581 /* Should not happen as first in the BB is always
3582 either NOTE or LABEL. */
3583 if (bb->end == after
3584 /* Avoid clobbering of structure when creating new BB. */
3585 && GET_CODE (insn) != BARRIER
3586 && (GET_CODE (insn) != NOTE
3587 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3588 bb->end = insn;
3589 }
3590
3591 NEXT_INSN (after) = insn;
3592 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3593 {
3594 rtx sequence = PATTERN (after);
3595 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3596 }
3597 }
3598
3599 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3600 the previous should be the only functions called to insert an insn once
3601 delay slots have been filled since only they know how to update a
3602 SEQUENCE. */
3603
3604 void
add_insn_before(insn,before)3605 add_insn_before (insn, before)
3606 rtx insn, before;
3607 {
3608 rtx prev = PREV_INSN (before);
3609 basic_block bb;
3610
3611 if (optimize && INSN_DELETED_P (before))
3612 abort ();
3613
3614 PREV_INSN (insn) = prev;
3615 NEXT_INSN (insn) = before;
3616
3617 if (prev)
3618 {
3619 NEXT_INSN (prev) = insn;
3620 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3621 {
3622 rtx sequence = PATTERN (prev);
3623 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3624 }
3625 }
3626 else if (first_insn == before)
3627 first_insn = insn;
3628 else
3629 {
3630 struct sequence_stack *stack = seq_stack;
3631 /* Scan all pending sequences too. */
3632 for (; stack; stack = stack->next)
3633 if (before == stack->first)
3634 {
3635 stack->first = insn;
3636 break;
3637 }
3638
3639 if (stack == 0)
3640 abort ();
3641 }
3642
3643 if (GET_CODE (before) != BARRIER
3644 && GET_CODE (insn) != BARRIER
3645 && (bb = BLOCK_FOR_INSN (before)))
3646 {
3647 set_block_for_insn (insn, bb);
3648 if (INSN_P (insn))
3649 bb->flags |= BB_DIRTY;
3650 /* Should not happen as first in the BB is always
3651 either NOTE or LABEl. */
3652 if (bb->head == insn
3653 /* Avoid clobbering of structure when creating new BB. */
3654 && GET_CODE (insn) != BARRIER
3655 && (GET_CODE (insn) != NOTE
3656 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3657 abort ();
3658 }
3659
3660 PREV_INSN (before) = insn;
3661 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3662 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3663 }
3664
3665 /* Remove an insn from its doubly-linked list. This function knows how
3666 to handle sequences. */
3667 void
remove_insn(insn)3668 remove_insn (insn)
3669 rtx insn;
3670 {
3671 rtx next = NEXT_INSN (insn);
3672 rtx prev = PREV_INSN (insn);
3673 basic_block bb;
3674
3675 if (prev)
3676 {
3677 NEXT_INSN (prev) = next;
3678 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3679 {
3680 rtx sequence = PATTERN (prev);
3681 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3682 }
3683 }
3684 else if (first_insn == insn)
3685 first_insn = next;
3686 else
3687 {
3688 struct sequence_stack *stack = seq_stack;
3689 /* Scan all pending sequences too. */
3690 for (; stack; stack = stack->next)
3691 if (insn == stack->first)
3692 {
3693 stack->first = next;
3694 break;
3695 }
3696
3697 if (stack == 0)
3698 abort ();
3699 }
3700
3701 if (next)
3702 {
3703 PREV_INSN (next) = prev;
3704 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3705 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3706 }
3707 else if (last_insn == insn)
3708 last_insn = prev;
3709 else
3710 {
3711 struct sequence_stack *stack = seq_stack;
3712 /* Scan all pending sequences too. */
3713 for (; stack; stack = stack->next)
3714 if (insn == stack->last)
3715 {
3716 stack->last = prev;
3717 break;
3718 }
3719
3720 if (stack == 0)
3721 abort ();
3722 }
3723 if (GET_CODE (insn) != BARRIER
3724 && (bb = BLOCK_FOR_INSN (insn)))
3725 {
3726 if (INSN_P (insn))
3727 bb->flags |= BB_DIRTY;
3728 if (bb->head == insn)
3729 {
3730 /* Never ever delete the basic block note without deleting whole
3731 basic block. */
3732 if (GET_CODE (insn) == NOTE)
3733 abort ();
3734 bb->head = next;
3735 }
3736 if (bb->end == insn)
3737 bb->end = prev;
3738 }
3739 }
3740
3741 /* Delete all insns made since FROM.
3742 FROM becomes the new last instruction. */
3743
3744 void
delete_insns_since(from)3745 delete_insns_since (from)
3746 rtx from;
3747 {
3748 if (from == 0)
3749 first_insn = 0;
3750 else
3751 NEXT_INSN (from) = 0;
3752 last_insn = from;
3753 }
3754
3755 /* This function is deprecated, please use sequences instead.
