1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287
288 #include "../core/devmem.h"
289
290 /* Track pending CMSGs. */
291 enum {
292 TCP_CMSG_INQ = 1,
293 TCP_CMSG_TS = 2
294 };
295
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_SYMBOL(sysctl_tcp_mem);
304
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
306 EXPORT_SYMBOL(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314
315 /*
316 * Current number of TCP sockets.
317 */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_SYMBOL(tcp_sockets_allocated);
320
321 /*
322 * TCP splice context
323 */
324 struct tcp_splice_state {
325 struct pipe_inode_info *pipe;
326 size_t len;
327 unsigned int flags;
328 };
329
330 /*
331 * Pressure flag: try to collapse.
332 * Technical note: it is used by multiple contexts non atomically.
333 * All the __sk_mem_schedule() is of this nature: accounting
334 * is strict, actions are advisory and have some latency.
335 */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338
tcp_enter_memory_pressure(struct sock * sk)339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 unsigned long val;
342
343 if (READ_ONCE(tcp_memory_pressure))
344 return;
345 val = jiffies;
346
347 if (!val)
348 val--;
349 if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
353
tcp_leave_memory_pressure(struct sock * sk)354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 unsigned long val;
357
358 if (!READ_ONCE(tcp_memory_pressure))
359 return;
360 val = xchg(&tcp_memory_pressure, 0);
361 if (val)
362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
366
367 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 u8 res = 0;
371
372 if (seconds > 0) {
373 int period = timeout;
374
375 res = 1;
376 while (seconds > period && res < 255) {
377 res++;
378 timeout <<= 1;
379 if (timeout > rto_max)
380 timeout = rto_max;
381 period += timeout;
382 }
383 }
384 return res;
385 }
386
387 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 int period = 0;
391
392 if (retrans > 0) {
393 period = timeout;
394 while (--retrans) {
395 timeout <<= 1;
396 if (timeout > rto_max)
397 timeout = rto_max;
398 period += timeout;
399 }
400 }
401 return period;
402 }
403
tcp_compute_delivery_rate(const struct tcp_sock * tp)404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 u32 rate = READ_ONCE(tp->rate_delivered);
407 u32 intv = READ_ONCE(tp->rate_interval_us);
408 u64 rate64 = 0;
409
410 if (rate && intv) {
411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 do_div(rate64, intv);
413 }
414 return rate64;
415 }
416
417 /* Address-family independent initialization for a tcp_sock.
418 *
419 * NOTE: A lot of things set to zero explicitly by call to
420 * sk_alloc() so need not be done here.
421 */
tcp_init_sock(struct sock * sk)422 void tcp_init_sock(struct sock *sk)
423 {
424 struct inet_connection_sock *icsk = inet_csk(sk);
425 struct tcp_sock *tp = tcp_sk(sk);
426 int rto_min_us;
427
428 tp->out_of_order_queue = RB_ROOT;
429 sk->tcp_rtx_queue = RB_ROOT;
430 tcp_init_xmit_timers(sk);
431 INIT_LIST_HEAD(&tp->tsq_node);
432 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433
434 icsk->icsk_rto = TCP_TIMEOUT_INIT;
435 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
436 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
437 icsk->icsk_delack_max = TCP_DELACK_MAX;
438 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
439 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
440
441 /* So many TCP implementations out there (incorrectly) count the
442 * initial SYN frame in their delayed-ACK and congestion control
443 * algorithms that we must have the following bandaid to talk
444 * efficiently to them. -DaveM
445 */
446 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
447
448 /* There's a bubble in the pipe until at least the first ACK. */
449 tp->app_limited = ~0U;
450 tp->rate_app_limited = 1;
451
452 /* See draft-stevens-tcpca-spec-01 for discussion of the
453 * initialization of these values.
454 */
455 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
456 tp->snd_cwnd_clamp = ~0;
457 tp->mss_cache = TCP_MSS_DEFAULT;
458
459 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
460 tcp_assign_congestion_control(sk);
461
462 tp->tsoffset = 0;
463 tp->rack.reo_wnd_steps = 1;
464
465 sk->sk_write_space = sk_stream_write_space;
466 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
467
468 icsk->icsk_sync_mss = tcp_sync_mss;
469
470 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
471 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
472 tcp_scaling_ratio_init(sk);
473
474 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
475 sk_sockets_allocated_inc(sk);
476 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
477 }
478 EXPORT_SYMBOL(tcp_init_sock);
479
tcp_tx_timestamp(struct sock * sk,u16 tsflags)480 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
481 {
482 struct sk_buff *skb = tcp_write_queue_tail(sk);
483
484 if (tsflags && skb) {
485 struct skb_shared_info *shinfo = skb_shinfo(skb);
486 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
487
488 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
489 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
490 tcb->txstamp_ack = 1;
491 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
492 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
493 }
494 }
495
tcp_stream_is_readable(struct sock * sk,int target)496 static bool tcp_stream_is_readable(struct sock *sk, int target)
497 {
498 if (tcp_epollin_ready(sk, target))
499 return true;
500 return sk_is_readable(sk);
501 }
502
503 /*
504 * Wait for a TCP event.
505 *
506 * Note that we don't need to lock the socket, as the upper poll layers
507 * take care of normal races (between the test and the event) and we don't
508 * go look at any of the socket buffers directly.
509 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)510 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
511 {
512 __poll_t mask;
513 struct sock *sk = sock->sk;
514 const struct tcp_sock *tp = tcp_sk(sk);
515 u8 shutdown;
516 int state;
517
518 sock_poll_wait(file, sock, wait);
519
520 state = inet_sk_state_load(sk);
521 if (state == TCP_LISTEN)
522 return inet_csk_listen_poll(sk);
523
524 /* Socket is not locked. We are protected from async events
525 * by poll logic and correct handling of state changes
526 * made by other threads is impossible in any case.
527 */
528
529 mask = 0;
530
531 /*
532 * EPOLLHUP is certainly not done right. But poll() doesn't
533 * have a notion of HUP in just one direction, and for a
534 * socket the read side is more interesting.
535 *
536 * Some poll() documentation says that EPOLLHUP is incompatible
537 * with the EPOLLOUT/POLLWR flags, so somebody should check this
538 * all. But careful, it tends to be safer to return too many
539 * bits than too few, and you can easily break real applications
540 * if you don't tell them that something has hung up!
541 *
542 * Check-me.
543 *
544 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
545 * our fs/select.c). It means that after we received EOF,
546 * poll always returns immediately, making impossible poll() on write()
547 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
548 * if and only if shutdown has been made in both directions.
549 * Actually, it is interesting to look how Solaris and DUX
550 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
551 * then we could set it on SND_SHUTDOWN. BTW examples given
552 * in Stevens' books assume exactly this behaviour, it explains
553 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
554 *
555 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
556 * blocking on fresh not-connected or disconnected socket. --ANK
557 */
558 shutdown = READ_ONCE(sk->sk_shutdown);
559 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
560 mask |= EPOLLHUP;
561 if (shutdown & RCV_SHUTDOWN)
562 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
563
564 /* Connected or passive Fast Open socket? */
565 if (state != TCP_SYN_SENT &&
566 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
567 int target = sock_rcvlowat(sk, 0, INT_MAX);
568 u16 urg_data = READ_ONCE(tp->urg_data);
569
570 if (unlikely(urg_data) &&
571 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
572 !sock_flag(sk, SOCK_URGINLINE))
573 target++;
574
575 if (tcp_stream_is_readable(sk, target))
576 mask |= EPOLLIN | EPOLLRDNORM;
577
578 if (!(shutdown & SEND_SHUTDOWN)) {
579 if (__sk_stream_is_writeable(sk, 1)) {
580 mask |= EPOLLOUT | EPOLLWRNORM;
581 } else { /* send SIGIO later */
582 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
583 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
584
585 /* Race breaker. If space is freed after
586 * wspace test but before the flags are set,
587 * IO signal will be lost. Memory barrier
588 * pairs with the input side.
589 */
590 smp_mb__after_atomic();
591 if (__sk_stream_is_writeable(sk, 1))
592 mask |= EPOLLOUT | EPOLLWRNORM;
593 }
594 } else
595 mask |= EPOLLOUT | EPOLLWRNORM;
596
597 if (urg_data & TCP_URG_VALID)
598 mask |= EPOLLPRI;
599 } else if (state == TCP_SYN_SENT &&
600 inet_test_bit(DEFER_CONNECT, sk)) {
601 /* Active TCP fastopen socket with defer_connect
602 * Return EPOLLOUT so application can call write()
603 * in order for kernel to generate SYN+data
604 */
605 mask |= EPOLLOUT | EPOLLWRNORM;
606 }
607 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
608 smp_rmb();
609 if (READ_ONCE(sk->sk_err) ||
610 !skb_queue_empty_lockless(&sk->sk_error_queue))
611 mask |= EPOLLERR;
612
613 return mask;
614 }
615 EXPORT_SYMBOL(tcp_poll);
616
tcp_ioctl(struct sock * sk,int cmd,int * karg)617 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
618 {
619 struct tcp_sock *tp = tcp_sk(sk);
620 int answ;
621 bool slow;
622
623 switch (cmd) {
624 case SIOCINQ:
625 if (sk->sk_state == TCP_LISTEN)
626 return -EINVAL;
627
628 slow = lock_sock_fast(sk);
629 answ = tcp_inq(sk);
630 unlock_sock_fast(sk, slow);
631 break;
632 case SIOCATMARK:
633 answ = READ_ONCE(tp->urg_data) &&
634 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
635 break;
636 case SIOCOUTQ:
637 if (sk->sk_state == TCP_LISTEN)
638 return -EINVAL;
639
640 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
641 answ = 0;
642 else
643 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
644 break;
645 case SIOCOUTQNSD:
646 if (sk->sk_state == TCP_LISTEN)
647 return -EINVAL;
648
649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
650 answ = 0;
651 else
652 answ = READ_ONCE(tp->write_seq) -
653 READ_ONCE(tp->snd_nxt);
654 break;
655 default:
656 return -ENOIOCTLCMD;
657 }
658
659 *karg = answ;
660 return 0;
661 }
662 EXPORT_SYMBOL(tcp_ioctl);
663
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)664 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
665 {
666 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
667 tp->pushed_seq = tp->write_seq;
668 }
669
forced_push(const struct tcp_sock * tp)670 static inline bool forced_push(const struct tcp_sock *tp)
671 {
672 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
673 }
674
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)675 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
676 {
677 struct tcp_sock *tp = tcp_sk(sk);
678 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
679
680 tcb->seq = tcb->end_seq = tp->write_seq;
681 tcb->tcp_flags = TCPHDR_ACK;
682 __skb_header_release(skb);
683 tcp_add_write_queue_tail(sk, skb);
684 sk_wmem_queued_add(sk, skb->truesize);
685 sk_mem_charge(sk, skb->truesize);
686 if (tp->nonagle & TCP_NAGLE_PUSH)
687 tp->nonagle &= ~TCP_NAGLE_PUSH;
688
689 tcp_slow_start_after_idle_check(sk);
690 }
691
tcp_mark_urg(struct tcp_sock * tp,int flags)692 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
693 {
694 if (flags & MSG_OOB)
695 tp->snd_up = tp->write_seq;
696 }
697
698 /* If a not yet filled skb is pushed, do not send it if
699 * we have data packets in Qdisc or NIC queues :
700 * Because TX completion will happen shortly, it gives a chance
701 * to coalesce future sendmsg() payload into this skb, without
702 * need for a timer, and with no latency trade off.
703 * As packets containing data payload have a bigger truesize
704 * than pure acks (dataless) packets, the last checks prevent
705 * autocorking if we only have an ACK in Qdisc/NIC queues,
706 * or if TX completion was delayed after we processed ACK packet.
707 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)708 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
709 int size_goal)
710 {
711 return skb->len < size_goal &&
712 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
713 !tcp_rtx_queue_empty(sk) &&
714 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
715 tcp_skb_can_collapse_to(skb);
716 }
717
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)718 void tcp_push(struct sock *sk, int flags, int mss_now,
719 int nonagle, int size_goal)
720 {
721 struct tcp_sock *tp = tcp_sk(sk);
722 struct sk_buff *skb;
723
724 skb = tcp_write_queue_tail(sk);
725 if (!skb)
726 return;
727 if (!(flags & MSG_MORE) || forced_push(tp))
728 tcp_mark_push(tp, skb);
729
730 tcp_mark_urg(tp, flags);
731
732 if (tcp_should_autocork(sk, skb, size_goal)) {
733
734 /* avoid atomic op if TSQ_THROTTLED bit is already set */
735 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
736 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
737 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
738 smp_mb__after_atomic();
739 }
740 /* It is possible TX completion already happened
741 * before we set TSQ_THROTTLED.
742 */
743 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
744 return;
745 }
746
747 if (flags & MSG_MORE)
748 nonagle = TCP_NAGLE_CORK;
749
750 __tcp_push_pending_frames(sk, mss_now, nonagle);
751 }
752
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)753 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
754 unsigned int offset, size_t len)
755 {
756 struct tcp_splice_state *tss = rd_desc->arg.data;
757 int ret;
758
759 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
760 min(rd_desc->count, len), tss->flags);
761 if (ret > 0)
762 rd_desc->count -= ret;
763 return ret;
764 }
765
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)766 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
767 {
768 /* Store TCP splice context information in read_descriptor_t. */
769 read_descriptor_t rd_desc = {
770 .arg.data = tss,
771 .count = tss->len,
772 };
773
774 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
775 }
776
777 /**
778 * tcp_splice_read - splice data from TCP socket to a pipe
779 * @sock: socket to splice from
780 * @ppos: position (not valid)
781 * @pipe: pipe to splice to
782 * @len: number of bytes to splice
783 * @flags: splice modifier flags
784 *
785 * Description:
786 * Will read pages from given socket and fill them into a pipe.
787 *
788 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)789 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
790 struct pipe_inode_info *pipe, size_t len,
791 unsigned int flags)
792 {
793 struct sock *sk = sock->sk;
794 struct tcp_splice_state tss = {
795 .pipe = pipe,
796 .len = len,
797 .flags = flags,
798 };
799 long timeo;
800 ssize_t spliced;
801 int ret;
802
803 sock_rps_record_flow(sk);
804 /*
805 * We can't seek on a socket input
806 */
807 if (unlikely(*ppos))
808 return -ESPIPE;
809
810 ret = spliced = 0;
811
812 lock_sock(sk);
813
814 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
815 while (tss.len) {
816 ret = __tcp_splice_read(sk, &tss);
817 if (ret < 0)
818 break;
819 else if (!ret) {
820 if (spliced)
821 break;
822 if (sock_flag(sk, SOCK_DONE))
823 break;
824 if (sk->sk_err) {
825 ret = sock_error(sk);
826 break;
827 }
828 if (sk->sk_shutdown & RCV_SHUTDOWN)
829 break;
830 if (sk->sk_state == TCP_CLOSE) {
831 /*
832 * This occurs when user tries to read
833 * from never connected socket.
834 */
835 ret = -ENOTCONN;
836 break;
837 }
838 if (!timeo) {
839 ret = -EAGAIN;
840 break;
841 }
842 /* if __tcp_splice_read() got nothing while we have
843 * an skb in receive queue, we do not want to loop.
844 * This might happen with URG data.
845 */
846 if (!skb_queue_empty(&sk->sk_receive_queue))
847 break;
848 ret = sk_wait_data(sk, &timeo, NULL);
849 if (ret < 0)
850 break;
851 if (signal_pending(current)) {
852 ret = sock_intr_errno(timeo);
853 break;
854 }
855 continue;
856 }
857 tss.len -= ret;
858 spliced += ret;
859
860 if (!tss.len || !timeo)
861 break;
862 release_sock(sk);
863 lock_sock(sk);
864
865 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
866 (sk->sk_shutdown & RCV_SHUTDOWN) ||
867 signal_pending(current))
868 break;
869 }
870
871 release_sock(sk);
872
873 if (spliced)
874 return spliced;
875
876 return ret;
877 }
878 EXPORT_SYMBOL(tcp_splice_read);
879
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)880 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
881 bool force_schedule)
882 {
883 struct sk_buff *skb;
884
885 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
886 if (likely(skb)) {
887 bool mem_scheduled;
888
889 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
890 if (force_schedule) {
891 mem_scheduled = true;
892 sk_forced_mem_schedule(sk, skb->truesize);
893 } else {
894 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
895 }
896 if (likely(mem_scheduled)) {
897 skb_reserve(skb, MAX_TCP_HEADER);
898 skb->ip_summed = CHECKSUM_PARTIAL;
899 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
900 return skb;
901 }
902 __kfree_skb(skb);
903 } else {
904 sk->sk_prot->enter_memory_pressure(sk);
905 sk_stream_moderate_sndbuf(sk);
906 }
907 return NULL;
908 }
909
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)910 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
911 int large_allowed)
912 {
913 struct tcp_sock *tp = tcp_sk(sk);
914 u32 new_size_goal, size_goal;
915
916 if (!large_allowed)
917 return mss_now;
918
919 /* Note : tcp_tso_autosize() will eventually split this later */
920 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
921
922 /* We try hard to avoid divides here */
923 size_goal = tp->gso_segs * mss_now;
924 if (unlikely(new_size_goal < size_goal ||
925 new_size_goal >= size_goal + mss_now)) {
926 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
927 sk->sk_gso_max_segs);
928 size_goal = tp->gso_segs * mss_now;
929 }
930
931 return max(size_goal, mss_now);
932 }
933
tcp_send_mss(struct sock * sk,int * size_goal,int flags)934 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
935 {
936 int mss_now;
937
938 mss_now = tcp_current_mss(sk);
939 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
940
941 return mss_now;
942 }
943
944 /* In some cases, sendmsg() could have added an skb to the write queue,
945 * but failed adding payload on it. We need to remove it to consume less
946 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
947 * epoll() users. Another reason is that tcp_write_xmit() does not like
948 * finding an empty skb in the write queue.
