xref: /linux/mm/page_isolation.c (revision cd5f3193)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/page_isolation.c
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/page-isolation.h>
8 #include <linux/pageblock-flags.h>
9 #include <linux/memory.h>
10 #include <linux/hugetlb.h>
11 #include <linux/page_owner.h>
12 #include <linux/migrate.h>
13 #include "internal.h"
14 
15 #define CREATE_TRACE_POINTS
16 #include <trace/events/page_isolation.h>
17 
18 /*
19  * This function checks whether the range [start_pfn, end_pfn) includes
20  * unmovable pages or not. The range must fall into a single pageblock and
21  * consequently belong to a single zone.
22  *
23  * PageLRU check without isolation or lru_lock could race so that
24  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
25  * check without lock_page also may miss some movable non-lru pages at
26  * race condition. So you can't expect this function should be exact.
27  *
28  * Returns a page without holding a reference. If the caller wants to
29  * dereference that page (e.g., dumping), it has to make sure that it
30  * cannot get removed (e.g., via memory unplug) concurrently.
31  *
32  */
has_unmovable_pages(unsigned long start_pfn,unsigned long end_pfn,int migratetype,int flags)33 static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
34 				int migratetype, int flags)
35 {
36 	struct page *page = pfn_to_page(start_pfn);
37 	struct zone *zone = page_zone(page);
38 	unsigned long pfn;
39 
40 	VM_BUG_ON(pageblock_start_pfn(start_pfn) !=
41 		  pageblock_start_pfn(end_pfn - 1));
42 
43 	if (is_migrate_cma_page(page)) {
44 		/*
45 		 * CMA allocations (alloc_contig_range) really need to mark
46 		 * isolate CMA pageblocks even when they are not movable in fact
47 		 * so consider them movable here.
48 		 */
49 		if (is_migrate_cma(migratetype))
50 			return NULL;
51 
52 		return page;
53 	}
54 
55 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
56 		page = pfn_to_page(pfn);
57 
58 		/*
59 		 * Both, bootmem allocations and memory holes are marked
60 		 * PG_reserved and are unmovable. We can even have unmovable
61 		 * allocations inside ZONE_MOVABLE, for example when
62 		 * specifying "movablecore".
63 		 */
64 		if (PageReserved(page))
65 			return page;
66 
67 		/*
68 		 * If the zone is movable and we have ruled out all reserved
69 		 * pages then it should be reasonably safe to assume the rest
70 		 * is movable.
71 		 */
72 		if (zone_idx(zone) == ZONE_MOVABLE)
73 			continue;
74 
75 		/*
76 		 * Hugepages are not in LRU lists, but they're movable.
77 		 * THPs are on the LRU, but need to be counted as #small pages.
78 		 * We need not scan over tail pages because we don't
79 		 * handle each tail page individually in migration.
80 		 */
81 		if (PageHuge(page) || PageTransCompound(page)) {
82 			struct folio *folio = page_folio(page);
83 			unsigned int skip_pages;
84 
85 			if (PageHuge(page)) {
86 				if (!hugepage_migration_supported(folio_hstate(folio)))
87 					return page;
88 			} else if (!folio_test_lru(folio) && !__folio_test_movable(folio)) {
89 				return page;
90 			}
91 
92 			skip_pages = folio_nr_pages(folio) - folio_page_idx(folio, page);
93 			pfn += skip_pages - 1;
94 			continue;
95 		}
96 
97 		/*
98 		 * We can't use page_count without pin a page
99 		 * because another CPU can free compound page.
100 		 * This check already skips compound tails of THP
101 		 * because their page->_refcount is zero at all time.
102 		 */
103 		if (!page_ref_count(page)) {
104 			if (PageBuddy(page))
105 				pfn += (1 << buddy_order(page)) - 1;
106 			continue;
107 		}
108 
109 		/*
110 		 * The HWPoisoned page may be not in buddy system, and
111 		 * page_count() is not 0.
