1 /*
2 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
3 *
4 * This code is derived from software contributed to The DragonFly Project
5 * by Matthew Dillon <dillon@backplane.com>
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 * 3. Neither the name of The DragonFly Project nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific, prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 /*
36 * WARNING! THE SYSTIMER MODULE DOES NOT OPERATE OR DISPATCH WITH THE
37 * MP LOCK HELD. ALL CODE USING THIS MODULE MUST BE MP-SAFE.
38 *
39 * This code implements a fine-grained per-cpu system timer which is
40 * ultimately based on a hardware timer. The hardware timer abstraction
41 * is sufficiently disconnected from this code to support both per-cpu
42 * hardware timers or a single system-wide hardware timer.
43 *
44 * WARNING! During early boot if a new system timer is selected, existing
45 * timeouts will not be effected and will thus occur slower or faster.
46 * periodic timers will be adjusted at the next periodic load.
47 *
48 * Notes on machine-dependant code (in arch/arch/systimer.c)
49 *
50 * cputimer_intr_reload() Reload the one-shot (per-cpu basis)
51 */
52
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/systm.h>
56 #include <sys/thread.h>
57 #include <sys/globaldata.h>
58 #include <sys/systimer.h>
59 #include <sys/thread2.h>
60
61 /*
62 * Execute ready systimers. Called directly from the platform-specific
63 * one-shot timer clock interrupt (e.g. clkintr()) or via an IPI. May
64 * be called simultaniously on multiple cpus and always operations on
65 * the current cpu's queue. Systimer functions are responsible for calling
66 * hardclock, statclock, and other finely-timed routines.
67 */
68 void
systimer_intr(sysclock_t * timep,int in_ipi,struct intrframe * frame)69 systimer_intr(sysclock_t *timep, int in_ipi, struct intrframe *frame)
70 {
71 globaldata_t gd = mycpu;
72 sysclock_t time = *timep;
73 systimer_t info;
74
75 if (gd->gd_syst_nest)
76 return;
77
78 crit_enter();
79 ++gd->gd_syst_nest;
80 while ((info = TAILQ_FIRST(&gd->gd_systimerq)) != NULL) {
81 /*
82 * If we haven't reached the requested time, tell the cputimer
83 * how much is left and break out.
84 */
85 if ((ssysclock_t)(info->time - time) > 0) {
86 cputimer_intr_reload(info->time - time);
87 break;
88 }
89
90 /*
91 * Dequeue and execute, detect a loss of the systimer. Note
92 * that the in-progress systimer pointer can only be used to
93 * detect a loss of the systimer, it is only useful within
94 * this code sequence and becomes stale otherwise.
95 */
96 info->flags &= ~SYSTF_ONQUEUE;
97 TAILQ_REMOVE(info->queue, info, node);
98 gd->gd_systimer_inprog = info;
99 crit_exit();
100 info->func(info, in_ipi, frame);
101 crit_enter();
102
103 /*
104 * The caller may deleted or even re-queue the systimer itself
105 * with a delete/add sequence. If the caller does not mess with
106 * the systimer we will requeue the periodic interval automatically.
107 *
108 * If this is a non-queued periodic interrupt, do not allow multiple
109 * events to build up (used for things like the callout timer to
110 * prevent premature timeouts due to long interrupt disablements,
111 * BIOS 8254 glitching, and so forth). However, we still want to
112 * keep things synchronized between cpus for efficient handling of
113 * the timer interrupt so jump in multiples of the periodic rate.
114 */
115 if (gd->gd_systimer_inprog == info && info->periodic) {
116 if (info->which != sys_cputimer) {
117 info->periodic = sys_cputimer->fromhz(info->freq);
118 info->which = sys_cputimer;
119 }
120 info->time += info->periodic;
121 if ((info->flags & SYSTF_NONQUEUED) &&
122 (ssysclock_t)(info->time - time) <= 0
123 ) {
124 info->time += roundup(time - info->time, info->periodic);
125 }
126 systimer_add(info);
127 }
128 gd->gd_systimer_inprog = NULL;
129 }
130 --gd->gd_syst_nest;
131 crit_exit();
132 }
133
134 void
systimer_intr_enable(void)135 systimer_intr_enable(void)
136 {
137 cputimer_intr_enable();
138 }
139
140 /*
141 * MPSAFE
142 */
143 void
systimer_add(systimer_t info)144 systimer_add(systimer_t info)
145 {
146 struct globaldata *gd = mycpu;
147
148 KKASSERT((info->flags & SYSTF_ONQUEUE) == 0);
149 crit_enter();
150 if (info->gd == gd) {
151 systimer_t scan1;
152 systimer_t scan2;
153 scan1 = TAILQ_FIRST(&gd->gd_systimerq);
154 if (scan1 == NULL || (ssysclock_t)(scan1->time - info->time) > 0) {
155 cputimer_intr_reload(info->time - sys_cputimer->count());
156 TAILQ_INSERT_HEAD(&gd->gd_systimerq, info, node);
157 } else {
158 scan2 = TAILQ_LAST(&gd->gd_systimerq, systimerq);
159 for (;;) {
160 if (scan1 == NULL) {
161 TAILQ_INSERT_TAIL(&gd->gd_systimerq, info, node);
162 break;
163 }
164 if (info->flags & SYSTF_FIRST) {
165 /*
166 * When coincident events occur, the event being
167 * added wants to be placed before the others.