949 */
tcp_remove_empty_skb(struct sock * sk)950 void tcp_remove_empty_skb(struct sock *sk)
951 {
952 struct sk_buff *skb = tcp_write_queue_tail(sk);
953
954 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
955 tcp_unlink_write_queue(skb, sk);
956 if (tcp_write_queue_empty(sk))
957 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
958 tcp_wmem_free_skb(sk, skb);
959 }
960 }
961
962 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)963 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
964 {
965 if (unlikely(skb_zcopy_pure(skb))) {
966 u32 extra = skb->truesize -
967 SKB_TRUESIZE(skb_end_offset(skb));
968
969 if (!sk_wmem_schedule(sk, extra))
970 return -ENOMEM;
971
972 sk_mem_charge(sk, extra);
973 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
974 }
975 return 0;
976 }
977
978
tcp_wmem_schedule(struct sock * sk,int copy)979 int tcp_wmem_schedule(struct sock *sk, int copy)
980 {
981 int left;
982
983 if (likely(sk_wmem_schedule(sk, copy)))
984 return copy;
985
986 /* We could be in trouble if we have nothing queued.
987 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
988 * to guarantee some progress.
989 */
990 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
991 if (left > 0)
992 sk_forced_mem_schedule(sk, min(left, copy));
993 return min(copy, sk->sk_forward_alloc);
994 }
995
tcp_free_fastopen_req(struct tcp_sock * tp)996 void tcp_free_fastopen_req(struct tcp_sock *tp)
997 {
998 if (tp->fastopen_req) {
999 kfree(tp->fastopen_req);
1000 tp->fastopen_req = NULL;
1001 }
1002 }
1003
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1004 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1005 size_t size, struct ubuf_info *uarg)
1006 {
1007 struct tcp_sock *tp = tcp_sk(sk);
1008 struct inet_sock *inet = inet_sk(sk);
1009 struct sockaddr *uaddr = msg->msg_name;
1010 int err, flags;
1011
1012 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1013 TFO_CLIENT_ENABLE) ||
1014 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1015 uaddr->sa_family == AF_UNSPEC))
1016 return -EOPNOTSUPP;
1017 if (tp->fastopen_req)
1018 return -EALREADY; /* Another Fast Open is in progress */
1019
1020 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1021 sk->sk_allocation);
1022 if (unlikely(!tp->fastopen_req))
1023 return -ENOBUFS;
1024 tp->fastopen_req->data = msg;
1025 tp->fastopen_req->size = size;
1026 tp->fastopen_req->uarg = uarg;
1027
1028 if (inet_test_bit(DEFER_CONNECT, sk)) {
1029 err = tcp_connect(sk);
1030 /* Same failure procedure as in tcp_v4/6_connect */
1031 if (err) {
1032 tcp_set_state(sk, TCP_CLOSE);
1033 inet->inet_dport = 0;
1034 sk->sk_route_caps = 0;
1035 }
1036 }
1037 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1038 err = __inet_stream_connect(sk->sk_socket, uaddr,
1039 msg->msg_namelen, flags, 1);
1040 /* fastopen_req could already be freed in __inet_stream_connect
1041 * if the connection times out or gets rst
1042 */
1043 if (tp->fastopen_req) {
1044 *copied = tp->fastopen_req->copied;
1045 tcp_free_fastopen_req(tp);
1046 inet_clear_bit(DEFER_CONNECT, sk);
1047 }
1048 return err;
1049 }
1050
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1051 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1052 {
1053 struct tcp_sock *tp = tcp_sk(sk);
1054 struct ubuf_info *uarg = NULL;
1055 struct sk_buff *skb;
1056 struct sockcm_cookie sockc;
1057 int flags, err, copied = 0;
1058 int mss_now = 0, size_goal, copied_syn = 0;
1059 int process_backlog = 0;
1060 int zc = 0;
1061 long timeo;
1062
1063 flags = msg->msg_flags;
1064
1065 if ((flags & MSG_ZEROCOPY) && size) {
1066 if (msg->msg_ubuf) {
1067 uarg = msg->msg_ubuf;
1068 if (sk->sk_route_caps & NETIF_F_SG)
1069 zc = MSG_ZEROCOPY;
1070 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1071 skb = tcp_write_queue_tail(sk);
1072 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1073 if (!uarg) {
1074 err = -ENOBUFS;
1075 goto out_err;
1076 }
1077 if (sk->sk_route_caps & NETIF_F_SG)
1078 zc = MSG_ZEROCOPY;
1079 else
1080 uarg_to_msgzc(uarg)->zerocopy = 0;
1081 }
1082 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1083 if (sk->sk_route_caps & NETIF_F_SG)
1084 zc = MSG_SPLICE_PAGES;
1085 }
1086
1087 if (unlikely(flags & MSG_FASTOPEN ||
1088 inet_test_bit(DEFER_CONNECT, sk)) &&
1089 !tp->repair) {
1090 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1091 if (err == -EINPROGRESS && copied_syn > 0)
1092 goto out;
1093 else if (err)
1094 goto out_err;
1095 }
1096
1097 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1098
1099 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1100
1101 /* Wait for a connection to finish. One exception is TCP Fast Open
1102 * (passive side) where data is allowed to be sent before a connection
1103 * is fully established.
1104 */
1105 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1106 !tcp_passive_fastopen(sk)) {
1107 err = sk_stream_wait_connect(sk, &timeo);
1108 if (err != 0)
1109 goto do_error;
1110 }
1111
1112 if (unlikely(tp->repair)) {
1113 if (tp->repair_queue == TCP_RECV_QUEUE) {
1114 copied = tcp_send_rcvq(sk, msg, size);
1115 goto out_nopush;
1116 }
1117
1118 err = -EINVAL;
1119 if (tp->repair_queue == TCP_NO_QUEUE)
1120 goto out_err;
1121
1122 /* 'common' sending to sendq */
1123 }
1124
1125 sockcm_init(&sockc, sk);
1126 if (msg->msg_controllen) {
1127 err = sock_cmsg_send(sk, msg, &sockc);
1128 if (unlikely(err)) {
1129 err = -EINVAL;
1130 goto out_err;
1131 }
1132 }
1133
1134 /* This should be in poll */
1135 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1136
1137 /* Ok commence sending. */
1138 copied = 0;
1139
1140 restart:
1141 mss_now = tcp_send_mss(sk, &size_goal, flags);
1142
1143 err = -EPIPE;
1144 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1145 goto do_error;
1146
1147 while (msg_data_left(msg)) {
1148 ssize_t copy = 0;
1149
1150 skb = tcp_write_queue_tail(sk);
1151 if (skb)
1152 copy = size_goal - skb->len;
1153
1154 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1155 bool first_skb;
1156
1157 new_segment:
1158 if (!sk_stream_memory_free(sk))
1159 goto wait_for_space;
1160
1161 if (unlikely(process_backlog >= 16)) {
1162 process_backlog = 0;
1163 if (sk_flush_backlog(sk))
1164 goto restart;
1165 }
1166 first_skb = tcp_rtx_and_write_queues_empty(sk);
1167 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1168 first_skb);
1169 if (!skb)
1170 goto wait_for_space;
1171
1172 process_backlog++;
1173
1174 #ifdef CONFIG_SKB_DECRYPTED
1175 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1176 #endif
1177 tcp_skb_entail(sk, skb);
1178 copy = size_goal;
1179
1180 /* All packets are restored as if they have
1181 * already been sent. skb_mstamp_ns isn't set to
1182 * avoid wrong rtt estimation.
1183 */
1184 if (tp->repair)
1185 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1186 }
1187
1188 /* Try to append data to the end of skb. */
1189 if (copy > msg_data_left(msg))
1190 copy = msg_data_left(msg);
1191
1192 if (zc == 0) {
1193 bool merge = true;
1194 int i = skb_shinfo(skb)->nr_frags;
1195 struct page_frag *pfrag = sk_page_frag(sk);
1196
1197 if (!sk_page_frag_refill(sk, pfrag))
1198 goto wait_for_space;
1199
1200 if (!skb_can_coalesce(skb, i, pfrag->page,
1201 pfrag->offset)) {
1202 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1203 tcp_mark_push(tp, skb);
1204 goto new_segment;
1205 }
1206 merge = false;
1207 }
1208
1209 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1210
1211 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1212 if (tcp_downgrade_zcopy_pure(sk, skb))
1213 goto wait_for_space;
1214 skb_zcopy_downgrade_managed(skb);
1215 }
1216
1217 copy = tcp_wmem_schedule(sk, copy);
1218 if (!copy)
1219 goto wait_for_space;
1220
1221 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1222 pfrag->page,
1223 pfrag->offset,
1224 copy);
1225 if (err)
1226 goto do_error;
1227
1228 /* Update the skb. */
1229 if (merge) {
1230 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1231 } else {
1232 skb_fill_page_desc(skb, i, pfrag->page,
1233 pfrag->offset, copy);
1234 page_ref_inc(pfrag->page);
1235 }
1236 pfrag->offset += copy;
1237 } else if (zc == MSG_ZEROCOPY) {
1238 /* First append to a fragless skb builds initial
1239 * pure zerocopy skb
1240 */
1241 if (!skb->len)
1242 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1243
1244 if (!skb_zcopy_pure(skb)) {
1245 copy = tcp_wmem_schedule(sk, copy);
1246 if (!copy)
1247 goto wait_for_space;
1248 }
1249
1250 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1251 if (err == -EMSGSIZE || err == -EEXIST) {
1252 tcp_mark_push(tp, skb);
1253 goto new_segment;
1254 }
1255 if (err < 0)
1256 goto do_error;
1257 copy = err;
1258 } else if (zc == MSG_SPLICE_PAGES) {
1259 /* Splice in data if we can; copy if we can't. */
1260 if (tcp_downgrade_zcopy_pure(sk, skb))
1261 goto wait_for_space;
1262 copy = tcp_wmem_schedule(sk, copy);
1263 if (!copy)
1264 goto wait_for_space;
1265
1266 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1267 sk->sk_allocation);
1268 if (err < 0) {
1269 if (err == -EMSGSIZE) {
1270 tcp_mark_push(tp, skb);
1271 goto new_segment;
1272 }
1273 goto do_error;
1274 }
1275 copy = err;
1276
1277 if (!(flags & MSG_NO_SHARED_FRAGS))
1278 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1279
1280 sk_wmem_queued_add(sk, copy);
1281 sk_mem_charge(sk, copy);
1282 }
1283
1284 if (!copied)
1285 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1286
1287 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1288 TCP_SKB_CB(skb)->end_seq += copy;
1289 tcp_skb_pcount_set(skb, 0);
1290
1291 copied += copy;
1292 if (!msg_data_left(msg)) {
1293 if (unlikely(flags & MSG_EOR))
1294 TCP_SKB_CB(skb)->eor = 1;
1295 goto out;
1296 }
1297
1298 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1299 continue;
1300
1301 if (forced_push(tp)) {
1302 tcp_mark_push(tp, skb);
1303 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1304 } else if (skb == tcp_send_head(sk))
1305 tcp_push_one(sk, mss_now);
1306 continue;
1307
1308 wait_for_space:
1309 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1310 tcp_remove_empty_skb(sk);
1311 if (copied)
1312 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1313 TCP_NAGLE_PUSH, size_goal);
1314
1315 err = sk_stream_wait_memory(sk, &timeo);
1316 if (err != 0)
1317 goto do_error;
1318
1319 mss_now = tcp_send_mss(sk, &size_goal, flags);
1320 }
1321
1322 out:
1323 if (copied) {
1324 tcp_tx_timestamp(sk, sockc.tsflags);
1325 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1326 }
1327 out_nopush:
1328 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1329 if (uarg && !msg->msg_ubuf)
1330 net_zcopy_put(uarg);
1331 return copied + copied_syn;
1332
1333 do_error:
1334 tcp_remove_empty_skb(sk);
1335
1336 if (copied + copied_syn)
1337 goto out;
1338 out_err:
1339 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1340 if (uarg && !msg->msg_ubuf)
1341 net_zcopy_put_abort(uarg, true);
1342 err = sk_stream_error(sk, flags, err);
1343 /* make sure we wake any epoll edge trigger waiter */
1344 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1345 sk->sk_write_space(sk);
1346 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1347 }
1348 return err;
1349 }
1350 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1351
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1352 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1353 {
1354 int ret;
1355
1356 lock_sock(sk);
1357 ret = tcp_sendmsg_locked(sk, msg, size);
1358 release_sock(sk);
1359
1360 return ret;
1361 }
1362 EXPORT_SYMBOL(tcp_sendmsg);
1363
tcp_splice_eof(struct socket * sock)1364 void tcp_splice_eof(struct socket *sock)
1365 {
1366 struct sock *sk = sock->sk;
1367 struct tcp_sock *tp = tcp_sk(sk);
1368 int mss_now, size_goal;
1369
1370 if (!tcp_write_queue_tail(sk))
1371 return;
1372
1373 lock_sock(sk);
1374 mss_now = tcp_send_mss(sk, &size_goal, 0);
1375 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1376 release_sock(sk);
1377 }
1378 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1379
1380 /*
1381 * Handle reading urgent data. BSD has very simple semantics for
1382 * this, no blocking and very strange errors 8)
1383 */
1384
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1385 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1386 {
1387 struct tcp_sock *tp = tcp_sk(sk);
1388
1389 /* No URG data to read. */
1390 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1391 tp->urg_data == TCP_URG_READ)
1392 return -EINVAL; /* Yes this is right ! */
1393
1394 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1395 return -ENOTCONN;
1396
1397 if (tp->urg_data & TCP_URG_VALID) {
1398 int err = 0;
1399 char c = tp->urg_data;
1400
1401 if (!(flags & MSG_PEEK))
1402 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1403
1404 /* Read urgent data. */
1405 msg->msg_flags |= MSG_OOB;
1406
1407 if (len > 0) {
1408 if (!(flags & MSG_TRUNC))
1409 err = memcpy_to_msg(msg, &c, 1);
1410 len = 1;
1411 } else
1412 msg->msg_flags |= MSG_TRUNC;
1413
1414 return err ? -EFAULT : len;
1415 }
1416
1417 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1418 return 0;
1419
1420 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1421 * the available implementations agree in this case:
1422 * this call should never block, independent of the
1423 * blocking state of the socket.
1424 * Mike <pall@rz.uni-karlsruhe.de>
1425 */
1426 return -EAGAIN;
1427 }
1428
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1429 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1430 {
1431 struct sk_buff *skb;
1432 int copied = 0, err = 0;
1433
1434 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1435 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1436 if (err)
1437 return err;
1438 copied += skb->len;
1439 }
1440
1441 skb_queue_walk(&sk->sk_write_queue, skb) {
1442 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1443 if (err)
1444 break;
1445
1446 copied += skb->len;
1447 }
1448
1449 return err ?: copied;
1450 }
1451
1452 /* Clean up the receive buffer for full frames taken by the user,
1453 * then send an ACK if necessary. COPIED is the number of bytes
1454 * tcp_recvmsg has given to the user so far, it speeds up the
1455 * calculation of whether or not we must ACK for the sake of
1456 * a window update.
1457 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1458 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1459 {
1460 struct tcp_sock *tp = tcp_sk(sk);
1461 bool time_to_ack = false;
1462
1463 if (inet_csk_ack_scheduled(sk)) {
1464 const struct inet_connection_sock *icsk = inet_csk(sk);
1465
1466 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1467 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1468 /*
1469 * If this read emptied read buffer, we send ACK, if
1470 * connection is not bidirectional, user drained
1471 * receive buffer and there was a small segment
1472 * in queue.
1473 */
1474 (copied > 0 &&
1475 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1476 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1477 !inet_csk_in_pingpong_mode(sk))) &&
1478 !atomic_read(&sk->sk_rmem_alloc)))
1479 time_to_ack = true;
1480 }
1481
1482 /* We send an ACK if we can now advertise a non-zero window
1483 * which has been raised "significantly".
1484 *
1485 * Even if window raised up to infinity, do not send window open ACK
1486 * in states, where we will not receive more. It is useless.
1487 */
1488 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1489 __u32 rcv_window_now = tcp_receive_window(tp);
1490
1491 /* Optimize, __tcp_select_window() is not cheap. */
1492 if (2*rcv_window_now <= tp->window_clamp) {
1493 __u32 new_window = __tcp_select_window(sk);
1494
1495 /* Send ACK now, if this read freed lots of space
1496 * in our buffer. Certainly, new_window is new window.
1497 * We can advertise it now, if it is not less than current one.
1498 * "Lots" means "at least twice" here.
1499 */
1500 if (new_window && new_window >= 2 * rcv_window_now)
1501 time_to_ack = true;
1502 }
1503 }
1504 if (time_to_ack)
1505 tcp_send_ack(sk);
1506 }
1507
tcp_cleanup_rbuf(struct sock * sk,int copied)1508 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1509 {
1510 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1511 struct tcp_sock *tp = tcp_sk(sk);
1512
1513 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1514 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1515 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1516 __tcp_cleanup_rbuf(sk, copied);
1517 }
1518
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1519 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1520 {
1521 __skb_unlink(skb, &sk->sk_receive_queue);
1522 if (likely(skb->destructor == sock_rfree)) {
1523 sock_rfree(skb);
1524 skb->destructor = NULL;
1525 skb->sk = NULL;
1526 return skb_attempt_defer_free(skb);
1527 }
1528 __kfree_skb(skb);
1529 }
1530
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1531 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1532 {
1533 struct sk_buff *skb;
1534 u32 offset;
1535
1536 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1537 offset = seq - TCP_SKB_CB(skb)->seq;
1538 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1539 pr_err_once("%s: found a SYN, please report !\n", __func__);
1540 offset--;
1541 }
1542 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1543 *off = offset;
1544 return skb;
1545 }
1546 /* This looks weird, but this can happen if TCP collapsing
1547 * splitted a fat GRO packet, while we released socket lock
1548 * in skb_splice_bits()
1549 */
1550 tcp_eat_recv_skb(sk, skb);
1551 }
1552 return NULL;
1553 }
1554 EXPORT_SYMBOL(tcp_recv_skb);
1555
1556 /*
1557 * This routine provides an alternative to tcp_recvmsg() for routines
1558 * that would like to handle copying from skbuffs directly in 'sendfile'
1559 * fashion.