112 		 */
113 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
114 			continue;
115 
116 		/*
117 		 * We treat all PageOffline() pages as movable when offlining
118 		 * to give drivers a chance to decrement their reference count
119 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
120 		 * can be offlined as there are no direct references anymore.
121 		 * For actually unmovable PageOffline() where the driver does
122 		 * not support this, we will fail later when trying to actually
123 		 * move these pages that still have a reference count > 0.
124 		 * (false negatives in this function only)
125 		 */
126 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
127 			continue;
128 
129 		if (__PageMovable(page) || PageLRU(page))
130 			continue;
131 
132 		/*
133 		 * If there are RECLAIMABLE pages, we need to check
134 		 * it.  But now, memory offline itself doesn't call
135 		 * shrink_node_slabs() and it still to be fixed.
136 		 */
137 		return page;
138 	}
139 	return NULL;
140 }
141 
142 /*
143  * This function set pageblock migratetype to isolate if no unmovable page is
144  * present in [start_pfn, end_pfn). The pageblock must intersect with
145  * [start_pfn, end_pfn).
146  */
set_migratetype_isolate(struct page * page,int migratetype,int isol_flags,unsigned long start_pfn,unsigned long end_pfn)147 static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags,
148 			unsigned long start_pfn, unsigned long end_pfn)
149 {
150 	struct zone *zone = page_zone(page);
151 	struct page *unmovable;
152 	unsigned long flags;
153 	unsigned long check_unmovable_start, check_unmovable_end;
154 
155 	if (PageUnaccepted(page))
156 		accept_page(page);
157 
158 	spin_lock_irqsave(&zone->lock, flags);
159 
160 	/*
161 	 * We assume the caller intended to SET migrate type to isolate.
162 	 * If it is already set, then someone else must have raced and
163 	 * set it before us.
164 	 */
165 	if (is_migrate_isolate_page(page)) {
166 		spin_unlock_irqrestore(&zone->lock, flags);
167 		return -EBUSY;
168 	}
169 
170 	/*
171 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
172 	 * We just check MOVABLE pages.
173 	 *
174 	 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
175 	 * to avoid redundant checks.
176 	 */
177 	check_unmovable_start = max(page_to_pfn(page), start_pfn);
178 	check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)),
179 				  end_pfn);
180 
181 	unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
182 			migratetype, isol_flags);
183 	if (!unmovable) {
184 		if (!move_freepages_block_isolate(zone, page, MIGRATE_ISOLATE)) {
185 			spin_unlock_irqrestore(&zone->lock, flags);
186 			return -EBUSY;
187 		}
188 		zone->nr_isolate_pageblock++;
189 		spin_unlock_irqrestore(&zone->lock, flags);
190 		return 0;
191 	}
192 
193 	spin_unlock_irqrestore(&zone->lock, flags);
194 	if (isol_flags & REPORT_FAILURE) {
195 		/*
196 		 * printk() with zone->lock held will likely trigger a
197 		 * lockdep splat, so defer it here.
198 		 */
199 		dump_page(unmovable, "unmovable page");
200 	}
201 
202 	return -EBUSY;
203 }
204 
unset_migratetype_isolate(struct page * page,int migratetype)205 static void unset_migratetype_isolate(struct page *page, int migratetype)
206 {
207 	struct zone *zone;
208 	unsigned long flags;
209 	bool isolated_page = false;
210 	unsigned int order;
211 	struct page *buddy;
212 
213 	zone = page_zone(page);
214 	spin_lock_irqsave(&zone->lock, flags);
215 	if (!is_migrate_isolate_page(page))
216 		goto out;
217 
218 	/*
219 	 * Because freepage with more than pageblock_order on isolated
220 	 * pageblock is restricted to merge due to freepage counting problem,
221 	 * it is possible that there is free buddy page.
222 	 * move_freepages_block() doesn't care of merge so we need other
223 	 * approach in order to merge them. Isolation and free will make
224 	 * these pages to be merged.