3756
3757 Move a consecutive bunch of insns to a different place in the chain.
3758 The insns to be moved are those between FROM and TO.
3759 They are moved to a new position after the insn AFTER.
3760 AFTER must not be FROM or TO or any insn in between.
3761
3762 This function does not know about SEQUENCEs and hence should not be
3763 called after delay-slot filling has been done. */
3764
3765 void
reorder_insns_nobb(from,to,after)3766 reorder_insns_nobb (from, to, after)
3767 rtx from, to, after;
3768 {
3769 /* Splice this bunch out of where it is now. */
3770 if (PREV_INSN (from))
3771 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3772 if (NEXT_INSN (to))
3773 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3774 if (last_insn == to)
3775 last_insn = PREV_INSN (from);
3776 if (first_insn == from)
3777 first_insn = NEXT_INSN (to);
3778
3779 /* Make the new neighbors point to it and it to them. */
3780 if (NEXT_INSN (after))
3781 PREV_INSN (NEXT_INSN (after)) = to;
3782
3783 NEXT_INSN (to) = NEXT_INSN (after);
3784 PREV_INSN (from) = after;
3785 NEXT_INSN (after) = from;
3786 if (after == last_insn)
3787 last_insn = to;
3788 }
3789
3790 /* Same as function above, but take care to update BB boundaries. */
3791 void
reorder_insns(from,to,after)3792 reorder_insns (from, to, after)
3793 rtx from, to, after;
3794 {
3795 rtx prev = PREV_INSN (from);
3796 basic_block bb, bb2;
3797
3798 reorder_insns_nobb (from, to, after);
3799
3800 if (GET_CODE (after) != BARRIER
3801 && (bb = BLOCK_FOR_INSN (after)))
3802 {
3803 rtx x;
3804 bb->flags |= BB_DIRTY;
3805
3806 if (GET_CODE (from) != BARRIER
3807 && (bb2 = BLOCK_FOR_INSN (from)))
3808 {
3809 if (bb2->end == to)
3810 bb2->end = prev;
3811 bb2->flags |= BB_DIRTY;
3812 }
3813
3814 if (bb->end == after)
3815 bb->end = to;
3816
3817 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3818 set_block_for_insn (x, bb);
3819 }
3820 }
3821
3822 /* Return the line note insn preceding INSN. */
3823
3824 static rtx
find_line_note(insn)3825 find_line_note (insn)
3826 rtx insn;
3827 {
3828 if (no_line_numbers)
3829 return 0;
3830
3831 for (; insn; insn = PREV_INSN (insn))
3832 if (GET_CODE (insn) == NOTE
3833 && NOTE_LINE_NUMBER (insn) >= 0)
3834 break;
3835
3836 return insn;
3837 }
3838
3839 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3840 of the moved insns when debugging. This may insert a note between AFTER
3841 and FROM, and another one after TO. */
3842
3843 void
reorder_insns_with_line_notes(from,to,after)3844 reorder_insns_with_line_notes (from, to, after)
3845 rtx from, to, after;
3846 {
3847 rtx from_line = find_line_note (from);
3848 rtx after_line = find_line_note (after);
3849
3850 reorder_insns (from, to, after);
3851
3852 if (from_line == after_line)
3853 return;
3854
3855 if (from_line)
3856 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3857 NOTE_LINE_NUMBER (from_line),
3858 after);
3859 if (after_line)
3860 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3861 NOTE_LINE_NUMBER (after_line),
3862 to);
3863 }
3864
3865 /* Remove unnecessary notes from the instruction stream. */
3866
3867 void
remove_unnecessary_notes()3868 remove_unnecessary_notes ()
3869 {
3870 rtx block_stack = NULL_RTX;
3871 rtx eh_stack = NULL_RTX;
3872 rtx insn;
3873 rtx next;
3874 rtx tmp;
3875
3876 /* We must not remove the first instruction in the function because
3877 the compiler depends on the first instruction being a note. */
3878 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3879 {
3880 /* Remember what's next. */
3881 next = NEXT_INSN (insn);
3882
3883 /* We're only interested in notes. */
3884 if (GET_CODE (insn) != NOTE)
3885 continue;
3886
3887 switch (NOTE_LINE_NUMBER (insn))
3888 {
3889 case NOTE_INSN_DELETED:
3890 case NOTE_INSN_LOOP_END_TOP_COND:
3891 remove_insn (insn);
3892 break;
3893
3894 case NOTE_INSN_EH_REGION_BEG:
3895 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3896 break;
3897
3898 case NOTE_INSN_EH_REGION_END:
3899 /* Too many end notes. */
3900 if (eh_stack == NULL_RTX)
3901 abort ();
3902 /* Mismatched nesting. */
3903 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3904 abort ();
3905 tmp = eh_stack;
3906 eh_stack = XEXP (eh_stack, 1);
3907 free_INSN_LIST_node (tmp);
3908 break;
3909
3910 case NOTE_INSN_BLOCK_BEG:
3911 /* By now, all notes indicating lexical blocks should have
3912 NOTE_BLOCK filled in. */
3913 if (NOTE_BLOCK (insn) == NULL_TREE)
3914 abort ();
3915 block_stack = alloc_INSN_LIST (insn, block_stack);
3916 break;
3917
3918 case NOTE_INSN_BLOCK_END:
3919 /* Too many end notes. */
3920 if (block_stack == NULL_RTX)
3921 abort ();
3922 /* Mismatched nesting. */
3923 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3924 abort ();
3925 tmp = block_stack;
3926 block_stack = XEXP (block_stack, 1);
3927 free_INSN_LIST_node (tmp);
3928
3929 /* Scan back to see if there are any non-note instructions
3930 between INSN and the beginning of this block. If not,
3931 then there is no PC range in the generated code that will
3932 actually be in this block, so there's no point in
3933 remembering the existence of the block. */
3934 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3935 {
3936 /* This block contains a real instruction. Note that we
3937 don't include labels; if the only thing in the block
3938 is a label, then there are still no PC values that
3939 lie within the block. */
3940 if (INSN_P (tmp))
3941 break;
3942
3943 /* We're only interested in NOTEs. */
3944 if (GET_CODE (tmp) != NOTE)
3945 continue;
3946
3947 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3948 {
3949 /* We just verified that this BLOCK matches us with
3950 the block_stack check above. Never delete the
3951 BLOCK for the outermost scope of the function; we
3952 can refer to names from that scope even if the
3953 block notes are messed up. */
3954 if (! is_body_block (NOTE_BLOCK (insn))
3955 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3956 {
3957 remove_insn (tmp);
3958 remove_insn (insn);
3959 }
3960 break;
3961 }
3962 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3963 /* There's a nested block. We need to leave the
3964 current block in place since otherwise the debugger
3965 wouldn't be able to show symbols from our block in
3966 the nested block. */
3967 break;
3968 }
3969 }
3970 }
3971
3972 /* Too many begin notes. */
3973 if (block_stack || eh_stack)
3974 abort ();
3975 }
3976
3977
3978 /* Emit insn(s) of given code and pattern
3979 at a specified place within the doubly-linked list.
3980
3981 All of the emit_foo global entry points accept an object
3982 X which is either an insn list or a PATTERN of a single
3983 instruction.
3984
3985 There are thus a few canonical ways to generate code and
3986 emit it at a specific place in the instruction stream. For
3987 example, consider the instruction named SPOT and the fact that
3988 we would like to emit some instructions before SPOT. We might
3989 do it like this:
3990
3991 start_sequence ();
3992 ... emit the new instructions ...
