1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
4 * licensing and copyright details
5 */
6
7 #include <linux/reiserfs_fs.h>
8
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/sched.h>
12 #include <linux/bug.h>
13 #include <linux/workqueue.h>
14 #include <linux/unaligned.h>
15 #include <linux/bitops.h>
16 #include <linux/proc_fs.h>
17 #include <linux/buffer_head.h>
18
19 /* the 32 bit compat definitions with int argument */
20 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
21 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
22 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
23
24 struct reiserfs_journal_list;
25
26 /* bitmasks for i_flags field in reiserfs-specific part of inode */
27 typedef enum {
28 /*
29 * this says what format of key do all items (but stat data) of
30 * an object have. If this is set, that format is 3.6 otherwise - 3.5
31 */
32 i_item_key_version_mask = 0x0001,
33
34 /*
35 * If this is unset, object has 3.5 stat data, otherwise,
36 * it has 3.6 stat data with 64bit size, 32bit nlink etc.
37 */
38 i_stat_data_version_mask = 0x0002,
39
40 /* file might need tail packing on close */
41 i_pack_on_close_mask = 0x0004,
42
43 /* don't pack tail of file */
44 i_nopack_mask = 0x0008,
45
46 /*
47 * If either of these are set, "safe link" was created for this
48 * file during truncate or unlink. Safe link is used to avoid
49 * leakage of disk space on crash with some files open, but unlinked.
50 */
51 i_link_saved_unlink_mask = 0x0010,
52 i_link_saved_truncate_mask = 0x0020,
53
54 i_has_xattr_dir = 0x0040,
55 i_data_log = 0x0080,
56 } reiserfs_inode_flags;
57
58 struct reiserfs_inode_info {
59 __u32 i_key[4]; /* key is still 4 32 bit integers */
60
61 /*
62 * transient inode flags that are never stored on disk. Bitmasks
63 * for this field are defined above.
64 */
65 __u32 i_flags;
66
67 /* offset of first byte stored in direct item. */
68 __u32 i_first_direct_byte;
69
70 /* copy of persistent inode flags read from sd_attrs. */
71 __u32 i_attrs;
72
73 /* first unused block of a sequence of unused blocks */
74 int i_prealloc_block;
75 int i_prealloc_count; /* length of that sequence */
76
77 /* per-transaction list of inodes which have preallocated blocks */
78 struct list_head i_prealloc_list;
79
80 /*
81 * new_packing_locality is created; new blocks for the contents
82 * of this directory should be displaced
83 */
84 unsigned new_packing_locality:1;
85
86 /*
87 * we use these for fsync or O_SYNC to decide which transaction
88 * needs to be committed in order for this inode to be properly
89 * flushed
90 */
91 unsigned int i_trans_id;
92
93 struct reiserfs_journal_list *i_jl;
94 atomic_t openers;
95 struct mutex tailpack;
96 #ifdef CONFIG_REISERFS_FS_XATTR
97 struct rw_semaphore i_xattr_sem;
98 #endif
99 #ifdef CONFIG_QUOTA
100 struct dquot __rcu *i_dquot[MAXQUOTAS];
101 #endif
102
103 struct inode vfs_inode;
104 };
105
106 typedef enum {
107 reiserfs_attrs_cleared = 0x00000001,
108 } reiserfs_super_block_flags;
109
110 /*
111 * struct reiserfs_super_block accessors/mutators since this is a disk
112 * structure, it will always be in little endian format.
113 */
114 #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count))
115 #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
116 #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks))
117 #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
118 #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block))
119 #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
120
121 #define sb_jp_journal_1st_block(sbp) \
122 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
123 #define set_sb_jp_journal_1st_block(sbp,v) \
124 ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
125 #define sb_jp_journal_dev(sbp) \
126 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
127 #define set_sb_jp_journal_dev(sbp,v) \
128 ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
129 #define sb_jp_journal_size(sbp) \
130 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
131 #define set_sb_jp_journal_size(sbp,v) \
132 ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
133 #define sb_jp_journal_trans_max(sbp) \
134 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
135 #define set_sb_jp_journal_trans_max(sbp,v) \
136 ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
137 #define sb_jp_journal_magic(sbp) \
138 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
139 #define set_sb_jp_journal_magic(sbp,v) \
140 ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
141 #define sb_jp_journal_max_batch(sbp) \
142 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
143 #define set_sb_jp_journal_max_batch(sbp,v) \
144 ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
145 #define sb_jp_jourmal_max_commit_age(sbp) \
146 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
147 #define set_sb_jp_journal_max_commit_age(sbp,v) \
148 ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
149
150 #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize))
151 #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
152 #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
153 #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
154 #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
155 #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
156 #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state))
157 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
158 #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state))
159 #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
160 #define sb_hash_function_code(sbp) \
161 (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
162 #define set_sb_hash_function_code(sbp,v) \
163 ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
164 #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height))
165 #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
166 #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
167 #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
168 #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version))
169 #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v))
170
171 #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count))
172 #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v))
173
174 #define sb_reserved_for_journal(sbp) \
175 (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
176 #define set_sb_reserved_for_journal(sbp,v) \
177 ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
178
179 /* LOGGING -- */
180
181 /*
182 * These all interelate for performance.
183 *
184 * If the journal block count is smaller than n transactions, you lose speed.
185 * I don't know what n is yet, I'm guessing 8-16.
186 *
187 * typical transaction size depends on the application, how often fsync is
188 * called, and how many metadata blocks you dirty in a 30 second period.
189 * The more small files (<16k) you use, the larger your transactions will
190 * be.
191 *
192 * If your journal fills faster than dirty buffers get flushed to disk, it
193 * must flush them before allowing the journal to wrap, which slows things
194 * down. If you need high speed meta data updates, the journal should be
195 * big enough to prevent wrapping before dirty meta blocks get to disk.
196 *
197 * If the batch max is smaller than the transaction max, you'll waste space
198 * at the end of the journal because journal_end sets the next transaction
199 * to start at 0 if the next transaction has any chance of wrapping.
200 *
201 * The large the batch max age, the better the speed, and the more meta
202 * data changes you'll lose after a crash.
203 */
204
205 /* don't mess with these for a while */
206 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */
207 #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */
208 #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */
209 #define JOURNAL_HASH_SIZE 8192
210
211 /* number of copies of the bitmaps to have floating. Must be >= 2 */
212 #define JOURNAL_NUM_BITMAPS 5
213
214 /*
215 * One of these for every block in every transaction
216 * Each one is in two hash tables. First, a hash of the current transaction,
217 * and after journal_end, a hash of all the in memory transactions.
218 * next and prev are used by the current transaction (journal_hash).
219 * hnext and hprev are used by journal_list_hash. If a block is in more
220 * than one transaction, the journal_list_hash links it in multiple times.
221 * This allows flush_journal_list to remove just the cnode belonging to a
222 * given transaction.
223 */
224 struct reiserfs_journal_cnode {
225 struct buffer_head *bh; /* real buffer head */
226 struct super_block *sb; /* dev of real buffer head */
227
228 /* block number of real buffer head, == 0 when buffer on disk */
229 __u32 blocknr;
230
231 unsigned long state;
232
233 /* journal list this cnode lives in */
234 struct reiserfs_journal_list *jlist;
235
236 struct reiserfs_journal_cnode *next; /* next in transaction list */
237 struct reiserfs_journal_cnode *prev; /* prev in transaction list */
238 struct reiserfs_journal_cnode *hprev; /* prev in hash list */
239 struct reiserfs_journal_cnode *hnext; /* next in hash list */
240 };
241
242 struct reiserfs_bitmap_node {
243 int id;
244 char *data;
245 struct list_head list;
246 };
247
248 struct reiserfs_list_bitmap {
249 struct reiserfs_journal_list *journal_list;
250 struct reiserfs_bitmap_node **bitmaps;
251 };
252
253 /*
254 * one of these for each transaction. The most important part here is the
255 * j_realblock. this list of cnodes is used to hash all the blocks in all
256 * the commits, to mark all the real buffer heads dirty once all the commits
257 * hit the disk, and to make sure every real block in a transaction is on
258 * disk before allowing the log area to be overwritten
259 */
260 struct reiserfs_journal_list {
261 unsigned long j_start;
262 unsigned long j_state;
263 unsigned long j_len;
264 atomic_t j_nonzerolen;
265 atomic_t j_commit_left;
266
267 /* all commits older than this on disk */
268 atomic_t j_older_commits_done;
269
270 struct mutex j_commit_mutex;
271 unsigned int j_trans_id;
272 time64_t j_timestamp; /* write-only but useful for crash dump analysis */
273 struct reiserfs_list_bitmap *j_list_bitmap;
274 struct buffer_head *j_commit_bh; /* commit buffer head */
275 struct reiserfs_journal_cnode *j_realblock;
276 struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */
277 /* time ordered list of all active transactions */
278 struct list_head j_list;
279
280 /*
281 * time ordered list of all transactions we haven't tried
282 * to flush yet
283 */
284 struct list_head j_working_list;
285
286 /* list of tail conversion targets in need of flush before commit */
287 struct list_head j_tail_bh_list;
288
289 /* list of data=ordered buffers in need of flush before commit */
290 struct list_head j_bh_list;
291 int j_refcount;
292 };
293
294 struct reiserfs_journal {
295 struct buffer_head **j_ap_blocks; /* journal blocks on disk */
296 /* newest journal block */
297 struct reiserfs_journal_cnode *j_last;
298
299 /* oldest journal block. start here for traverse */
300 struct reiserfs_journal_cnode *j_first;
301
302 struct file *j_bdev_file;
303
304 /* first block on s_dev of reserved area journal */
305 int j_1st_reserved_block;
306
307 unsigned long j_state;
308 unsigned int j_trans_id;
309 unsigned long j_mount_id;
310
311 /* start of current waiting commit (index into j_ap_blocks) */
312 unsigned long j_start;
313 unsigned long j_len; /* length of current waiting commit */
314
315 /* number of buffers requested by journal_begin() */
316 unsigned long j_len_alloc;
317
318 atomic_t j_wcount; /* count of writers for current commit */
319
320 /* batch count. allows turning X transactions into 1 */
321 unsigned long j_bcount;
322
323 /* first unflushed transactions offset */
324 unsigned long j_first_unflushed_offset;
325
326 /* last fully flushed journal timestamp */
327 unsigned j_last_flush_trans_id;
328
329 struct buffer_head *j_header_bh;
330
331 time64_t j_trans_start_time; /* time this transaction started */
332 struct mutex j_mutex;
333 struct mutex j_flush_mutex;
334
335 /* wait for current transaction to finish before starting new one */
336 wait_queue_head_t j_join_wait;
337
338 atomic_t j_jlock; /* lock for j_join_wait */
339 int j_list_bitmap_index; /* number of next list bitmap to use */
340
341 /* no more journal begins allowed. MUST sleep on j_join_wait */
342 int j_must_wait;
343
344 /* next journal_end will flush all journal list */
345 int j_next_full_flush;
346
347 /* next journal_end will flush all async commits */
348 int j_next_async_flush;
349
350 int j_cnode_used; /* number of cnodes on the used list */
351 int j_cnode_free; /* number of cnodes on the free list */
352
353 /* max number of blocks in a transaction. */
354 unsigned int j_trans_max;
355
356 /* max number of blocks to batch into a trans */
357 unsigned int j_max_batch;
358
359 /* in seconds, how old can an async commit be */
360 unsigned int j_max_commit_age;
361
362 /* in seconds, how old can a transaction be */
363 unsigned int j_max_trans_age;
364
365 /* the default for the max commit age */
366 unsigned int j_default_max_commit_age;
367
368 struct reiserfs_journal_cnode *j_cnode_free_list;
369
370 /* orig pointer returned from vmalloc */
371 struct reiserfs_journal_cnode *j_cnode_free_orig;
372
373 struct reiserfs_journal_list *j_current_jl;
374 int j_free_bitmap_nodes;
375 int j_used_bitmap_nodes;
376
377 int j_num_lists; /* total number of active transactions */
378 int j_num_work_lists; /* number that need attention from kreiserfsd */
379
380 /* debugging to make sure things are flushed in order */
381 unsigned int j_last_flush_id;
382
383 /* debugging to make sure things are committed in order */
384 unsigned int j_last_commit_id;
385
386 struct list_head j_bitmap_nodes;
387 struct list_head j_dirty_buffers;
388 spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */
389
390 /* list of all active transactions */
391 struct list_head j_journal_list;
392
393 /* lists that haven't been touched by writeback attempts */
394 struct list_head j_working_list;
395
396 /* hash table for real buffer heads in current trans */
397 struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];
398
399 /* hash table for all the real buffer heads in all the transactions */
400 struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];
401
402 /* array of bitmaps to record the deleted blocks */
403 struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];
404
405 /* list of inodes which have preallocated blocks */
406 struct list_head j_prealloc_list;
407 int j_persistent_trans;
408 unsigned long j_max_trans_size;
409 unsigned long j_max_batch_size;
410
411 int j_errno;
412
413 /* when flushing ordered buffers, throttle new ordered writers */
414 struct delayed_work j_work;
415 struct super_block *j_work_sb;
416 atomic_t j_async_throttle;
417 };
418
419 enum journal_state_bits {
420 J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */
421 J_WRITERS_QUEUED, /* set when log is full due to too many writers */
422 J_ABORTED, /* set when log is aborted */
423 };
424
425 /* ick. magic string to find desc blocks in the journal */
426 #define JOURNAL_DESC_MAGIC "ReIsErLB"
427
428 typedef __u32(*hashf_t) (const signed char *, int);
429
430 struct reiserfs_bitmap_info {
431 __u32 free_count;
432 };
433
434 struct proc_dir_entry;
435
436 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
437 typedef unsigned long int stat_cnt_t;
438 typedef struct reiserfs_proc_info_data {
439 spinlock_t lock;
440 int exiting;
441 int max_hash_collisions;
442
443 stat_cnt_t breads;
444 stat_cnt_t bread_miss;
445 stat_cnt_t search_by_key;
446 stat_cnt_t search_by_key_fs_changed;
447 stat_cnt_t search_by_key_restarted;
448
449 stat_cnt_t insert_item_restarted;
450 stat_cnt_t paste_into_item_restarted;
451 stat_cnt_t cut_from_item_restarted;
452 stat_cnt_t delete_solid_item_restarted;
453 stat_cnt_t delete_item_restarted;
454
455 stat_cnt_t leaked_oid;
456 stat_cnt_t leaves_removable;
457
458 /*
459 * balances per level.