225 	 */
226 	if (PageBuddy(page)) {
227 		order = buddy_order(page);
228 		if (order >= pageblock_order && order < MAX_PAGE_ORDER) {
229 			buddy = find_buddy_page_pfn(page, page_to_pfn(page),
230 						    order, NULL);
231 			if (buddy && !is_migrate_isolate_page(buddy)) {
232 				isolated_page = !!__isolate_free_page(page, order);
233 				/*
234 				 * Isolating a free page in an isolated pageblock
235 				 * is expected to always work as watermarks don't
236 				 * apply here.
237 				 */
238 				VM_WARN_ON(!isolated_page);
239 			}
240 		}
241 	}
242 
243 	/*
244 	 * If we isolate freepage with more than pageblock_order, there
245 	 * should be no freepage in the range, so we could avoid costly
246 	 * pageblock scanning for freepage moving.
247 	 *
248 	 * We didn't actually touch any of the isolated pages, so place them
249 	 * to the tail of the freelist. This is an optimization for memory
250 	 * onlining - just onlined memory won't immediately be considered for
251 	 * allocation.
252 	 */
253 	if (!isolated_page) {
254 		/*
255 		 * Isolating this block already succeeded, so this
256 		 * should not fail on zone boundaries.
257 		 */
258 		WARN_ON_ONCE(!move_freepages_block_isolate(zone, page, migratetype));
259 	} else {
260 		set_pageblock_migratetype(page, migratetype);
261 		__putback_isolated_page(page, order, migratetype);
262 	}
263 	zone->nr_isolate_pageblock--;
264 out:
265 	spin_unlock_irqrestore(&zone->lock, flags);
266 }
267 
268 static inline struct page *
__first_valid_page(unsigned long pfn,unsigned long nr_pages)269 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
270 {
271 	int i;
272 
273 	for (i = 0; i < nr_pages; i++) {
274 		struct page *page;
275 
276 		page = pfn_to_online_page(pfn + i);
277 		if (!page)
278 			continue;
279 		return page;
280 	}
281 	return NULL;
282 }
283 
284 /**
285  * isolate_single_pageblock() -- tries to isolate a pageblock that might be
286  * within a free or in-use page.
287  * @boundary_pfn:		pageblock-aligned pfn that a page might cross
288  * @flags:			isolation flags
289  * @gfp_flags:			GFP flags used for migrating pages
290  * @isolate_before:	isolate the pageblock before the boundary_pfn
291  * @skip_isolation:	the flag to skip the pageblock isolation in second
292  *			isolate_single_pageblock()
293  * @migratetype:	migrate type to set in error recovery.
294  *
295  * Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one
296  * pageblock. When not all pageblocks within a page are isolated at the same
297  * time, free page accounting can go wrong. For example, in the case of
298  * MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two
299  * pagelbocks.
300  * [      MAX_PAGE_ORDER         ]
301  * [  pageblock0  |  pageblock1  ]
302  * When either pageblock is isolated, if it is a free page, the page is not
303  * split into separate migratetype lists, which is supposed to; if it is an
304  * in-use page and freed later, __free_one_page() does not split the free page
305  * either. The function handles this by splitting the free page or migrating
306  * the in-use page then splitting the free page.
307  */
isolate_single_pageblock(unsigned long boundary_pfn,int flags,gfp_t gfp_flags,bool isolate_before,bool skip_isolation,int migratetype)308 static int isolate_single_pageblock(unsigned long boundary_pfn, int flags,
309 			gfp_t gfp_flags, bool isolate_before, bool skip_isolation,
310 			int migratetype)
311 {
312 	unsigned long start_pfn;
313 	unsigned long isolate_pageblock;
314 	unsigned long pfn;
315 	struct zone *zone;
316 	int ret;
317 
318 	VM_BUG_ON(!pageblock_aligned(boundary_pfn));
319 
320 	if (isolate_before)
321 		isolate_pageblock = boundary_pfn - pageblock_nr_pages;
322 	else
323 		isolate_pageblock = boundary_pfn;
324 
325 	/*
326 	 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
327 	 * only isolating a subset of pageblocks from a bigger than pageblock
328 	 * free or in-use page. Also make sure all to-be-isolated pageblocks
329 	 * are within the same zone.