168 */
169 if ((ssysclock_t)(scan1->time - info->time) >= 0) {
170 TAILQ_INSERT_BEFORE(scan1, info, node);
171 break;
172 }
173 if ((ssysclock_t)(scan2->time - info->time) < 0) {
174 TAILQ_INSERT_AFTER(&gd->gd_systimerq, scan2,
175 info, node);
176 break;
177 }
178 } else {
179 /*
180 * When coincident events occur, the event being
181 * added should be placed after the others. This
182 * is the default.
183 */
184 if ((ssysclock_t)(scan1->time - info->time) > 0) {
185 TAILQ_INSERT_BEFORE(scan1, info, node);
186 break;
187 }
188 if ((ssysclock_t)(scan2->time - info->time) <= 0) {
189 TAILQ_INSERT_AFTER(&gd->gd_systimerq, scan2,
190 info, node);
191 break;
192 }
193 }
194 scan1 = TAILQ_NEXT(scan1, node);
195 scan2 = TAILQ_PREV(scan2, systimerq, node);
196 }
197 }
198 info->flags = (info->flags | SYSTF_ONQUEUE) & ~SYSTF_IPIRUNNING;
199 info->queue = &gd->gd_systimerq;
200 } else {
201 KKASSERT((info->flags & SYSTF_IPIRUNNING) == 0);
202 info->flags |= SYSTF_IPIRUNNING;
203 lwkt_send_ipiq(info->gd, (ipifunc1_t)systimer_add, info);
204 }
205 crit_exit();
206 }
207
208 /*
209 * systimer_del()
210 *
211 * Delete a system timer. Only the owning cpu can delete a timer.
212 *
213 * MPSAFE
214 */
215 void
systimer_del(systimer_t info)216 systimer_del(systimer_t info)
217 {
218 struct globaldata *gd = info->gd;
219
220 KKASSERT(gd == mycpu && (info->flags & SYSTF_IPIRUNNING) == 0);
221
222 crit_enter();
223
224 if (info->flags & SYSTF_ONQUEUE) {
225 TAILQ_REMOVE(info->queue, info, node);
226 info->flags &= ~SYSTF_ONQUEUE;
227 }
228
229 /*
230 * Deal with dispatch races by clearing the in-progress systimer
231 * pointer. Only a direct pointer comparison can be used, the
232 * actual contents of the structure gd_systimer_inprog points to,
233 * if not equal to info, may be stale.
234 */
235 if (gd->gd_systimer_inprog == info)
236 gd->gd_systimer_inprog = NULL;
237
238 crit_exit();
239 }
240
241 /*
242 * systimer_init_periodic*()
243 *
244 * Initialize a periodic timer at the specified frequency and add
245 * it to the system. The frequency is uncompensated and approximate.
246 *
247 * Try to synchronize multiple registrations of the same or similar
248 * frequencies so the hardware interrupt is able to dispatch several
249 * together. We do this by adjusting the phase of the initial timeout.
250 * This helps SMP. Note that we are not attempting to synchronize to
251 * the realtime clock.
252 *
253 * This synchronization is also depended upon for statclock, hardclock,
254 * and schedclock.
255 */
256 static __inline
257 void
_systimer_init_periodic(systimer_t info,systimer_func_t func,void * data,int64_t freq,int flags)258 _systimer_init_periodic(systimer_t info, systimer_func_t func, void *data,
259 int64_t freq, int flags)
260 {
261 sysclock_t base_count;
262
263 if (sys_cputimer->sync_base == 0)
264 sys_cputimer->sync_base = sys_cputimer->count();
265
266 bzero(info, sizeof(struct systimer));
267
268 if ((flags & SYSTF_100KHZSYNC) && freq <= 100000)
269 info->periodic = sys_cputimer->fromhz(100000) * (100000 / freq);
270 if ((flags & SYSTF_MSSYNC) && freq <= 1000)
271 info->periodic = sys_cputimer->fromhz(1000) * (1000 / freq);
272 else
273 info->periodic = sys_cputimer->fromhz(freq);
274
275 base_count = sys_cputimer->count();
276 base_count = base_count -
277 (base_count - sys_cputimer->sync_base) % info->periodic;
278 info->time = base_count + info->periodic;
279 if (flags & SYSTF_OFFSETCPU)
280 info->time += mycpu->gd_cpuid * info->periodic / ncpus;
281 if (flags & SYSTF_OFFSET50)
282 info->time += info->periodic / 2;
283 info->func = func;
284 info->data = data;
285 info->freq = freq;
286 info->which = sys_cputimer;
287 info->gd = mycpu;
288 info->flags |= flags;
289 systimer_add(info);
290 }
291
292 void
systimer_init_periodic(systimer_t info,systimer_func_t func,void * data,int64_t freq)293 systimer_init_periodic(systimer_t info, systimer_func_t func, void *data,
294 int64_t freq)
295 {
296 _systimer_init_periodic(info, func, data, freq, 0);
297 }
298
299 void
systimer_init_periodic_nq(systimer_t info,systimer_func_t func,void * data,int64_t freq)300 systimer_init_periodic_nq(systimer_t info, systimer_func_t func, void *data,
301 int64_t freq)
302 {
303 _systimer_init_periodic(info, func, data, freq, SYSTF_NONQUEUED);
304 }
305
306 /*
307 * These provide systimers whos periods are in perfect multiples of 1ms
308 * or 0.1uS. This is used in situations where the caller wants to gang
309 * multiple systimers together whos periods may have some coincident events,
310 * in order for those coincident events to generate only one interrupt.