1560 * Note:
1561 * - It is assumed that the socket was locked by the caller.
1562 * - The routine does not block.
1563 * - At present, there is no support for reading OOB data
1564 * or for 'peeking' the socket using this routine
1565 * (although both would be easy to implement).
1566 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1567 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1568 sk_read_actor_t recv_actor)
1569 {
1570 struct sk_buff *skb;
1571 struct tcp_sock *tp = tcp_sk(sk);
1572 u32 seq = tp->copied_seq;
1573 u32 offset;
1574 int copied = 0;
1575
1576 if (sk->sk_state == TCP_LISTEN)
1577 return -ENOTCONN;
1578 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1579 if (offset < skb->len) {
1580 int used;
1581 size_t len;
1582
1583 len = skb->len - offset;
1584 /* Stop reading if we hit a patch of urgent data */
1585 if (unlikely(tp->urg_data)) {
1586 u32 urg_offset = tp->urg_seq - seq;
1587 if (urg_offset < len)
1588 len = urg_offset;
1589 if (!len)
1590 break;
1591 }
1592 used = recv_actor(desc, skb, offset, len);
1593 if (used <= 0) {
1594 if (!copied)
1595 copied = used;
1596 break;
1597 }
1598 if (WARN_ON_ONCE(used > len))
1599 used = len;
1600 seq += used;
1601 copied += used;
1602 offset += used;
1603
1604 /* If recv_actor drops the lock (e.g. TCP splice
1605 * receive) the skb pointer might be invalid when
1606 * getting here: tcp_collapse might have deleted it
1607 * while aggregating skbs from the socket queue.
1608 */
1609 skb = tcp_recv_skb(sk, seq - 1, &offset);
1610 if (!skb)
1611 break;
1612 /* TCP coalescing might have appended data to the skb.
1613 * Try to splice more frags
1614 */
1615 if (offset + 1 != skb->len)
1616 continue;
1617 }
1618 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1619 tcp_eat_recv_skb(sk, skb);
1620 ++seq;
1621 break;
1622 }
1623 tcp_eat_recv_skb(sk, skb);
1624 if (!desc->count)
1625 break;
1626 WRITE_ONCE(tp->copied_seq, seq);
1627 }
1628 WRITE_ONCE(tp->copied_seq, seq);
1629
1630 tcp_rcv_space_adjust(sk);
1631
1632 /* Clean up data we have read: This will do ACK frames. */
1633 if (copied > 0) {
1634 tcp_recv_skb(sk, seq, &offset);
1635 tcp_cleanup_rbuf(sk, copied);
1636 }
1637 return copied;
1638 }
1639 EXPORT_SYMBOL(tcp_read_sock);
1640
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1641 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1642 {
1643 struct sk_buff *skb;
1644 int copied = 0;
1645
1646 if (sk->sk_state == TCP_LISTEN)
1647 return -ENOTCONN;
1648
1649 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1650 u8 tcp_flags;
1651 int used;
1652
1653 __skb_unlink(skb, &sk->sk_receive_queue);
1654 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1655 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1656 used = recv_actor(sk, skb);
1657 if (used < 0) {
1658 if (!copied)
1659 copied = used;
1660 break;
1661 }
1662 copied += used;
1663
1664 if (tcp_flags & TCPHDR_FIN)
1665 break;
1666 }
1667 return copied;
1668 }
1669 EXPORT_SYMBOL(tcp_read_skb);
1670
tcp_read_done(struct sock * sk,size_t len)1671 void tcp_read_done(struct sock *sk, size_t len)
1672 {
1673 struct tcp_sock *tp = tcp_sk(sk);
1674 u32 seq = tp->copied_seq;
1675 struct sk_buff *skb;
1676 size_t left;
1677 u32 offset;
1678
1679 if (sk->sk_state == TCP_LISTEN)
1680 return;
1681
1682 left = len;
1683 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1684 int used;
1685
1686 used = min_t(size_t, skb->len - offset, left);
1687 seq += used;
1688 left -= used;
1689
1690 if (skb->len > offset + used)
1691 break;
1692
1693 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1694 tcp_eat_recv_skb(sk, skb);
1695 ++seq;
1696 break;
1697 }
1698 tcp_eat_recv_skb(sk, skb);
1699 }
1700 WRITE_ONCE(tp->copied_seq, seq);
1701
1702 tcp_rcv_space_adjust(sk);
1703
1704 /* Clean up data we have read: This will do ACK frames. */
1705 if (left != len)
1706 tcp_cleanup_rbuf(sk, len - left);
1707 }
1708 EXPORT_SYMBOL(tcp_read_done);
1709
tcp_peek_len(struct socket * sock)1710 int tcp_peek_len(struct socket *sock)
1711 {
1712 return tcp_inq(sock->sk);
1713 }
1714 EXPORT_SYMBOL(tcp_peek_len);
1715
1716 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1717 int tcp_set_rcvlowat(struct sock *sk, int val)
1718 {
1719 int space, cap;
1720
1721 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1722 cap = sk->sk_rcvbuf >> 1;
1723 else
1724 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1725 val = min(val, cap);
1726 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1727
1728 /* Check if we need to signal EPOLLIN right now */
1729 tcp_data_ready(sk);
1730
1731 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1732 return 0;
1733
1734 space = tcp_space_from_win(sk, val);
1735 if (space > sk->sk_rcvbuf) {
1736 WRITE_ONCE(sk->sk_rcvbuf, space);
1737 WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1738 }
1739 return 0;
1740 }
1741 EXPORT_SYMBOL(tcp_set_rcvlowat);
1742
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1743 void tcp_update_recv_tstamps(struct sk_buff *skb,
1744 struct scm_timestamping_internal *tss)
1745 {
1746 if (skb->tstamp)
1747 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1748 else
1749 tss->ts[0] = (struct timespec64) {0};
1750
1751 if (skb_hwtstamps(skb)->hwtstamp)
1752 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1753 else
1754 tss->ts[2] = (struct timespec64) {0};
1755 }
1756
1757 #ifdef CONFIG_MMU
1758 static const struct vm_operations_struct tcp_vm_ops = {
1759 };
1760
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1761 int tcp_mmap(struct file *file, struct socket *sock,
1762 struct vm_area_struct *vma)
1763 {
1764 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1765 return -EPERM;
1766 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1767
1768 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1769 vm_flags_set(vma, VM_MIXEDMAP);
1770
1771 vma->vm_ops = &tcp_vm_ops;
1772 return 0;
1773 }
1774 EXPORT_SYMBOL(tcp_mmap);
1775
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1776 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1777 u32 *offset_frag)
1778 {
1779 skb_frag_t *frag;
1780
1781 if (unlikely(offset_skb >= skb->len))
1782 return NULL;
1783
1784 offset_skb -= skb_headlen(skb);
1785 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1786 return NULL;
1787
1788 frag = skb_shinfo(skb)->frags;
1789 while (offset_skb) {
1790 if (skb_frag_size(frag) > offset_skb) {
1791 *offset_frag = offset_skb;
1792 return frag;
1793 }
1794 offset_skb -= skb_frag_size(frag);
1795 ++frag;
1796 }
1797 *offset_frag = 0;
1798 return frag;
1799 }
1800
can_map_frag(const skb_frag_t * frag)1801 static bool can_map_frag(const skb_frag_t *frag)
1802 {
1803 struct page *page;
1804
1805 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1806 return false;
1807
1808 page = skb_frag_page(frag);
1809
1810 if (PageCompound(page) || page->mapping)
1811 return false;
1812
1813 return true;
1814 }
1815
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1816 static int find_next_mappable_frag(const skb_frag_t *frag,
1817 int remaining_in_skb)
1818 {
1819 int offset = 0;
1820
1821 if (likely(can_map_frag(frag)))
1822 return 0;
1823
1824 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1825 offset += skb_frag_size(frag);
1826 ++frag;
1827 }
1828 return offset;
1829 }
1830
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1831 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1832 struct tcp_zerocopy_receive *zc,
1833 struct sk_buff *skb, u32 offset)
1834 {
1835 u32 frag_offset, partial_frag_remainder = 0;
1836 int mappable_offset;
1837 skb_frag_t *frag;
1838
1839 /* worst case: skip to next skb. try to improve on this case below */
1840 zc->recv_skip_hint = skb->len - offset;
1841
1842 /* Find the frag containing this offset (and how far into that frag) */
1843 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1844 if (!frag)
1845 return;
1846
1847 if (frag_offset) {
1848 struct skb_shared_info *info = skb_shinfo(skb);
1849
1850 /* We read part of the last frag, must recvmsg() rest of skb. */
1851 if (frag == &info->frags[info->nr_frags - 1])
1852 return;
1853
1854 /* Else, we must at least read the remainder in this frag. */
1855 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1856 zc->recv_skip_hint -= partial_frag_remainder;
1857 ++frag;
1858 }
1859
1860 /* partial_frag_remainder: If part way through a frag, must read rest.
1861 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1862 * in partial_frag_remainder.
1863 */
1864 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1865 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1866 }
1867
1868 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1869 int flags, struct scm_timestamping_internal *tss,
1870 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1871 static int receive_fallback_to_copy(struct sock *sk,
1872 struct tcp_zerocopy_receive *zc, int inq,
1873 struct scm_timestamping_internal *tss)
1874 {
1875 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1876 struct msghdr msg = {};
1877 int err;
1878
1879 zc->length = 0;
1880 zc->recv_skip_hint = 0;
1881
1882 if (copy_address != zc->copybuf_address)
1883 return -EINVAL;
1884
1885 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1886 &msg.msg_iter);
1887 if (err)
1888 return err;
1889
1890 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1891 tss, &zc->msg_flags);
1892 if (err < 0)
1893 return err;
1894
1895 zc->copybuf_len = err;
1896 if (likely(zc->copybuf_len)) {
1897 struct sk_buff *skb;
1898 u32 offset;
1899
1900 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1901 if (skb)
1902 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1903 }
1904 return 0;
1905 }
1906
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1907 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1908 struct sk_buff *skb, u32 copylen,
1909 u32 *offset, u32 *seq)
1910 {
1911 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1912 struct msghdr msg = {};
1913 int err;
1914
1915 if (copy_address != zc->copybuf_address)
1916 return -EINVAL;
1917
1918 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1919 &msg.msg_iter);
1920 if (err)
1921 return err;
1922 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1923 if (err)
1924 return err;
1925 zc->recv_skip_hint -= copylen;
1926 *offset += copylen;
1927 *seq += copylen;
1928 return (__s32)copylen;
1929 }
1930
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1931 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1932 struct sock *sk,
1933 struct sk_buff *skb,
1934 u32 *seq,
1935 s32 copybuf_len,
1936 struct scm_timestamping_internal *tss)
1937 {
1938 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1939
1940 if (!copylen)
1941 return 0;
1942 /* skb is null if inq < PAGE_SIZE. */
1943 if (skb) {
1944 offset = *seq - TCP_SKB_CB(skb)->seq;
1945 } else {
1946 skb = tcp_recv_skb(sk, *seq, &offset);
1947 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1948 tcp_update_recv_tstamps(skb, tss);
1949 zc->msg_flags |= TCP_CMSG_TS;
1950 }
1951 }
1952
1953 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1954 seq);
1955 return zc->copybuf_len < 0 ? 0 : copylen;
1956 }
1957
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1958 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1959 struct page **pending_pages,
1960 unsigned long pages_remaining,
1961 unsigned long *address,
1962 u32 *length,
1963 u32 *seq,
1964 struct tcp_zerocopy_receive *zc,
1965 u32 total_bytes_to_map,
1966 int err)
1967 {
1968 /* At least one page did not map. Try zapping if we skipped earlier. */
1969 if (err == -EBUSY &&
1970 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1971 u32 maybe_zap_len;
1972
1973 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1974 *length + /* Mapped or pending */
1975 (pages_remaining * PAGE_SIZE); /* Failed map. */
1976 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1977 err = 0;
1978 }
1979
1980 if (!err) {
1981 unsigned long leftover_pages = pages_remaining;
1982 int bytes_mapped;
1983
1984 /* We called zap_page_range_single, try to reinsert. */
1985 err = vm_insert_pages(vma, *address,
1986 pending_pages,
1987 &pages_remaining);
1988 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1989 *seq += bytes_mapped;
1990 *address += bytes_mapped;
1991 }
1992 if (err) {
1993 /* Either we were unable to zap, OR we zapped, retried an
1994 * insert, and still had an issue. Either ways, pages_remaining
1995 * is the number of pages we were unable to map, and we unroll
1996 * some state we speculatively touched before.
1997 */
1998 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1999
2000 *length -= bytes_not_mapped;
2001 zc->recv_skip_hint += bytes_not_mapped;
2002 }
2003 return err;
2004 }
2005
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2006 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2007 struct page **pages,
2008 unsigned int pages_to_map,
2009 unsigned long *address,
2010 u32 *length,
2011 u32 *seq,
2012 struct tcp_zerocopy_receive *zc,
2013 u32 total_bytes_to_map)
2014 {
2015 unsigned long pages_remaining = pages_to_map;
2016 unsigned int pages_mapped;
2017 unsigned int bytes_mapped;
2018 int err;
2019
2020 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2021 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2022 bytes_mapped = PAGE_SIZE * pages_mapped;
2023 /* Even if vm_insert_pages fails, it may have partially succeeded in
2024 * mapping (some but not all of the pages).
2025 */
2026 *seq += bytes_mapped;
2027 *address += bytes_mapped;
2028
2029 if (likely(!err))
2030 return 0;
2031
2032 /* Error: maybe zap and retry + rollback state for failed inserts. */
2033 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2034 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2035 err);
2036 }
2037
2038 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2039 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2040 struct tcp_zerocopy_receive *zc,
2041 struct scm_timestamping_internal *tss)
2042 {
2043 unsigned long msg_control_addr;
2044 struct msghdr cmsg_dummy;
2045
2046 msg_control_addr = (unsigned long)zc->msg_control;
2047 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2048 cmsg_dummy.msg_controllen =
2049 (__kernel_size_t)zc->msg_controllen;
2050 cmsg_dummy.msg_flags = in_compat_syscall()
2051 ? MSG_CMSG_COMPAT : 0;
2052 cmsg_dummy.msg_control_is_user = true;
2053 zc->msg_flags = 0;
2054 if (zc->msg_control == msg_control_addr &&
2055 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2056 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2057 zc->msg_control = (__u64)
2058 ((uintptr_t)cmsg_dummy.msg_control_user);
2059 zc->msg_controllen =
2060 (__u64)cmsg_dummy.msg_controllen;
2061 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2062 }
2063 }
2064
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2065 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2066 unsigned long address,
2067 bool *mmap_locked)
2068 {
2069 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2070
2071 if (vma) {
2072 if (vma->vm_ops != &tcp_vm_ops) {
2073 vma_end_read(vma);
2074 return NULL;
2075 }
2076 *mmap_locked = false;
2077 return vma;
2078 }
2079
2080 mmap_read_lock(mm);
2081 vma = vma_lookup(mm, address);
2082 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2083 mmap_read_unlock(mm);
2084 return NULL;
2085 }
2086 *mmap_locked = true;
2087 return vma;
2088 }
2089
2090 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2091 static int tcp_zerocopy_receive(struct sock *sk,
2092 struct tcp_zerocopy_receive *zc,
2093 struct scm_timestamping_internal *tss)
2094 {
2095 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2096 unsigned long address = (unsigned long)zc->address;
2097 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2098 s32 copybuf_len = zc->copybuf_len;
2099 struct tcp_sock *tp = tcp_sk(sk);
2100 const skb_frag_t *frags = NULL;
2101 unsigned int pages_to_map = 0;
2102 struct vm_area_struct *vma;
2103 struct sk_buff *skb = NULL;
2104 u32 seq = tp->copied_seq;
2105 u32 total_bytes_to_map;
2106 int inq = tcp_inq(sk);
2107 bool mmap_locked;
2108 int ret;
2109
2110 zc->copybuf_len = 0;
2111 zc->msg_flags = 0;
2112
2113 if (address & (PAGE_SIZE - 1) || address != zc->address)
2114 return -EINVAL;
2115
2116 if (sk->sk_state == TCP_LISTEN)
2117 return -ENOTCONN;
2118
2119 sock_rps_record_flow(sk);
2120
2121 if (inq && inq <= copybuf_len)
2122 return receive_fallback_to_copy(sk, zc, inq, tss);
2123
2124 if (inq < PAGE_SIZE) {
2125 zc->length = 0;
2126 zc->recv_skip_hint = inq;
2127 if (!inq && sock_flag(sk, SOCK_DONE))
2128 return -EIO;
2129 return 0;
2130 }
2131
2132 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2133 if (!vma)
2134 return -EINVAL;
2135
2136 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2137 avail_len = min_t(u32, vma_len, inq);
2138 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2139 if (total_bytes_to_map) {
2140 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2141 zap_page_range_single(vma, address, total_bytes_to_map,
2142 NULL);
2143 zc->length = total_bytes_to_map;
2144 zc->recv_skip_hint = 0;
2145 } else {
2146 zc->length = avail_len;
2147 zc->recv_skip_hint = avail_len;
2148 }
2149 ret = 0;
2150 while (length + PAGE_SIZE <= zc->length) {
2151 int mappable_offset;
2152 struct page *page;
2153
2154 if (zc->recv_skip_hint < PAGE_SIZE) {
2155 u32 offset_frag;
2156
2157 if (skb) {
2158 if (zc->recv_skip_hint > 0)
2159 break;
2160 skb = skb->next;
2161 offset = seq - TCP_SKB_CB(skb)->seq;
2162 } else {
2163 skb = tcp_recv_skb(sk, seq, &offset);
2164 }
2165
2166 if (!skb_frags_readable(skb))
2167 break;
2168
2169 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2170 tcp_update_recv_tstamps(skb, tss);
2171 zc->msg_flags |= TCP_CMSG_TS;
2172 }
2173 zc->recv_skip_hint = skb->len - offset;
2174 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2175 if (!frags || offset_frag)
2176 break;
2177 }
2178
2179 mappable_offset = find_next_mappable_frag(frags,
2180 zc->recv_skip_hint);
2181 if (mappable_offset) {
2182 zc->recv_skip_hint = mappable_offset;
2183 break;
2184 }
2185 page = skb_frag_page(frags);
2186 if (WARN_ON_ONCE(!page))
2187 break;
2188
2189 prefetchw(page);
2190 pages[pages_to_map++] = page;
2191 length += PAGE_SIZE;
2192 zc->recv_skip_hint -= PAGE_SIZE;
2193 frags++;
2194 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2195 zc->recv_skip_hint < PAGE_SIZE) {
2196 /* Either full batch, or we're about to go to next skb
2197 * (and we cannot unroll failed ops across skbs).