330 	 */
331 	zone  = page_zone(pfn_to_page(isolate_pageblock));
332 	start_pfn  = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
333 				      zone->zone_start_pfn);
334 
335 	if (skip_isolation) {
336 		int mt __maybe_unused = get_pageblock_migratetype(pfn_to_page(isolate_pageblock));
337 
338 		VM_BUG_ON(!is_migrate_isolate(mt));
339 	} else {
340 		ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype,
341 				flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages);
342 
343 		if (ret)
344 			return ret;
345 	}
346 
347 	/*
348 	 * Bail out early when the to-be-isolated pageblock does not form
349 	 * a free or in-use page across boundary_pfn:
350 	 *
351 	 * 1. isolate before boundary_pfn: the page after is not online
352 	 * 2. isolate after boundary_pfn: the page before is not online
353 	 *
354 	 * This also ensures correctness. Without it, when isolate after
355 	 * boundary_pfn and [start_pfn, boundary_pfn) are not online,
356 	 * __first_valid_page() will return unexpected NULL in the for loop
357 	 * below.
358 	 */
359 	if (isolate_before) {
360 		if (!pfn_to_online_page(boundary_pfn))
361 			return 0;
362 	} else {
363 		if (!pfn_to_online_page(boundary_pfn - 1))
364 			return 0;
365 	}
366 
367 	for (pfn = start_pfn; pfn < boundary_pfn;) {
368 		struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
369 
370 		VM_BUG_ON(!page);
371 		pfn = page_to_pfn(page);
372 
373 		if (PageUnaccepted(page)) {
374 			pfn += MAX_ORDER_NR_PAGES;
375 			continue;
376 		}
377 
378 		if (PageBuddy(page)) {
379 			int order = buddy_order(page);
380 
381 			/* move_freepages_block_isolate() handled this */
382 			VM_WARN_ON_ONCE(pfn + (1 << order) > boundary_pfn);
383 
384 			pfn += 1UL << order;
385 			continue;
386 		}
387 
388 		/*
389 		 * If a compound page is straddling our block, attempt
390 		 * to migrate it out of the way.
391 		 *
392 		 * We don't have to worry about this creating a large
393 		 * free page that straddles into our block: gigantic
394 		 * pages are freed as order-0 chunks, and LRU pages
395 		 * (currently) do not exceed pageblock_order.
396 		 *
397 		 * The block of interest has already been marked
398 		 * MIGRATE_ISOLATE above, so when migration is done it
399 		 * will free its pages onto the correct freelists.
400 		 */
401 		if (PageCompound(page)) {
402 			struct page *head = compound_head(page);
403 			unsigned long head_pfn = page_to_pfn(head);
404 			unsigned long nr_pages = compound_nr(head);
405 
406 			if (head_pfn + nr_pages <= boundary_pfn ||
407 			    PageHuge(page)) {
408 				pfn = head_pfn + nr_pages;
409 				continue;
410 			}
411 
412 			/*
413 			 * These pages are movable too, but they're
414 			 * not expected to exceed pageblock_order.
415 			 *
416 			 * Let us know when they do, so we can add
417 			 * proper free and split handling for them.
418 			 */
419 			VM_WARN_ON_ONCE_PAGE(PageLRU(page), page);
420 			VM_WARN_ON_ONCE_PAGE(__PageMovable(page), page);
421 
422 			goto failed;
423 		}
424 
425 		pfn++;
426 	}
427 	return 0;
428 failed:
429 	/* restore the original migratetype */
430 	if (!skip_isolation)
431 		unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype);
432 	return -EBUSY;
433 }
434 
435 /**
436  * start_isolate_page_range() - mark page range MIGRATE_ISOLATE
437  * @start_pfn:		The first PFN of the range to be isolated.