3993 insns_head = get_insns ();
3994 end_sequence ();
3995
3996 emit_insn_before (insns_head, SPOT);
3997
3998 It used to be common to generate SEQUENCE rtl instead, but that
3999 is a relic of the past which no longer occurs. The reason is that
4000 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4001 generated would almost certainly die right after it was created. */
4002
4003 /* Make X be output before the instruction BEFORE. */
4004
4005 rtx
emit_insn_before(x,before)4006 emit_insn_before (x, before)
4007 rtx x, before;
4008 {
4009 rtx last = before;
4010 rtx insn;
4011
4012 #ifdef ENABLE_RTL_CHECKING
4013 if (before == NULL_RTX)
4014 abort ();
4015 #endif
4016
4017 if (x == NULL_RTX)
4018 return last;
4019
4020 switch (GET_CODE (x))
4021 {
4022 case INSN:
4023 case JUMP_INSN:
4024 case CALL_INSN:
4025 case CODE_LABEL:
4026 case BARRIER:
4027 case NOTE:
4028 insn = x;
4029 while (insn)
4030 {
4031 rtx next = NEXT_INSN (insn);
4032 add_insn_before (insn, before);
4033 last = insn;
4034 insn = next;
4035 }
4036 break;
4037
4038 #ifdef ENABLE_RTL_CHECKING
4039 case SEQUENCE:
4040 abort ();
4041 break;
4042 #endif
4043
4044 default:
4045 last = make_insn_raw (x);
4046 add_insn_before (last, before);
4047 break;
4048 }
4049
4050 return last;
4051 }
4052
4053 /* Make an instruction with body X and code JUMP_INSN
4054 and output it before the instruction BEFORE. */
4055
4056 rtx
emit_jump_insn_before(x,before)4057 emit_jump_insn_before (x, before)
4058 rtx x, before;
4059 {
4060 rtx insn, last = NULL_RTX;
4061
4062 #ifdef ENABLE_RTL_CHECKING
4063 if (before == NULL_RTX)
4064 abort ();
4065 #endif
4066
4067 switch (GET_CODE (x))
4068 {
4069 case INSN:
4070 case JUMP_INSN:
4071 case CALL_INSN:
4072 case CODE_LABEL:
4073 case BARRIER:
4074 case NOTE:
4075 insn = x;
4076 while (insn)
4077 {
4078 rtx next = NEXT_INSN (insn);
4079 add_insn_before (insn, before);
4080 last = insn;
4081 insn = next;
4082 }
4083 break;
4084
4085 #ifdef ENABLE_RTL_CHECKING
4086 case SEQUENCE:
4087 abort ();
4088 break;
4089 #endif
4090
4091 default:
4092 last = make_jump_insn_raw (x);
4093 add_insn_before (last, before);
4094 break;
4095 }
4096
4097 return last;
4098 }
4099
4100 /* Make an instruction with body X and code CALL_INSN
4101 and output it before the instruction BEFORE. */
4102
4103 rtx
emit_call_insn_before(x,before)4104 emit_call_insn_before (x, before)
4105 rtx x, before;
4106 {
4107 rtx last = NULL_RTX, insn;
4108
4109 #ifdef ENABLE_RTL_CHECKING
4110 if (before == NULL_RTX)
4111 abort ();
4112 #endif
4113
4114 switch (GET_CODE (x))
4115 {
4116 case INSN:
4117 case JUMP_INSN:
4118 case CALL_INSN:
4119 case CODE_LABEL:
4120 case BARRIER:
4121 case NOTE:
4122 insn = x;
4123 while (insn)
4124 {
4125 rtx next = NEXT_INSN (insn);
4126 add_insn_before (insn, before);
4127 last = insn;
4128 insn = next;
4129 }
4130 break;
4131
4132 #ifdef ENABLE_RTL_CHECKING
4133 case SEQUENCE:
4134 abort ();
4135 break;
4136 #endif
4137
4138 default:
4139 last = make_call_insn_raw (x);
4140 add_insn_before (last, before);
4141 break;
4142 }
4143
4144 return last;
4145 }
4146
4147 /* Make an insn of code BARRIER
4148 and output it before the insn BEFORE. */
4149
4150 rtx
emit_barrier_before(before)4151 emit_barrier_before (before)
4152 rtx before;
4153 {
4154 rtx insn = rtx_alloc (BARRIER);
4155
4156 INSN_UID (insn) = cur_insn_uid++;
4157
4158 add_insn_before (insn, before);
4159 return insn;
4160 }
4161
4162 /* Emit the label LABEL before the insn BEFORE. */
4163
4164 rtx
emit_label_before(label,before)4165 emit_label_before (label, before)
4166 rtx label, before;
4167 {
4168 /* This can be called twice for the same label as a result of the
4169 confusion that follows a syntax error! So make it harmless. */
4170 if (INSN_UID (label) == 0)
4171 {
4172 INSN_UID (label) = cur_insn_uid++;
4173 add_insn_before (label, before);
4174 }
4175
4176 return label;
4177 }
4178
4179 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4180
4181 rtx
emit_note_before(subtype,before)4182 emit_note_before (subtype, before)
4183 int subtype;
4184 rtx before;
4185 {
4186 rtx note = rtx_alloc (NOTE);
4187 INSN_UID (note) = cur_insn_uid++;
4188 NOTE_SOURCE_FILE (note) = 0;
4189 NOTE_LINE_NUMBER (note) = subtype;
4190 BLOCK_FOR_INSN (note) = NULL;
4191
4192 add_insn_before (note, before);
4193 return note;
4194 }
4195
4196 /* Helper for emit_insn_after, handles lists of instructions
4197 efficiently. */
4198
4199 static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4200
4201 static rtx
emit_insn_after_1(first,after)4202 emit_insn_after_1 (first, after)
4203 rtx first, after;
4204 {
4205 rtx last;
4206 rtx after_after;
4207 basic_block bb;
4208
4209 if (GET_CODE (after) != BARRIER
4210 && (bb = BLOCK_FOR_INSN (after)))
4211 {
4212 bb->flags |= BB_DIRTY;
4213 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4214 if (GET_CODE (last) != BARRIER)
4215 set_block_for_insn (last, bb);
4216 if (GET_CODE (last) != BARRIER)
4217 set_block_for_insn (last, bb);
4218 if (bb->end == after)
4219 bb->end = last;
4220 }
4221 else
4222 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4223 continue;
4224
4225 after_after = NEXT_INSN (after);
4226
4227 NEXT_INSN (after) = first;
4228 PREV_INSN (first) = after;
4229 NEXT_INSN (last) = after_after;
4230 if (after_after)
4231 PREV_INSN (after_after) = last;
4232
4233 if (after == last_insn)
4234 last_insn = last;
4235 return last;
4236 }
4237
4238 /* Make X be output after the insn AFTER. */
4239
4240 rtx
emit_insn_after(x,after)4241 emit_insn_after (x, after)
4242 rtx x, after;
4243 {
4244 rtx last = after;
4245
4246 #ifdef ENABLE_RTL_CHECKING
4247 if (after == NULL_RTX)
4248 abort ();
4249 #endif
4250
4251 if (x == NULL_RTX)
4252 return last;
4253
4254 switch (GET_CODE (x))
4255 {
4256 case INSN:
4257 case JUMP_INSN:
4258 case CALL_INSN:
4259 case CODE_LABEL:
4260 case BARRIER:
4261 case NOTE:
4262 last = emit_insn_after_1 (x, after);
4263 break;
4264
4265 #ifdef ENABLE_RTL_CHECKING
4266 case SEQUENCE:
4267 abort ();
4268 break;
4269 #endif
4270
4271 default:
4272 last = make_insn_raw (x);
4273 add_insn_after (last, after);
4274 break;
4275 }
4276
4277 return last;
4278 }
4279
4280 /* Similar to emit_insn_after, except that line notes are to be inserted so
4281 as to act as if this insn were at FROM. */
4282
4283 void
emit_insn_after_with_line_notes(x,after,from)4284 emit_insn_after_with_line_notes (x, after, from)
4285 rtx x, after, from;
4286 {
4287 rtx from_line = find_line_note (from);
4288 rtx after_line = find_line_note (after);
4289 rtx insn = emit_insn_after (x, after);
4290
4291 if (from_line)
4292 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4293 NOTE_LINE_NUMBER (from_line),
4294 after);
4295
4296 if (after_line)
4297 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4298 NOTE_LINE_NUMBER (after_line),
4299 insn);
4300 }
4301
4302 /* Make an insn of code JUMP_INSN with body X
4303 and output it after the insn AFTER. */
4304
4305 rtx
emit_jump_insn_after(x,after)4306 emit_jump_insn_after (x, after)
4307 rtx x, after;
4308 {
4309 rtx last;
4310
4311 #ifdef ENABLE_RTL_CHECKING
4312 if (after == NULL_RTX)
4313 abort ();
4314 #endif
4315
4316 switch (GET_CODE (x))
4317 {
4318 case INSN:
4319 case JUMP_INSN:
4320 case CALL_INSN:
4321 case CODE_LABEL:
4322 case BARRIER:
4323 case NOTE:
4324 last = emit_insn_after_1 (x, after);
4325 break;
4326
4327 #ifdef ENABLE_RTL_CHECKING
4328 case SEQUENCE:
4329 abort ();
4330 break;
4331 #endif
4332
4333 default:
4334 last = make_jump_insn_raw (x);
4335 add_insn_after (last, after);
4336 break;
4337 }
4338
4339 return last;
4340 }
4341
4342 /* Make an instruction with body X and code CALL_INSN
4343 and output it after the instruction AFTER. */
4344
4345 rtx
emit_call_insn_after(x,after)4346 emit_call_insn_after (x, after)
4347 rtx x, after;
4348 {
4349 rtx last;
4350
4351 #ifdef ENABLE_RTL_CHECKING
4352 if (after == NULL_RTX)
4353 abort ();
4354 #endif
4355
4356 switch (GET_CODE (x))
4357 {
4358 case INSN:
4359 case JUMP_INSN:
4360 case CALL_INSN:
4361 case CODE_LABEL:
4362 case BARRIER:
4363 case NOTE:
4364 last = emit_insn_after_1 (x, after);
4365 break;
4366
4367 #ifdef ENABLE_RTL_CHECKING
4368 case SEQUENCE:
4369 abort ();
4370 break;
4371 #endif
4372
4373 default:
4374 last = make_call_insn_raw (x);
4375 add_insn_after (last, after);
4376 break;
4377 }
4378
4379 return last;
4380 }
4381
4382 /* Make an insn of code BARRIER
4383 and output it after the insn AFTER. */
4384
4385 rtx
emit_barrier_after(after)4386 emit_barrier_after (after)
4387 rtx after;
4388 {
4389 rtx insn = rtx_alloc (BARRIER);
4390
4391 INSN_UID (insn) = cur_insn_uid++;
4392
4393 add_insn_after (insn, after);
4394 return insn;
4395 }
4396
4397 /* Emit the label LABEL after the insn AFTER. */
4398
4399 rtx
emit_label_after(label,after)4400 emit_label_after (label, after)
4401 rtx label, after;
4402 {
4403 /* This can be called twice for the same label
4404 as a result of the confusion that follows a syntax error!