311 *
312 * This also allows the caller to make event ordering assumptions for
313 * said coincident events.
314 */
315 void
systimer_init_periodic_nq1khz(systimer_t info,systimer_func_t func,void * data,int64_t freq)316 systimer_init_periodic_nq1khz(systimer_t info, systimer_func_t func,
317 void *data, int64_t freq)
318 {
319 _systimer_init_periodic(info, func, data, freq,
320 SYSTF_NONQUEUED | SYSTF_MSSYNC);
321 }
322
323 void
systimer_init_periodic_nq100khz(systimer_t info,systimer_func_t func,void * data,int64_t freq)324 systimer_init_periodic_nq100khz(systimer_t info, systimer_func_t func,
325 void *data, int64_t freq)
326 {
327 _systimer_init_periodic(info, func, data, freq,
328 SYSTF_NONQUEUED | SYSTF_100KHZSYNC);
329 }
330
331 void
systimer_init_periodic_flags(systimer_t info,systimer_func_t func,void * data,int64_t freq,int flags)332 systimer_init_periodic_flags(systimer_t info, systimer_func_t func,
333 void *data, int64_t freq, int flags)
334 {
335 _systimer_init_periodic(info, func, data, freq, flags);
336 }
337
338
339 /*
340 * Adjust the periodic interval for a periodic timer which is already
341 * running. The current timeout is not effected.
342 */
343 void
systimer_adjust_periodic(systimer_t info,int64_t freq)344 systimer_adjust_periodic(systimer_t info, int64_t freq)
345 {
346 crit_enter();
347 info->periodic = sys_cputimer->fromhz(freq);
348 info->freq = freq;
349 info->which = sys_cputimer;
350 crit_exit();
351 }
352
353 /*
354 * systimer_init_oneshot()
355 *
356 * Initialize a periodic timer at the specified frequency and add
357 * it to the system. The frequency is uncompensated and approximate.
358 */
359 void
systimer_init_oneshot(systimer_t info,systimer_func_t func,void * data,int64_t us)360 systimer_init_oneshot(systimer_t info, systimer_func_t func,
361 void *data, int64_t us)
362 {
363 bzero(info, sizeof(struct systimer));
364 info->time = sys_cputimer->count() + sys_cputimer->fromus(us);
365 info->func = func;
366 info->data = data;
367 info->which = sys_cputimer;
368 info->gd = mycpu;
369 info->us = us;
370 systimer_add(info);
371 }
372
373 /*
374 * sys_cputimer was changed, recalculate all existing systimers and kick the
375 * new interrupt.
376 */
377 static void
systimer_changed_pcpu(void * arg __unused)378 systimer_changed_pcpu(void *arg __unused)
379 {
380 globaldata_t gd = mycpu;
381 systimer_t info;
382
383 crit_enter();
384 again:
385 TAILQ_FOREACH(info, &gd->gd_systimerq, node) {
386 if (info->which == sys_cputimer)
387 continue;
388 TAILQ_REMOVE(&gd->gd_systimerq, info, node);
389 info->flags &= ~SYSTF_ONQUEUE;
390 if (info->periodic) {
391 _systimer_init_periodic(info, info->func, info->data,
392 info->freq, info->flags);
393 } else {
394 info->time = sys_cputimer->count() +
395 sys_cputimer->fromus(info->us);
396 systimer_add(info);
397 }
398 goto again;
399 }
400 cputimer_intr_reload(1);
401 crit_exit();
402 }
403
404 void
systimer_changed(void)405 systimer_changed(void)
406 {
407 globaldata_t gd = mycpu;
408 int i;
409
410 systimer_changed_pcpu(NULL);
411 for (i = 0; i < ncpus; ++i) {
412 if (i != gd->gd_cpuid) {
413 lwkt_send_ipiq(globaldata_find(i),
414 systimer_changed_pcpu, NULL);
415 }
416 }
417 }
418