2198 */
2199 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2200 pages_to_map,
2201 &address, &length,
2202 &seq, zc,
2203 total_bytes_to_map);
2204 if (ret)
2205 goto out;
2206 pages_to_map = 0;
2207 }
2208 }
2209 if (pages_to_map) {
2210 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2211 &address, &length, &seq,
2212 zc, total_bytes_to_map);
2213 }
2214 out:
2215 if (mmap_locked)
2216 mmap_read_unlock(current->mm);
2217 else
2218 vma_end_read(vma);
2219 /* Try to copy straggler data. */
2220 if (!ret)
2221 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2222
2223 if (length + copylen) {
2224 WRITE_ONCE(tp->copied_seq, seq);
2225 tcp_rcv_space_adjust(sk);
2226
2227 /* Clean up data we have read: This will do ACK frames. */
2228 tcp_recv_skb(sk, seq, &offset);
2229 tcp_cleanup_rbuf(sk, length + copylen);
2230 ret = 0;
2231 if (length == zc->length)
2232 zc->recv_skip_hint = 0;
2233 } else {
2234 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2235 ret = -EIO;
2236 }
2237 zc->length = length;
2238 return ret;
2239 }
2240 #endif
2241
2242 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2243 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2244 struct scm_timestamping_internal *tss)
2245 {
2246 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2247 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2248 bool has_timestamping = false;
2249
2250 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2251 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2252 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2253 if (new_tstamp) {
2254 struct __kernel_timespec kts = {
2255 .tv_sec = tss->ts[0].tv_sec,
2256 .tv_nsec = tss->ts[0].tv_nsec,
2257 };
2258 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2259 sizeof(kts), &kts);
2260 } else {
2261 struct __kernel_old_timespec ts_old = {
2262 .tv_sec = tss->ts[0].tv_sec,
2263 .tv_nsec = tss->ts[0].tv_nsec,
2264 };
2265 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2266 sizeof(ts_old), &ts_old);
2267 }
2268 } else {
2269 if (new_tstamp) {
2270 struct __kernel_sock_timeval stv = {
2271 .tv_sec = tss->ts[0].tv_sec,
2272 .tv_usec = tss->ts[0].tv_nsec / 1000,
2273 };
2274 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2275 sizeof(stv), &stv);
2276 } else {
2277 struct __kernel_old_timeval tv = {
2278 .tv_sec = tss->ts[0].tv_sec,
2279 .tv_usec = tss->ts[0].tv_nsec / 1000,
2280 };
2281 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2282 sizeof(tv), &tv);
2283 }
2284 }
2285 }
2286
2287 if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2288 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2289 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2290 has_timestamping = true;
2291 else
2292 tss->ts[0] = (struct timespec64) {0};
2293 }
2294
2295 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2296 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2297 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2298 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2299 has_timestamping = true;
2300 else
2301 tss->ts[2] = (struct timespec64) {0};
2302 }
2303
2304 if (has_timestamping) {
2305 tss->ts[1] = (struct timespec64) {0};
2306 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2307 put_cmsg_scm_timestamping64(msg, tss);
2308 else
2309 put_cmsg_scm_timestamping(msg, tss);
2310 }
2311 }
2312
tcp_inq_hint(struct sock * sk)2313 static int tcp_inq_hint(struct sock *sk)
2314 {
2315 const struct tcp_sock *tp = tcp_sk(sk);
2316 u32 copied_seq = READ_ONCE(tp->copied_seq);
2317 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2318 int inq;
2319
2320 inq = rcv_nxt - copied_seq;
2321 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2322 lock_sock(sk);
2323 inq = tp->rcv_nxt - tp->copied_seq;
2324 release_sock(sk);
2325 }
2326 /* After receiving a FIN, tell the user-space to continue reading
2327 * by returning a non-zero inq.
2328 */
2329 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2330 inq = 1;
2331 return inq;
2332 }
2333
2334 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2335 struct tcp_xa_pool {
2336 u8 max; /* max <= MAX_SKB_FRAGS */
2337 u8 idx; /* idx <= max */
2338 __u32 tokens[MAX_SKB_FRAGS];
2339 netmem_ref netmems[MAX_SKB_FRAGS];
2340 };
2341
tcp_xa_pool_commit_locked(struct sock * sk,struct tcp_xa_pool * p)2342 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2343 {
2344 int i;
2345
2346 /* Commit part that has been copied to user space. */
2347 for (i = 0; i < p->idx; i++)
2348 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2349 (__force void *)p->netmems[i], GFP_KERNEL);
2350 /* Rollback what has been pre-allocated and is no longer needed. */
2351 for (; i < p->max; i++)
2352 __xa_erase(&sk->sk_user_frags, p->tokens[i]);
2353
2354 p->max = 0;
2355 p->idx = 0;
2356 }
2357
tcp_xa_pool_commit(struct sock * sk,struct tcp_xa_pool * p)2358 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2359 {
2360 if (!p->max)
2361 return;
2362
2363 xa_lock_bh(&sk->sk_user_frags);
2364
2365 tcp_xa_pool_commit_locked(sk, p);
2366
2367 xa_unlock_bh(&sk->sk_user_frags);
2368 }
2369
tcp_xa_pool_refill(struct sock * sk,struct tcp_xa_pool * p,unsigned int max_frags)2370 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2371 unsigned int max_frags)
2372 {
2373 int err, k;
2374
2375 if (p->idx < p->max)
2376 return 0;
2377
2378 xa_lock_bh(&sk->sk_user_frags);
2379
2380 tcp_xa_pool_commit_locked(sk, p);
2381
2382 for (k = 0; k < max_frags; k++) {
2383 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2384 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2385 if (err)
2386 break;
2387 }
2388
2389 xa_unlock_bh(&sk->sk_user_frags);
2390
2391 p->max = k;
2392 p->idx = 0;
2393 return k ? 0 : err;
2394 }
2395
2396 /* On error, returns the -errno. On success, returns number of bytes sent to the
2397 * user. May not consume all of @remaining_len.
2398 */
tcp_recvmsg_dmabuf(struct sock * sk,const struct sk_buff * skb,unsigned int offset,struct msghdr * msg,int remaining_len)2399 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2400 unsigned int offset, struct msghdr *msg,
2401 int remaining_len)
2402 {
2403 struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2404 struct tcp_xa_pool tcp_xa_pool;
2405 unsigned int start;
2406 int i, copy, n;
2407 int sent = 0;
2408 int err = 0;
2409
2410 tcp_xa_pool.max = 0;
2411 tcp_xa_pool.idx = 0;
2412 do {
2413 start = skb_headlen(skb);
2414
2415 if (skb_frags_readable(skb)) {
2416 err = -ENODEV;
2417 goto out;
2418 }
2419
2420 /* Copy header. */
2421 copy = start - offset;
2422 if (copy > 0) {
2423 copy = min(copy, remaining_len);
2424
2425 n = copy_to_iter(skb->data + offset, copy,
2426 &msg->msg_iter);
2427 if (n != copy) {
2428 err = -EFAULT;
2429 goto out;
2430 }
2431
2432 offset += copy;
2433 remaining_len -= copy;
2434
2435 /* First a dmabuf_cmsg for # bytes copied to user
2436 * buffer.
2437 */
2438 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2439 dmabuf_cmsg.frag_size = copy;
2440 err = put_cmsg(msg, SOL_SOCKET, SO_DEVMEM_LINEAR,
2441 sizeof(dmabuf_cmsg), &dmabuf_cmsg);
2442 if (err || msg->msg_flags & MSG_CTRUNC) {
2443 msg->msg_flags &= ~MSG_CTRUNC;
2444 if (!err)
2445 err = -ETOOSMALL;
2446 goto out;
2447 }
2448
2449 sent += copy;
2450
2451 if (remaining_len == 0)
2452 goto out;
2453 }
2454
2455 /* after that, send information of dmabuf pages through a
2456 * sequence of cmsg
2457 */
2458 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2459 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2460 struct net_iov *niov;
2461 u64 frag_offset;
2462 int end;
2463
2464 /* !skb_frags_readable() should indicate that ALL the
2465 * frags in this skb are dmabuf net_iovs. We're checking
2466 * for that flag above, but also check individual frags
2467 * here. If the tcp stack is not setting
2468 * skb_frags_readable() correctly, we still don't want
2469 * to crash here.
2470 */
2471 if (!skb_frag_net_iov(frag)) {
2472 net_err_ratelimited("Found non-dmabuf skb with net_iov");
2473 err = -ENODEV;
2474 goto out;
2475 }
2476
2477 niov = skb_frag_net_iov(frag);
2478 end = start + skb_frag_size(frag);
2479 copy = end - offset;
2480
2481 if (copy > 0) {
2482 copy = min(copy, remaining_len);
2483
2484 frag_offset = net_iov_virtual_addr(niov) +
2485 skb_frag_off(frag) + offset -
2486 start;
2487 dmabuf_cmsg.frag_offset = frag_offset;
2488 dmabuf_cmsg.frag_size = copy;
2489 err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2490 skb_shinfo(skb)->nr_frags - i);
2491 if (err)
2492 goto out;
2493
2494 /* Will perform the exchange later */
2495 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2496 dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov);
2497
2498 offset += copy;
2499 remaining_len -= copy;
2500
2501 err = put_cmsg(msg, SOL_SOCKET,
2502 SO_DEVMEM_DMABUF,
2503 sizeof(dmabuf_cmsg),
2504 &dmabuf_cmsg);
2505 if (err || msg->msg_flags & MSG_CTRUNC) {
2506 msg->msg_flags &= ~MSG_CTRUNC;
2507 if (!err)
2508 err = -ETOOSMALL;
2509 goto out;
2510 }
2511
2512 atomic_long_inc(&niov->pp_ref_count);
2513 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2514
2515 sent += copy;
2516
2517 if (remaining_len == 0)
2518 goto out;
2519 }
2520 start = end;
2521 }
2522
2523 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2524 if (!remaining_len)
2525 goto out;
2526
2527 /* if remaining_len is not satisfied yet, we need to go to the
2528 * next frag in the frag_list to satisfy remaining_len.
2529 */
2530 skb = skb_shinfo(skb)->frag_list ?: skb->next;
2531
2532 offset = offset - start;
2533 } while (skb);
2534
2535 if (remaining_len) {
2536 err = -EFAULT;
2537 goto out;
2538 }
2539
2540 out:
2541 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2542 if (!sent)
2543 sent = err;
2544
2545 return sent;
2546 }
2547
2548 /*
2549 * This routine copies from a sock struct into the user buffer.
2550 *
2551 * Technical note: in 2.3 we work on _locked_ socket, so that
2552 * tricks with *seq access order and skb->users are not required.
2553 * Probably, code can be easily improved even more.
2554 */
2555
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2556 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2557 int flags, struct scm_timestamping_internal *tss,
2558 int *cmsg_flags)
2559 {
2560 struct tcp_sock *tp = tcp_sk(sk);
2561 int last_copied_dmabuf = -1; /* uninitialized */
2562 int copied = 0;
2563 u32 peek_seq;
2564 u32 *seq;
2565 unsigned long used;
2566 int err;
2567 int target; /* Read at least this many bytes */
2568 long timeo;
2569 struct sk_buff *skb, *last;
2570 u32 peek_offset = 0;
2571 u32 urg_hole = 0;
2572
2573 err = -ENOTCONN;
2574 if (sk->sk_state == TCP_LISTEN)
2575 goto out;
2576
2577 if (tp->recvmsg_inq) {
2578 *cmsg_flags = TCP_CMSG_INQ;
2579 msg->msg_get_inq = 1;
2580 }
2581 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2582
2583 /* Urgent data needs to be handled specially. */
2584 if (flags & MSG_OOB)
2585 goto recv_urg;
2586
2587 if (unlikely(tp->repair)) {
2588 err = -EPERM;
2589 if (!(flags & MSG_PEEK))
2590 goto out;
2591
2592 if (tp->repair_queue == TCP_SEND_QUEUE)
2593 goto recv_sndq;
2594
2595 err = -EINVAL;
2596 if (tp->repair_queue == TCP_NO_QUEUE)
2597 goto out;
2598
2599 /* 'common' recv queue MSG_PEEK-ing */
2600 }
2601
2602 seq = &tp->copied_seq;
2603 if (flags & MSG_PEEK) {
2604 peek_offset = max(sk_peek_offset(sk, flags), 0);
2605 peek_seq = tp->copied_seq + peek_offset;
2606 seq = &peek_seq;
2607 }
2608
2609 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2610
2611 do {
2612 u32 offset;
2613
2614 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2615 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2616 if (copied)
2617 break;
2618 if (signal_pending(current)) {
2619 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2620 break;
2621 }
2622 }
2623
2624 /* Next get a buffer. */
2625
2626 last = skb_peek_tail(&sk->sk_receive_queue);
2627 skb_queue_walk(&sk->sk_receive_queue, skb) {
2628 last = skb;
2629 /* Now that we have two receive queues this
2630 * shouldn't happen.
2631 */
2632 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2633 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2634 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2635 flags))
2636 break;
2637
2638 offset = *seq - TCP_SKB_CB(skb)->seq;
2639 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2640 pr_err_once("%s: found a SYN, please report !\n", __func__);
2641 offset--;
2642 }
2643 if (offset < skb->len)
2644 goto found_ok_skb;
2645 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2646 goto found_fin_ok;
2647 WARN(!(flags & MSG_PEEK),
2648 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2649 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2650 }
2651
2652 /* Well, if we have backlog, try to process it now yet. */
2653
2654 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2655 break;
2656
2657 if (copied) {
2658 if (!timeo ||
2659 sk->sk_err ||
2660 sk->sk_state == TCP_CLOSE ||
2661 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2662 signal_pending(current))
2663 break;
2664 } else {
2665 if (sock_flag(sk, SOCK_DONE))
2666 break;
2667
2668 if (sk->sk_err) {
2669 copied = sock_error(sk);
2670 break;
2671 }
2672
2673 if (sk->sk_shutdown & RCV_SHUTDOWN)
2674 break;
2675
2676 if (sk->sk_state == TCP_CLOSE) {
2677 /* This occurs when user tries to read
2678 * from never connected socket.
2679 */
2680 copied = -ENOTCONN;
2681 break;
2682 }
2683
2684 if (!timeo) {
2685 copied = -EAGAIN;
2686 break;
2687 }
2688
2689 if (signal_pending(current)) {
2690 copied = sock_intr_errno(timeo);
2691 break;
2692 }
2693 }
2694
2695 if (copied >= target) {
2696 /* Do not sleep, just process backlog. */
2697 __sk_flush_backlog(sk);
2698 } else {
2699 tcp_cleanup_rbuf(sk, copied);
2700 err = sk_wait_data(sk, &timeo, last);
2701 if (err < 0) {
2702 err = copied ? : err;
2703 goto out;
2704 }
2705 }
2706
2707 if ((flags & MSG_PEEK) &&
2708 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2709 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2710 current->comm,
2711 task_pid_nr(current));
2712 peek_seq = tp->copied_seq + peek_offset;
2713 }
2714 continue;
2715
2716 found_ok_skb:
2717 /* Ok so how much can we use? */
2718 used = skb->len - offset;
2719 if (len < used)
2720 used = len;
2721
2722 /* Do we have urgent data here? */
2723 if (unlikely(tp->urg_data)) {
2724 u32 urg_offset = tp->urg_seq - *seq;
2725 if (urg_offset < used) {
2726 if (!urg_offset) {
2727 if (!sock_flag(sk, SOCK_URGINLINE)) {
2728 WRITE_ONCE(*seq, *seq + 1);
2729 urg_hole++;
2730 offset++;
2731 used--;
2732 if (!used)
2733 goto skip_copy;
2734 }
2735 } else
2736 used = urg_offset;
2737 }
2738 }
2739
2740 if (!(flags & MSG_TRUNC)) {
2741 if (last_copied_dmabuf != -1 &&
2742 last_copied_dmabuf != !skb_frags_readable(skb))
2743 break;
2744
2745 if (skb_frags_readable(skb)) {
2746 err = skb_copy_datagram_msg(skb, offset, msg,
2747 used);
2748 if (err) {
2749 /* Exception. Bailout! */
2750 if (!copied)
2751 copied = -EFAULT;
2752 break;
2753 }
2754 } else {
2755 if (!(flags & MSG_SOCK_DEVMEM)) {
2756 /* dmabuf skbs can only be received
2757 * with the MSG_SOCK_DEVMEM flag.