460 * Use explicit 5 as MAX_HEIGHT is not visible yet.
461 */
462 stat_cnt_t balance_at[5]; /* XXX */
463 /* sbk == search_by_key */
464 stat_cnt_t sbk_read_at[5]; /* XXX */
465 stat_cnt_t sbk_fs_changed[5];
466 stat_cnt_t sbk_restarted[5];
467 stat_cnt_t items_at[5]; /* XXX */
468 stat_cnt_t free_at[5]; /* XXX */
469 stat_cnt_t can_node_be_removed[5]; /* XXX */
470 long int lnum[5]; /* XXX */
471 long int rnum[5]; /* XXX */
472 long int lbytes[5]; /* XXX */
473 long int rbytes[5]; /* XXX */
474 stat_cnt_t get_neighbors[5];
475 stat_cnt_t get_neighbors_restart[5];
476 stat_cnt_t need_l_neighbor[5];
477 stat_cnt_t need_r_neighbor[5];
478
479 stat_cnt_t free_block;
480 struct __scan_bitmap_stats {
481 stat_cnt_t call;
482 stat_cnt_t wait;
483 stat_cnt_t bmap;
484 stat_cnt_t retry;
485 stat_cnt_t in_journal_hint;
486 stat_cnt_t in_journal_nohint;
487 stat_cnt_t stolen;
488 } scan_bitmap;
489 struct __journal_stats {
490 stat_cnt_t in_journal;
491 stat_cnt_t in_journal_bitmap;
492 stat_cnt_t in_journal_reusable;
493 stat_cnt_t lock_journal;
494 stat_cnt_t lock_journal_wait;
495 stat_cnt_t journal_being;
496 stat_cnt_t journal_relock_writers;
497 stat_cnt_t journal_relock_wcount;
498 stat_cnt_t mark_dirty;
499 stat_cnt_t mark_dirty_already;
500 stat_cnt_t mark_dirty_notjournal;
501 stat_cnt_t restore_prepared;
502 stat_cnt_t prepare;
503 stat_cnt_t prepare_retry;
504 } journal;
505 } reiserfs_proc_info_data_t;
506 #else
507 typedef struct reiserfs_proc_info_data {
508 } reiserfs_proc_info_data_t;
509 #endif
510
511 /* Number of quota types we support */
512 #define REISERFS_MAXQUOTAS 2
513
514 /* reiserfs union of in-core super block data */
515 struct reiserfs_sb_info {
516 /* Buffer containing the super block */
517 struct buffer_head *s_sbh;
518
519 /* Pointer to the on-disk super block in the buffer */
520 struct reiserfs_super_block *s_rs;
521 struct reiserfs_bitmap_info *s_ap_bitmap;
522
523 /* pointer to journal information */
524 struct reiserfs_journal *s_journal;
525
526 unsigned short s_mount_state; /* reiserfs state (valid, invalid) */
527
528 /* Serialize writers access, replace the old bkl */
529 struct mutex lock;
530
531 /* Owner of the lock (can be recursive) */
532 struct task_struct *lock_owner;
533
534 /* Depth of the lock, start from -1 like the bkl */
535 int lock_depth;
536
537 struct workqueue_struct *commit_wq;
538
539 /* Comment? -Hans */
540 void (*end_io_handler) (struct buffer_head *, int);
541
542 /*
543 * pointer to function which is used to sort names in directory.
544 * Set on mount
545 */
546 hashf_t s_hash_function;
547
548 /* reiserfs's mount options are set here */
549 unsigned long s_mount_opt;
550
551 /* This is a structure that describes block allocator options */
552 struct {
553 /* Bitfield for enable/disable kind of options */
554 unsigned long bits;
555
556 /*
557 * size started from which we consider file
558 * to be a large one (in blocks)
559 */
560 unsigned long large_file_size;
561
562 int border; /* percentage of disk, border takes */
563
564 /*
565 * Minimal file size (in blocks) starting
566 * from which we do preallocations
567 */
568 int preallocmin;
569
570 /*
571 * Number of blocks we try to prealloc when file
572 * reaches preallocmin size (in blocks) or prealloc_list
573 is empty.
574 */
575 int preallocsize;
576 } s_alloc_options;
577
578 /* Comment? -Hans */
579 wait_queue_head_t s_wait;
580 /* increased by one every time the tree gets re-balanced */
581 atomic_t s_generation_counter;
582
583 /* File system properties. Currently holds on-disk FS format */
584 unsigned long s_properties;
585
586 /* session statistics */
587 int s_disk_reads;
588 int s_disk_writes;
589 int s_fix_nodes;
590 int s_do_balance;
591 int s_unneeded_left_neighbor;
592 int s_good_search_by_key_reada;
593 int s_bmaps;
594 int s_bmaps_without_search;
595 int s_direct2indirect;
596 int s_indirect2direct;
597
598 /*
599 * set up when it's ok for reiserfs_read_inode2() to read from
600 * disk inode with nlink==0. Currently this is only used during
601 * finish_unfinished() processing at mount time
602 */
603 int s_is_unlinked_ok;
604
605 reiserfs_proc_info_data_t s_proc_info_data;
606 struct proc_dir_entry *procdir;
607
608 /* amount of blocks reserved for further allocations */
609 int reserved_blocks;
610
611
612 /* this lock on now only used to protect reserved_blocks variable */
613 spinlock_t bitmap_lock;
614 struct dentry *priv_root; /* root of /.reiserfs_priv */
615 struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */
616 int j_errno;
617
618 int work_queued; /* non-zero delayed work is queued */
619 struct delayed_work old_work; /* old transactions flush delayed work */
620 spinlock_t old_work_lock; /* protects old_work and work_queued */
621
622 #ifdef CONFIG_QUOTA
623 char *s_qf_names[REISERFS_MAXQUOTAS];
624 int s_jquota_fmt;
625 #endif
626 char *s_jdev; /* Stored jdev for mount option showing */
627 #ifdef CONFIG_REISERFS_CHECK
628
629 /*
630 * Detects whether more than one copy of tb exists per superblock
631 * as a means of checking whether do_balance is executing
632 * concurrently against another tree reader/writer on a same
633 * mount point.
634 */
635 struct tree_balance *cur_tb;
636 #endif
637 };
638
639 /* Definitions of reiserfs on-disk properties: */
640 #define REISERFS_3_5 0
641 #define REISERFS_3_6 1
642 #define REISERFS_OLD_FORMAT 2
643
644 /* Mount options */
645 enum reiserfs_mount_options {
646 /* large tails will be created in a session */
647 REISERFS_LARGETAIL,
648 /*
649 * small (for files less than block size) tails will
650 * be created in a session
651 */
652 REISERFS_SMALLTAIL,
653
654 /* replay journal and return 0. Use by fsck */
655 REPLAYONLY,
656
657 /*
658 * -o conv: causes conversion of old format super block to the
659 * new format. If not specified - old partition will be dealt
660 * with in a manner of 3.5.x
661 */
662 REISERFS_CONVERT,
663
664 /*
665 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting
666 * reiserfs disks from 3.5.19 or earlier. 99% of the time, this
667 * option is not required. If the normal autodection code can't
668 * determine which hash to use (because both hashes had the same
669 * value for a file) use this option to force a specific hash.
670 * It won't allow you to override the existing hash on the FS, so
671 * if you have a tea hash disk, and mount with -o hash=rupasov,
672 * the mount will fail.
673 */
674 FORCE_TEA_HASH, /* try to force tea hash on mount */
675 FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */
676 FORCE_R5_HASH, /* try to force rupasov hash on mount */
677 FORCE_HASH_DETECT, /* try to detect hash function on mount */
678
679 REISERFS_DATA_LOG,
680 REISERFS_DATA_ORDERED,
681 REISERFS_DATA_WRITEBACK,
682
683 /*
684 * used for testing experimental features, makes benchmarking new
685 * features with and without more convenient, should never be used by
686 * users in any code shipped to users (ideally)
687 */
688
689 REISERFS_NO_BORDER,
690 REISERFS_NO_UNHASHED_RELOCATION,
691 REISERFS_HASHED_RELOCATION,
692 REISERFS_ATTRS,
693 REISERFS_XATTRS_USER,
694 REISERFS_POSIXACL,
695 REISERFS_EXPOSE_PRIVROOT,
696 REISERFS_BARRIER_NONE,
697 REISERFS_BARRIER_FLUSH,
698
699 /* Actions on error */
700 REISERFS_ERROR_PANIC,
701 REISERFS_ERROR_RO,
702 REISERFS_ERROR_CONTINUE,
703
704 REISERFS_USRQUOTA, /* User quota option specified */
705 REISERFS_GRPQUOTA, /* Group quota option specified */
706
707 REISERFS_TEST1,
708 REISERFS_TEST2,
709 REISERFS_TEST3,
710 REISERFS_TEST4,
711 REISERFS_UNSUPPORTED_OPT,
712 };
713
714 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
715 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
716 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
717 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
718 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
719 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
720 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
721 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
722
723 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
724 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
725 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
726 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
727 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
728 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
729 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
730 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
731 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
732 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
733 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
734 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
735 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
736 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
737 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
738
739 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
740 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
741
742 void reiserfs_file_buffer(struct buffer_head *bh, int list);
743 extern struct file_system_type reiserfs_fs_type;
744 int reiserfs_resize(struct super_block *, unsigned long);
745
746 #define CARRY_ON 0
747 #define SCHEDULE_OCCURRED 1
748
749 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
750 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
751 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
752 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
753 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
754
755 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
756
757 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
__reiserfs_is_journal_aborted(struct reiserfs_journal * journal)758 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
759 *journal)
760 {
761 return test_bit(J_ABORTED, &journal->j_state);
762 }
763
764 /*
765 * Locking primitives. The write lock is a per superblock
766 * special mutex that has properties close to the Big Kernel Lock
767 * which was used in the previous locking scheme.
768 */
769 void reiserfs_write_lock(struct super_block *s);
770 void reiserfs_write_unlock(struct super_block *s);
771 int __must_check reiserfs_write_unlock_nested(struct super_block *s);
772 void reiserfs_write_lock_nested(struct super_block *s, int depth);
773
774 #ifdef CONFIG_REISERFS_CHECK
775 void reiserfs_lock_check_recursive(struct super_block *s);
776 #else
reiserfs_lock_check_recursive(struct super_block * s)777 static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
778 #endif
779
780 /*
781 * Several mutexes depend on the write lock.
782 * However sometimes we want to relax the write lock while we hold
783 * these mutexes, according to the release/reacquire on schedule()
784 * properties of the Bkl that were used.
785 * Reiserfs performances and locking were based on this scheme.
786 * Now that the write lock is a mutex and not the bkl anymore, doing so
787 * may result in a deadlock:
788 *
789 * A acquire write_lock
790 * A acquire j_commit_mutex
791 * A release write_lock and wait for something
792 * B acquire write_lock
793 * B can't acquire j_commit_mutex and sleep
794 * A can't acquire write lock anymore
795 * deadlock
796 *
797 * What we do here is avoiding such deadlock by playing the same game
798 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
799 * we release the write lock, wait a bit and then retry.
800 *
801 * The mutexes concerned by this hack are:
802 * - The commit mutex of a journal list
803 * - The flush mutex
804 * - The journal lock
805 * - The inode mutex
806 */
reiserfs_mutex_lock_safe(struct mutex * m,struct super_block * s)807 static inline void reiserfs_mutex_lock_safe(struct mutex *m,
808 struct super_block *s)
809 {
810 int depth;
811
812 depth = reiserfs_write_unlock_nested(s);
813 mutex_lock(m);
814 reiserfs_write_lock_nested(s, depth);
815 }
816
817 static inline void
reiserfs_mutex_lock_nested_safe(struct mutex * m,unsigned int subclass,struct super_block * s)818 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
819 struct super_block *s)
820 {
821 int depth;
822
823 depth = reiserfs_write_unlock_nested(s);
824 mutex_lock_nested(m, subclass);
825 reiserfs_write_lock_nested(s, depth);
826 }
827
828 static inline void
reiserfs_down_read_safe(struct rw_semaphore * sem,struct super_block * s)829 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
830 {
831 int depth;
832 depth = reiserfs_write_unlock_nested(s);
833 down_read(sem);
834 reiserfs_write_lock_nested(s, depth);
835 }
836
837 /*
838 * When we schedule, we usually want to also release the write lock,
839 * according to the previous bkl based locking scheme of reiserfs.
840 */
reiserfs_cond_resched(struct super_block * s)841 static inline void reiserfs_cond_resched(struct super_block *s)
842 {
843 if (need_resched()) {
844 int depth;
845
846 depth = reiserfs_write_unlock_nested(s);
847 schedule();
848 reiserfs_write_lock_nested(s, depth);
849 }
850 }
851
852 struct fid;
853
854 /*
855 * in reading the #defines, it may help to understand that they employ
856 * the following abbreviations:
857 *
858 * B = Buffer
859 * I = Item header
860 * H = Height within the tree (should be changed to LEV)
861 * N = Number of the item in the node
862 * STAT = stat data
863 * DEH = Directory Entry Header
864 * EC = Entry Count
865 * E = Entry number
866 * UL = Unsigned Long
867 * BLKH = BLocK Header
868 * UNFM = UNForMatted node
869 * DC = Disk Child
870 * P = Path
871 *
872 * These #defines are named by concatenating these abbreviations,
873 * where first comes the arguments, and last comes the return value,
874 * of the macro.