4405 So make it harmless. */
4406 if (INSN_UID (label) == 0)
4407 {
4408 INSN_UID (label) = cur_insn_uid++;
4409 add_insn_after (label, after);
4410 }
4411
4412 return label;
4413 }
4414
4415 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4416
4417 rtx
emit_note_after(subtype,after)4418 emit_note_after (subtype, after)
4419 int subtype;
4420 rtx after;
4421 {
4422 rtx note = rtx_alloc (NOTE);
4423 INSN_UID (note) = cur_insn_uid++;
4424 NOTE_SOURCE_FILE (note) = 0;
4425 NOTE_LINE_NUMBER (note) = subtype;
4426 BLOCK_FOR_INSN (note) = NULL;
4427 add_insn_after (note, after);
4428 return note;
4429 }
4430
4431 /* Emit a line note for FILE and LINE after the insn AFTER. */
4432
4433 rtx
emit_line_note_after(file,line,after)4434 emit_line_note_after (file, line, after)
4435 const char *file;
4436 int line;
4437 rtx after;
4438 {
4439 rtx note;
4440
4441 if (no_line_numbers && line > 0)
4442 {
4443 cur_insn_uid++;
4444 return 0;
4445 }
4446
4447 note = rtx_alloc (NOTE);
4448 INSN_UID (note) = cur_insn_uid++;
4449 NOTE_SOURCE_FILE (note) = file;
4450 NOTE_LINE_NUMBER (note) = line;
4451 BLOCK_FOR_INSN (note) = NULL;
4452 add_insn_after (note, after);
4453 return note;
4454 }
4455
4456 /* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4457 rtx
emit_insn_after_scope(pattern,after,scope)4458 emit_insn_after_scope (pattern, after, scope)
4459 rtx pattern, after;
4460 tree scope;
4461 {
4462 rtx last = emit_insn_after (pattern, after);
4463
4464 after = NEXT_INSN (after);
4465 while (1)
4466 {
4467 if (active_insn_p (after))
4468 INSN_SCOPE (after) = scope;
4469 if (after == last)
4470 break;
4471 after = NEXT_INSN (after);
4472 }
4473 return last;
4474 }
4475
4476 /* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4477 rtx
emit_jump_insn_after_scope(pattern,after,scope)4478 emit_jump_insn_after_scope (pattern, after, scope)
4479 rtx pattern, after;
4480 tree scope;
4481 {
4482 rtx last = emit_jump_insn_after (pattern, after);
4483
4484 after = NEXT_INSN (after);
4485 while (1)
4486 {
4487 if (active_insn_p (after))
4488 INSN_SCOPE (after) = scope;
4489 if (after == last)
4490 break;
4491 after = NEXT_INSN (after);
4492 }
4493 return last;
4494 }
4495
4496 /* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4497 rtx
emit_call_insn_after_scope(pattern,after,scope)4498 emit_call_insn_after_scope (pattern, after, scope)
4499 rtx pattern, after;
4500 tree scope;
4501 {
4502 rtx last = emit_call_insn_after (pattern, after);
4503
4504 after = NEXT_INSN (after);
4505 while (1)
4506 {
4507 if (active_insn_p (after))
4508 INSN_SCOPE (after) = scope;
4509 if (after == last)
4510 break;
4511 after = NEXT_INSN (after);
4512 }
4513 return last;
4514 }
4515
4516 /* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4517 rtx
emit_insn_before_scope(pattern,before,scope)4518 emit_insn_before_scope (pattern, before, scope)
4519 rtx pattern, before;
4520 tree scope;
4521 {
4522 rtx first = PREV_INSN (before);
4523 rtx last = emit_insn_before (pattern, before);
4524
4525 first = NEXT_INSN (first);
4526 while (1)
4527 {
4528 if (active_insn_p (first))
4529 INSN_SCOPE (first) = scope;
4530 if (first == last)
4531 break;
4532 first = NEXT_INSN (first);
4533 }
4534 return last;