2758 */
2759 if (!copied)
2760 copied = -EFAULT;
2761
2762 break;
2763 }
2764
2765 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2766 used);
2767 if (err <= 0) {
2768 if (!copied)
2769 copied = -EFAULT;
2770
2771 break;
2772 }
2773 used = err;
2774 }
2775 }
2776
2777 last_copied_dmabuf = !skb_frags_readable(skb);
2778
2779 WRITE_ONCE(*seq, *seq + used);
2780 copied += used;
2781 len -= used;
2782 if (flags & MSG_PEEK)
2783 sk_peek_offset_fwd(sk, used);
2784 else
2785 sk_peek_offset_bwd(sk, used);
2786 tcp_rcv_space_adjust(sk);
2787
2788 skip_copy:
2789 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2790 WRITE_ONCE(tp->urg_data, 0);
2791 tcp_fast_path_check(sk);
2792 }
2793
2794 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2795 tcp_update_recv_tstamps(skb, tss);
2796 *cmsg_flags |= TCP_CMSG_TS;
2797 }
2798
2799 if (used + offset < skb->len)
2800 continue;
2801
2802 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2803 goto found_fin_ok;
2804 if (!(flags & MSG_PEEK))
2805 tcp_eat_recv_skb(sk, skb);
2806 continue;
2807
2808 found_fin_ok:
2809 /* Process the FIN. */
2810 WRITE_ONCE(*seq, *seq + 1);
2811 if (!(flags & MSG_PEEK))
2812 tcp_eat_recv_skb(sk, skb);
2813 break;
2814 } while (len > 0);
2815
2816 /* According to UNIX98, msg_name/msg_namelen are ignored
2817 * on connected socket. I was just happy when found this 8) --ANK
2818 */
2819
2820 /* Clean up data we have read: This will do ACK frames. */
2821 tcp_cleanup_rbuf(sk, copied);
2822 return copied;
2823
2824 out:
2825 return err;
2826
2827 recv_urg:
2828 err = tcp_recv_urg(sk, msg, len, flags);
2829 goto out;
2830
2831 recv_sndq:
2832 err = tcp_peek_sndq(sk, msg, len);
2833 goto out;
2834 }
2835
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2836 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2837 int *addr_len)
2838 {
2839 int cmsg_flags = 0, ret;
2840 struct scm_timestamping_internal tss;
2841
2842 if (unlikely(flags & MSG_ERRQUEUE))
2843 return inet_recv_error(sk, msg, len, addr_len);
2844
2845 if (sk_can_busy_loop(sk) &&
2846 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2847 sk->sk_state == TCP_ESTABLISHED)
2848 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2849
2850 lock_sock(sk);
2851 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2852 release_sock(sk);
2853
2854 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2855 if (cmsg_flags & TCP_CMSG_TS)
2856 tcp_recv_timestamp(msg, sk, &tss);
2857 if (msg->msg_get_inq) {
2858 msg->msg_inq = tcp_inq_hint(sk);
2859 if (cmsg_flags & TCP_CMSG_INQ)
2860 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2861 sizeof(msg->msg_inq), &msg->msg_inq);
2862 }
2863 }
2864 return ret;
2865 }
2866 EXPORT_SYMBOL(tcp_recvmsg);
2867
tcp_set_state(struct sock * sk,int state)2868 void tcp_set_state(struct sock *sk, int state)
2869 {
2870 int oldstate = sk->sk_state;
2871
2872 /* We defined a new enum for TCP states that are exported in BPF
2873 * so as not force the internal TCP states to be frozen. The
2874 * following checks will detect if an internal state value ever
2875 * differs from the BPF value. If this ever happens, then we will
2876 * need to remap the internal value to the BPF value before calling
2877 * tcp_call_bpf_2arg.
2878 */
2879 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2880 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2881 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2882 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2883 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2884 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2885 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2886 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2887 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2888 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2889 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2890 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2891 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2892 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2893
2894 /* bpf uapi header bpf.h defines an anonymous enum with values
2895 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2896 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2897 * But clang built vmlinux does not have this enum in DWARF
2898 * since clang removes the above code before generating IR/debuginfo.
2899 * Let us explicitly emit the type debuginfo to ensure the
2900 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2901 * regardless of which compiler is used.
2902 */
2903 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2904
2905 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2906 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2907
2908 switch (state) {
2909 case TCP_ESTABLISHED:
2910 if (oldstate != TCP_ESTABLISHED)
2911 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2912 break;
2913 case TCP_CLOSE_WAIT:
2914 if (oldstate == TCP_SYN_RECV)
2915 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2916 break;
2917
2918 case TCP_CLOSE:
2919 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2920 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2921
2922 sk->sk_prot->unhash(sk);
2923 if (inet_csk(sk)->icsk_bind_hash &&
2924 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2925 inet_put_port(sk);
2926 fallthrough;
2927 default:
2928 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2929 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2930 }
2931
2932 /* Change state AFTER socket is unhashed to avoid closed
2933 * socket sitting in hash tables.
2934 */
2935 inet_sk_state_store(sk, state);
2936 }
2937 EXPORT_SYMBOL_GPL(tcp_set_state);
2938
2939 /*
2940 * State processing on a close. This implements the state shift for
2941 * sending our FIN frame. Note that we only send a FIN for some
2942 * states. A shutdown() may have already sent the FIN, or we may be
2943 * closed.
2944 */
2945
2946 static const unsigned char new_state[16] = {
2947 /* current state: new state: action: */
2948 [0 /* (Invalid) */] = TCP_CLOSE,
2949 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2950 [TCP_SYN_SENT] = TCP_CLOSE,
2951 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2952 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2953 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2954 [TCP_TIME_WAIT] = TCP_CLOSE,
2955 [TCP_CLOSE] = TCP_CLOSE,
2956 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2957 [TCP_LAST_ACK] = TCP_LAST_ACK,
2958 [TCP_LISTEN] = TCP_CLOSE,
2959 [TCP_CLOSING] = TCP_CLOSING,
2960 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2961 };
2962
tcp_close_state(struct sock * sk)2963 static int tcp_close_state(struct sock *sk)
2964 {
2965 int next = (int)new_state[sk->sk_state];
2966 int ns = next & TCP_STATE_MASK;
2967
2968 tcp_set_state(sk, ns);
2969
2970 return next & TCP_ACTION_FIN;
2971 }
2972
2973 /*
2974 * Shutdown the sending side of a connection. Much like close except
2975 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2976 */
2977
tcp_shutdown(struct sock * sk,int how)2978 void tcp_shutdown(struct sock *sk, int how)
2979 {
2980 /* We need to grab some memory, and put together a FIN,
2981 * and then put it into the queue to be sent.
2982 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2983 */
2984 if (!(how & SEND_SHUTDOWN))
2985 return;
2986
2987 /* If we've already sent a FIN, or it's a closed state, skip this. */
2988 if ((1 << sk->sk_state) &
2989 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2990 TCPF_CLOSE_WAIT)) {
2991 /* Clear out any half completed packets. FIN if needed. */
2992 if (tcp_close_state(sk))
2993 tcp_send_fin(sk);
2994 }
2995 }
2996 EXPORT_SYMBOL(tcp_shutdown);
2997
tcp_orphan_count_sum(void)2998 int tcp_orphan_count_sum(void)
2999 {
3000 int i, total = 0;
3001
3002 for_each_possible_cpu(i)
3003 total += per_cpu(tcp_orphan_count, i);
3004
3005 return max(total, 0);
3006 }
3007
3008 static int tcp_orphan_cache;
3009 static struct timer_list tcp_orphan_timer;
3010 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3011
tcp_orphan_update(struct timer_list * unused)3012 static void tcp_orphan_update(struct timer_list *unused)
3013 {
3014 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3015 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3016 }
3017
tcp_too_many_orphans(int shift)3018 static bool tcp_too_many_orphans(int shift)
3019 {
3020 return READ_ONCE(tcp_orphan_cache) << shift >
3021 READ_ONCE(sysctl_tcp_max_orphans);
3022 }
3023
tcp_out_of_memory(const struct sock * sk)3024 static bool tcp_out_of_memory(const struct sock *sk)
3025 {
3026 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3027 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3028 return true;
3029 return false;
3030 }
3031
tcp_check_oom(const struct sock * sk,int shift)3032 bool tcp_check_oom(const struct sock *sk, int shift)
3033 {
3034 bool too_many_orphans, out_of_socket_memory;
3035
3036 too_many_orphans = tcp_too_many_orphans(shift);
3037 out_of_socket_memory = tcp_out_of_memory(sk);
3038
3039 if (too_many_orphans)
3040 net_info_ratelimited("too many orphaned sockets\n");
3041 if (out_of_socket_memory)
3042 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3043 return too_many_orphans || out_of_socket_memory;
3044 }
3045
__tcp_close(struct sock * sk,long timeout)3046 void __tcp_close(struct sock *sk, long timeout)
3047 {
3048 struct sk_buff *skb;
3049 int data_was_unread = 0;
3050 int state;
3051
3052 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3053
3054 if (sk->sk_state == TCP_LISTEN) {
3055 tcp_set_state(sk, TCP_CLOSE);
3056
3057 /* Special case. */
3058 inet_csk_listen_stop(sk);
3059
3060 goto adjudge_to_death;
3061 }
3062
3063 /* We need to flush the recv. buffs. We do this only on the
3064 * descriptor close, not protocol-sourced closes, because the
3065 * reader process may not have drained the data yet!
3066 */
3067 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3068 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3069
3070 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3071 len--;
3072 data_was_unread += len;
3073 __kfree_skb(skb);
3074 }
3075
3076 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3077 if (sk->sk_state == TCP_CLOSE)
3078 goto adjudge_to_death;
3079
3080 /* As outlined in RFC 2525, section 2.17, we send a RST here because
3081 * data was lost. To witness the awful effects of the old behavior of
3082 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3083 * GET in an FTP client, suspend the process, wait for the client to
3084 * advertise a zero window, then kill -9 the FTP client, wheee...
3085 * Note: timeout is always zero in such a case.
3086 */
3087 if (unlikely(tcp_sk(sk)->repair)) {
3088 sk->sk_prot->disconnect(sk, 0);
3089 } else if (data_was_unread) {
3090 /* Unread data was tossed, zap the connection. */
3091 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3092 tcp_set_state(sk, TCP_CLOSE);
3093 tcp_send_active_reset(sk, sk->sk_allocation,
3094 SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3095 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3096 /* Check zero linger _after_ checking for unread data. */
3097 sk->sk_prot->disconnect(sk, 0);
3098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3099 } else if (tcp_close_state(sk)) {
3100 /* We FIN if the application ate all the data before
3101 * zapping the connection.
3102 */
3103
3104 /* RED-PEN. Formally speaking, we have broken TCP state
3105 * machine. State transitions:
3106 *
3107 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3108 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
3109 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3110 *
3111 * are legal only when FIN has been sent (i.e. in window),
3112 * rather than queued out of window. Purists blame.
3113 *
3114 * F.e. "RFC state" is ESTABLISHED,
3115 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3116 *
3117 * The visible declinations are that sometimes
3118 * we enter time-wait state, when it is not required really
3119 * (harmless), do not send active resets, when they are
3120 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3121 * they look as CLOSING or LAST_ACK for Linux)
3122 * Probably, I missed some more holelets.
3123 * --ANK
3124 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3125 * in a single packet! (May consider it later but will
3126 * probably need API support or TCP_CORK SYN-ACK until
3127 * data is written and socket is closed.)
3128 */
3129 tcp_send_fin(sk);
3130 }
3131
3132 sk_stream_wait_close(sk, timeout);
3133
3134 adjudge_to_death:
3135 state = sk->sk_state;
3136 sock_hold(sk);
3137 sock_orphan(sk);
3138
3139 local_bh_disable();
3140 bh_lock_sock(sk);
3141 /* remove backlog if any, without releasing ownership. */
3142 __release_sock(sk);
3143
3144 this_cpu_inc(tcp_orphan_count);
3145
3146 /* Have we already been destroyed by a softirq or backlog? */
3147 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3148 goto out;
3149
3150 /* This is a (useful) BSD violating of the RFC. There is a
3151 * problem with TCP as specified in that the other end could
3152 * keep a socket open forever with no application left this end.
3153 * We use a 1 minute timeout (about the same as BSD) then kill
3154 * our end. If they send after that then tough - BUT: long enough
3155 * that we won't make the old 4*rto = almost no time - whoops
3156 * reset mistake.
3157 *
3158 * Nope, it was not mistake. It is really desired behaviour
3159 * f.e. on http servers, when such sockets are useless, but
3160 * consume significant resources. Let's do it with special
3161 * linger2 option. --ANK
3162 */
3163
3164 if (sk->sk_state == TCP_FIN_WAIT2) {
3165 struct tcp_sock *tp = tcp_sk(sk);
3166 if (READ_ONCE(tp->linger2) < 0) {
3167 tcp_set_state(sk, TCP_CLOSE);
3168 tcp_send_active_reset(sk, GFP_ATOMIC,
3169 SK_RST_REASON_TCP_ABORT_ON_LINGER);
3170 __NET_INC_STATS(sock_net(sk),
3171 LINUX_MIB_TCPABORTONLINGER);
3172 } else {
3173 const int tmo = tcp_fin_time(sk);
3174
3175 if (tmo > TCP_TIMEWAIT_LEN) {
3176 inet_csk_reset_keepalive_timer(sk,
3177 tmo - TCP_TIMEWAIT_LEN);
3178 } else {
3179 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3180 goto out;
3181 }
3182 }
3183 }
3184 if (sk->sk_state != TCP_CLOSE) {
3185 if (tcp_check_oom(sk, 0)) {
3186 tcp_set_state(sk, TCP_CLOSE);
3187 tcp_send_active_reset(sk, GFP_ATOMIC,
3188 SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3189 __NET_INC_STATS(sock_net(sk),
3190 LINUX_MIB_TCPABORTONMEMORY);
3191 } else if (!check_net(sock_net(sk))) {
3192 /* Not possible to send reset; just close */
3193 tcp_set_state(sk, TCP_CLOSE);
3194 }
3195 }
3196
3197 if (sk->sk_state == TCP_CLOSE) {
3198 struct request_sock *req;
3199
3200 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3201 lockdep_sock_is_held(sk));
3202 /* We could get here with a non-NULL req if the socket is
3203 * aborted (e.g., closed with unread data) before 3WHS
3204 * finishes.