875 */
876
877 #define USE_INODE_GENERATION_COUNTER
878
879 #define REISERFS_PREALLOCATE
880 #define DISPLACE_NEW_PACKING_LOCALITIES
881 #define PREALLOCATION_SIZE 9
882
883 /* n must be power of 2 */
884 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
885
886 /*
887 * to be ok for alpha and others we have to align structures to 8 byte
888 * boundary.
889 * FIXME: do not change 4 by anything else: there is code which relies on that
890 */
891 #define ROUND_UP(x) _ROUND_UP(x,8LL)
892
893 /*
894 * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
895 * messages.
896 */
897 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
898
899 void __reiserfs_warning(struct super_block *s, const char *id,
900 const char *func, const char *fmt, ...);
901 #define reiserfs_warning(s, id, fmt, args...) \
902 __reiserfs_warning(s, id, __func__, fmt, ##args)
903 /* assertions handling */
904
905 /* always check a condition and panic if it's false. */
906 #define __RASSERT(cond, scond, format, args...) \
907 do { \
908 if (!(cond)) \
909 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
910 __FILE__ ":%i:%s: " format "\n", \
911 __LINE__, __func__ , ##args); \
912 } while (0)
913
914 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
915
916 #if defined( CONFIG_REISERFS_CHECK )
917 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
918 #else
919 #define RFALSE( cond, format, args... ) do {;} while( 0 )
920 #endif
921
922 #define CONSTF __attribute_const__
923 /*
924 * Disk Data Structures
925 */
926
927 /***************************************************************************
928 * SUPER BLOCK *
929 ***************************************************************************/
930
931 /*
932 * Structure of super block on disk, a version of which in RAM is often
933 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
934 * structure containing fields never written to disk.
935 */
936 #define UNSET_HASH 0 /* Detect hash on disk */
937 #define TEA_HASH 1
938 #define YURA_HASH 2
939 #define R5_HASH 3
940 #define DEFAULT_HASH R5_HASH
941
942 struct journal_params {
943 /* where does journal start from on its * device */
944 __le32 jp_journal_1st_block;
945
946 /* journal device st_rdev */
947 __le32 jp_journal_dev;
948
949 /* size of the journal */
950 __le32 jp_journal_size;
951
952 /* max number of blocks in a transaction. */
953 __le32 jp_journal_trans_max;
954
955 /*
956 * random value made on fs creation
957 * (this was sb_journal_block_count)
958 */
959 __le32 jp_journal_magic;
960
961 /* max number of blocks to batch into a trans */
962 __le32 jp_journal_max_batch;
963
964 /* in seconds, how old can an async commit be */
965 __le32 jp_journal_max_commit_age;
966
967 /* in seconds, how old can a transaction be */
968 __le32 jp_journal_max_trans_age;
969 };
970
971 /* this is the super from 3.5.X, where X >= 10 */
972 struct reiserfs_super_block_v1 {
973 __le32 s_block_count; /* blocks count */
974 __le32 s_free_blocks; /* free blocks count */
975 __le32 s_root_block; /* root block number */
976 struct journal_params s_journal;
977 __le16 s_blocksize; /* block size */
978
979 /* max size of object id array, see get_objectid() commentary */
980 __le16 s_oid_maxsize;
981 __le16 s_oid_cursize; /* current size of object id array */
982
983 /* this is set to 1 when filesystem was umounted, to 2 - when not */
984 __le16 s_umount_state;
985
986 /*
987 * reiserfs magic string indicates that file system is reiserfs:
988 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs"
989 */
990 char s_magic[10];
991
992 /*
993 * it is set to used by fsck to mark which
994 * phase of rebuilding is done
995 */
996 __le16 s_fs_state;
997 /*
998 * indicate, what hash function is being use
999 * to sort names in a directory
1000 */
1001 __le32 s_hash_function_code;
1002 __le16 s_tree_height; /* height of disk tree */
1003
1004 /*
1005 * amount of bitmap blocks needed to address
1006 * each block of file system
1007 */
1008 __le16 s_bmap_nr;
1009
1010 /*
1011 * this field is only reliable on filesystem with non-standard journal
1012 */
1013 __le16 s_version;
1014
1015 /*
1016 * size in blocks of journal area on main device, we need to
1017 * keep after making fs with non-standard journal
1018 */
1019 __le16 s_reserved_for_journal;
1020 } __attribute__ ((__packed__));
1021
1022 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
1023
1024 /* this is the on disk super block */
1025 struct reiserfs_super_block {
1026 struct reiserfs_super_block_v1 s_v1;
1027 __le32 s_inode_generation;
1028
1029 /* Right now used only by inode-attributes, if enabled */
1030 __le32 s_flags;
1031
1032 unsigned char s_uuid[16]; /* filesystem unique identifier */
1033 unsigned char s_label[16]; /* filesystem volume label */
1034 __le16 s_mnt_count; /* Count of mounts since last fsck */
1035 __le16 s_max_mnt_count; /* Maximum mounts before check */
1036 __le32 s_lastcheck; /* Timestamp of last fsck */
1037 __le32 s_check_interval; /* Interval between checks */
1038
1039 /*
1040 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1()
1041 * so any additions must be updated there as well. */
1042 char s_unused[76];
1043 } __attribute__ ((__packed__));
1044
1045 #define SB_SIZE (sizeof(struct reiserfs_super_block))
1046
1047 #define REISERFS_VERSION_1 0
1048 #define REISERFS_VERSION_2 2
1049
1050 /* on-disk super block fields converted to cpu form */
1051 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
1052 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
1053 #define SB_BLOCKSIZE(s) \
1054 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
1055 #define SB_BLOCK_COUNT(s) \
1056 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
1057 #define SB_FREE_BLOCKS(s) \
1058 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
1059 #define SB_REISERFS_MAGIC(s) \
1060 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
1061 #define SB_ROOT_BLOCK(s) \
1062 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
1063 #define SB_TREE_HEIGHT(s) \
1064 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
1065 #define SB_REISERFS_STATE(s) \
1066 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
1067 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
1068 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
1069
1070 #define PUT_SB_BLOCK_COUNT(s, val) \
1071 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
1072 #define PUT_SB_FREE_BLOCKS(s, val) \
1073 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
1074 #define PUT_SB_ROOT_BLOCK(s, val) \
1075 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
1076 #define PUT_SB_TREE_HEIGHT(s, val) \
1077 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
1078 #define PUT_SB_REISERFS_STATE(s, val) \
1079 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1080 #define PUT_SB_VERSION(s, val) \
1081 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
1082 #define PUT_SB_BMAP_NR(s, val) \
1083 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
1084
1085 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
1086 #define SB_ONDISK_JOURNAL_SIZE(s) \
1087 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
1088 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
1089 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
1090 #define SB_ONDISK_JOURNAL_DEVICE(s) \
1091 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
1092 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
1093 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1094
1095 #define is_block_in_log_or_reserved_area(s, block) \
1096 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
1097 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
1098 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
1099 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1100
1101 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
1102 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
1103 int is_reiserfs_jr(struct reiserfs_super_block *rs);
1104
1105 /*
1106 * ReiserFS leaves the first 64k unused, so that partition labels have
1107 * enough space. If someone wants to write a fancy bootloader that
1108 * needs more than 64k, let us know, and this will be increased in size.
1109 * This number must be larger than the largest block size on any
1110 * platform, or code will break. -Hans
1111 */
1112 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
1113 #define REISERFS_FIRST_BLOCK unused_define
1114 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
1115
1116 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
1117 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
1118
1119 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
1120 #define CARRY_ON 0
1121 #define REPEAT_SEARCH -1
1122 #define IO_ERROR -2
1123 #define NO_DISK_SPACE -3
1124 #define NO_BALANCING_NEEDED (-4)
1125 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
1126 #define QUOTA_EXCEEDED -6
1127
1128 typedef __u32 b_blocknr_t;
1129 typedef __le32 unp_t;
1130
1131 struct unfm_nodeinfo {
1132 unp_t unfm_nodenum;
1133 unsigned short unfm_freespace;
1134 };
1135
1136 /* there are two formats of keys: 3.5 and 3.6 */
1137 #define KEY_FORMAT_3_5 0
1138 #define KEY_FORMAT_3_6 1
1139
1140 /* there are two stat datas */
1141 #define STAT_DATA_V1 0
1142 #define STAT_DATA_V2 1
1143
REISERFS_I(const struct inode * inode)1144 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
1145 {
1146 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
1147 }
1148
REISERFS_SB(const struct super_block * sb)1149 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
1150 {
1151 return sb->s_fs_info;
1152 }
1153
1154 /*
1155 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
1156 * which overflows on large file systems.
1157 */
reiserfs_bmap_count(struct super_block * sb)1158 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
1159 {
1160 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
1161 }
1162
bmap_would_wrap(unsigned bmap_nr)1163 static inline int bmap_would_wrap(unsigned bmap_nr)
1164 {
1165 return bmap_nr > ((1LL << 16) - 1);
1166 }
1167
1168 extern const struct xattr_handler * const reiserfs_xattr_handlers[];
1169
1170 /*
1171 * this says about version of key of all items (but stat data) the
1172 * object consists of
1173 */
1174 #define get_inode_item_key_version( inode ) \
1175 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
1176
1177 #define set_inode_item_key_version( inode, version ) \
1178 ({ if((version)==KEY_FORMAT_3_6) \
1179 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
1180 else \
1181 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
1182
1183 #define get_inode_sd_version(inode) \
1184 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
1185
1186 #define set_inode_sd_version(inode, version) \
1187 ({ if((version)==STAT_DATA_V2) \
1188 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
1189 else \
1190 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
1191
1192 /*
1193 * This is an aggressive tail suppression policy, I am hoping it
1194 * improves our benchmarks. The principle behind it is that percentage
1195 * space saving is what matters, not absolute space saving. This is
1196 * non-intuitive, but it helps to understand it if you consider that the
1197 * cost to access 4 blocks is not much more than the cost to access 1
1198 * block, if you have to do a seek and rotate. A tail risks a
1199 * non-linear disk access that is significant as a percentage of total
1200 * time cost for a 4 block file and saves an amount of space that is
1201 * less significant as a percentage of space, or so goes the hypothesis.
1202 * -Hans
1203 */
1204 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1205 (\
1206 (!(n_tail_size)) || \
1207 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1208 ( (n_file_size) >= (n_block_size) * 4 ) || \
1209 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1210 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1211 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1212 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1213 ( ( (n_file_size) >= (n_block_size) ) && \
1214 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1215 )
1216
1217 /*
1218 * Another strategy for tails, this one means only create a tail if all the
1219 * file would fit into one DIRECT item.
1220 * Primary intention for this one is to increase performance by decreasing
1221 * seeking.
1222 */
1223 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1224 (\
1225 (!(n_tail_size)) || \
1226 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1227 )
1228
1229 /*
1230 * values for s_umount_state field
1231 */
1232 #define REISERFS_VALID_FS 1
1233 #define REISERFS_ERROR_FS 2
1234
1235 /*
1236 * there are 5 item types currently
1237 */
1238 #define TYPE_STAT_DATA 0
1239 #define TYPE_INDIRECT 1
1240 #define TYPE_DIRECT 2
1241 #define TYPE_DIRENTRY 3
1242 #define TYPE_MAXTYPE 3
1243 #define TYPE_ANY 15 /* FIXME: comment is required */
1244
1245 /***************************************************************************
1246 * KEY & ITEM HEAD *
1247 ***************************************************************************/
1248
1249 /* * directories use this key as well as old files */
1250 struct offset_v1 {
1251 __le32 k_offset;
1252 __le32 k_uniqueness;
1253 } __attribute__ ((__packed__));
1254
1255 struct offset_v2 {
1256 __le64 v;
1257 } __attribute__ ((__packed__));
1258
offset_v2_k_type(const struct offset_v2 * v2)1259 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1260 {
1261 __u8 type = le64_to_cpu(v2->v) >> 60;
1262 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1263 }
1264
set_offset_v2_k_type(struct offset_v2 * v2,int type)1265 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1266 {
1267 v2->v =
1268 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1269 }
1270
offset_v2_k_offset(const struct offset_v2 * v2)1271 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1272 {
1273 return le64_to_cpu(v2->v) & (~0ULL >> 4);
1274 }
1275
set_offset_v2_k_offset(struct offset_v2 * v2,loff_t offset)1276 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1277 {
1278 offset &= (~0ULL >> 4);
1279 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1280 }
1281
1282 /*
1283 * Key of an item determines its location in the S+tree, and
1284 * is composed of 4 components
1285 */
1286 struct reiserfs_key {
1287 /* packing locality: by default parent directory object id */
1288 __le32 k_dir_id;
1289
1290 __le32 k_objectid; /* object identifier */
1291 union {
1292 struct offset_v1 k_offset_v1;
1293 struct offset_v2 k_offset_v2;
1294 } __attribute__ ((__packed__)) u;
1295 } __attribute__ ((__packed__));
1296
1297 struct in_core_key {
1298 /* packing locality: by default parent directory object id */
1299 __u32 k_dir_id;
1300 __u32 k_objectid; /* object identifier */
1301 __u64 k_offset;
1302 __u8 k_type;
1303 };
1304
1305 struct cpu_key {
1306 struct in_core_key on_disk_key;
1307 int version;
1308 /* 3 in all cases but direct2indirect and indirect2direct conversion */
1309 int key_length;
1310 };
1311
1312 /*
1313 * Our function for comparing keys can compare keys of different
1314 * lengths. It takes as a parameter the length of the keys it is to
1315 * compare. These defines are used in determining what is to be passed
1316 * to it as that parameter.