4535 }
4536
4537 /* Take X and emit it at the end of the doubly-linked
4538 INSN list.
4539
4540 Returns the last insn emitted. */
4541
4542 rtx
emit_insn(x)4543 emit_insn (x)
4544 rtx x;
4545 {
4546 rtx last = last_insn;
4547 rtx insn;
4548
4549 if (x == NULL_RTX)
4550 return last;
4551
4552 switch (GET_CODE (x))
4553 {
4554 case INSN:
4555 case JUMP_INSN:
4556 case CALL_INSN:
4557 case CODE_LABEL:
4558 case BARRIER:
4559 case NOTE:
4560 insn = x;
4561 while (insn)
4562 {
4563 rtx next = NEXT_INSN (insn);
4564 add_insn (insn);
4565 last = insn;
4566 insn = next;
4567 }
4568 break;
4569
4570 #ifdef ENABLE_RTL_CHECKING
4571 case SEQUENCE:
4572 abort ();
4573 break;
4574 #endif
4575
4576 default:
4577 last = make_insn_raw (x);
4578 add_insn (last);
4579 break;
4580 }
4581
4582 return last;
4583 }
4584
4585 /* Make an insn of code JUMP_INSN with pattern X
4586 and add it to the end of the doubly-linked list. */
4587
4588 rtx
emit_jump_insn(x)4589 emit_jump_insn (x)
4590 rtx x;
4591 {
4592 rtx last = NULL_RTX, insn;
4593
4594 switch (GET_CODE (x))
4595 {
4596 case INSN:
4597 case JUMP_INSN:
4598 case CALL_INSN:
4599 case CODE_LABEL:
4600 case BARRIER:
4601 case NOTE:
4602 insn = x;
4603 while (insn)
4604 {
4605 rtx next = NEXT_INSN (insn);
4606 add_insn (insn);
4607 last = insn;
4608 insn = next;
4609 }
4610 break;
4611
4612 #ifdef ENABLE_RTL_CHECKING
4613 case SEQUENCE:
4614 abort ();
4615 break;
4616 #endif
4617
4618 default:
4619 last = make_jump_insn_raw (x);
4620 add_insn (last);
4621 break;
4622 }
4623
4624 return last;
4625 }
4626
4627 /* Make an insn of code CALL_INSN with pattern X
4628 and add it to the end of the doubly-linked list. */
4629
4630 rtx
emit_call_insn(x)4631 emit_call_insn (x)
4632 rtx x;
4633 {
4634 rtx insn;
4635
4636 switch (GET_CODE (x))
4637 {
4638 case INSN:
4639 case JUMP_INSN:
4640 case CALL_INSN:
4641 case CODE_LABEL:
4642 case BARRIER:
4643 case NOTE:
4644 insn = emit_insn (x);
4645 break;
4646
4647 #ifdef ENABLE_RTL_CHECKING
4648 case SEQUENCE:
4649 abort ();
4650 break;
4651 #endif
4652
4653 default:
4654 insn = make_call_insn_raw (x);
4655 add_insn (insn);
4656 break;
4657 }
4658
4659 return insn;
4660 }
4661
4662 /* Add the label LABEL to the end of the doubly-linked list. */
4663
4664 rtx
emit_label(label)4665 emit_label (label)
4666 rtx label;
4667 {
4668 /* This can be called twice for the same label
4669 as a result of the confusion that follows a syntax error!
4670 So make it harmless. */
4671 if (INSN_UID (label) == 0)
4672 {
4673 INSN_UID (label) = cur_insn_uid++;
4674 add_insn (label);
4675 }
4676 return label;
4677 }
4678
4679 /* Make an insn of code BARRIER
4680 and add it to the end of the doubly-linked list. */
4681
4682 rtx
emit_barrier()4683 emit_barrier ()
4684 {
4685 rtx barrier = rtx_alloc (BARRIER);
4686 INSN_UID (barrier) = cur_insn_uid++;
4687 add_insn (barrier);
4688 return barrier;
4689 }
4690
4691 /* Make an insn of code NOTE
4692 with data-fields specified by FILE and LINE
4693 and add it to the end of the doubly-linked list,
4694 but only if line-numbers are desired for debugging info. */
4695
4696 rtx
emit_line_note(file,line)4697 emit_line_note (file, line)
4698 const char *file;
4699 int line;
4700 {
4701 set_file_and_line_for_stmt (file, line);
4702
4703 #if 0
4704 if (no_line_numbers)
4705 return 0;
4706 #endif
4707
4708 return emit_note (file, line);
4709 }
4710
4711 /* Make an insn of code NOTE
4712 with data-fields specified by FILE and LINE
4713 and add it to the end of the doubly-linked list.
4714 If it is a line-number NOTE, omit it if it matches the previous one. */
4715
4716 rtx
emit_note(file,line)4717 emit_note (file, line)
4718 const char *file;
4719 int line;
4720 {
4721 rtx note;
4722
4723 if (line > 0)
4724 {
4725 if (file && last_filename && !strcmp (file, last_filename)
4726 && line == last_linenum)
4727 return 0;
4728 last_filename = file;
4729 last_linenum = line;
4730 }
4731
4732 if (no_line_numbers && line > 0)
4733 {
4734 cur_insn_uid++;
4735 return 0;
4736 }
4737
4738 note = rtx_alloc (NOTE);
4739 INSN_UID (note) = cur_insn_uid++;
4740 NOTE_SOURCE_FILE (note) = file;
4741 NOTE_LINE_NUMBER (note) = line;
4742 BLOCK_FOR_INSN (note) = NULL;
4743 add_insn (note);
4744 return note;
4745 }
4746
4747 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4748
4749 rtx
emit_line_note_force(file,line)4750 emit_line_note_force (file, line)
4751 const char *file;
4752 int line;
4753 {
4754 last_linenum = -1;
4755 return emit_line_note (file, line);
4756 }
4757
4758 /* Cause next statement to emit a line note even if the line number
4759 has not changed. This is used at the beginning of a function. */
4760
4761 void
force_next_line_note()4762 force_next_line_note ()
4763 {
4764 last_linenum = -1;
4765 }
4766
4767 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4768 note of this type already exists, remove it first. */
4769
4770 rtx
set_unique_reg_note(insn,kind,datum)4771 set_unique_reg_note (insn, kind, datum)
4772 rtx insn;
4773 enum reg_note kind;
4774 rtx datum;
4775 {
4776 rtx note = find_reg_note (insn, kind, NULL_RTX);
4777
4778 switch (kind)
4779 {
4780 case REG_EQUAL:
4781 case REG_EQUIV:
4782 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4783 has multiple sets (some callers assume single_set
4784 means the insn only has one set, when in fact it
4785 means the insn only has one * useful * set). */
4786 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4787 {
4788 if (note)
4789 abort ();
4790 return NULL_RTX;
4791 }
4792
4793 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4794 It serves no useful purpose and breaks eliminate_regs. */
4795 if (GET_CODE (datum) == ASM_OPERANDS)
4796 return NULL_RTX;
4797 break;
4798
4799 default:
4800 break;
4801 }
4802
4803 if (note)
4804 {
4805 XEXP (note, 0) = datum;
4806 return note;
4807 }
4808
4809 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4810 return REG_NOTES (insn);
4811 }
4812
4813 /* Return an indication of which type of insn should have X as a body.
4814 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4815
4816 enum rtx_code
classify_insn(x)4817 classify_insn (x)
4818 rtx x;
4819 {
4820 if (GET_CODE (x) == CODE_LABEL)
4821 return CODE_LABEL;
4822 if (GET_CODE (x) == CALL)
4823 return CALL_INSN;
4824 if (GET_CODE (x) == RETURN)
4825 return JUMP_INSN;
4826 if (GET_CODE (x) == SET)
4827 {
4828 if (SET_DEST (x) == pc_rtx)
4829 return JUMP_INSN;
4830 else if (GET_CODE (SET_SRC (x)) == CALL)
4831 return CALL_INSN;
4832 else
4833 return INSN;
4834 }
4835 if (GET_CODE (x) == PARALLEL)
4836 {
4837 int j;
4838 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4839 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4840 return CALL_INSN;
4841 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4842 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4843 return JUMP_INSN;
4844 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4845 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4846 return CALL_INSN;
4847 }
4848 return INSN;
4849 }
4850
4851 /* Emit the rtl pattern X as an appropriate kind of insn.