3205 */
3206 if (req)
3207 reqsk_fastopen_remove(sk, req, false);
3208 inet_csk_destroy_sock(sk);
3209 }
3210 /* Otherwise, socket is reprieved until protocol close. */
3211
3212 out:
3213 bh_unlock_sock(sk);
3214 local_bh_enable();
3215 }
3216
tcp_close(struct sock * sk,long timeout)3217 void tcp_close(struct sock *sk, long timeout)
3218 {
3219 lock_sock(sk);
3220 __tcp_close(sk, timeout);
3221 release_sock(sk);
3222 if (!sk->sk_net_refcnt)
3223 inet_csk_clear_xmit_timers_sync(sk);
3224 sock_put(sk);
3225 }
3226 EXPORT_SYMBOL(tcp_close);
3227
3228 /* These states need RST on ABORT according to RFC793 */
3229
tcp_need_reset(int state)3230 static inline bool tcp_need_reset(int state)
3231 {
3232 return (1 << state) &
3233 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3234 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3235 }
3236
tcp_rtx_queue_purge(struct sock * sk)3237 static void tcp_rtx_queue_purge(struct sock *sk)
3238 {
3239 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3240
3241 tcp_sk(sk)->highest_sack = NULL;
3242 while (p) {
3243 struct sk_buff *skb = rb_to_skb(p);
3244
3245 p = rb_next(p);
3246 /* Since we are deleting whole queue, no need to
3247 * list_del(&skb->tcp_tsorted_anchor)
3248 */
3249 tcp_rtx_queue_unlink(skb, sk);
3250 tcp_wmem_free_skb(sk, skb);
3251 }
3252 }
3253
tcp_write_queue_purge(struct sock * sk)3254 void tcp_write_queue_purge(struct sock *sk)
3255 {
3256 struct sk_buff *skb;
3257
3258 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3259 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3260 tcp_skb_tsorted_anchor_cleanup(skb);
3261 tcp_wmem_free_skb(sk, skb);
3262 }
3263 tcp_rtx_queue_purge(sk);
3264 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3265 tcp_clear_all_retrans_hints(tcp_sk(sk));
3266 tcp_sk(sk)->packets_out = 0;
3267 inet_csk(sk)->icsk_backoff = 0;
3268 }
3269
tcp_disconnect(struct sock * sk,int flags)3270 int tcp_disconnect(struct sock *sk, int flags)
3271 {
3272 struct inet_sock *inet = inet_sk(sk);
3273 struct inet_connection_sock *icsk = inet_csk(sk);
3274 struct tcp_sock *tp = tcp_sk(sk);
3275 int old_state = sk->sk_state;
3276 u32 seq;
3277
3278 if (old_state != TCP_CLOSE)
3279 tcp_set_state(sk, TCP_CLOSE);
3280
3281 /* ABORT function of RFC793 */
3282 if (old_state == TCP_LISTEN) {
3283 inet_csk_listen_stop(sk);
3284 } else if (unlikely(tp->repair)) {
3285 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3286 } else if (tcp_need_reset(old_state)) {
3287 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3288 WRITE_ONCE(sk->sk_err, ECONNRESET);
3289 } else if (tp->snd_nxt != tp->write_seq &&
3290 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3291 /* The last check adjusts for discrepancy of Linux wrt. RFC
3292 * states
3293 */
3294 tcp_send_active_reset(sk, gfp_any(),
3295 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3296 WRITE_ONCE(sk->sk_err, ECONNRESET);
3297 } else if (old_state == TCP_SYN_SENT)
3298 WRITE_ONCE(sk->sk_err, ECONNRESET);
3299
3300 tcp_clear_xmit_timers(sk);
3301 __skb_queue_purge(&sk->sk_receive_queue);
3302 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3303 WRITE_ONCE(tp->urg_data, 0);
3304 sk_set_peek_off(sk, -1);
3305 tcp_write_queue_purge(sk);
3306 tcp_fastopen_active_disable_ofo_check(sk);
3307 skb_rbtree_purge(&tp->out_of_order_queue);
3308
3309 inet->inet_dport = 0;
3310
3311 inet_bhash2_reset_saddr(sk);
3312
3313 WRITE_ONCE(sk->sk_shutdown, 0);
3314 sock_reset_flag(sk, SOCK_DONE);
3315 tp->srtt_us = 0;
3316 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3317 tp->rcv_rtt_last_tsecr = 0;
3318
3319 seq = tp->write_seq + tp->max_window + 2;
3320 if (!seq)
3321 seq = 1;
3322 WRITE_ONCE(tp->write_seq, seq);
3323
3324 icsk->icsk_backoff = 0;
3325 icsk->icsk_probes_out = 0;
3326 icsk->icsk_probes_tstamp = 0;
3327 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3328 icsk->icsk_rto_min = TCP_RTO_MIN;
3329 icsk->icsk_delack_max = TCP_DELACK_MAX;
3330 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3331 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3332 tp->snd_cwnd_cnt = 0;
3333 tp->is_cwnd_limited = 0;
3334 tp->max_packets_out = 0;
3335 tp->window_clamp = 0;
3336 tp->delivered = 0;
3337 tp->delivered_ce = 0;
3338 if (icsk->icsk_ca_ops->release)
3339 icsk->icsk_ca_ops->release(sk);
3340 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3341 icsk->icsk_ca_initialized = 0;
3342 tcp_set_ca_state(sk, TCP_CA_Open);
3343 tp->is_sack_reneg = 0;
3344 tcp_clear_retrans(tp);
3345 tp->total_retrans = 0;
3346 inet_csk_delack_init(sk);
3347 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3348 * issue in __tcp_select_window()
3349 */
3350 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3351 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3352 __sk_dst_reset(sk);
3353 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3354 tcp_saved_syn_free(tp);
3355 tp->compressed_ack = 0;
3356 tp->segs_in = 0;
3357 tp->segs_out = 0;
3358 tp->bytes_sent = 0;
3359 tp->bytes_acked = 0;
3360 tp->bytes_received = 0;
3361 tp->bytes_retrans = 0;
3362 tp->data_segs_in = 0;
3363 tp->data_segs_out = 0;
3364 tp->duplicate_sack[0].start_seq = 0;
3365 tp->duplicate_sack[0].end_seq = 0;
3366 tp->dsack_dups = 0;
3367 tp->reord_seen = 0;
3368 tp->retrans_out = 0;
3369 tp->sacked_out = 0;
3370 tp->tlp_high_seq = 0;
3371 tp->last_oow_ack_time = 0;
3372 tp->plb_rehash = 0;
3373 /* There's a bubble in the pipe until at least the first ACK. */
3374 tp->app_limited = ~0U;
3375 tp->rate_app_limited = 1;
3376 tp->rack.mstamp = 0;
3377 tp->rack.advanced = 0;
3378 tp->rack.reo_wnd_steps = 1;
3379 tp->rack.last_delivered = 0;
3380 tp->rack.reo_wnd_persist = 0;
3381 tp->rack.dsack_seen = 0;
3382 tp->syn_data_acked = 0;
3383 tp->rx_opt.saw_tstamp = 0;
3384 tp->rx_opt.dsack = 0;
3385 tp->rx_opt.num_sacks = 0;
3386 tp->rcv_ooopack = 0;
3387
3388
3389 /* Clean up fastopen related fields */
3390 tcp_free_fastopen_req(tp);
3391 inet_clear_bit(DEFER_CONNECT, sk);
3392 tp->fastopen_client_fail = 0;
3393
3394 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3395
3396 if (sk->sk_frag.page) {
3397 put_page(sk->sk_frag.page);
3398 sk->sk_frag.page = NULL;
3399 sk->sk_frag.offset = 0;
3400 }
3401 sk_error_report(sk);
3402 return 0;
3403 }
3404 EXPORT_SYMBOL(tcp_disconnect);
3405
tcp_can_repair_sock(const struct sock * sk)3406 static inline bool tcp_can_repair_sock(const struct sock *sk)
3407 {
3408 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3409 (sk->sk_state != TCP_LISTEN);
3410 }
3411
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3412 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3413 {
3414 struct tcp_repair_window opt;
3415
3416 if (!tp->repair)
3417 return -EPERM;
3418
3419 if (len != sizeof(opt))
3420 return -EINVAL;
3421
3422 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3423 return -EFAULT;
3424
3425 if (opt.max_window < opt.snd_wnd)
3426 return -EINVAL;
3427
3428 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3429 return -EINVAL;
3430
3431 if (after(opt.rcv_wup, tp->rcv_nxt))
3432 return -EINVAL;
3433
3434 tp->snd_wl1 = opt.snd_wl1;
3435 tp->snd_wnd = opt.snd_wnd;
3436 tp->max_window = opt.max_window;
3437
3438 tp->rcv_wnd = opt.rcv_wnd;
3439 tp->rcv_wup = opt.rcv_wup;
3440
3441 return 0;
3442 }
3443
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3444 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3445 unsigned int len)
3446 {
3447 struct tcp_sock *tp = tcp_sk(sk);
3448 struct tcp_repair_opt opt;
3449 size_t offset = 0;
3450
3451 while (len >= sizeof(opt)) {
3452 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3453 return -EFAULT;
3454
3455 offset += sizeof(opt);
3456 len -= sizeof(opt);
3457
3458 switch (opt.opt_code) {
3459 case TCPOPT_MSS:
3460 tp->rx_opt.mss_clamp = opt.opt_val;
3461 tcp_mtup_init(sk);
3462 break;
3463 case TCPOPT_WINDOW:
3464 {
3465 u16 snd_wscale = opt.opt_val & 0xFFFF;
3466 u16 rcv_wscale = opt.opt_val >> 16;
3467
3468 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3469 return -EFBIG;
3470
3471 tp->rx_opt.snd_wscale = snd_wscale;
3472 tp->rx_opt.rcv_wscale = rcv_wscale;
3473 tp->rx_opt.wscale_ok = 1;
3474 }
3475 break;
3476 case TCPOPT_SACK_PERM:
3477 if (opt.opt_val != 0)
3478 return -EINVAL;
3479
3480 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3481 break;
3482 case TCPOPT_TIMESTAMP:
3483 if (opt.opt_val != 0)
3484 return -EINVAL;
3485
3486 tp->rx_opt.tstamp_ok = 1;
3487 break;
3488 }
3489 }
3490
3491 return 0;
3492 }
3493
3494 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3495 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3496
tcp_enable_tx_delay(void)3497 static void tcp_enable_tx_delay(void)
3498 {
3499 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3500 static int __tcp_tx_delay_enabled = 0;
3501
3502 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3503 static_branch_enable(&tcp_tx_delay_enabled);
3504 pr_info("TCP_TX_DELAY enabled\n");
3505 }
3506 }
3507 }
3508
3509 /* When set indicates to always queue non-full frames. Later the user clears
3510 * this option and we transmit any pending partial frames in the queue. This is
3511 * meant to be used alongside sendfile() to get properly filled frames when the
3512 * user (for example) must write out headers with a write() call first and then
3513 * use sendfile to send out the data parts.
3514 *
3515 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3516 * TCP_NODELAY.
3517 */
__tcp_sock_set_cork(struct sock * sk,bool on)3518 void __tcp_sock_set_cork(struct sock *sk, bool on)
3519 {
3520 struct tcp_sock *tp = tcp_sk(sk);
3521
3522 if (on) {
3523 tp->nonagle |= TCP_NAGLE_CORK;
3524 } else {
3525 tp->nonagle &= ~TCP_NAGLE_CORK;
3526 if (tp->nonagle & TCP_NAGLE_OFF)
3527 tp->nonagle |= TCP_NAGLE_PUSH;
3528 tcp_push_pending_frames(sk);
3529 }
3530 }
3531
tcp_sock_set_cork(struct sock * sk,bool on)3532 void tcp_sock_set_cork(struct sock *sk, bool on)
3533 {
3534 lock_sock(sk);
3535 __tcp_sock_set_cork(sk, on);
3536 release_sock(sk);
3537 }
3538 EXPORT_SYMBOL(tcp_sock_set_cork);
3539
3540 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3541 * remembered, but it is not activated until cork is cleared.
3542 *
3543 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3544 * even TCP_CORK for currently queued segments.
3545 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3546 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3547 {
3548 if (on) {
3549 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3550 tcp_push_pending_frames(sk);
3551 } else {
3552 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3553 }
3554 }
3555
tcp_sock_set_nodelay(struct sock * sk)3556 void tcp_sock_set_nodelay(struct sock *sk)
3557 {
3558 lock_sock(sk);
3559 __tcp_sock_set_nodelay(sk, true);
3560 release_sock(sk);
3561 }
3562 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3563
__tcp_sock_set_quickack(struct sock * sk,int val)3564 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3565 {
3566 if (!val) {
3567 inet_csk_enter_pingpong_mode(sk);
3568 return;
3569 }
3570
3571 inet_csk_exit_pingpong_mode(sk);
3572 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3573 inet_csk_ack_scheduled(sk)) {
3574 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3575 tcp_cleanup_rbuf(sk, 1);
3576 if (!(val & 1))
3577 inet_csk_enter_pingpong_mode(sk);
3578 }
3579 }
3580
tcp_sock_set_quickack(struct sock * sk,int val)3581 void tcp_sock_set_quickack(struct sock *sk, int val)
3582 {
3583 lock_sock(sk);
3584 __tcp_sock_set_quickack(sk, val);
3585 release_sock(sk);
3586 }
3587 EXPORT_SYMBOL(tcp_sock_set_quickack);
3588
tcp_sock_set_syncnt(struct sock * sk,int val)3589 int tcp_sock_set_syncnt(struct sock *sk, int val)
3590 {
3591 if (val < 1 || val > MAX_TCP_SYNCNT)
3592 return -EINVAL;
3593
3594 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3595 return 0;
3596 }
3597 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3598
tcp_sock_set_user_timeout(struct sock * sk,int val)3599 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3600 {
3601 /* Cap the max time in ms TCP will retry or probe the window
3602 * before giving up and aborting (ETIMEDOUT) a connection.
3603 */
3604 if (val < 0)
3605 return -EINVAL;
3606
3607 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3608 return 0;
3609 }
3610 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3611
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3612 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3613 {
3614 struct tcp_sock *tp = tcp_sk(sk);
3615
3616 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3617 return -EINVAL;
3618
3619 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3620 WRITE_ONCE(tp->keepalive_time, val * HZ);
3621 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3622 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3623 u32 elapsed = keepalive_time_elapsed(tp);
3624
3625 if (tp->keepalive_time > elapsed)
3626 elapsed = tp->keepalive_time - elapsed;
3627 else
3628 elapsed = 0;
3629 inet_csk_reset_keepalive_timer(sk, elapsed);
3630 }
3631
3632 return 0;
3633 }
3634
tcp_sock_set_keepidle(struct sock * sk,int val)3635 int tcp_sock_set_keepidle(struct sock *sk, int val)
3636 {
3637 int err;
3638
3639 lock_sock(sk);
3640 err = tcp_sock_set_keepidle_locked(sk, val);
3641 release_sock(sk);
3642 return err;
3643 }
3644 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3645
tcp_sock_set_keepintvl(struct sock * sk,int val)3646 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3647 {
3648 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3649 return -EINVAL;
3650
3651 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3652 return 0;
3653 }
3654 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3655
tcp_sock_set_keepcnt(struct sock * sk,int val)3656 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3657 {
3658 if (val < 1 || val > MAX_TCP_KEEPCNT)
3659 return -EINVAL;
3660
3661 /* Paired with READ_ONCE() in keepalive_probes() */
3662 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3663 return 0;
3664 }
3665 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3666
tcp_set_window_clamp(struct sock * sk,int val)3667 int tcp_set_window_clamp(struct sock *sk, int val)
3668 {
3669 struct tcp_sock *tp = tcp_sk(sk);
3670
3671 if (!val) {
3672 if (sk->sk_state != TCP_CLOSE)
3673 return -EINVAL;
3674 WRITE_ONCE(tp->window_clamp, 0);
3675 } else {
3676 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3677 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3678 SOCK_MIN_RCVBUF / 2 : val;
3679
3680 if (new_window_clamp == old_window_clamp)
3681 return 0;
3682
3683 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3684 if (new_window_clamp < old_window_clamp) {
3685 /* need to apply the reserved mem provisioning only
3686 * when shrinking the window clamp
3687 */
3688 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3689
3690 } else {
3691 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3692 tp->rcv_ssthresh = max(new_rcv_ssthresh,
3693 tp->rcv_ssthresh);
3694 }
3695 }
3696 return 0;
3697 }
3698
3699 /*
3700 * Socket option code for TCP.
3701 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3702 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3703 sockptr_t optval, unsigned int optlen)
3704 {
3705 struct tcp_sock *tp = tcp_sk(sk);
3706 struct inet_connection_sock *icsk = inet_csk(sk);
3707 struct net *net = sock_net(sk);
3708 int val;
3709 int err = 0;
3710
3711 /* These are data/string values, all the others are ints */
3712 switch (optname) {
3713 case TCP_CONGESTION: {
3714 char name[TCP_CA_NAME_MAX];
3715
3716 if (optlen < 1)
3717 return -EINVAL;
3718
3719 val = strncpy_from_sockptr(name, optval,
3720 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3721 if (val < 0)
3722 return -EFAULT;
3723 name[val] = 0;
3724
3725 sockopt_lock_sock(sk);
3726 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3727 sockopt_ns_capable(sock_net(sk)->user_ns,
3728 CAP_NET_ADMIN));
3729 sockopt_release_sock(sk);
3730 return err;
3731 }
3732 case TCP_ULP: {
3733 char name[TCP_ULP_NAME_MAX];
3734
3735 if (optlen < 1)
3736 return -EINVAL;
3737
3738 val = strncpy_from_sockptr(name, optval,
3739 min_t(long, TCP_ULP_NAME_MAX - 1,
3740 optlen));
3741 if (val < 0)
3742 return -EFAULT;
3743 name[val] = 0;
3744
3745 sockopt_lock_sock(sk);
3746 err = tcp_set_ulp(sk, name);
3747 sockopt_release_sock(sk);
3748 return err;
3749 }
3750 case TCP_FASTOPEN_KEY: {
3751 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3752 __u8 *backup_key = NULL;
3753
3754 /* Allow a backup key as well to facilitate key rotation
3755 * First key is the active one.
3756 */
3757 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3758 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3759 return -EINVAL;
3760
3761 if (copy_from_sockptr(key, optval, optlen))
3762 return -EFAULT;
3763
3764 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3765 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3766
3767 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3768 }
3769 default:
3770 /* fallthru */
3771 break;
3772 }
3773
3774 if (optlen < sizeof(int))
3775 return -EINVAL;
3776
3777 if (copy_from_sockptr(&val, optval, sizeof(val)))
3778 return -EFAULT;
3779
3780 /* Handle options that can be set without locking the socket. */
3781 switch (optname) {
3782 case TCP_SYNCNT:
3783 return tcp_sock_set_syncnt(sk, val);
3784 case TCP_USER_TIMEOUT:
3785 return tcp_sock_set_user_timeout(sk, val);
3786 case TCP_KEEPINTVL:
3787 return tcp_sock_set_keepintvl(sk, val);
3788 case TCP_KEEPCNT:
3789 return tcp_sock_set_keepcnt(sk, val);
3790 case TCP_LINGER2:
3791 if (val < 0)
3792 WRITE_ONCE(tp->linger2, -1);
3793 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3794 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3795 else
3796 WRITE_ONCE(tp->linger2, val * HZ);
3797 return 0;
3798 case TCP_DEFER_ACCEPT:
3799 /* Translate value in seconds to number of retransmits */
3800 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3801 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3802 TCP_RTO_MAX / HZ));
3803 return 0;
3804 }
3805
3806 sockopt_lock_sock(sk);
3807
3808 switch (optname) {
3809 case TCP_MAXSEG:
3810 /* Values greater than interface MTU won't take effect. However
3811 * at the point when this call is done we typically don't yet
3812 * know which interface is going to be used
3813 */
3814 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3815 err = -EINVAL;
3816 break;
3817 }
3818 tp->rx_opt.user_mss = val;
3819 break;
3820
3821 case TCP_NODELAY:
3822 __tcp_sock_set_nodelay(sk, val);
3823 break;
3824
3825 case TCP_THIN_LINEAR_TIMEOUTS:
3826 if (val < 0 || val > 1)
3827 err = -EINVAL;
3828 else
3829 tp->thin_lto = val;
3830 break;
3831
3832 case TCP_THIN_DUPACK:
3833 if (val < 0 || val > 1)
3834 err = -EINVAL;
3835 break;
3836
3837 case TCP_REPAIR:
3838 if (!tcp_can_repair_sock(sk))
3839 err = -EPERM;
3840 else if (val == TCP_REPAIR_ON) {
3841 tp->repair = 1;
3842 sk->sk_reuse = SK_FORCE_REUSE;
3843 tp->repair_queue = TCP_NO_QUEUE;
3844 } else if (val == TCP_REPAIR_OFF) {
3845 tp->repair = 0;
3846 sk->sk_reuse = SK_NO_REUSE;
3847 tcp_send_window_probe(sk);
3848 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3849 tp->repair = 0;
3850 sk->sk_reuse = SK_NO_REUSE;
3851 } else
3852 err = -EINVAL;
3853
3854 break;
3855
3856 case TCP_REPAIR_QUEUE:
3857 if (!tp->repair)
3858 err = -EPERM;
3859 else if ((unsigned int)val < TCP_QUEUES_NR)
3860 tp->repair_queue = val;
3861 else
3862 err = -EINVAL;
3863 break;
3864
3865 case TCP_QUEUE_SEQ:
3866 if (sk->sk_state != TCP_CLOSE) {
3867 err = -EPERM;
3868 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3869 if (!tcp_rtx_queue_empty(sk))
3870 err = -EPERM;
3871 else
3872 WRITE_ONCE(tp->write_seq, val);
3873 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3874 if (tp->rcv_nxt != tp->copied_seq) {
3875 err = -EPERM;
3876 } else {
3877 WRITE_ONCE(tp->rcv_nxt, val);
3878 WRITE_ONCE(tp->copied_seq, val);
3879 }
3880 } else {
3881 err = -EINVAL;
3882 }
3883 break;
3884
3885 case TCP_REPAIR_OPTIONS:
3886 if (!tp->repair)
3887 err = -EINVAL;
3888 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3889 err = tcp_repair_options_est(sk, optval, optlen);
3890 else
3891 err = -EPERM;
3892 break;
3893
3894 case TCP_CORK:
3895 __tcp_sock_set_cork(sk, val);
3896 break;
3897
3898 case TCP_KEEPIDLE:
3899 err = tcp_sock_set_keepidle_locked(sk, val);
3900 break;
3901 case TCP_SAVE_SYN:
3902 /* 0: disable, 1: enable, 2: start from ether_header */
3903 if (val < 0 || val > 2)
3904 err = -EINVAL;
3905 else
3906 tp->save_syn = val;
3907 break;
3908
3909 case TCP_WINDOW_CLAMP:
3910 err = tcp_set_window_clamp(sk, val);
3911 break;
3912
3913 case TCP_QUICKACK:
3914 __tcp_sock_set_quickack(sk, val);
3915 break;
3916
3917 case TCP_AO_REPAIR:
3918 if (!tcp_can_repair_sock(sk)) {
3919 err = -EPERM;
3920 break;
3921 }
3922 err = tcp_ao_set_repair(sk, optval, optlen);
3923 break;
3924 #ifdef CONFIG_TCP_AO
3925 case TCP_AO_ADD_KEY:
3926 case TCP_AO_DEL_KEY:
3927 case TCP_AO_INFO: {
3928 /* If this is the first TCP-AO setsockopt() on the socket,
3929 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3930 * in any state.