1317 */
1318 #define REISERFS_FULL_KEY_LEN 4
1319 #define REISERFS_SHORT_KEY_LEN 2
1320
1321 /* The result of the key compare */
1322 #define FIRST_GREATER 1
1323 #define SECOND_GREATER -1
1324 #define KEYS_IDENTICAL 0
1325 #define KEY_FOUND 1
1326 #define KEY_NOT_FOUND 0
1327
1328 #define KEY_SIZE (sizeof(struct reiserfs_key))
1329
1330 /* return values for search_by_key and clones */
1331 #define ITEM_FOUND 1
1332 #define ITEM_NOT_FOUND 0
1333 #define ENTRY_FOUND 1
1334 #define ENTRY_NOT_FOUND 0
1335 #define DIRECTORY_NOT_FOUND -1
1336 #define REGULAR_FILE_FOUND -2
1337 #define DIRECTORY_FOUND -3
1338 #define BYTE_FOUND 1
1339 #define BYTE_NOT_FOUND 0
1340 #define FILE_NOT_FOUND -1
1341
1342 #define POSITION_FOUND 1
1343 #define POSITION_NOT_FOUND 0
1344
1345 /* return values for reiserfs_find_entry and search_by_entry_key */
1346 #define NAME_FOUND 1
1347 #define NAME_NOT_FOUND 0
1348 #define GOTO_PREVIOUS_ITEM 2
1349 #define NAME_FOUND_INVISIBLE 3
1350
1351 /*
1352 * Everything in the filesystem is stored as a set of items. The
1353 * item head contains the key of the item, its free space (for
1354 * indirect items) and specifies the location of the item itself
1355 * within the block.
1356 */
1357
1358 struct item_head {
1359 /*
1360 * Everything in the tree is found by searching for it based on
1361 * its key.
1362 */
1363 struct reiserfs_key ih_key;
1364 union {
1365 /*
1366 * The free space in the last unformatted node of an
1367 * indirect item if this is an indirect item. This
1368 * equals 0xFFFF iff this is a direct item or stat data
1369 * item. Note that the key, not this field, is used to
1370 * determine the item type, and thus which field this
1371 * union contains.
1372 */
1373 __le16 ih_free_space_reserved;
1374
1375 /*
1376 * Iff this is a directory item, this field equals the
1377 * number of directory entries in the directory item.
1378 */
1379 __le16 ih_entry_count;
1380 } __attribute__ ((__packed__)) u;
1381 __le16 ih_item_len; /* total size of the item body */
1382
1383 /* an offset to the item body within the block */
1384 __le16 ih_item_location;
1385
1386 /*
1387 * 0 for all old items, 2 for new ones. Highest bit is set by fsck
1388 * temporary, cleaned after all done
1389 */
1390 __le16 ih_version;
1391 } __attribute__ ((__packed__));
1392 /* size of item header */
1393 #define IH_SIZE (sizeof(struct item_head))
1394
1395 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
1396 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
1397 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
1398 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
1399 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
1400
1401 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1402 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1403 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1404 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1405 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1406
1407 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1408
1409 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1410 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1411
1412 /*
1413 * these operate on indirect items, where you've got an array of ints
1414 * at a possibly unaligned location. These are a noop on ia32
1415 *
1416 * p is the array of __u32, i is the index into the array, v is the value
1417 * to store there.
1418 */
1419 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
1420 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1421
1422 /* * in old version uniqueness field shows key type */
1423 #define V1_SD_UNIQUENESS 0
1424 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
1425 #define V1_DIRECT_UNIQUENESS 0xffffffff
1426 #define V1_DIRENTRY_UNIQUENESS 500
1427 #define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */
1428
1429 /* here are conversion routines */
1430 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
uniqueness2type(__u32 uniqueness)1431 static inline int uniqueness2type(__u32 uniqueness)
1432 {
1433 switch ((int)uniqueness) {
1434 case V1_SD_UNIQUENESS:
1435 return TYPE_STAT_DATA;
1436 case V1_INDIRECT_UNIQUENESS:
1437 return TYPE_INDIRECT;
1438 case V1_DIRECT_UNIQUENESS:
1439 return TYPE_DIRECT;
1440 case V1_DIRENTRY_UNIQUENESS:
1441 return TYPE_DIRENTRY;
1442 case V1_ANY_UNIQUENESS:
1443 default:
1444 return TYPE_ANY;
1445 }
1446 }
1447
1448 static inline __u32 type2uniqueness(int type) CONSTF;
type2uniqueness(int type)1449 static inline __u32 type2uniqueness(int type)
1450 {
1451 switch (type) {
1452 case TYPE_STAT_DATA:
1453 return V1_SD_UNIQUENESS;
1454 case TYPE_INDIRECT:
1455 return V1_INDIRECT_UNIQUENESS;
1456 case TYPE_DIRECT:
1457 return V1_DIRECT_UNIQUENESS;
1458 case TYPE_DIRENTRY:
1459 return V1_DIRENTRY_UNIQUENESS;
1460 case TYPE_ANY:
1461 default:
1462 return V1_ANY_UNIQUENESS;
1463 }
1464 }
1465
1466 /*
1467 * key is pointer to on disk key which is stored in le, result is cpu,
1468 * there is no way to get version of object from key, so, provide
1469 * version to these defines
1470 */
le_key_k_offset(int version,const struct reiserfs_key * key)1471 static inline loff_t le_key_k_offset(int version,
1472 const struct reiserfs_key *key)
1473 {
1474 return (version == KEY_FORMAT_3_5) ?
1475 le32_to_cpu(key->u.k_offset_v1.k_offset) :
1476 offset_v2_k_offset(&(key->u.k_offset_v2));
1477 }
1478
le_ih_k_offset(const struct item_head * ih)1479 static inline loff_t le_ih_k_offset(const struct item_head *ih)
1480 {
1481 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1482 }
1483
le_key_k_type(int version,const struct reiserfs_key * key)1484 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1485 {
1486 if (version == KEY_FORMAT_3_5) {
1487 loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness);
1488 return uniqueness2type(val);
1489 } else
1490 return offset_v2_k_type(&(key->u.k_offset_v2));
1491 }
1492
le_ih_k_type(const struct item_head * ih)1493 static inline loff_t le_ih_k_type(const struct item_head *ih)
1494 {
1495 return le_key_k_type(ih_version(ih), &(ih->ih_key));
1496 }
1497
set_le_key_k_offset(int version,struct reiserfs_key * key,loff_t offset)1498 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1499 loff_t offset)
1500 {
1501 if (version == KEY_FORMAT_3_5)
1502 key->u.k_offset_v1.k_offset = cpu_to_le32(offset);
1503 else
1504 set_offset_v2_k_offset(&key->u.k_offset_v2, offset);
1505 }
1506
add_le_key_k_offset(int version,struct reiserfs_key * key,loff_t offset)1507 static inline void add_le_key_k_offset(int version, struct reiserfs_key *key,
1508 loff_t offset)
1509 {
1510 set_le_key_k_offset(version, key,
1511 le_key_k_offset(version, key) + offset);
1512 }
1513
add_le_ih_k_offset(struct item_head * ih,loff_t offset)1514 static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset)
1515 {
1516 add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1517 }
1518
set_le_ih_k_offset(struct item_head * ih,loff_t offset)1519 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1520 {
1521 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1522 }
1523
set_le_key_k_type(int version,struct reiserfs_key * key,int type)1524 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1525 int type)
1526 {
1527 if (version == KEY_FORMAT_3_5) {
1528 type = type2uniqueness(type);
1529 key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type);
1530 } else
1531 set_offset_v2_k_type(&key->u.k_offset_v2, type);
1532 }
1533
set_le_ih_k_type(struct item_head * ih,int type)1534 static inline void set_le_ih_k_type(struct item_head *ih, int type)
1535 {
1536 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1537 }
1538
is_direntry_le_key(int version,struct reiserfs_key * key)1539 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1540 {
1541 return le_key_k_type(version, key) == TYPE_DIRENTRY;
1542 }
1543
is_direct_le_key(int version,struct reiserfs_key * key)1544 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1545 {
1546 return le_key_k_type(version, key) == TYPE_DIRECT;
1547 }
1548
is_indirect_le_key(int version,struct reiserfs_key * key)1549 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1550 {
1551 return le_key_k_type(version, key) == TYPE_INDIRECT;
1552 }
1553
is_statdata_le_key(int version,struct reiserfs_key * key)1554 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1555 {
1556 return le_key_k_type(version, key) == TYPE_STAT_DATA;
1557 }
1558
1559 /* item header has version. */
is_direntry_le_ih(struct item_head * ih)1560 static inline int is_direntry_le_ih(struct item_head *ih)
1561 {
1562 return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1563 }
1564
is_direct_le_ih(struct item_head * ih)1565 static inline int is_direct_le_ih(struct item_head *ih)
1566 {
1567 return is_direct_le_key(ih_version(ih), &ih->ih_key);
1568 }
1569
is_indirect_le_ih(struct item_head * ih)1570 static inline int is_indirect_le_ih(struct item_head *ih)
1571 {
1572 return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1573 }
1574
is_statdata_le_ih(struct item_head * ih)1575 static inline int is_statdata_le_ih(struct item_head *ih)
1576 {
1577 return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1578 }
1579
1580 /* key is pointer to cpu key, result is cpu */
cpu_key_k_offset(const struct cpu_key * key)1581 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1582 {
1583 return key->on_disk_key.k_offset;
1584 }
1585
cpu_key_k_type(const struct cpu_key * key)1586 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1587 {
1588 return key->on_disk_key.k_type;
1589 }
1590
set_cpu_key_k_offset(struct cpu_key * key,loff_t offset)1591 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1592 {
1593 key->on_disk_key.k_offset = offset;
1594 }
1595
set_cpu_key_k_type(struct cpu_key * key,int type)1596 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1597 {
1598 key->on_disk_key.k_type = type;
1599 }
1600
cpu_key_k_offset_dec(struct cpu_key * key)1601 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1602 {
1603 key->on_disk_key.k_offset--;
1604 }
1605
1606 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1607 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1608 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1609 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1610
1611 /* are these used ? */
1612 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1613 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1614 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1615 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1616
1617 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1618 (!COMP_SHORT_KEYS(ih, key) && \
1619 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1620
1621 /* maximal length of item */
1622 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1623 #define MIN_ITEM_LEN 1
1624
1625 /* object identifier for root dir */
1626 #define REISERFS_ROOT_OBJECTID 2
1627 #define REISERFS_ROOT_PARENT_OBJECTID 1
1628
1629 extern struct reiserfs_key root_key;
1630
1631 /*
1632 * Picture represents a leaf of the S+tree
1633 * ______________________________________________________
1634 * | | Array of | | |
1635 * |Block | Object-Item | F r e e | Objects- |
1636 * | head | Headers | S p a c e | Items |
1637 * |______|_______________|___________________|___________|
1638 */
1639
1640 /*
1641 * Header of a disk block. More precisely, header of a formatted leaf
1642 * or internal node, and not the header of an unformatted node.
1643 */
1644 struct block_head {
1645 __le16 blk_level; /* Level of a block in the tree. */
1646 __le16 blk_nr_item; /* Number of keys/items in a block. */
1647 __le16 blk_free_space; /* Block free space in bytes. */
1648 __le16 blk_reserved;
1649 /* dump this in v4/planA */
1650
1651 /* kept only for compatibility */
1652 struct reiserfs_key blk_right_delim_key;
1653 };
1654
1655 #define BLKH_SIZE (sizeof(struct block_head))
1656 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
1657 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
1658 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
1659 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
1660 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
1661 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1662 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1663 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1664 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
1665 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
1666
1667 /* values for blk_level field of the struct block_head */
1668
1669 /*
1670 * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
1671 * It is then used to see whether the node is still in the tree
1672 */
1673 #define FREE_LEVEL 0
1674
1675 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
1676
1677 /*
1678 * Given the buffer head of a formatted node, resolve to the
1679 * block head of that node.
1680 */
1681 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data))
1682 /* Number of items that are in buffer. */
1683 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh)))
1684 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh)))
1685 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh)))
1686
1687 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1688 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1689 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1690
1691 /* Get right delimiting key. -- little endian */
1692 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh))))
1693
1694 /* Does the buffer contain a disk leaf. */
1695 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1696
1697 /* Does the buffer contain a disk internal node */
1698 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1699 && B_LEVEL(bh) <= MAX_HEIGHT)
1700
1701 /***************************************************************************
1702 * STAT DATA *
1703 ***************************************************************************/
1704
1705 /*
1706 * old stat data is 32 bytes long. We are going to distinguish new one by
1707 * different size
1708 */
1709 struct stat_data_v1 {
1710 __le16 sd_mode; /* file type, permissions */
1711 __le16 sd_nlink; /* number of hard links */
1712 __le16 sd_uid; /* owner */
1713 __le16 sd_gid; /* group */
1714 __le32 sd_size; /* file size */
1715 __le32 sd_atime; /* time of last access */
1716 __le32 sd_mtime; /* time file was last modified */
1717
1718 /*
1719 * time inode (stat data) was last changed
1720 * (except changes to sd_atime and sd_mtime)
1721 */
1722 __le32 sd_ctime;
1723 union {
1724 __le32 sd_rdev;
1725 __le32 sd_blocks; /* number of blocks file uses */
1726 } __attribute__ ((__packed__)) u;
1727
1728 /*
1729 * first byte of file which is stored in a direct item: except that if
1730 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no
1731 * direct item. The existence of this field really grates on me.