4852 If X is a label, it is simply added into the insn chain. */
4853
4854 rtx
emit(x)4855 emit (x)
4856 rtx x;
4857 {
4858 enum rtx_code code = classify_insn (x);
4859
4860 if (code == CODE_LABEL)
4861 return emit_label (x);
4862 else if (code == INSN)
4863 return emit_insn (x);
4864 else if (code == JUMP_INSN)
4865 {
4866 rtx insn = emit_jump_insn (x);
4867 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4868 return emit_barrier ();
4869 return insn;
4870 }
4871 else if (code == CALL_INSN)
4872 return emit_call_insn (x);
4873 else
4874 abort ();
4875 }
4876
4877 /* Space for free sequence stack entries. */
4878 static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4879
4880 /* Begin emitting insns to a sequence which can be packaged in an
4881 RTL_EXPR. If this sequence will contain something that might cause
4882 the compiler to pop arguments to function calls (because those
4883 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4884 details), use do_pending_stack_adjust before calling this function.
4885 That will ensure that the deferred pops are not accidentally
4886 emitted in the middle of this sequence. */
4887
4888 void
start_sequence()4889 start_sequence ()
4890 {
4891 struct sequence_stack *tem;
4892
4893 if (free_sequence_stack != NULL)
4894 {
4895 tem = free_sequence_stack;
4896 free_sequence_stack = tem->next;
4897 }
4898 else
4899 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
4900
4901 tem->next = seq_stack;
4902 tem->first = first_insn;
4903 tem->last = last_insn;
4904 tem->sequence_rtl_expr = seq_rtl_expr;
4905
4906 seq_stack = tem;
4907
4908 first_insn = 0;
4909 last_insn = 0;
4910 }
4911
4912 /* Similarly, but indicate that this sequence will be placed in T, an
4913 RTL_EXPR. See the documentation for start_sequence for more
4914 information about how to use this function. */
4915
4916 void
start_sequence_for_rtl_expr(t)4917 start_sequence_for_rtl_expr (t)
4918 tree t;
4919 {
4920 start_sequence ();
4921
4922 seq_rtl_expr = t;
4923 }
4924
4925 /* Set up the insn chain starting with FIRST as the current sequence,
4926 saving the previously current one. See the documentation for
4927 start_sequence for more information about how to use this function. */
4928
4929 void
push_to_sequence(first)4930 push_to_sequence (first)
4931 rtx first;
4932 {
4933 rtx last;
4934
4935 start_sequence ();
4936
4937 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4938
4939 first_insn = first;
4940 last_insn = last;
4941 }
4942
4943 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4944
4945 void
push_to_full_sequence(first,last)4946 push_to_full_sequence (first, last)
4947 rtx first, last;
4948 {
4949 start_sequence ();
4950 first_insn = first;
4951 last_insn = last;
4952 /* We really should have the end of the insn chain here. */
4953 if (last && NEXT_INSN (last))
4954 abort ();
4955 }
4956
4957 /* Set up the outer-level insn chain
4958 as the current sequence, saving the previously current one. */
4959
4960 void
push_topmost_sequence()4961 push_topmost_sequence ()
4962 {
4963 struct sequence_stack *stack, *top = NULL;
4964
4965 start_sequence ();
4966
4967 for (stack = seq_stack; stack; stack = stack->next)
4968 top = stack;
4969
4970 first_insn = top->first;
4971 last_insn = top->last;
4972 seq_rtl_expr = top->sequence_rtl_expr;
4973 }
4974
4975 /* After emitting to the outer-level insn chain, update the outer-level
4976 insn chain, and restore the previous saved state. */
4977
4978 void
pop_topmost_sequence()4979 pop_topmost_sequence ()
4980 {
4981 struct sequence_stack *stack, *top = NULL;
4982
4983 for (stack = seq_stack; stack; stack = stack->next)
4984 top = stack;
4985
4986 top->first = first_insn;
4987 top->last = last_insn;
4988 /* ??? Why don't we save seq_rtl_expr here? */
4989
4990 end_sequence ();
4991 }
4992
4993 /* After emitting to a sequence, restore previous saved state.
4994
4995 To get the contents of the sequence just made, you must call
4996 `get_insns' *before* calling here.
4997
4998 If the compiler might have deferred popping arguments while
4999 generating this sequence, and this sequence will not be immediately
5000 inserted into the instruction stream, use do_pending_stack_adjust
5001 before calling get_insns. That will ensure that the deferred
5002 pops are inserted into this sequence, and not into some random
5003 location in the instruction stream. See INHIBIT_DEFER_POP for more
5004 information about deferred popping of arguments. */
5005
5006 void
end_sequence()5007 end_sequence ()
5008 {
5009 struct sequence_stack *tem = seq_stack;
5010
5011 first_insn = tem->first;
5012 last_insn = tem->last;
5013 seq_rtl_expr = tem->sequence_rtl_expr;
5014 seq_stack = tem->next;
5015
5016 memset (tem, 0, sizeof (*tem));
5017 tem->next = free_sequence_stack;
5018 free_sequence_stack = tem;
5019 }
5020
5021 /* This works like end_sequence, but records the old sequence in FIRST
5022 and LAST. */
5023
5024 void
end_full_sequence(first,last)5025 end_full_sequence (first, last)
5026 rtx *first, *last;
5027 {
5028 *first = first_insn;
5029 *last = last_insn;
5030 end_sequence ();
5031 }
5032
5033 /* Return 1 if currently emitting into a sequence. */
5034
5035 int
in_sequence_p()5036 in_sequence_p ()
5037 {
5038 return seq_stack != 0;
5039 }
5040
5041 /* Put the various virtual registers into REGNO_REG_RTX. */
5042
5043 void
init_virtual_regs(es)5044 init_virtual_regs (es)
5045 struct emit_status *es;
5046 {
5047 rtx *ptr = es->x_regno_reg_rtx;
5048 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5049 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5050 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5051 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5052 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5053 }
5054
5055
5056 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5057 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5058 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5059 static int copy_insn_n_scratches;
5060
5061 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5062 copied an ASM_OPERANDS.
5063 In that case, it is the original input-operand vector. */
5064 static rtvec orig_asm_operands_vector;
5065
5066 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5067 copied an ASM_OPERANDS.
5068 In that case, it is the copied input-operand vector. */
5069 static rtvec copy_asm_operands_vector;
5070
5071 /* Likewise for the constraints vector. */
5072 static rtvec orig_asm_constraints_vector;
5073 static rtvec copy_asm_constraints_vector;
5074
5075 /* Recursively create a new copy of an rtx for copy_insn.