3931 */
3932 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3933 goto ao_parse;
3934 if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3935 lockdep_sock_is_held(sk)))
3936 goto ao_parse;
3937 if (tp->repair)
3938 goto ao_parse;
3939 err = -EISCONN;
3940 break;
3941 ao_parse:
3942 err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3943 break;
3944 }
3945 #endif
3946 #ifdef CONFIG_TCP_MD5SIG
3947 case TCP_MD5SIG:
3948 case TCP_MD5SIG_EXT:
3949 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3950 break;
3951 #endif
3952 case TCP_FASTOPEN:
3953 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3954 TCPF_LISTEN))) {
3955 tcp_fastopen_init_key_once(net);
3956
3957 fastopen_queue_tune(sk, val);
3958 } else {
3959 err = -EINVAL;
3960 }
3961 break;
3962 case TCP_FASTOPEN_CONNECT:
3963 if (val > 1 || val < 0) {
3964 err = -EINVAL;
3965 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3966 TFO_CLIENT_ENABLE) {
3967 if (sk->sk_state == TCP_CLOSE)
3968 tp->fastopen_connect = val;
3969 else
3970 err = -EINVAL;
3971 } else {
3972 err = -EOPNOTSUPP;
3973 }
3974 break;
3975 case TCP_FASTOPEN_NO_COOKIE:
3976 if (val > 1 || val < 0)
3977 err = -EINVAL;
3978 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3979 err = -EINVAL;
3980 else
3981 tp->fastopen_no_cookie = val;
3982 break;
3983 case TCP_TIMESTAMP:
3984 if (!tp->repair) {
3985 err = -EPERM;
3986 break;
3987 }
3988 /* val is an opaque field,
3989 * and low order bit contains usec_ts enable bit.
3990 * Its a best effort, and we do not care if user makes an error.
3991 */
3992 tp->tcp_usec_ts = val & 1;
3993 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3994 break;
3995 case TCP_REPAIR_WINDOW:
3996 err = tcp_repair_set_window(tp, optval, optlen);
3997 break;
3998 case TCP_NOTSENT_LOWAT:
3999 WRITE_ONCE(tp->notsent_lowat, val);
4000 sk->sk_write_space(sk);
4001 break;
4002 case TCP_INQ:
4003 if (val > 1 || val < 0)
4004 err = -EINVAL;
4005 else
4006 tp->recvmsg_inq = val;
4007 break;
4008 case TCP_TX_DELAY:
4009 if (val)
4010 tcp_enable_tx_delay();
4011 WRITE_ONCE(tp->tcp_tx_delay, val);
4012 break;
4013 default:
4014 err = -ENOPROTOOPT;
4015 break;
4016 }
4017
4018 sockopt_release_sock(sk);
4019 return err;
4020 }
4021
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4022 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4023 unsigned int optlen)
4024 {
4025 const struct inet_connection_sock *icsk = inet_csk(sk);
4026
4027 if (level != SOL_TCP)
4028 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4029 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4030 optval, optlen);
4031 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4032 }
4033 EXPORT_SYMBOL(tcp_setsockopt);
4034
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)4035 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4036 struct tcp_info *info)
4037 {
4038 u64 stats[__TCP_CHRONO_MAX], total = 0;
4039 enum tcp_chrono i;
4040
4041 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4042 stats[i] = tp->chrono_stat[i - 1];
4043 if (i == tp->chrono_type)
4044 stats[i] += tcp_jiffies32 - tp->chrono_start;
4045 stats[i] *= USEC_PER_SEC / HZ;
4046 total += stats[i];
4047 }
4048
4049 info->tcpi_busy_time = total;
4050 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4051 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4052 }
4053
4054 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)4055 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4056 {
4057 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4058 const struct inet_connection_sock *icsk = inet_csk(sk);
4059 unsigned long rate;
4060 u32 now;
4061 u64 rate64;
4062 bool slow;
4063
4064 memset(info, 0, sizeof(*info));
4065 if (sk->sk_type != SOCK_STREAM)
4066 return;
4067
4068 info->tcpi_state = inet_sk_state_load(sk);
4069
4070 /* Report meaningful fields for all TCP states, including listeners */
4071 rate = READ_ONCE(sk->sk_pacing_rate);
4072 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4073 info->tcpi_pacing_rate = rate64;
4074
4075 rate = READ_ONCE(sk->sk_max_pacing_rate);
4076 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4077 info->tcpi_max_pacing_rate = rate64;
4078
4079 info->tcpi_reordering = tp->reordering;
4080 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4081
4082 if (info->tcpi_state == TCP_LISTEN) {
4083 /* listeners aliased fields :
4084 * tcpi_unacked -> Number of children ready for accept()
4085 * tcpi_sacked -> max backlog
4086 */
4087 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4088 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4089 return;
4090 }
4091
4092 slow = lock_sock_fast(sk);
4093
4094 info->tcpi_ca_state = icsk->icsk_ca_state;
4095 info->tcpi_retransmits = icsk->icsk_retransmits;
4096 info->tcpi_probes = icsk->icsk_probes_out;
4097 info->tcpi_backoff = icsk->icsk_backoff;
4098
4099 if (tp->rx_opt.tstamp_ok)
4100 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4101 if (tcp_is_sack(tp))
4102 info->tcpi_options |= TCPI_OPT_SACK;
4103 if (tp->rx_opt.wscale_ok) {
4104 info->tcpi_options |= TCPI_OPT_WSCALE;
4105 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4106 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4107 }
4108
4109 if (tp->ecn_flags & TCP_ECN_OK)
4110 info->tcpi_options |= TCPI_OPT_ECN;
4111 if (tp->ecn_flags & TCP_ECN_SEEN)
4112 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4113 if (tp->syn_data_acked)
4114 info->tcpi_options |= TCPI_OPT_SYN_DATA;
4115 if (tp->tcp_usec_ts)
4116 info->tcpi_options |= TCPI_OPT_USEC_TS;
4117
4118 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4119 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4120 tcp_delack_max(sk)));
4121 info->tcpi_snd_mss = tp->mss_cache;
4122 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4123
4124 info->tcpi_unacked = tp->packets_out;
4125 info->tcpi_sacked = tp->sacked_out;
4126
4127 info->tcpi_lost = tp->lost_out;
4128 info->tcpi_retrans = tp->retrans_out;
4129
4130 now = tcp_jiffies32;
4131 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4132 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4133 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4134
4135 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4136 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4137 info->tcpi_rtt = tp->srtt_us >> 3;
4138 info->tcpi_rttvar = tp->mdev_us >> 2;
4139 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4140 info->tcpi_advmss = tp->advmss;
4141
4142 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4143 info->tcpi_rcv_space = tp->rcvq_space.space;
4144
4145 info->tcpi_total_retrans = tp->total_retrans;
4146
4147 info->tcpi_bytes_acked = tp->bytes_acked;
4148 info->tcpi_bytes_received = tp->bytes_received;
4149 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4150 tcp_get_info_chrono_stats(tp, info);
4151
4152 info->tcpi_segs_out = tp->segs_out;
4153
4154 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4155 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4156 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4157
4158 info->tcpi_min_rtt = tcp_min_rtt(tp);
4159 info->tcpi_data_segs_out = tp->data_segs_out;
4160
4161 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4162 rate64 = tcp_compute_delivery_rate(tp);
4163 if (rate64)
4164 info->tcpi_delivery_rate = rate64;
4165 info->tcpi_delivered = tp->delivered;
4166 info->tcpi_delivered_ce = tp->delivered_ce;
4167 info->tcpi_bytes_sent = tp->bytes_sent;
4168 info->tcpi_bytes_retrans = tp->bytes_retrans;
4169 info->tcpi_dsack_dups = tp->dsack_dups;
4170 info->tcpi_reord_seen = tp->reord_seen;
4171 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4172 info->tcpi_snd_wnd = tp->snd_wnd;
4173 info->tcpi_rcv_wnd = tp->rcv_wnd;
4174 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4175 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4176
4177 info->tcpi_total_rto = tp->total_rto;
4178 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4179 info->tcpi_total_rto_time = tp->total_rto_time;
4180 if (tp->rto_stamp)
4181 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4182
4183 unlock_sock_fast(sk, slow);
4184 }
4185 EXPORT_SYMBOL_GPL(tcp_get_info);
4186
tcp_opt_stats_get_size(void)4187 static size_t tcp_opt_stats_get_size(void)
4188 {
4189 return
4190 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4191 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4192 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4193 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4194 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4195 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4196 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4197 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4198 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4199 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4200 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4201 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4202 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4203 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4204 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4205 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4206 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4207 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4208 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4209 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4210 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4211 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4212 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4213 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4214 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4215 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4216 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4217 0;
4218 }
4219
4220 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4221 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4222 {
4223 if (skb->protocol == htons(ETH_P_IP))
4224 return ip_hdr(skb)->ttl;
4225 else if (skb->protocol == htons(ETH_P_IPV6))
4226 return ipv6_hdr(skb)->hop_limit;
4227 else
4228 return 0;
4229 }
4230
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4231 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4232 const struct sk_buff *orig_skb,
4233 const struct sk_buff *ack_skb)
4234 {
4235 const struct tcp_sock *tp = tcp_sk(sk);
4236 struct sk_buff *stats;
4237 struct tcp_info info;
4238 unsigned long rate;
4239 u64 rate64;
4240
4241 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4242 if (!stats)
4243 return NULL;
4244
4245 tcp_get_info_chrono_stats(tp, &info);
4246 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4247 info.tcpi_busy_time, TCP_NLA_PAD);
4248 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4249 info.tcpi_rwnd_limited, TCP_NLA_PAD);
4250 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4251 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4252 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4253 tp->data_segs_out, TCP_NLA_PAD);
4254 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4255 tp->total_retrans, TCP_NLA_PAD);
4256
4257 rate = READ_ONCE(sk->sk_pacing_rate);
4258 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4259 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4260
4261 rate64 = tcp_compute_delivery_rate(tp);
4262 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4263
4264 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4265 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4266 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4267
4268 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4269 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4270 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4271 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4272 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4273
4274 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4275 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4276
4277 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4278 TCP_NLA_PAD);
4279 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4280 TCP_NLA_PAD);
4281 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4282 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4283 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4284 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4285 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4286 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4287 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4288 TCP_NLA_PAD);
4289 if (ack_skb)
4290 nla_put_u8(stats, TCP_NLA_TTL,
4291 tcp_skb_ttl_or_hop_limit(ack_skb));
4292
4293 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4294 return stats;
4295 }
4296
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4297 int do_tcp_getsockopt(struct sock *sk, int level,
4298 int optname, sockptr_t optval, sockptr_t optlen)
4299 {
4300 struct inet_connection_sock *icsk = inet_csk(sk);
4301 struct tcp_sock *tp = tcp_sk(sk);
4302 struct net *net = sock_net(sk);
4303 int val, len;
4304
4305 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4306 return -EFAULT;
4307
4308 if (len < 0)
4309 return -EINVAL;
4310
4311 len = min_t(unsigned int, len, sizeof(int));
4312
4313 switch (optname) {
4314 case TCP_MAXSEG:
4315 val = tp->mss_cache;
4316 if (tp->rx_opt.user_mss &&
4317 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4318 val = tp->rx_opt.user_mss;
4319 if (tp->repair)
4320 val = tp->rx_opt.mss_clamp;
4321 break;
4322 case TCP_NODELAY:
4323 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4324 break;
4325 case TCP_CORK:
4326 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4327 break;
4328 case TCP_KEEPIDLE:
4329 val = keepalive_time_when(tp) / HZ;
4330 break;
4331 case TCP_KEEPINTVL:
4332 val = keepalive_intvl_when(tp) / HZ;
4333 break;
4334 case TCP_KEEPCNT:
4335 val = keepalive_probes(tp);
4336 break;
4337 case TCP_SYNCNT:
4338 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4339 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4340 break;
4341 case TCP_LINGER2:
4342 val = READ_ONCE(tp->linger2);
4343 if (val >= 0)
4344 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4345 break;
4346 case TCP_DEFER_ACCEPT:
4347 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4348 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4349 TCP_RTO_MAX / HZ);
4350 break;
4351 case TCP_WINDOW_CLAMP:
4352 val = READ_ONCE(tp->window_clamp);
4353 break;
4354 case TCP_INFO: {
4355 struct tcp_info info;
4356
4357 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4358 return -EFAULT;
4359
4360 tcp_get_info(sk, &info);
4361
4362 len = min_t(unsigned int, len, sizeof(info));
4363 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4364 return -EFAULT;
4365 if (copy_to_sockptr(optval, &info, len))
4366 return -EFAULT;
4367 return 0;
4368 }
4369 case TCP_CC_INFO: {
4370 const struct tcp_congestion_ops *ca_ops;
4371 union tcp_cc_info info;
4372 size_t sz = 0;
4373 int attr;
4374
4375 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4376 return -EFAULT;
4377
4378 ca_ops = icsk->icsk_ca_ops;
4379 if (ca_ops && ca_ops->get_info)
4380 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4381
4382 len = min_t(unsigned int, len, sz);
4383 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4384 return -EFAULT;
4385 if (copy_to_sockptr(optval, &info, len))
4386 return -EFAULT;
4387 return 0;
4388 }
4389 case TCP_QUICKACK:
4390 val = !inet_csk_in_pingpong_mode(sk);
4391 break;
4392
4393 case TCP_CONGESTION:
4394 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4395 return -EFAULT;
4396 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4397 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4398 return -EFAULT;
4399 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4400 return -EFAULT;
4401 return 0;
4402
4403 case TCP_ULP:
4404 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4405 return -EFAULT;
4406 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4407 if (!icsk->icsk_ulp_ops) {
4408 len = 0;
4409 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4410 return -EFAULT;
4411 return 0;
4412 }
4413 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4414 return -EFAULT;
4415 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4416 return -EFAULT;
4417 return 0;
4418
4419 case TCP_FASTOPEN_KEY: {
4420 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4421 unsigned int key_len;
4422
4423 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4424 return -EFAULT;
4425
4426 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4427 TCP_FASTOPEN_KEY_LENGTH;
4428 len = min_t(unsigned int, len, key_len);
4429 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4430 return -EFAULT;
4431 if (copy_to_sockptr(optval, key, len))
4432 return -EFAULT;
4433 return 0;
4434 }
4435 case TCP_THIN_LINEAR_TIMEOUTS:
4436 val = tp->thin_lto;
4437 break;
4438
4439 case TCP_THIN_DUPACK:
4440 val = 0;
4441 break;
4442
4443 case TCP_REPAIR:
4444 val = tp->repair;
4445 break;
4446
4447 case TCP_REPAIR_QUEUE:
4448 if (tp->repair)
4449 val = tp->repair_queue;
4450 else
4451 return -EINVAL;
4452 break;
4453
4454 case TCP_REPAIR_WINDOW: {
4455 struct tcp_repair_window opt;
4456
4457 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4458 return -EFAULT;
4459
4460 if (len != sizeof(opt))
4461 return -EINVAL;
4462
4463 if (!tp->repair)
4464 return -EPERM;
4465
4466 opt.snd_wl1 = tp->snd_wl1;
4467 opt.snd_wnd = tp->snd_wnd;
4468 opt.max_window = tp->max_window;
4469 opt.rcv_wnd = tp->rcv_wnd;
4470 opt.rcv_wup = tp->rcv_wup;
4471
4472 if (copy_to_sockptr(optval, &opt, len))
4473 return -EFAULT;
4474 return 0;
4475 }
4476 case TCP_QUEUE_SEQ:
4477 if (tp->repair_queue == TCP_SEND_QUEUE)
4478 val = tp->write_seq;
4479 else if (tp->repair_queue == TCP_RECV_QUEUE)
4480 val = tp->rcv_nxt;
4481 else
4482 return -EINVAL;
4483 break;
4484
4485 case TCP_USER_TIMEOUT:
4486 val = READ_ONCE(icsk->icsk_user_timeout);
4487 break;
4488
4489 case TCP_FASTOPEN:
4490 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4491 break;
4492
4493 case TCP_FASTOPEN_CONNECT:
4494 val = tp->fastopen_connect;
4495 break;
4496
4497 case TCP_FASTOPEN_NO_COOKIE:
4498 val = tp->fastopen_no_cookie;
4499 break;
4500
4501 case TCP_TX_DELAY:
4502 val = READ_ONCE(tp->tcp_tx_delay);
4503 break;
4504
4505 case TCP_TIMESTAMP:
4506 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4507 if (tp->tcp_usec_ts)
4508 val |= 1;
4509 else
4510 val &= ~1;
4511 break;
4512 case TCP_NOTSENT_LOWAT:
4513 val = READ_ONCE(tp->notsent_lowat);
4514 break;
4515 case TCP_INQ:
4516 val = tp->recvmsg_inq;
4517 break;
4518 case TCP_SAVE_SYN:
4519 val = tp->save_syn;
4520 break;
4521 case TCP_SAVED_SYN: {
4522 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4523 return -EFAULT;
4524
4525 sockopt_lock_sock(sk);
4526 if (tp->saved_syn) {
4527 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4528 len = tcp_saved_syn_len(tp->saved_syn);
4529 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4530 sockopt_release_sock(sk);
4531 return -EFAULT;
4532 }
4533 sockopt_release_sock(sk);
4534 return -EINVAL;
4535 }
4536 len = tcp_saved_syn_len(tp->saved_syn);
4537 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4538 sockopt_release_sock(sk);
4539 return -EFAULT;
4540 }
4541 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4542 sockopt_release_sock(sk);
4543 return -EFAULT;
4544 }
4545 tcp_saved_syn_free(tp);
4546 sockopt_release_sock(sk);
4547 } else {
4548 sockopt_release_sock(sk);
4549 len = 0;
4550 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4551 return -EFAULT;
4552 }
4553 return 0;
4554 }
4555 #ifdef CONFIG_MMU
4556 case TCP_ZEROCOPY_RECEIVE: {
4557 struct scm_timestamping_internal tss;
4558 struct tcp_zerocopy_receive zc = {};
4559 int err;
4560
4561 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4562 return -EFAULT;
4563 if (len < 0 ||
4564 len < offsetofend(struct tcp_zerocopy_receive, length))
4565 return -EINVAL;
4566 if (unlikely(len > sizeof(zc))) {
4567 err = check_zeroed_sockptr(optval, sizeof(zc),
4568 len - sizeof(zc));
4569 if (err < 1)
4570 return err == 0 ? -EINVAL : err;
4571 len = sizeof(zc);