1732 * Let's replace it with a macro based on sd_size and our tail
1733 * suppression policy. Someday. -Hans
1734 */
1735 __le32 sd_first_direct_byte;
1736 } __attribute__ ((__packed__));
1737
1738 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
1739 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
1740 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1741 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1742 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
1743 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
1744 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
1745 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
1746 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
1747 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
1748 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
1749 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
1750 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1751 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1752 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1753 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1754 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1755 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1756 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1757 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1758 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
1759 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1760 #define sd_v1_first_direct_byte(sdp) \
1761 (le32_to_cpu((sdp)->sd_first_direct_byte))
1762 #define set_sd_v1_first_direct_byte(sdp,v) \
1763 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1764
1765 /* inode flags stored in sd_attrs (nee sd_reserved) */
1766
1767 /*
1768 * we want common flags to have the same values as in ext2,
1769 * so chattr(1) will work without problems
1770 */
1771 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1772 #define REISERFS_APPEND_FL FS_APPEND_FL
1773 #define REISERFS_SYNC_FL FS_SYNC_FL
1774 #define REISERFS_NOATIME_FL FS_NOATIME_FL
1775 #define REISERFS_NODUMP_FL FS_NODUMP_FL
1776 #define REISERFS_SECRM_FL FS_SECRM_FL
1777 #define REISERFS_UNRM_FL FS_UNRM_FL
1778 #define REISERFS_COMPR_FL FS_COMPR_FL
1779 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL
1780
1781 /* persistent flags that file inherits from the parent directory */
1782 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
1783 REISERFS_SYNC_FL | \
1784 REISERFS_NOATIME_FL | \
1785 REISERFS_NODUMP_FL | \
1786 REISERFS_SECRM_FL | \
1787 REISERFS_COMPR_FL | \
1788 REISERFS_NOTAIL_FL )
1789
1790 /*
1791 * Stat Data on disk (reiserfs version of UFS disk inode minus the
1792 * address blocks)
1793 */
1794 struct stat_data {
1795 __le16 sd_mode; /* file type, permissions */
1796 __le16 sd_attrs; /* persistent inode flags */
1797 __le32 sd_nlink; /* number of hard links */
1798 __le64 sd_size; /* file size */
1799 __le32 sd_uid; /* owner */
1800 __le32 sd_gid; /* group */
1801 __le32 sd_atime; /* time of last access */
1802 __le32 sd_mtime; /* time file was last modified */
1803
1804 /*
1805 * time inode (stat data) was last changed
1806 * (except changes to sd_atime and sd_mtime)
1807 */
1808 __le32 sd_ctime;
1809 __le32 sd_blocks;
1810 union {
1811 __le32 sd_rdev;
1812 __le32 sd_generation;
1813 } __attribute__ ((__packed__)) u;
1814 } __attribute__ ((__packed__));
1815
1816 /* this is 44 bytes long */
1817 #define SD_SIZE (sizeof(struct stat_data))
1818 #define SD_V2_SIZE SD_SIZE
1819 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
1820 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
1821 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
1822 /* sd_reserved */
1823 /* set_sd_reserved */
1824 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
1825 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
1826 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
1827 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
1828 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
1829 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
1830 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
1831 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
1832 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
1833 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
1834 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
1835 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
1836 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
1837 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
1838 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
1839 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1840 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
1841 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
1842 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
1843 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1844 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
1845 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
1846
1847 /***************************************************************************
1848 * DIRECTORY STRUCTURE *
1849 ***************************************************************************/
1850 /*
1851 * Picture represents the structure of directory items
1852 * ________________________________________________
1853 * | Array of | | | | | |
1854 * | directory |N-1| N-2 | .... | 1st |0th|
1855 * | entry headers | | | | | |
1856 * |_______________|___|_____|________|_______|___|
1857 * <---- directory entries ------>
1858 *
1859 * First directory item has k_offset component 1. We store "." and ".."
1860 * in one item, always, we never split "." and ".." into differing
1861 * items. This makes, among other things, the code for removing
1862 * directories simpler.
1863 */
1864 #define SD_OFFSET 0
1865 #define SD_UNIQUENESS 0
1866 #define DOT_OFFSET 1
1867 #define DOT_DOT_OFFSET 2
1868 #define DIRENTRY_UNIQUENESS 500
1869
1870 #define FIRST_ITEM_OFFSET 1
1871
1872 /*
1873 * Q: How to get key of object pointed to by entry from entry?
1874 *
1875 * A: Each directory entry has its header. This header has deh_dir_id
1876 * and deh_objectid fields, those are key of object, entry points to
1877 */
1878
1879 /*
1880 * NOT IMPLEMENTED:
1881 * Directory will someday contain stat data of object
1882 */
1883
1884 struct reiserfs_de_head {
1885 __le32 deh_offset; /* third component of the directory entry key */
1886
1887 /*
1888 * objectid of the parent directory of the object, that is referenced
1889 * by directory entry
1890 */
1891 __le32 deh_dir_id;
1892
1893 /* objectid of the object, that is referenced by directory entry */
1894 __le32 deh_objectid;
1895 __le16 deh_location; /* offset of name in the whole item */
1896
1897 /*
1898 * whether 1) entry contains stat data (for future), and
1899 * 2) whether entry is hidden (unlinked)
1900 */
1901 __le16 deh_state;
1902 } __attribute__ ((__packed__));
1903 #define DEH_SIZE sizeof(struct reiserfs_de_head)
1904 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
1905 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
1906 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
1907 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
1908 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
1909
1910 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
1911 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1912 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1913 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1914 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
1915
1916 /* empty directory contains two entries "." and ".." and their headers */
1917 #define EMPTY_DIR_SIZE \
1918 (DEH_SIZE * 2 + ROUND_UP (sizeof(".") - 1) + ROUND_UP (sizeof("..") - 1))
1919
1920 /* old format directories have this size when empty */
1921 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1922
1923 #define DEH_Statdata 0 /* not used now */
1924 #define DEH_Visible 2
1925
1926 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1927 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1928 # define ADDR_UNALIGNED_BITS (3)
1929 #endif
1930
1931 /*
1932 * These are only used to manipulate deh_state.
1933 * Because of this, we'll use the ext2_ bit routines,
1934 * since they are little endian
1935 */
1936 #ifdef ADDR_UNALIGNED_BITS
1937
1938 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1939 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1940
1941 # define set_bit_unaligned(nr, addr) \
1942 __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1943 # define clear_bit_unaligned(nr, addr) \
1944 __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1945 # define test_bit_unaligned(nr, addr) \
1946 test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1947
1948 #else
1949
1950 # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr)
1951 # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr)
1952 # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr)
1953
1954 #endif
1955
1956 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1957 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1958 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1959 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1960
1961 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1962 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1963 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1964
1965 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1966 __le32 par_dirid, __le32 par_objid);
1967 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1968 __le32 par_dirid, __le32 par_objid);
1969
1970 /* two entries per block (at least) */
1971 #define REISERFS_MAX_NAME(block_size) 255
1972
1973 /*
1974 * this structure is used for operations on directory entries. It is
1975 * not a disk structure.
1976 *
1977 * When reiserfs_find_entry or search_by_entry_key find directory
1978 * entry, they return filled reiserfs_dir_entry structure
1979 */
1980 struct reiserfs_dir_entry {
1981 struct buffer_head *de_bh;
1982 int de_item_num;
1983 struct item_head *de_ih;
1984 int de_entry_num;
1985 struct reiserfs_de_head *de_deh;
1986 int de_entrylen;
1987 int de_namelen;
1988 char *de_name;
1989 unsigned long *de_gen_number_bit_string;
1990
1991 __u32 de_dir_id;
1992 __u32 de_objectid;
1993
1994 struct cpu_key de_entry_key;
1995 };
1996
1997 /*
1998 * these defines are useful when a particular member of
1999 * a reiserfs_dir_entry is needed
2000 */
2001
2002 /* pointer to file name, stored in entry */
2003 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \
2004 (ih_item_body(bh, ih) + deh_location(deh))
2005
2006 /* length of name */
2007 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
2008 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
2009
2010 /* hash value occupies bits from 7 up to 30 */
2011 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
2012 /* generation number occupies 7 bits starting from 0 up to 6 */
2013 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
2014 #define MAX_GENERATION_NUMBER 127
2015
2016 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
2017
2018 /*
2019 * Picture represents an internal node of the reiserfs tree
2020 * ______________________________________________________
2021 * | | Array of | Array of | Free |
2022 * |block | keys | pointers | space |
2023 * | head | N | N+1 | |
2024 * |______|_______________|___________________|___________|
2025 */
2026
2027 /***************************************************************************
2028 * DISK CHILD *
2029 ***************************************************************************/
2030 /*
2031 * Disk child pointer:
2032 * The pointer from an internal node of the tree to a node that is on disk.
2033 */
2034 struct disk_child {
2035 __le32 dc_block_number; /* Disk child's block number. */
2036 __le16 dc_size; /* Disk child's used space. */
2037 __le16 dc_reserved;
2038 };
2039
2040 #define DC_SIZE (sizeof(struct disk_child))
2041 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
2042 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
2043 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
2044 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
2045
2046 /* Get disk child by buffer header and position in the tree node. */
2047 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\
2048 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
2049
2050 /* Get disk child number by buffer header and position in the tree node. */
2051 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
2052 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
2053 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
2054
2055 /* maximal value of field child_size in structure disk_child */
2056 /* child size is the combined size of all items and their headers */
2057 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
2058
2059 /* amount of used space in buffer (not including block head) */
2060 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
2061
2062 /* max and min number of keys in internal node */
2063 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
2064 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
2065
2066 /***************************************************************************
2067 * PATH STRUCTURES AND DEFINES *
2068 ***************************************************************************/
2069
2070 /*
2071 * search_by_key fills up the path from the root to the leaf as it descends
2072 * the tree looking for the key. It uses reiserfs_bread to try to find
2073 * buffers in the cache given their block number. If it does not find
2074 * them in the cache it reads them from disk. For each node search_by_key
2075 * finds using reiserfs_bread it then uses bin_search to look through that
2076 * node. bin_search will find the position of the block_number of the next
2077 * node if it is looking through an internal node. If it is looking through
2078 * a leaf node bin_search will find the position of the item which has key
2079 * either equal to given key, or which is the maximal key less than the
2080 * given key.
2081 */
2082
2083 struct path_element {
2084 /* Pointer to the buffer at the path in the tree. */
2085 struct buffer_head *pe_buffer;
2086 /* Position in the tree node which is placed in the buffer above. */
2087 int pe_position;
2088 };
2089
2090 /*
2091 * maximal height of a tree. don't change this without
2092 * changing JOURNAL_PER_BALANCE_CNT
2093 */
2094 #define MAX_HEIGHT 5
2095
2096 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
2097 #define EXTENDED_MAX_HEIGHT 7
2098
2099 /* Must be equal to at least 2. */
2100 #define FIRST_PATH_ELEMENT_OFFSET 2
2101
2102 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
2103 #define ILLEGAL_PATH_ELEMENT_OFFSET 1
2104
2105 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
2106 #define MAX_FEB_SIZE 6
2107
2108 /*
2109 * We need to keep track of who the ancestors of nodes are. When we
2110 * perform a search we record which nodes were visited while
2111 * descending the tree looking for the node we searched for. This list
2112 * of nodes is called the path. This information is used while
2113 * performing balancing. Note that this path information may become
2114 * invalid, and this means we must check it when using it to see if it
2115 * is still valid. You'll need to read search_by_key and the comments
2116 * in it, especially about decrement_counters_in_path(), to understand
2117 * this structure.
2118 *
2119 * Paths make the code so much harder to work with and debug.... An
2120 * enormous number of bugs are due to them, and trying to write or modify
2121 * code that uses them just makes my head hurt. They are based on an
2122 * excessive effort to avoid disturbing the precious VFS code.:-( The
2123 * gods only know how we are going to SMP the code that uses them.
2124 * znodes are the way!
2125 */
2126
2127 #define PATH_READA 0x1 /* do read ahead */
2128 #define PATH_READA_BACK 0x2 /* read backwards */
2129
2130 struct treepath {
2131 int path_length; /* Length of the array above. */
2132 int reada;
2133 /* Array of the path elements. */
2134 struct path_element path_elements[EXTENDED_MAX_HEIGHT];
2135 int pos_in_item;
2136 };
2137
2138 #define pos_in_item(path) ((path)->pos_in_item)
2139
2140 #define INITIALIZE_PATH(var) \
2141 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
2142
2143 /* Get path element by path and path position. */
2144 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset))
2145
2146 /* Get buffer header at the path by path and path position. */
2147 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
2148
2149 /* Get position in the element at the path by path and path position. */
2150 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
2151
2152 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
2153
2154 /*
2155 * you know, to the person who didn't write this the macro name does not
2156 * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or
2157 * maybe we should just focus on dumping paths... -Hans
2158 */
2159 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
2160
2161 /*
2162 * in do_balance leaf has h == 0 in contrast with path structure,
2163 * where root has level == 0. That is why we need these defines
2164 */
2165
2166 /* tb->S[h] */
2167 #define PATH_H_PBUFFER(path, h) \
2168 PATH_OFFSET_PBUFFER(path, path->path_length - (h))
2169
2170 /* tb->F[h] or tb->S[0]->b_parent */
2171 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1)
2172
2173 #define PATH_H_POSITION(path, h) \
2174 PATH_OFFSET_POSITION(path, path->path_length - (h))
2175
2176 /* tb->S[h]->b_item_order */
2177 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)
2178
2179 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
2180
reiserfs_node_data(const struct buffer_head * bh)2181 static inline void *reiserfs_node_data(const struct buffer_head *bh)
2182 {
2183 return bh->b_data + sizeof(struct block_head);
2184 }
2185
2186 /* get key from internal node */
internal_key(struct buffer_head * bh,int item_num)2187 static inline struct reiserfs_key *internal_key(struct buffer_head *bh,
2188 int item_num)
2189 {
2190 struct reiserfs_key *key = reiserfs_node_data(bh);
2191
2192 return &key[item_num];
2193 }
2194
2195 /* get the item header from leaf node */
item_head(const struct buffer_head * bh,int item_num)2196 static inline struct item_head *item_head(const struct buffer_head *bh,
2197 int item_num)
2198 {
2199 struct item_head *ih = reiserfs_node_data(bh);
2200
2201 return &ih[item_num];
2202 }
2203
2204 /* get the key from leaf node */
leaf_key(const struct buffer_head * bh,int item_num)2205 static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh,
2206 int item_num)
2207 {
2208 return &item_head(bh, item_num)->ih_key;
2209 }
2210
ih_item_body(const struct buffer_head * bh,const struct item_head * ih)2211 static inline void *ih_item_body(const struct buffer_head *bh,
2212 const struct item_head *ih)
2213 {
2214 return bh->b_data + ih_location(ih);
2215 }
2216
2217 /* get item body from leaf node */
item_body(const struct buffer_head * bh,int item_num)2218 static inline void *item_body(const struct buffer_head *bh, int item_num)
2219 {
2220 return ih_item_body(bh, item_head(bh, item_num));
2221 }
2222
tp_item_head(const struct treepath * path)2223 static inline struct item_head *tp_item_head(const struct treepath *path)
2224 {
2225 return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2226 }
2227
tp_item_body(const struct treepath * path)2228 static inline void *tp_item_body(const struct treepath *path)
2229 {
2230 return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2231 }
2232
2233 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
2234 #define get_item_pos(path) PATH_LAST_POSITION(path)
2235 #define item_moved(ih,path) comp_items(ih, path)
2236 #define path_changed(ih,path) comp_items (ih, path)
2237
2238 /* array of the entry headers */
2239 /* get item body */
2240 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih)))
2241
2242 /*
2243 * length of the directory entry in directory item. This define
2244 * calculates length of i-th directory entry using directory entry
2245 * locations from dir entry head. When it calculates length of 0-th
2246 * directory entry, it uses length of whole item in place of entry
2247 * location of the non-existent following entry in the calculation.