438  * @end_pfn:		The last PFN of the range to be isolated.
439  * @migratetype:	Migrate type to set in error recovery.
440  * @flags:		The following flags are allowed (they can be combined in
441  *			a bit mask)
442  *			MEMORY_OFFLINE - isolate to offline (!allocate) memory
443  *					 e.g., skip over PageHWPoison() pages
444  *					 and PageOffline() pages.
445  *			REPORT_FAILURE - report details about the failure to
446  *			isolate the range
447  * @gfp_flags:		GFP flags used for migrating pages that sit across the
448  *			range boundaries.
449  *
450  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
451  * the range will never be allocated. Any free pages and pages freed in the
452  * future will not be allocated again. If specified range includes migrate types
453  * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
454  * pages in the range finally, the caller have to free all pages in the range.
455  * test_page_isolated() can be used for test it.
456  *
457  * The function first tries to isolate the pageblocks at the beginning and end
458  * of the range, since there might be pages across the range boundaries.
459  * Afterwards, it isolates the rest of the range.
460  *
461  * There is no high level synchronization mechanism that prevents two threads
462  * from trying to isolate overlapping ranges. If this happens, one thread
463  * will notice pageblocks in the overlapping range already set to isolate.
464  * This happens in set_migratetype_isolate, and set_migratetype_isolate
465  * returns an error. We then clean up by restoring the migration type on
466  * pageblocks we may have modified and return -EBUSY to caller. This
467  * prevents two threads from simultaneously working on overlapping ranges.
468  *
469  * Please note that there is no strong synchronization with the page allocator
470  * either. Pages might be freed while their page blocks are marked ISOLATED.
471  * A call to drain_all_pages() after isolation can flush most of them. However
472  * in some cases pages might still end up on pcp lists and that would allow
473  * for their allocation even when they are in fact isolated already. Depending
474  * on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
475  * might be used to flush and disable pcplist before isolation and enable after
476  * unisolation.
477  *
478  * Return: 0 on success and -EBUSY if any part of range cannot be isolated.
479  */
start_isolate_page_range(unsigned long start_pfn,unsigned long end_pfn,int migratetype,int flags,gfp_t gfp_flags)480 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
481 			     int migratetype, int flags, gfp_t gfp_flags)
482 {
483 	unsigned long pfn;
484 	struct page *page;
485 	/* isolation is done at page block granularity */
486 	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
487 	unsigned long isolate_end = pageblock_align(end_pfn);
488 	int ret;
489 	bool skip_isolation = false;
490 
491 	/* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
492 	ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false,
493 			skip_isolation, migratetype);
494 	if (ret)
495 		return ret;
496 
497 	if (isolate_start == isolate_end - pageblock_nr_pages)
498 		skip_isolation = true;
499 
500 	/* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
501 	ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true,
502 			skip_isolation, migratetype);
503 	if (ret) {
504 		unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype);
505 		return ret;
506 	}
507 
508 	/* skip isolated pageblocks at the beginning and end */
509 	for (pfn = isolate_start + pageblock_nr_pages;
510 	     pfn < isolate_end - pageblock_nr_pages;
511 	     pfn += pageblock_nr_pages) {
512 		page = __first_valid_page(pfn, pageblock_nr_pages);
513 		if (page && set_migratetype_isolate(page, migratetype, flags,
514 					start_pfn, end_pfn)) {
515 			undo_isolate_page_range(isolate_start, pfn, migratetype);
516 			unset_migratetype_isolate(
517 				pfn_to_page(isolate_end - pageblock_nr_pages),
518 				migratetype);
519 			return -EBUSY;
520 		}
521 	}
522 	return 0;
523 }
524 
525 /**
526  * undo_isolate_page_range - undo effects of start_isolate_page_range()
527  * @start_pfn:		The first PFN of the isolated range
528  * @end_pfn:		The last PFN of the isolated range
529  * @migratetype:	New migrate type to set on the range
530  *
531  * This finds every MIGRATE_ISOLATE page block in the given range
532  * and switches it to @migratetype.