5076 This function differs from copy_rtx in that it handles SCRATCHes and
5077 ASM_OPERANDs properly.
5078 Normally, this function is not used directly; use copy_insn as front end.
5079 However, you could first copy an insn pattern with copy_insn and then use
5080 this function afterwards to properly copy any REG_NOTEs containing
5081 SCRATCHes. */
5082
5083 rtx
copy_insn_1(orig)5084 copy_insn_1 (orig)
5085 rtx orig;
5086 {
5087 rtx copy;
5088 int i, j;
5089 RTX_CODE code;
5090 const char *format_ptr;
5091
5092 code = GET_CODE (orig);
5093
5094 switch (code)
5095 {
5096 case REG:
5097 case QUEUED:
5098 case CONST_INT:
5099 case CONST_DOUBLE:
5100 case CONST_VECTOR:
5101 case SYMBOL_REF:
5102 case CODE_LABEL:
5103 case PC:
5104 case CC0:
5105 case ADDRESSOF:
5106 return orig;
5107
5108 case SCRATCH:
5109 for (i = 0; i < copy_insn_n_scratches; i++)
5110 if (copy_insn_scratch_in[i] == orig)
5111 return copy_insn_scratch_out[i];
5112 break;
5113
5114 case CONST:
5115 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5116 a LABEL_REF, it isn't sharable. */
5117 if (GET_CODE (XEXP (orig, 0)) == PLUS
5118 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5119 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5120 return orig;
5121 break;
5122
5123 /* A MEM with a constant address is not sharable. The problem is that
5124 the constant address may need to be reloaded. If the mem is shared,
5125 then reloading one copy of this mem will cause all copies to appear
5126 to have been reloaded. */
5127
5128 default:
5129 break;
5130 }
5131
5132 copy = rtx_alloc (code);
5133
5134 /* Copy the various flags, and other information. We assume that
5135 all fields need copying, and then clear the fields that should
5136 not be copied. That is the sensible default behavior, and forces
5137 us to explicitly document why we are *not* copying a flag. */
5138 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5139
5140 /* We do not copy the USED flag, which is used as a mark bit during
5141 walks over the RTL. */
5142 RTX_FLAG (copy, used) = 0;
5143
5144 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5145 if (GET_RTX_CLASS (code) == 'i')
5146 {
5147 RTX_FLAG (copy, jump) = 0;
5148 RTX_FLAG (copy, call) = 0;
5149 RTX_FLAG (copy, frame_related) = 0;
5150 }
5151
5152 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5153
5154 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5155 {
5156 copy->fld[i] = orig->fld[i];
5157 switch (*format_ptr++)
5158 {
5159 case 'e':
5160 if (XEXP (orig, i) != NULL)
5161 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5162 break;
5163
5164 case 'E':
5165 case 'V':
5166 if (XVEC (orig, i) == orig_asm_constraints_vector)
5167 XVEC (copy, i) = copy_asm_constraints_vector;
5168 else if (XVEC (orig, i) == orig_asm_operands_vector)
5169 XVEC (copy, i) = copy_asm_operands_vector;
5170 else if (XVEC (orig, i) != NULL)
5171 {
5172 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5173 for (j = 0; j < XVECLEN (copy, i); j++)
5174 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5175 }
5176 break;
5177
5178 case 't':
5179 case 'w':
5180 case 'i':
5181 case 's':
5182 case 'S':
5183 case 'u':
5184 case '0':
5185 /* These are left unchanged. */
5186 break;
5187
5188 default:
5189 abort ();
5190 }
5191 }
5192
5193 if (code == SCRATCH)
5194 {
5195 i = copy_insn_n_scratches++;
5196 if (i >= MAX_RECOG_OPERANDS)
5197 abort ();
5198 copy_insn_scratch_in[i] = orig;
5199 copy_insn_scratch_out[i] = copy;
5200 }
5201 else if (code == ASM_OPERANDS)
5202 {
5203 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5204 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5205 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5206 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5207 }
5208
5209 return copy;
5210 }
5211
5212 /* Create a new copy of an rtx.
5213 This function differs from copy_rtx in that it handles SCRATCHes and
5214 ASM_OPERANDs properly.
5215 INSN doesn't really have to be a full INSN; it could be just the
5216 pattern. */
5217 rtx
copy_insn(insn)5218 copy_insn (insn)
5219 rtx insn;
5220 {
5221 copy_insn_n_scratches = 0;
5222 orig_asm_operands_vector = 0;
5223 orig_asm_constraints_vector = 0;
5224 copy_asm_operands_vector = 0;
5225 copy_asm_constraints_vector = 0;
5226 return copy_insn_1 (insn);
5227 }
5228
5229 /* Initialize data structures and variables in this file
5230 before generating rtl for each function. */
5231
5232 void
init_emit()5233 init_emit ()
5234 {
5235 struct function *f = cfun;
5236
5237 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
5238 first_insn = NULL;
5239 last_insn = NULL;
5240 seq_rtl_expr = NULL;
5241 cur_insn_uid = 1;
5242 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5243 last_linenum = 0;
5244 last_filename = 0;
5245 first_label_num = label_num;
5246 last_label_num = 0;
5247 seq_stack = NULL;
5248
5249 /* Init the tables that describe all the pseudo regs. */
5250
5251 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5252
5253 f->emit->regno_pointer_align
5254 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5255 * sizeof (unsigned char));
5256
5257 regno_reg_rtx
5258 = (rtx *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5259 * sizeof (rtx));
5260
5261 f->emit->regno_decl
5262 = (tree *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5263 * sizeof (tree));
5264
5265 /* Put copies of all the hard registers into regno_reg_rtx. */
5266 memcpy (regno_reg_rtx,
5267 static_regno_reg_rtx,
5268 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5269
5270 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5271 init_virtual_regs (f->emit);
5272
5273 /* Indicate that the virtual registers and stack locations are
5274 all pointers. */
5275 REG_POINTER (stack_pointer_rtx) = 1;
5276 REG_POINTER (frame_pointer_rtx) = 1;
5277 REG_POINTER (hard_frame_pointer_rtx) = 1;
5278 REG_POINTER (arg_pointer_rtx) = 1;
5279
5280 REG_POINTER (virtual_incoming_args_rtx) = 1;
5281 REG_POINTER (virtual_stack_vars_rtx) = 1;
5282 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5283 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5284 REG_POINTER (virtual_cfa_rtx) = 1;
5285
5286 #ifdef STACK_BOUNDARY
5287 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5288 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5289 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5290 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5291
5292 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5293 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5294 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5295 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5296 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5297 #endif
5298
5299 #ifdef INIT_EXPANDERS
5300 INIT_EXPANDERS;
5301 #endif
5302 }
5303
5304 /* Generate the constant 0. */
5305
5306 static rtx
gen_const_vector_0(mode)5307 gen_const_vector_0 (mode)
5308 enum machine_mode mode;
5309 {
5310 rtx tem;
5311 rtvec v;
5312 int units, i;
5313 enum machine_mode inner;
5314
5315 units = GET_MODE_NUNITS (mode);
5316 inner = GET_MODE_INNER (mode);
5317
5318 v = rtvec_alloc (units);
5319
5320 /* We need to call this function after we to set CONST0_RTX first. */
5321 if (!CONST0_RTX (inner))
5322 abort ();
5323
5324 for (i = 0; i < units; ++i)
5325 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5326
5327 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5328 return tem;
5329 }
5330
5331 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5332 all elements are zero. */
5333 rtx
gen_rtx_CONST_VECTOR(mode,v)5334 gen_rtx_CONST_VECTOR (mode, v)
5335 enum machine_mode mode;
5336 rtvec v;
5337 {
5338 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5339 int i;
5340
5341 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5342 if (RTVEC_ELT (v, i) != inner_zero)
5343 return gen_rtx_raw_CONST_VECTOR (mode, v);
5344 return CONST0_RTX (mode);
5345 }
5346
5347 /* Create some permanent unique rtl objects shared between all functions.