2248 * See picture above.
2249 */
entry_length(const struct buffer_head * bh,const struct item_head * ih,int pos_in_item)2250 static inline int entry_length(const struct buffer_head *bh,
2251 const struct item_head *ih, int pos_in_item)
2252 {
2253 struct reiserfs_de_head *deh;
2254
2255 deh = B_I_DEH(bh, ih) + pos_in_item;
2256 if (pos_in_item)
2257 return deh_location(deh - 1) - deh_location(deh);
2258
2259 return ih_item_len(ih) - deh_location(deh);
2260 }
2261
2262 /***************************************************************************
2263 * MISC *
2264 ***************************************************************************/
2265
2266 /* Size of pointer to the unformatted node. */
2267 #define UNFM_P_SIZE (sizeof(unp_t))
2268 #define UNFM_P_SHIFT 2
2269
2270 /* in in-core inode key is stored on le form */
2271 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
2272
2273 #define MAX_UL_INT 0xffffffff
2274 #define MAX_INT 0x7ffffff
2275 #define MAX_US_INT 0xffff
2276
2277 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
max_reiserfs_offset(struct inode * inode)2278 static inline loff_t max_reiserfs_offset(struct inode *inode)
2279 {
2280 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
2281 return (loff_t) U32_MAX;
2282
2283 return (loff_t) ((~(__u64) 0) >> 4);
2284 }
2285
2286 #define MAX_KEY_OBJECTID MAX_UL_INT
2287
2288 #define MAX_B_NUM MAX_UL_INT
2289 #define MAX_FC_NUM MAX_US_INT
2290
2291 /* the purpose is to detect overflow of an unsigned short */
2292 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
2293
2294 /*
2295 * The following defines are used in reiserfs_insert_item
2296 * and reiserfs_append_item
2297 */
2298 #define REISERFS_KERNEL_MEM 0 /* kernel memory mode */
2299 #define REISERFS_USER_MEM 1 /* user memory mode */
2300
2301 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
2302 #define get_generation(s) atomic_read (&fs_generation(s))
2303 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
2304 #define __fs_changed(gen,s) (gen != get_generation (s))
2305 #define fs_changed(gen,s) \
2306 ({ \
2307 reiserfs_cond_resched(s); \
2308 __fs_changed(gen, s); \
2309 })
2310
2311 /***************************************************************************
2312 * FIXATE NODES *
2313 ***************************************************************************/
2314
2315 #define VI_TYPE_LEFT_MERGEABLE 1
2316 #define VI_TYPE_RIGHT_MERGEABLE 2
2317
2318 /*
2319 * To make any changes in the tree we always first find node, that
2320 * contains item to be changed/deleted or place to insert a new
2321 * item. We call this node S. To do balancing we need to decide what
2322 * we will shift to left/right neighbor, or to a new node, where new
2323 * item will be etc. To make this analysis simpler we build virtual
2324 * node. Virtual node is an array of items, that will replace items of
2325 * node S. (For instance if we are going to delete an item, virtual
2326 * node does not contain it). Virtual node keeps information about
2327 * item sizes and types, mergeability of first and last items, sizes
2328 * of all entries in directory item. We use this array of items when
2329 * calculating what we can shift to neighbors and how many nodes we
2330 * have to have if we do not any shiftings, if we shift to left/right
2331 * neighbor or to both.
2332 */
2333 struct virtual_item {
2334 int vi_index; /* index in the array of item operations */
2335 unsigned short vi_type; /* left/right mergeability */
2336
2337 /* length of item that it will have after balancing */
2338 unsigned short vi_item_len;
2339
2340 struct item_head *vi_ih;
2341 const char *vi_item; /* body of item (old or new) */
2342 const void *vi_new_data; /* 0 always but paste mode */
2343 void *vi_uarea; /* item specific area */
2344 };
2345
2346 struct virtual_node {
2347 /* this is a pointer to the free space in the buffer */
2348 char *vn_free_ptr;
2349
2350 unsigned short vn_nr_item; /* number of items in virtual node */
2351
2352 /*
2353 * size of node , that node would have if it has
2354 * unlimited size and no balancing is performed
2355 */
2356 short vn_size;
2357
2358 /* mode of balancing (paste, insert, delete, cut) */
2359 short vn_mode;
2360
2361 short vn_affected_item_num;
2362 short vn_pos_in_item;
2363
2364 /* item header of inserted item, 0 for other modes */
2365 struct item_head *vn_ins_ih;
2366 const void *vn_data;
2367
2368 /* array of items (including a new one, excluding item to be deleted) */
2369 struct virtual_item *vn_vi;
2370 };
2371
2372 /* used by directory items when creating virtual nodes */
2373 struct direntry_uarea {
2374 int flags;
2375 __u16 entry_count;
2376 __u16 entry_sizes[];
2377 } __attribute__ ((__packed__));
2378
2379 /***************************************************************************
2380 * TREE BALANCE *
2381 ***************************************************************************/
2382
2383 /*
2384 * This temporary structure is used in tree balance algorithms, and
2385 * constructed as we go to the extent that its various parts are
2386 * needed. It contains arrays of nodes that can potentially be
2387 * involved in the balancing of node S, and parameters that define how
2388 * each of the nodes must be balanced. Note that in these algorithms
2389 * for balancing the worst case is to need to balance the current node
2390 * S and the left and right neighbors and all of their parents plus
2391 * create a new node. We implement S1 balancing for the leaf nodes
2392 * and S0 balancing for the internal nodes (S1 and S0 are defined in
2393 * our papers.)
2394 */
2395
2396 /* size of the array of buffers to free at end of do_balance */
2397 #define MAX_FREE_BLOCK 7
2398
2399 /* maximum number of FEB blocknrs on a single level */
2400 #define MAX_AMOUNT_NEEDED 2
2401
2402 /* someday somebody will prefix every field in this struct with tb_ */
2403 struct tree_balance {
2404 int tb_mode;
2405 int need_balance_dirty;
2406 struct super_block *tb_sb;
2407 struct reiserfs_transaction_handle *transaction_handle;
2408 struct treepath *tb_path;
2409
2410 /* array of left neighbors of nodes in the path */
2411 struct buffer_head *L[MAX_HEIGHT];
2412
2413 /* array of right neighbors of nodes in the path */
2414 struct buffer_head *R[MAX_HEIGHT];
2415
2416 /* array of fathers of the left neighbors */
2417 struct buffer_head *FL[MAX_HEIGHT];
2418
2419 /* array of fathers of the right neighbors */
2420 struct buffer_head *FR[MAX_HEIGHT];
2421 /* array of common parents of center node and its left neighbor */
2422 struct buffer_head *CFL[MAX_HEIGHT];
2423
2424 /* array of common parents of center node and its right neighbor */
2425 struct buffer_head *CFR[MAX_HEIGHT];
2426
2427 /*
2428 * array of empty buffers. Number of buffers in array equals
2429 * cur_blknum.
2430 */
2431 struct buffer_head *FEB[MAX_FEB_SIZE];
2432 struct buffer_head *used[MAX_FEB_SIZE];
2433 struct buffer_head *thrown[MAX_FEB_SIZE];
2434
2435 /*
2436 * array of number of items which must be shifted to the left in
2437 * order to balance the current node; for leaves includes item that
2438 * will be partially shifted; for internal nodes, it is the number
2439 * of child pointers rather than items. It includes the new item
2440 * being created. The code sometimes subtracts one to get the
2441 * number of wholly shifted items for other purposes.
2442 */
2443 int lnum[MAX_HEIGHT];
2444
2445 /* substitute right for left in comment above */
2446 int rnum[MAX_HEIGHT];
2447
2448 /*
2449 * array indexed by height h mapping the key delimiting L[h] and
2450 * S[h] to its item number within the node CFL[h]
2451 */
2452 int lkey[MAX_HEIGHT];
2453
2454 /* substitute r for l in comment above */
2455 int rkey[MAX_HEIGHT];
2456
2457 /*
2458 * the number of bytes by we are trying to add or remove from
2459 * S[h]. A negative value means removing.
2460 */
2461 int insert_size[MAX_HEIGHT];
2462
2463 /*
2464 * number of nodes that will replace node S[h] after balancing
2465 * on the level h of the tree. If 0 then S is being deleted,
2466 * if 1 then S is remaining and no new nodes are being created,
2467 * if 2 or 3 then 1 or 2 new nodes is being created
2468 */
2469 int blknum[MAX_HEIGHT];
2470
2471 /* fields that are used only for balancing leaves of the tree */
2472
2473 /* number of empty blocks having been already allocated */
2474 int cur_blknum;
2475
2476 /* number of items that fall into left most node when S[0] splits */
2477 int s0num;
2478
2479 /*
2480 * number of bytes which can flow to the left neighbor from the left
2481 * most liquid item that cannot be shifted from S[0] entirely
2482 * if -1 then nothing will be partially shifted
2483 */
2484 int lbytes;
2485
2486 /*
2487 * number of bytes which will flow to the right neighbor from the right
2488 * most liquid item that cannot be shifted from S[0] entirely
2489 * if -1 then nothing will be partially shifted
2490 */
2491 int rbytes;
2492
2493
2494 /*
2495 * index into the array of item headers in
2496 * S[0] of the affected item
2497 */
2498 int item_pos;
2499
2500 /* new nodes allocated to hold what could not fit into S */
2501 struct buffer_head *S_new[2];
2502
2503 /*
2504 * number of items that will be placed into nodes in S_new
2505 * when S[0] splits
2506 */
2507 int snum[2];
2508
2509 /*
2510 * number of bytes which flow to nodes in S_new when S[0] splits
2511 * note: if S[0] splits into 3 nodes, then items do not need to be cut
2512 */
2513 int sbytes[2];
2514
2515 int pos_in_item;
2516 int zeroes_num;
2517
2518 /*
2519 * buffers which are to be freed after do_balance finishes
2520 * by unfix_nodes
2521 */
2522 struct buffer_head *buf_to_free[MAX_FREE_BLOCK];
2523
2524 /*
2525 * kmalloced memory. Used to create virtual node and keep
2526 * map of dirtied bitmap blocks
2527 */
2528 char *vn_buf;
2529
2530 int vn_buf_size; /* size of the vn_buf */
2531
2532 /* VN starts after bitmap of bitmap blocks */
2533 struct virtual_node *tb_vn;
2534
2535 /*
2536 * saved value of `reiserfs_generation' counter see
2537 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h
2538 */
2539 int fs_gen;
2540
2541 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2542 /*
2543 * key pointer, to pass to block allocator or
2544 * another low-level subsystem
2545 */
2546 struct in_core_key key;
2547 #endif
2548 };
2549
2550 /* These are modes of balancing */
2551
2552 /* When inserting an item. */
2553 #define M_INSERT 'i'
2554 /*
2555 * When inserting into (directories only) or appending onto an already
2556 * existent item.
2557 */
2558 #define M_PASTE 'p'
2559 /* When deleting an item. */
2560 #define M_DELETE 'd'
2561 /* When truncating an item or removing an entry from a (directory) item. */
2562 #define M_CUT 'c'
2563
2564 /* used when balancing on leaf level skipped (in reiserfsck) */
2565 #define M_INTERNAL 'n'
2566
2567 /*
2568 * When further balancing is not needed, then do_balance does not need
2569 * to be called.
2570 */
2571 #define M_SKIP_BALANCING 's'
2572 #define M_CONVERT 'v'
2573
2574 /* modes of leaf_move_items */
2575 #define LEAF_FROM_S_TO_L 0
2576 #define LEAF_FROM_S_TO_R 1
2577 #define LEAF_FROM_R_TO_L 2
2578 #define LEAF_FROM_L_TO_R 3
2579 #define LEAF_FROM_S_TO_SNEW 4
2580
2581 #define FIRST_TO_LAST 0
2582 #define LAST_TO_FIRST 1
2583
2584 /*
2585 * used in do_balance for passing parent of node information that has
2586 * been gotten from tb struct
2587 */
2588 struct buffer_info {
2589 struct tree_balance *tb;
2590 struct buffer_head *bi_bh;
2591 struct buffer_head *bi_parent;
2592 int bi_position;
2593 };
2594
sb_from_tb(struct tree_balance * tb)2595 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2596 {
2597 return tb ? tb->tb_sb : NULL;
2598 }
2599
sb_from_bi(struct buffer_info * bi)2600 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2601 {
2602 return bi ? sb_from_tb(bi->tb) : NULL;
2603 }
2604
2605 /*
2606 * there are 4 types of items: stat data, directory item, indirect, direct.