533  */
undo_isolate_page_range(unsigned long start_pfn,unsigned long end_pfn,int migratetype)534 void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
535 			    int migratetype)
536 {
537 	unsigned long pfn;
538 	struct page *page;
539 	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
540 	unsigned long isolate_end = pageblock_align(end_pfn);
541 
542 	for (pfn = isolate_start;
543 	     pfn < isolate_end;
544 	     pfn += pageblock_nr_pages) {
545 		page = __first_valid_page(pfn, pageblock_nr_pages);
546 		if (!page || !is_migrate_isolate_page(page))
547 			continue;
548 		unset_migratetype_isolate(page, migratetype);
549 	}
550 }
551 /*
552  * Test all pages in the range is free(means isolated) or not.
553  * all pages in [start_pfn...end_pfn) must be in the same zone.
554  * zone->lock must be held before call this.
555  *
556  * Returns the last tested pfn.
557  */
558 static unsigned long
__test_page_isolated_in_pageblock(unsigned long pfn,unsigned long end_pfn,int flags)559 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
560 				  int flags)
561 {
562 	struct page *page;
563 
564 	while (pfn < end_pfn) {
565 		page = pfn_to_page(pfn);
566 		if (PageBuddy(page))
567 			/*
568 			 * If the page is on a free list, it has to be on
569 			 * the correct MIGRATE_ISOLATE freelist. There is no
570 			 * simple way to verify that as VM_BUG_ON(), though.
571 			 */
572 			pfn += 1 << buddy_order(page);
573 		else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
574 			/* A HWPoisoned page cannot be also PageBuddy */
575 			pfn++;
576 		else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
577 			 !page_count(page))
578 			/*
579 			 * The responsible driver agreed to skip PageOffline()
580 			 * pages when offlining memory by dropping its
581 			 * reference in MEM_GOING_OFFLINE.
582 			 */
583 			pfn++;
584 		else
585 			break;
586 	}
587 
588 	return pfn;
589 }
590 
591 /**
592  * test_pages_isolated - check if pageblocks in range are isolated
593  * @start_pfn:		The first PFN of the isolated range
594  * @end_pfn:		The first PFN *after* the isolated range
595  * @isol_flags:		Testing mode flags
596  *
597  * This tests if all in the specified range are free.
598  *
599  * If %MEMORY_OFFLINE is specified in @flags, it will consider
600  * poisoned and offlined pages free as well.
601  *
602  * Caller must ensure the requested range doesn't span zones.
603  *
604  * Returns 0 if true, -EBUSY if one or more pages are in use.
605  */
test_pages_isolated(unsigned long start_pfn,unsigned long end_pfn,int isol_flags)606 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
607 			int isol_flags)
608 {
609 	unsigned long pfn, flags;
610 	struct page *page;
611 	struct zone *zone;
612 	int ret;
613 
614 	/*
615 	 * Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free
616 	 * pages are not aligned to pageblock_nr_pages.
617 	 * Then we just check migratetype first.
618 	 */
619 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
620 		page = __first_valid_page(pfn, pageblock_nr_pages);
621 		if (page && !is_migrate_isolate_page(page))
622 			break;
623 	}
624 	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
625 	if ((pfn < end_pfn) || !page) {
626 		ret = -EBUSY;
627 		goto out;
628 	}
629 
630 	/* Check all pages are free or marked as ISOLATED */
631 	zone = page_zone(page);
632 	spin_lock_irqsave(&zone->lock, flags);
633 	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags);
634 	spin_unlock_irqrestore(&zone->lock, flags);
635 
636 	ret = pfn < end_pfn ? -EBUSY : 0;
637 
638 out:
639 	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
640 
641 	return ret;
642 }
643