5348 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5349
5350 void
init_emit_once(line_numbers)5351 init_emit_once (line_numbers)
5352 int line_numbers;
5353 {
5354 int i;
5355 enum machine_mode mode;
5356 enum machine_mode double_mode;
5357
5358 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5359 tables. */
5360 const_int_htab = htab_create (37, const_int_htab_hash,
5361 const_int_htab_eq, NULL);
5362
5363 const_double_htab = htab_create (37, const_double_htab_hash,
5364 const_double_htab_eq, NULL);
5365
5366 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
5367 mem_attrs_htab_eq, NULL);
5368
5369 no_line_numbers = ! line_numbers;
5370
5371 /* Compute the word and byte modes. */
5372
5373 byte_mode = VOIDmode;
5374 word_mode = VOIDmode;
5375 double_mode = VOIDmode;
5376
5377 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5378 mode = GET_MODE_WIDER_MODE (mode))
5379 {
5380 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5381 && byte_mode == VOIDmode)
5382 byte_mode = mode;
5383
5384 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5385 && word_mode == VOIDmode)
5386 word_mode = mode;
5387 }
5388
5389 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5390 mode = GET_MODE_WIDER_MODE (mode))
5391 {
5392 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5393 && double_mode == VOIDmode)
5394 double_mode = mode;
5395 }
5396
5397 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5398
5399 /* Assign register numbers to the globally defined register rtx.
5400 This must be done at runtime because the register number field
5401 is in a union and some compilers can't initialize unions. */
5402
5403 pc_rtx = gen_rtx (PC, VOIDmode);
5404 cc0_rtx = gen_rtx (CC0, VOIDmode);
5405 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5406 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5407 if (hard_frame_pointer_rtx == 0)
5408 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5409 HARD_FRAME_POINTER_REGNUM);
5410 if (arg_pointer_rtx == 0)
5411 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5412 virtual_incoming_args_rtx =
5413 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5414 virtual_stack_vars_rtx =
5415 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5416 virtual_stack_dynamic_rtx =
5417 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5418 virtual_outgoing_args_rtx =
5419 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5420 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5421
5422 /* Initialize RTL for commonly used hard registers. These are
5423 copied into regno_reg_rtx as we begin to compile each function. */
5424 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5425 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5426
5427 #ifdef INIT_EXPANDERS
5428 /* This is to initialize {init|mark|free}_machine_status before the first
5429 call to push_function_context_to. This is needed by the Chill front
5430 end which calls push_function_context_to before the first call to
5431 init_function_start. */
5432 INIT_EXPANDERS;
5433 #endif
5434
5435 /* Create the unique rtx's for certain rtx codes and operand values. */
5436
5437 /* Don't use gen_rtx here since gen_rtx in this case
5438 tries to use these variables. */
5439 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5440 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5441 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5442
5443 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5444 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5445 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5446 else
5447 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5448
5449 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5450 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5451 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5452 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5453
5454 for (i = 0; i <= 2; i++)
5455 {
5456 REAL_VALUE_TYPE *r =
5457 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5458
5459 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5460 mode = GET_MODE_WIDER_MODE (mode))
5461 const_tiny_rtx[i][(int) mode] =
5462 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5463
5464 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5465
5466 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5467 mode = GET_MODE_WIDER_MODE (mode))
5468 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5469
5470 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5471 mode != VOIDmode;
5472 mode = GET_MODE_WIDER_MODE (mode))
5473 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5474 }
5475
5476 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5477 mode != VOIDmode;
5478 mode = GET_MODE_WIDER_MODE (mode))
5479 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5480
5481 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5482 mode != VOIDmode;
5483 mode = GET_MODE_WIDER_MODE (mode))
5484 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
5485
5486 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5487 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5488 const_tiny_rtx[0][i] = const0_rtx;
5489
5490 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5491 if (STORE_FLAG_VALUE == 1)
5492 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5493
5494 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5495 return_address_pointer_rtx
5496 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5497 #endif
5498
5499 #ifdef STRUCT_VALUE
5500 struct_value_rtx = STRUCT_VALUE;
5501 #else
5502 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5503 #endif
5504
5505 #ifdef STRUCT_VALUE_INCOMING
5506 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5507 #else
5508 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5509 struct_value_incoming_rtx
5510 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5511 #else
5512 struct_value_incoming_rtx = struct_value_rtx;
5513 #endif
5514 #endif
5515
5516 #ifdef STATIC_CHAIN_REGNUM
5517 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5518
5519 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5520 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5521 static_chain_incoming_rtx
5522 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5523 else
5524 #endif
5525 static_chain_incoming_rtx = static_chain_rtx;
5526 #endif
5527
5528 #ifdef STATIC_CHAIN
5529 static_chain_rtx = STATIC_CHAIN;
5530
5531 #ifdef STATIC_CHAIN_INCOMING
5532 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5533 #else
5534 static_chain_incoming_rtx = static_chain_rtx;
5535 #endif
5536 #endif
5537
5538 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5539 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5540 }
5541
5542 /* Query and clear/ restore no_line_numbers. This is used by the
5543 switch / case handling in stmt.c to give proper line numbers in
5544 warnings about unreachable code. */
5545
5546 int
force_line_numbers()5547 force_line_numbers ()
5548 {
5549 int old = no_line_numbers;
5550
5551 no_line_numbers = 0;
5552 if (old)
5553 force_next_line_note ();
5554 return old;
5555 }
5556
5557 void
restore_line_number_status(old_value)5558 restore_line_number_status (old_value)
5559 int old_value;
5560 {
5561 no_line_numbers = old_value;
5562 }
5563
5564 /* Produce exact duplicate of insn INSN after AFTER.
5565 Care updating of libcall regions if present. */
5566
5567 rtx
emit_copy_of_insn_after(insn,after)5568 emit_copy_of_insn_after (insn, after)
5569 rtx insn, after;
5570 {
5571 rtx new;
5572 rtx note1, note2, link;
5573
5574 switch (GET_CODE (insn))
5575 {
5576 case INSN:
5577 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5578 break;
5579
5580 case JUMP_INSN:
5581 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5582 break;
5583
5584 case CALL_INSN:
5585 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5586 if (CALL_INSN_FUNCTION_USAGE (insn))
5587 CALL_INSN_FUNCTION_USAGE (new)
5588 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5589 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5590 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5591 break;
5592
5593 default:
5594 abort ();
5595 }
5596
5597 /* Update LABEL_NUSES. */
5598 mark_jump_label (PATTERN (new), new, 0);
5599
5600 INSN_SCOPE (new) = INSN_SCOPE (insn);
5601
5602 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5603 make them. */
5604 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5605 if (REG_NOTE_KIND (link) != REG_LABEL)
5606 {
5607 if (GET_CODE (link) == EXPR_LIST)
5608 REG_NOTES (new)
5609 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5610 XEXP (link, 0),
5611 REG_NOTES (new)));
5612 else
5613 REG_NOTES (new)
5614 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5615 XEXP (link, 0),
5616 REG_NOTES (new)));
5617 }
5618
5619 /* Fix the libcall sequences. */
5620 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5621 {
5622 rtx p = new;
5623 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5624 p = PREV_INSN (p);
5625 XEXP (note1, 0) = p;
5626 XEXP (note2, 0) = new;
5627 }
5628 return new;
5629 }
5630
5631 #include "gt-emit-rtl.h"
5632