2607 * +-------------------+------------+--------------+------------+
2608 * | | k_offset | k_uniqueness | mergeable? |
2609 * +-------------------+------------+--------------+------------+
2610 * | stat data | 0 | 0 | no |
2611 * +-------------------+------------+--------------+------------+
2612 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no |
2613 * | non 1st directory | hash value | UNIQUENESS | yes |
2614 * | item | | | |
2615 * +-------------------+------------+--------------+------------+
2616 * | indirect item | offset + 1 |TYPE_INDIRECT | [1] |
2617 * +-------------------+------------+--------------+------------+
2618 * | direct item | offset + 1 |TYPE_DIRECT | [2] |
2619 * +-------------------+------------+--------------+------------+
2620 *
2621 * [1] if this is not the first indirect item of the object
2622 * [2] if this is not the first direct item of the object
2623 */
2624
2625 struct item_operations {
2626 int (*bytes_number) (struct item_head * ih, int block_size);
2627 void (*decrement_key) (struct cpu_key *);
2628 int (*is_left_mergeable) (struct reiserfs_key * ih,
2629 unsigned long bsize);
2630 void (*print_item) (struct item_head *, char *item);
2631 void (*check_item) (struct item_head *, char *item);
2632
2633 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2634 int is_affected, int insert_size);
2635 int (*check_left) (struct virtual_item * vi, int free,
2636 int start_skip, int end_skip);
2637 int (*check_right) (struct virtual_item * vi, int free);
2638 int (*part_size) (struct virtual_item * vi, int from, int to);
2639 int (*unit_num) (struct virtual_item * vi);
2640 void (*print_vi) (struct virtual_item * vi);
2641 };
2642
2643 extern struct item_operations *item_ops[TYPE_ANY + 1];
2644
2645 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2646 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2647 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2648 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2649 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2650 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2651 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
2652 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
2653 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
2654 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
2655
2656 #define COMP_SHORT_KEYS comp_short_keys
2657
2658 /* number of blocks pointed to by the indirect item */
2659 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE)
2660
2661 /*
2662 * the used space within the unformatted node corresponding
2663 * to pos within the item pointed to by ih
2664 */
2665 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2666
2667 /*
2668 * number of bytes contained by the direct item or the
2669 * unformatted nodes the indirect item points to
2670 */
2671
2672 /* following defines use reiserfs buffer header and item header */
2673
2674 /* get stat-data */
2675 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2676
2677 /* this is 3976 for size==4096 */
2678 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2679
2680 /*
2681 * indirect items consist of entries which contain blocknrs, pos
2682 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2683 * blocknr contained by the entry pos points to
2684 */
2685 #define B_I_POS_UNFM_POINTER(bh, ih, pos) \
2686 le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos)))
2687 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \
2688 (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val))
2689
2690 struct reiserfs_iget_args {
2691 __u32 objectid;
2692 __u32 dirid;
2693 };
2694
2695 /***************************************************************************
2696 * FUNCTION DECLARATIONS *
2697 ***************************************************************************/
2698
2699 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2700
2701 #define journal_trans_half(blocksize) \
2702 ((blocksize - sizeof(struct reiserfs_journal_desc) - 12) / sizeof(__u32))
2703
2704 /* journal.c see journal.c for all the comments here */
2705
2706 /* first block written in a commit. */
2707 struct reiserfs_journal_desc {
2708 __le32 j_trans_id; /* id of commit */
2709
2710 /* length of commit. len +1 is the commit block */
2711 __le32 j_len;
2712
2713 __le32 j_mount_id; /* mount id of this trans */
2714 __le32 j_realblock[]; /* real locations for each block */
2715 };
2716
2717 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
2718 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
2719 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
2720
2721 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2722 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
2723 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2724
2725 /* last block written in a commit */
2726 struct reiserfs_journal_commit {
2727 __le32 j_trans_id; /* must match j_trans_id from the desc block */
2728 __le32 j_len; /* ditto */
2729 __le32 j_realblock[]; /* real locations for each block */
2730 };
2731
2732 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2733 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
2734 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2735
2736 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2737 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
2738
2739 /*
2740 * this header block gets written whenever a transaction is considered
2741 * fully flushed, and is more recent than the last fully flushed transaction.
2742 * fully flushed means all the log blocks and all the real blocks are on
2743 * disk, and this transaction does not need to be replayed.
2744 */
2745 struct reiserfs_journal_header {
2746 /* id of last fully flushed transaction */
2747 __le32 j_last_flush_trans_id;
2748
2749 /* offset in the log of where to start replay after a crash */
2750 __le32 j_first_unflushed_offset;
2751
2752 __le32 j_mount_id;
2753 /* 12 */ struct journal_params jh_journal;
2754 };
2755
2756 /* biggest tunable defines are right here */
2757 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
2758
2759 /* biggest possible single transaction, don't change for now (8/3/99) */
2760 #define JOURNAL_TRANS_MAX_DEFAULT 1024
2761 #define JOURNAL_TRANS_MIN_DEFAULT 256
2762
2763 /*
2764 * max blocks to batch into one transaction,
2765 * don't make this any bigger than 900
2766 */
2767 #define JOURNAL_MAX_BATCH_DEFAULT 900
2768 #define JOURNAL_MIN_RATIO 2
2769 #define JOURNAL_MAX_COMMIT_AGE 30
2770 #define JOURNAL_MAX_TRANS_AGE 30
2771 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2772 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \
2773 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2774 REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2775
2776 #ifdef CONFIG_QUOTA
2777 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2778 /* We need to update data and inode (atime) */
2779 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2780 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2781 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2782 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2783 /* same as with INIT */
2784 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2785 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2786 #else
2787 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2788 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2789 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2790 #endif
2791
2792 /*
2793 * both of these can be as low as 1, or as high as you want. The min is the
2794 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2795 * as needed, and released when transactions are committed. On release, if
2796 * the current number of nodes is > max, the node is freed, otherwise,
2797 * it is put on a free list for faster use later.
2798 */
2799 #define REISERFS_MIN_BITMAP_NODES 10
2800 #define REISERFS_MAX_BITMAP_NODES 100
2801
2802 /* these are based on journal hash size of 8192 */
2803 #define JBH_HASH_SHIFT 13
2804 #define JBH_HASH_MASK 8191
2805
2806 #define _jhashfn(sb,block) \
2807 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2808 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2809 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2810
2811 /* We need these to make journal.c code more readable */
2812 #define journal_find_get_block(s, block) __find_get_block(\
2813 file_bdev(SB_JOURNAL(s)->j_bdev_file), block, s->s_blocksize)
2814 #define journal_getblk(s, block) __getblk(file_bdev(SB_JOURNAL(s)->j_bdev_file),\
2815 block, s->s_blocksize)
2816 #define journal_bread(s, block) __bread(file_bdev(SB_JOURNAL(s)->j_bdev_file),\
2817 block, s->s_blocksize)
2818
2819 enum reiserfs_bh_state_bits {
2820 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
2821 BH_JDirty_wait,
2822 /*
2823 * disk block was taken off free list before being in a
2824 * finished transaction, or written to disk. Can be reused immed.
2825 */
2826 BH_JNew,
2827 BH_JPrepared,
2828 BH_JRestore_dirty,
2829 BH_JTest, /* debugging only will go away */
2830 };
2831
2832 BUFFER_FNS(JDirty, journaled);
2833 TAS_BUFFER_FNS(JDirty, journaled);
2834 BUFFER_FNS(JDirty_wait, journal_dirty);
2835 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2836 BUFFER_FNS(JNew, journal_new);
2837 TAS_BUFFER_FNS(JNew, journal_new);
2838 BUFFER_FNS(JPrepared, journal_prepared);
2839 TAS_BUFFER_FNS(JPrepared, journal_prepared);
2840 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2841 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2842 BUFFER_FNS(JTest, journal_test);
2843 TAS_BUFFER_FNS(JTest, journal_test);
2844
2845 /* transaction handle which is passed around for all journal calls */
2846 struct reiserfs_transaction_handle {
2847 /*
2848 * super for this FS when journal_begin was called. saves calls to
2849 * reiserfs_get_super also used by nested transactions to make
2850 * sure they are nesting on the right FS _must_ be first
2851 * in the handle
2852 */
2853 struct super_block *t_super;
2854
2855 int t_refcount;
2856 int t_blocks_logged; /* number of blocks this writer has logged */
2857 int t_blocks_allocated; /* number of blocks this writer allocated */
2858
2859 /* sanity check, equals the current trans id */
2860 unsigned int t_trans_id;
2861
2862 void *t_handle_save; /* save existing current->journal_info */
2863
2864 /*
2865 * if new block allocation occurres, that block
2866 * should be displaced from others
2867 */
2868 unsigned displace_new_blocks:1;
2869
2870 struct list_head t_list;
2871 };
2872
2873 /*
2874 * used to keep track of ordered and tail writes, attached to the buffer
2875 * head through b_journal_head.
2876 */
2877 struct reiserfs_jh {
2878 struct reiserfs_journal_list *jl;
2879 struct buffer_head *bh;
2880 struct list_head list;
2881 };
2882
2883 void reiserfs_free_jh(struct buffer_head *bh);
2884 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2885 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2886 int journal_mark_dirty(struct reiserfs_transaction_handle *,
2887 struct buffer_head *bh);
2888
reiserfs_file_data_log(struct inode * inode)2889 static inline int reiserfs_file_data_log(struct inode *inode)
2890 {
2891 if (reiserfs_data_log(inode->i_sb) ||
2892 (REISERFS_I(inode)->i_flags & i_data_log))
2893 return 1;
2894 return 0;
2895 }
2896
reiserfs_transaction_running(struct super_block * s)2897 static inline int reiserfs_transaction_running(struct super_block *s)
2898 {
2899 struct reiserfs_transaction_handle *th = current->journal_info;
2900 if (th && th->t_super == s)
2901 return 1;
2902 if (th && th->t_super == NULL)
2903 BUG();
2904 return 0;
2905 }
2906
reiserfs_transaction_free_space(struct reiserfs_transaction_handle * th)2907 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2908 {
2909 return th->t_blocks_allocated - th->t_blocks_logged;
2910 }
2911
2912 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2913 super_block
2914 *,
2915 int count);
2916 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
2917 void reiserfs_vfs_truncate_file(struct inode *inode);
2918 int reiserfs_commit_page(struct inode *inode, struct page *page,
2919 unsigned from, unsigned to);
2920 void reiserfs_flush_old_commits(struct super_block *);
2921 int reiserfs_commit_for_inode(struct inode *);
2922 int reiserfs_inode_needs_commit(struct inode *);
2923 void reiserfs_update_inode_transaction(struct inode *);
2924 void reiserfs_wait_on_write_block(struct super_block *s);
2925 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2926 void reiserfs_allow_writes(struct super_block *s);
2927 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2928 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2929 int wait);
2930 void reiserfs_restore_prepared_buffer(struct super_block *,
2931 struct buffer_head *bh);
2932 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2933 unsigned int);
2934 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2935 int journal_release_error(struct reiserfs_transaction_handle *,
2936 struct super_block *);
2937 int journal_end(struct reiserfs_transaction_handle *);
2938 int journal_end_sync(struct reiserfs_transaction_handle *);
2939 int journal_mark_freed(struct reiserfs_transaction_handle *,
2940 struct super_block *, b_blocknr_t blocknr);
2941 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2942 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2943 int bit_nr, int searchall, b_blocknr_t *next);
2944 int journal_begin(struct reiserfs_transaction_handle *,
2945 struct super_block *sb, unsigned long);
2946 int journal_join_abort(struct reiserfs_transaction_handle *,
2947 struct super_block *sb);
2948 void reiserfs_abort_journal(struct super_block *sb, int errno);
2949 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2950 int reiserfs_allocate_list_bitmaps(struct super_block *s,
2951 struct reiserfs_list_bitmap *, unsigned int);
2952
2953 void reiserfs_schedule_old_flush(struct super_block *s);
2954 void reiserfs_cancel_old_flush(struct super_block *s);
2955 void add_save_link(struct reiserfs_transaction_handle *th,
2956 struct inode *inode, int truncate);
2957 int remove_save_link(struct inode *inode, int truncate);
2958
2959 /* objectid.c */
2960 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2961 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2962 __u32 objectid_to_release);
2963 int reiserfs_convert_objectid_map_v1(struct super_block *);
2964
2965 /* stree.c */
2966 int B_IS_IN_TREE(const struct buffer_head *);
2967 extern void copy_item_head(struct item_head *to,
2968 const struct item_head *from);
2969
2970 /* first key is in cpu form, second - le */
2971 extern int comp_short_keys(const struct reiserfs_key *le_key,
2972 const struct cpu_key *cpu_key);
2973 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2974
2975 /* both are in le form */
2976 extern int comp_le_keys(const struct reiserfs_key *,
2977 const struct reiserfs_key *);
2978 extern int comp_short_le_keys(const struct reiserfs_key *,
2979 const struct reiserfs_key *);
2980
2981 /* * get key version from on disk key - kludge */
le_key_version(const struct reiserfs_key * key)2982 static inline int le_key_version(const struct reiserfs_key *key)
2983 {
2984 int type;
2985
2986 type = offset_v2_k_type(&(key->u.k_offset_v2));
2987 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2988 && type != TYPE_DIRENTRY)
2989 return KEY_FORMAT_3_5;
2990
2991 return KEY_FORMAT_3_6;
2992
2993 }
2994
copy_key(struct reiserfs_key * to,const struct reiserfs_key * from)2995 static inline void copy_key(struct reiserfs_key *to,
2996 const struct reiserfs_key *from)
2997 {
2998 memcpy(to, from, KEY_SIZE);
2999 }
3000
3001 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
3002 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
3003 const struct super_block *sb);
3004 int search_by_key(struct super_block *, const struct cpu_key *,
3005 struct treepath *, int);
3006 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
3007 int search_for_position_by_key(struct super_block *sb,
3008 const struct cpu_key *cpu_key,
3009 struct treepath *search_path);
3010 extern void decrement_bcount(struct buffer_head *bh);
3011 void decrement_counters_in_path(struct treepath *search_path);