4572 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4573 return -EFAULT;
4574 }
4575 if (copy_from_sockptr(&zc, optval, len))
4576 return -EFAULT;
4577 if (zc.reserved)
4578 return -EINVAL;
4579 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4580 return -EINVAL;
4581 sockopt_lock_sock(sk);
4582 err = tcp_zerocopy_receive(sk, &zc, &tss);
4583 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4584 &zc, &len, err);
4585 sockopt_release_sock(sk);
4586 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4587 goto zerocopy_rcv_cmsg;
4588 switch (len) {
4589 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4590 goto zerocopy_rcv_cmsg;
4591 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4592 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4593 case offsetofend(struct tcp_zerocopy_receive, flags):
4594 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4595 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4596 case offsetofend(struct tcp_zerocopy_receive, err):
4597 goto zerocopy_rcv_sk_err;
4598 case offsetofend(struct tcp_zerocopy_receive, inq):
4599 goto zerocopy_rcv_inq;
4600 case offsetofend(struct tcp_zerocopy_receive, length):
4601 default:
4602 goto zerocopy_rcv_out;
4603 }
4604 zerocopy_rcv_cmsg:
4605 if (zc.msg_flags & TCP_CMSG_TS)
4606 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4607 else
4608 zc.msg_flags = 0;
4609 zerocopy_rcv_sk_err:
4610 if (!err)
4611 zc.err = sock_error(sk);
4612 zerocopy_rcv_inq:
4613 zc.inq = tcp_inq_hint(sk);
4614 zerocopy_rcv_out:
4615 if (!err && copy_to_sockptr(optval, &zc, len))
4616 err = -EFAULT;
4617 return err;
4618 }
4619 #endif
4620 case TCP_AO_REPAIR:
4621 if (!tcp_can_repair_sock(sk))
4622 return -EPERM;
4623 return tcp_ao_get_repair(sk, optval, optlen);
4624 case TCP_AO_GET_KEYS:
4625 case TCP_AO_INFO: {
4626 int err;
4627
4628 sockopt_lock_sock(sk);
4629 if (optname == TCP_AO_GET_KEYS)
4630 err = tcp_ao_get_mkts(sk, optval, optlen);
4631 else
4632 err = tcp_ao_get_sock_info(sk, optval, optlen);
4633 sockopt_release_sock(sk);
4634
4635 return err;
4636 }
4637 case TCP_IS_MPTCP:
4638 val = 0;
4639 break;
4640 default:
4641 return -ENOPROTOOPT;
4642 }
4643
4644 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4645 return -EFAULT;
4646 if (copy_to_sockptr(optval, &val, len))
4647 return -EFAULT;
4648 return 0;
4649 }
4650
tcp_bpf_bypass_getsockopt(int level,int optname)4651 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4652 {
4653 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4654 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4655 */
4656 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4657 return true;
4658
4659 return false;
4660 }
4661 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4662
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4663 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4664 int __user *optlen)
4665 {
4666 struct inet_connection_sock *icsk = inet_csk(sk);
4667
4668 if (level != SOL_TCP)
4669 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4670 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4671 optval, optlen);
4672 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4673 USER_SOCKPTR(optlen));
4674 }
4675 EXPORT_SYMBOL(tcp_getsockopt);
4676
4677 #ifdef CONFIG_TCP_MD5SIG
4678 int tcp_md5_sigpool_id = -1;
4679 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4680
tcp_md5_alloc_sigpool(void)4681 int tcp_md5_alloc_sigpool(void)
4682 {
4683 size_t scratch_size;
4684 int ret;
4685
4686 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4687 ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4688 if (ret >= 0) {
4689 /* As long as any md5 sigpool was allocated, the return
4690 * id would stay the same. Re-write the id only for the case
4691 * when previously all MD5 keys were deleted and this call
4692 * allocates the first MD5 key, which may return a different
4693 * sigpool id than was used previously.
4694 */
4695 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4696 return 0;
4697 }
4698 return ret;
4699 }
4700
tcp_md5_release_sigpool(void)4701 void tcp_md5_release_sigpool(void)
4702 {
4703 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4704 }
4705
tcp_md5_add_sigpool(void)4706 void tcp_md5_add_sigpool(void)
4707 {
4708 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4709 }
4710
tcp_md5_hash_key(struct tcp_sigpool * hp,const struct tcp_md5sig_key * key)4711 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4712 const struct tcp_md5sig_key *key)
4713 {
4714 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4715 struct scatterlist sg;
4716
4717 sg_init_one(&sg, key->key, keylen);
4718 ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4719
4720 /* We use data_race() because tcp_md5_do_add() might change
4721 * key->key under us
4722 */
4723 return data_race(crypto_ahash_update(hp->req));
4724 }
4725 EXPORT_SYMBOL(tcp_md5_hash_key);
4726
4727 /* Called with rcu_read_lock() */
4728 static enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4729 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4730 const void *saddr, const void *daddr,
4731 int family, int l3index, const __u8 *hash_location)
4732 {
4733 /* This gets called for each TCP segment that has TCP-MD5 option.
4734 * We have 3 drop cases:
4735 * o No MD5 hash and one expected.
4736 * o MD5 hash and we're not expecting one.
4737 * o MD5 hash and its wrong.
4738 */
4739 const struct tcp_sock *tp = tcp_sk(sk);
4740 struct tcp_md5sig_key *key;
4741 u8 newhash[16];
4742 int genhash;
4743
4744 key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4745
4746 if (!key && hash_location) {
4747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4748 trace_tcp_hash_md5_unexpected(sk, skb);
4749 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4750 }
4751
4752 /* Check the signature.
4753 * To support dual stack listeners, we need to handle
4754 * IPv4-mapped case.
4755 */
4756 if (family == AF_INET)
4757 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4758 else
4759 genhash = tp->af_specific->calc_md5_hash(newhash, key,
4760 NULL, skb);
4761 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4762 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4763 trace_tcp_hash_md5_mismatch(sk, skb);
4764 return SKB_DROP_REASON_TCP_MD5FAILURE;
4765 }
4766 return SKB_NOT_DROPPED_YET;
4767 }
4768 #else
4769 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4770 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4771 const void *saddr, const void *daddr,
4772 int family, int l3index, const __u8 *hash_location)
4773 {
4774 return SKB_NOT_DROPPED_YET;
4775 }
4776
4777 #endif
4778
4779 /* Called with rcu_read_lock() */
4780 enum skb_drop_reason
tcp_inbound_hash(struct sock * sk,const struct request_sock * req,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4781 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4782 const struct sk_buff *skb,
4783 const void *saddr, const void *daddr,
4784 int family, int dif, int sdif)
4785 {
4786 const struct tcphdr *th = tcp_hdr(skb);
4787 const struct tcp_ao_hdr *aoh;
4788 const __u8 *md5_location;
4789 int l3index;
4790
4791 /* Invalid option or two times meet any of auth options */
4792 if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4793 trace_tcp_hash_bad_header(sk, skb);
4794 return SKB_DROP_REASON_TCP_AUTH_HDR;
4795 }
4796
4797 if (req) {
4798 if (tcp_rsk_used_ao(req) != !!aoh) {
4799 u8 keyid, rnext, maclen;
4800
4801 if (aoh) {
4802 keyid = aoh->keyid;
4803 rnext = aoh->rnext_keyid;
4804 maclen = tcp_ao_hdr_maclen(aoh);
4805 } else {
4806 keyid = rnext = maclen = 0;
4807 }
4808
4809 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4810 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4811 return SKB_DROP_REASON_TCP_AOFAILURE;
4812 }
4813 }
4814
4815 /* sdif set, means packet ingressed via a device
4816 * in an L3 domain and dif is set to the l3mdev
4817 */
4818 l3index = sdif ? dif : 0;
4819
4820 /* Fast path: unsigned segments */
4821 if (likely(!md5_location && !aoh)) {
4822 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4823 * for the remote peer. On TCP-AO established connection
4824 * the last key is impossible to remove, so there's
4825 * always at least one current_key.
4826 */
4827 if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4828 trace_tcp_hash_ao_required(sk, skb);
4829 return SKB_DROP_REASON_TCP_AONOTFOUND;
4830 }
4831 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4832 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4833 trace_tcp_hash_md5_required(sk, skb);
4834 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4835 }
4836 return SKB_NOT_DROPPED_YET;
4837 }
4838
4839 if (aoh)
4840 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4841
4842 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4843 l3index, md5_location);
4844 }
4845 EXPORT_SYMBOL_GPL(tcp_inbound_hash);
4846
tcp_done(struct sock * sk)4847 void tcp_done(struct sock *sk)
4848 {
4849 struct request_sock *req;
4850
4851 /* We might be called with a new socket, after
4852 * inet_csk_prepare_forced_close() has been called
4853 * so we can not use lockdep_sock_is_held(sk)
4854 */
4855 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4856
4857 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4858 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4859
4860 tcp_set_state(sk, TCP_CLOSE);
4861 tcp_clear_xmit_timers(sk);
4862 if (req)
4863 reqsk_fastopen_remove(sk, req, false);
4864
4865 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4866
4867 if (!sock_flag(sk, SOCK_DEAD))
4868 sk->sk_state_change(sk);
4869 else
4870 inet_csk_destroy_sock(sk);
4871 }
4872 EXPORT_SYMBOL_GPL(tcp_done);
4873
tcp_abort(struct sock * sk,int err)4874 int tcp_abort(struct sock *sk, int err)
4875 {
4876 int state = inet_sk_state_load(sk);
4877
4878 if (state == TCP_NEW_SYN_RECV) {
4879 struct request_sock *req = inet_reqsk(sk);
4880
4881 local_bh_disable();
4882 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4883 local_bh_enable();
4884 return 0;
4885 }
4886 if (state == TCP_TIME_WAIT) {
4887 struct inet_timewait_sock *tw = inet_twsk(sk);
4888
4889 refcount_inc(&tw->tw_refcnt);
4890 local_bh_disable();
4891 inet_twsk_deschedule_put(tw);
4892 local_bh_enable();
4893 return 0;
4894 }
4895
4896 /* BPF context ensures sock locking. */
4897 if (!has_current_bpf_ctx())
4898 /* Don't race with userspace socket closes such as tcp_close. */
4899 lock_sock(sk);
4900
4901 /* Avoid closing the same socket twice. */
4902 if (sk->sk_state == TCP_CLOSE) {
4903 if (!has_current_bpf_ctx())
4904 release_sock(sk);
4905 return -ENOENT;
4906 }
4907
4908 if (sk->sk_state == TCP_LISTEN) {
4909 tcp_set_state(sk, TCP_CLOSE);
4910 inet_csk_listen_stop(sk);
4911 }
4912
4913 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4914 local_bh_disable();
4915 bh_lock_sock(sk);
4916
4917 if (tcp_need_reset(sk->sk_state))
4918 tcp_send_active_reset(sk, GFP_ATOMIC,
4919 SK_RST_REASON_TCP_STATE);
4920 tcp_done_with_error(sk, err);
4921
4922 bh_unlock_sock(sk);
4923 local_bh_enable();
4924 if (!has_current_bpf_ctx())
4925 release_sock(sk);
4926 return 0;
4927 }
4928 EXPORT_SYMBOL_GPL(tcp_abort);
4929
4930 extern struct tcp_congestion_ops tcp_reno;
4931
4932 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4933 static int __init set_thash_entries(char *str)
4934 {
4935 ssize_t ret;
4936
4937 if (!str)
4938 return 0;
4939
4940 ret = kstrtoul(str, 0, &thash_entries);
4941 if (ret)
4942 return 0;
4943
4944 return 1;
4945 }
4946 __setup("thash_entries=", set_thash_entries);
4947
tcp_init_mem(void)4948 static void __init tcp_init_mem(void)
4949 {
4950 unsigned long limit = nr_free_buffer_pages() / 16;
4951
4952 limit = max(limit, 128UL);
4953 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4954 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4955 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4956 }
4957
tcp_struct_check(void)4958 static void __init tcp_struct_check(void)
4959 {
4960 /* TX read-mostly hotpath cache lines */
4961 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4962 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4963 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4964 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4965 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4966 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4967 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4968 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4969
4970 /* TXRX read-mostly hotpath cache lines */
4971 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4972 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4973 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4974 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4975 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4976 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4977 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4978 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4979 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4980
4981 /* RX read-mostly hotpath cache lines */
4982 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4983 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4984 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4985 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4986 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4987 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4988 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4989 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4990 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4991 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4992 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4993 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4994 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4995
4996 /* TX read-write hotpath cache lines */
4997 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4998 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4999 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5000 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5001 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5002 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5003 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5004 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5005 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5006 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5007 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5008 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5009 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5010 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5011 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5012 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5013
5014 /* TXRX read-write hotpath cache lines */
5015 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5016 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5017 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5018 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5019 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5020 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5021 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5022 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5023 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5024 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5025 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5026 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5027 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5028 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5029 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5030
5031 /* 32bit arches with 8byte alignment on u64 fields might need padding
5032 * before tcp_clock_cache.
5033 */
5034 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5035
5036 /* RX read-write hotpath cache lines */
5037 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5038 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5039 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5040 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5041 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5042 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5043 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5044 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5045 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5046 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5047 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5048 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5049 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5050 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5051 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5052 }
5053
tcp_init(void)5054 void __init tcp_init(void)
5055 {
5056 int max_rshare, max_wshare, cnt;
5057 unsigned long limit;
5058 unsigned int i;
5059
5060 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5061 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5062 sizeof_field(struct sk_buff, cb));
5063
5064 tcp_struct_check();
5065
5066 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5067
5068 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5069 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5070
5071 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5072 thash_entries, 21, /* one slot per 2 MB*/
5073 0, 64 * 1024);
5074 tcp_hashinfo.bind_bucket_cachep =
5075 kmem_cache_create("tcp_bind_bucket",
5076 sizeof(struct inet_bind_bucket), 0,
5077 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5078 SLAB_ACCOUNT,
5079 NULL);
5080 tcp_hashinfo.bind2_bucket_cachep =
5081 kmem_cache_create("tcp_bind2_bucket",
5082 sizeof(struct inet_bind2_bucket), 0,
5083 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5084 SLAB_ACCOUNT,
5085 NULL);
5086
5087 /* Size and allocate the main established and bind bucket
5088 * hash tables.
5089 *
5090 * The methodology is similar to that of the buffer cache.
5091 */
5092 tcp_hashinfo.ehash =
5093 alloc_large_system_hash("TCP established",
5094 sizeof(struct inet_ehash_bucket),
5095 thash_entries,
5096 17, /* one slot per 128 KB of memory */
5097 0,
5098 NULL,
5099 &tcp_hashinfo.ehash_mask,
5100 0,
5101 thash_entries ? 0 : 512 * 1024);
5102 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5103 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5104
5105 if (inet_ehash_locks_alloc(&tcp_hashinfo))
5106 panic("TCP: failed to alloc ehash_locks");
5107 tcp_hashinfo.bhash =
5108 alloc_large_system_hash("TCP bind",
5109 2 * sizeof(struct inet_bind_hashbucket),
5110 tcp_hashinfo.ehash_mask + 1,
5111 17, /* one slot per 128 KB of memory */
5112 0,
5113 &tcp_hashinfo.bhash_size,
5114 NULL,
5115 0,
5116 64 * 1024);
5117 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5118 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5119 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5120 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5121 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5122 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5123 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5124 }
5125
5126 tcp_hashinfo.pernet = false;
5127
5128 cnt = tcp_hashinfo.ehash_mask + 1;
5129 sysctl_tcp_max_orphans = cnt / 2;
5130
5131 tcp_init_mem();
5132 /* Set per-socket limits to no more than 1/128 the pressure threshold */
5133 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5134 max_wshare = min(4UL*1024*1024, limit);
5135 max_rshare = min(6UL*1024*1024, limit);
5136
5137 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5138 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5139 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5140
5141 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5142 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5143 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5144
5145 pr_info("Hash tables configured (established %u bind %u)\n",
5146 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5147
5148 tcp_v4_init();
5149 tcp_metrics_init();
5150 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5151 tcp_tasklet_init();
5152 mptcp_init();
5153 }
5154