3012 void pathrelse(struct treepath *search_path);
3013 int reiserfs_check_path(struct treepath *p);
3014 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
3015
3016 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
3017 struct treepath *path,
3018 const struct cpu_key *key,
3019 struct item_head *ih,
3020 struct inode *inode, const char *body);
3021
3022 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
3023 struct treepath *path,
3024 const struct cpu_key *key,
3025 struct inode *inode,
3026 const char *body, int paste_size);
3027
3028 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
3029 struct treepath *path,
3030 struct cpu_key *key,
3031 struct inode *inode,
3032 struct page *page, loff_t new_file_size);
3033
3034 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
3035 struct treepath *path,
3036 const struct cpu_key *key,
3037 struct inode *inode, struct buffer_head *un_bh);
3038
3039 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
3040 struct inode *inode, struct reiserfs_key *key);
3041 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
3042 struct inode *inode);
3043 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
3044 struct inode *inode, struct page *,
3045 int update_timestamps);
3046
3047 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
3048 #define file_size(inode) ((inode)->i_size)
3049 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
3050
3051 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
3052 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
3053
3054 void padd_item(char *item, int total_length, int length);
3055
3056 /* inode.c */
3057 /* args for the create parameter of reiserfs_get_block */
3058 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
3059 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */
3060 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
3061 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
3062 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
3063 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
3064
3065 void reiserfs_read_locked_inode(struct inode *inode,
3066 struct reiserfs_iget_args *args);
3067 int reiserfs_find_actor(struct inode *inode, void *p);
3068 int reiserfs_init_locked_inode(struct inode *inode, void *p);
3069 void reiserfs_evict_inode(struct inode *inode);
3070 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3071 int reiserfs_get_block(struct inode *inode, sector_t block,
3072 struct buffer_head *bh_result, int create);
3073 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3074 int fh_len, int fh_type);
3075 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
3076 int fh_len, int fh_type);
3077 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
3078 struct inode *parent);
3079
3080 int reiserfs_truncate_file(struct inode *, int update_timestamps);
3081 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
3082 int type, int key_length);
3083 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
3084 int version,
3085 loff_t offset, int type, int length, int entry_count);
3086 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
3087
3088 struct reiserfs_security_handle;
3089 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
3090 struct inode *dir, umode_t mode,
3091 const char *symname, loff_t i_size,
3092 struct dentry *dentry, struct inode *inode,
3093 struct reiserfs_security_handle *security);
3094
3095 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
3096 struct inode *inode, loff_t size);
3097
reiserfs_update_sd(struct reiserfs_transaction_handle * th,struct inode * inode)3098 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
3099 struct inode *inode)
3100 {
3101 reiserfs_update_sd_size(th, inode, inode->i_size);
3102 }
3103
3104 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
3105 int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3106 struct iattr *attr);
3107
3108 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
3109
3110 /* namei.c */
3111 void reiserfs_init_priv_inode(struct inode *inode);
3112 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
3113 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
3114 struct treepath *path, struct reiserfs_dir_entry *de);
3115 struct dentry *reiserfs_get_parent(struct dentry *);
3116
3117 #ifdef CONFIG_REISERFS_PROC_INFO
3118 int reiserfs_proc_info_init(struct super_block *sb);
3119 int reiserfs_proc_info_done(struct super_block *sb);
3120 int reiserfs_proc_info_global_init(void);
3121 int reiserfs_proc_info_global_done(void);
3122
3123 #define PROC_EXP( e ) e
3124
3125 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
3126 #define PROC_INFO_MAX( sb, field, value ) \
3127 __PINFO( sb ).field = \
3128 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
3129 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
3130 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
3131 #define PROC_INFO_BH_STAT( sb, bh, level ) \
3132 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
3133 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
3134 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
3135 #else
reiserfs_proc_info_init(struct super_block * sb)3136 static inline int reiserfs_proc_info_init(struct super_block *sb)
3137 {
3138 return 0;
3139 }
3140
reiserfs_proc_info_done(struct super_block * sb)3141 static inline int reiserfs_proc_info_done(struct super_block *sb)
3142 {
3143 return 0;
3144 }
3145
reiserfs_proc_info_global_init(void)3146 static inline int reiserfs_proc_info_global_init(void)
3147 {
3148 return 0;
3149 }
3150
reiserfs_proc_info_global_done(void)3151 static inline int reiserfs_proc_info_global_done(void)
3152 {
3153 return 0;
3154 }
3155
3156 #define PROC_EXP( e )
3157 #define VOID_V ( ( void ) 0 )
3158 #define PROC_INFO_MAX( sb, field, value ) VOID_V
3159 #define PROC_INFO_INC( sb, field ) VOID_V
3160 #define PROC_INFO_ADD( sb, field, val ) VOID_V
3161 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
3162 #endif
3163
3164 /* dir.c */
3165 extern const struct inode_operations reiserfs_dir_inode_operations;
3166 extern const struct inode_operations reiserfs_symlink_inode_operations;
3167 extern const struct inode_operations reiserfs_special_inode_operations;
3168 extern const struct file_operations reiserfs_dir_operations;
3169 int reiserfs_readdir_inode(struct inode *, struct dir_context *);
3170
3171 /* tail_conversion.c */
3172 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
3173 struct treepath *, struct buffer_head *, loff_t);
3174 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
3175 struct page *, struct treepath *, const struct cpu_key *,
3176 loff_t, char *);
3177 void reiserfs_unmap_buffer(struct buffer_head *);
3178
3179 /* file.c */
3180 extern const struct inode_operations reiserfs_file_inode_operations;
3181 extern const struct inode_operations reiserfs_priv_file_inode_operations;
3182 extern const struct file_operations reiserfs_file_operations;
3183 extern const struct address_space_operations reiserfs_address_space_operations;
3184
3185 /* fix_nodes.c */
3186
3187 int fix_nodes(int n_op_mode, struct tree_balance *tb,
3188 struct item_head *ins_ih, const void *);
3189 void unfix_nodes(struct tree_balance *);
3190
3191 /* prints.c */
3192 void __reiserfs_panic(struct super_block *s, const char *id,
3193 const char *function, const char *fmt, ...)
3194 __attribute__ ((noreturn));
3195 #define reiserfs_panic(s, id, fmt, args...) \
3196 __reiserfs_panic(s, id, __func__, fmt, ##args)
3197 void __reiserfs_error(struct super_block *s, const char *id,
3198 const char *function, const char *fmt, ...);
3199 #define reiserfs_error(s, id, fmt, args...) \
3200 __reiserfs_error(s, id, __func__, fmt, ##args)
3201 void reiserfs_info(struct super_block *s, const char *fmt, ...);
3202 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
3203 void print_indirect_item(struct buffer_head *bh, int item_num);
3204 void store_print_tb(struct tree_balance *tb);
3205 void print_cur_tb(char *mes);
3206 void print_de(struct reiserfs_dir_entry *de);
3207 void print_bi(struct buffer_info *bi, char *mes);
3208 #define PRINT_LEAF_ITEMS 1 /* print all items */
3209 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
3210 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
3211 void print_block(struct buffer_head *bh, ...);
3212 void print_bmap(struct super_block *s, int silent);
3213 void print_bmap_block(int i, char *data, int size, int silent);
3214 /*void print_super_block (struct super_block * s, char * mes);*/
3215 void print_objectid_map(struct super_block *s);
3216 void print_block_head(struct buffer_head *bh, char *mes);
3217 void check_leaf(struct buffer_head *bh);
3218 void check_internal(struct buffer_head *bh);
3219 void print_statistics(struct super_block *s);
3220 char *reiserfs_hashname(int code);
3221
3222 /* lbalance.c */
3223 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
3224 int mov_bytes, struct buffer_head *Snew);
3225 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
3226 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
3227 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
3228 int del_num, int del_bytes);
3229 void leaf_insert_into_buf(struct buffer_info *bi, int before,
3230 struct item_head * const inserted_item_ih,
3231 const char * const inserted_item_body,
3232 int zeros_number);
3233 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
3234 int pos_in_item, int paste_size,
3235 const char * const body, int zeros_number);
3236 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
3237 int pos_in_item, int cut_size);
3238 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
3239 int new_entry_count, struct reiserfs_de_head *new_dehs,
3240 const char *records, int paste_size);
3241 /* ibalance.c */
3242 int balance_internal(struct tree_balance *, int, int, struct item_head *,
3243 struct buffer_head **);
3244
3245 /* do_balance.c */
3246 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
3247 struct buffer_head *bh, int flag);
3248 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
3249 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
3250
3251 void do_balance(struct tree_balance *tb, struct item_head *ih,
3252 const char *body, int flag);
3253 void reiserfs_invalidate_buffer(struct tree_balance *tb,
3254 struct buffer_head *bh);
3255
3256 int get_left_neighbor_position(struct tree_balance *tb, int h);
3257 int get_right_neighbor_position(struct tree_balance *tb, int h);
3258 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
3259 struct buffer_head *, int);
3260 void make_empty_node(struct buffer_info *);
3261 struct buffer_head *get_FEB(struct tree_balance *);
3262
3263 /* bitmap.c */
3264
3265 /*
3266 * structure contains hints for block allocator, and it is a container for
3267 * arguments, such as node, search path, transaction_handle, etc.
3268 */
3269 struct __reiserfs_blocknr_hint {
3270 /* inode passed to allocator, if we allocate unf. nodes */
3271 struct inode *inode;
3272
3273 sector_t block; /* file offset, in blocks */
3274 struct in_core_key key;
3275
3276 /*
3277 * search path, used by allocator to deternine search_start by
3278 * various ways
3279 */
3280 struct treepath *path;
3281
3282 /*
3283 * transaction handle is needed to log super blocks
3284 * and bitmap blocks changes
3285 */
3286 struct reiserfs_transaction_handle *th;
3287
3288 b_blocknr_t beg, end;
3289
3290 /*
3291 * a field used to transfer search start value (block number)
3292 * between different block allocator procedures
3293 * (determine_search_start() and others)
3294 */
3295 b_blocknr_t search_start;
3296
3297 /*
3298 * is set in determine_prealloc_size() function,
3299 * used by underlayed function that do actual allocation
3300 */
3301 int prealloc_size;
3302
3303 /*
3304 * the allocator uses different polices for getting disk
3305 * space for formatted/unformatted blocks with/without preallocation
3306 */
3307 unsigned formatted_node:1;
3308 unsigned preallocate:1;
3309 };
3310
3311 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
3312
3313 int reiserfs_parse_alloc_options(struct super_block *, char *);
3314 void reiserfs_init_alloc_options(struct super_block *s);
3315
3316 /*
3317 * given a directory, this will tell you what packing locality
3318 * to use for a new object underneat it. The locality is returned
3319 * in disk byte order (le).
3320 */
3321 __le32 reiserfs_choose_packing(struct inode *dir);
3322
3323 void show_alloc_options(struct seq_file *seq, struct super_block *s);
3324 int reiserfs_init_bitmap_cache(struct super_block *sb);
3325 void reiserfs_free_bitmap_cache(struct super_block *sb);
3326 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
3327 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
3328 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
3329 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
3330 b_blocknr_t, int for_unformatted);
3331 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
3332 int);
reiserfs_new_form_blocknrs(struct tree_balance * tb,b_blocknr_t * new_blocknrs,int amount_needed)3333 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
3334 b_blocknr_t * new_blocknrs,
3335 int amount_needed)
3336 {
3337 reiserfs_blocknr_hint_t hint = {
3338 .th = tb->transaction_handle,
3339 .path = tb->tb_path,
3340 .inode = NULL,
3341 .key = tb->key,
3342 .block = 0,
3343 .formatted_node = 1
3344 };
3345 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
3346 0);
3347 }
3348
reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle * th,struct inode * inode,b_blocknr_t * new_blocknrs,struct treepath * path,sector_t block)3349 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
3350 *th, struct inode *inode,
3351 b_blocknr_t * new_blocknrs,
3352 struct treepath *path,
3353 sector_t block)
3354 {
3355 reiserfs_blocknr_hint_t hint = {
3356 .th = th,
3357 .path = path,
3358 .inode = inode,
3359 .block = block,
3360 .formatted_node = 0,
3361 .preallocate = 0
3362 };
3363 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3364 }
3365
3366 #ifdef REISERFS_PREALLOCATE
reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle * th,struct inode * inode,b_blocknr_t * new_blocknrs,struct treepath * path,sector_t block)3367 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
3368 *th, struct inode *inode,
3369 b_blocknr_t * new_blocknrs,
3370 struct treepath *path,
3371 sector_t block)
3372 {
3373 reiserfs_blocknr_hint_t hint = {
3374 .th = th,
3375 .path = path,
3376 .inode = inode,
3377 .block = block,
3378 .formatted_node = 0,
3379 .preallocate = 1
3380 };
3381 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3382 }
3383
3384 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
3385 struct inode *inode);
3386 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
3387 #endif
3388
3389 /* hashes.c */
3390 __u32 keyed_hash(const signed char *msg, int len);
3391 __u32 yura_hash(const signed char *msg, int len);
3392 __u32 r5_hash(const signed char *msg, int len);
3393
3394 #define reiserfs_set_le_bit __set_bit_le
3395 #define reiserfs_test_and_set_le_bit __test_and_set_bit_le
3396 #define reiserfs_clear_le_bit __clear_bit_le
3397 #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le
3398 #define reiserfs_test_le_bit test_bit_le
3399 #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le
3400
3401 /*
3402 * sometimes reiserfs_truncate may require to allocate few new blocks
3403 * to perform indirect2direct conversion. People probably used to
3404 * think, that truncate should work without problems on a filesystem
3405 * without free disk space. They may complain that they can not
3406 * truncate due to lack of free disk space. This spare space allows us
3407 * to not worry about it. 500 is probably too much, but it should be
3408 * absolutely safe
3409 */
3410 #define SPARE_SPACE 500
3411
3412 /* prototypes from ioctl.c */
3413 int reiserfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3414 int reiserfs_fileattr_set(struct mnt_idmap *idmap,
3415 struct dentry *dentry, struct fileattr *fa);
3416 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3417 long reiserfs_compat_ioctl(struct file *filp,
3418 unsigned int cmd, unsigned long arg);
3419 int reiserfs_unpack(struct inode *inode);
3420