xref: /netbsd/sys/kern/subr_thmap.c (revision ba21188b)
1 /*	$NetBSD: subr_thmap.c,v 1.13 2023/04/11 13:06:21 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Upstream: https://github.com/rmind/thmap/
29  */
30 
31 /*
32  * Concurrent trie-hash map.
33  *
34  * The data structure is conceptually a radix trie on hashed keys.
35  * Keys are hashed using a 32-bit function.  The root level is a special
36  * case: it is managed using the compare-and-swap (CAS) atomic operation
37  * and has a fanout of 64.  The subsequent levels are constructed using
38  * intermediate nodes with a fanout of 16 (using 4 bits).  As more levels
39  * are created, more blocks of the 32-bit hash value might be generated
40  * by incrementing the seed parameter of the hash function.
41  *
42  * Concurrency
43  *
44  * - READERS: Descending is simply walking through the slot values of
45  *   the intermediate nodes.  It is lock-free as there is no intermediate
46  *   state: the slot is either empty or has a pointer to the child node.
47  *   The main assumptions here are the following:
48  *
49  *   i) modifications must preserve consistency with the respect to the
50  *   readers i.e. the readers can only see the valid node values;
51  *
52  *   ii) any invalid view must "fail" the reads, e.g. by making them
53  *   re-try from the root; this is a case for deletions and is achieved
54  *   using the NODE_DELETED flag.
55  *
56  *   iii) the node destruction must be synchronized with the readers,
57  *   e.g. by using the Epoch-based reclamation or other techniques.
58  *
59  * - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which
60  *   is implemented using the NODE_LOCKED bit) -- it provides mutual
61  *   exclusion amongst concurrent writers.  The lock order for the nodes
62  *   is "bottom-up" i.e. they are locked as we ascend the trie.  A key
63  *   constraint here is that parent pointer never changes.
64  *
65  * - DELETES: In addition to writer's locking, the deletion keeps the
66  *   intermediate nodes in a valid state and sets the NODE_DELETED flag,
67  *   to indicate that the readers must re-start the walk from the root.
68  *   As the levels are collapsed, NODE_DELETED gets propagated up-tree.
69  *   The leaf nodes just stay as-is until they are reclaimed.
70  *
71  * - ROOT LEVEL: The root level is a special case, as it is implemented
72  *   as an array (rather than intermediate node).  The root-level slot can
73  *   only be set using CAS and it can only be set to a valid intermediate
74  *   node.  The root-level slot can only be cleared when the node it points
75  *   at becomes empty, is locked and marked as NODE_DELETED (this causes
76  *   the insert/delete operations to re-try until the slot is set to NULL).
77  *
78  * References:
79  *
80  *	W. Litwin, 1981, Trie Hashing.
81  *	Proceedings of the 1981 ACM SIGMOD, p. 19-29
82  *	https://dl.acm.org/citation.cfm?id=582322
83  *
84  *	P. L. Lehman and S. B. Yao.
85  *	Efficient locking for concurrent operations on B-trees.
86  *	ACM TODS, 6(4):650-670, 1981
87  *	https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
88  */
89 
90 #ifdef _KERNEL
91 #include <sys/cdefs.h>
92 #include <sys/param.h>
93 #include <sys/types.h>
94 #include <sys/thmap.h>
95 #include <sys/kmem.h>
96 #include <sys/lock.h>
97 #include <sys/atomic.h>
98 #include <sys/hash.h>
99 #include <sys/cprng.h>
100 #define THMAP_RCSID(a) __KERNEL_RCSID(0, a)
101 #else
102 #include <stdio.h>
103 #include <stdlib.h>
104 #include <stdbool.h>
105 #include <stddef.h>
106 #include <inttypes.h>
107 #include <string.h>
108 #include <limits.h>
109 #define THMAP_RCSID(a) __RCSID(a)
110 
111 #include "thmap.h"
112 #include "utils.h"
113 #endif
114 
115 THMAP_RCSID("$NetBSD: subr_thmap.c,v 1.13 2023/04/11 13:06:21 riastradh Exp $");
116 
117 #include <crypto/blake2/blake2s.h>
118 
119 /*
120  * NetBSD kernel wrappers
121  */
122 #ifdef _KERNEL
123 #define	ASSERT KASSERT
124 #define	atomic_thread_fence(x) membar_release() /* only used for release order */
125 #define	atomic_compare_exchange_weak_explicit_32(p, e, n, m1, m2) \
126     (atomic_cas_32((p), *(e), (n)) == *(e))
127 #define	atomic_compare_exchange_weak_explicit_ptr(p, e, n, m1, m2) \
128     (atomic_cas_ptr((p), *(void **)(e), (void *)(n)) == *(void **)(e))
129 #define	atomic_exchange_explicit(o, n, m1) atomic_swap_ptr((o), (n))
130 #define	murmurhash3 murmurhash2
131 #endif
132 
133 /*
134  * The root level fanout is 64 (indexed by the last 6 bits of the hash
135  * value XORed with the length).  Each subsequent level, represented by
136  * intermediate nodes, has a fanout of 16 (using 4 bits).
137  *
138  * The hash function produces 32-bit values.
139  */
140 
141 #define	HASHVAL_SEEDLEN	(16)
142 #define	HASHVAL_BITS	(32)
143 #define	HASHVAL_MOD	(HASHVAL_BITS - 1)
144 #define	HASHVAL_SHIFT	(5)
145 
146 #define	ROOT_BITS	(6)
147 #define	ROOT_SIZE	(1 << ROOT_BITS)
148 #define	ROOT_MASK	(ROOT_SIZE - 1)
149 #define	ROOT_MSBITS	(HASHVAL_BITS - ROOT_BITS)
150 
151 #define	LEVEL_BITS	(4)
152 #define	LEVEL_SIZE	(1 << LEVEL_BITS)
153 #define	LEVEL_MASK	(LEVEL_SIZE - 1)
154 
155 /*
156  * Instead of raw pointers, we use offsets from the base address.
157  * This accommodates the use of this data structure in shared memory,
158  * where mappings can be in different address spaces.
159  *
160  * The pointers must be aligned, since pointer tagging is used to
161  * differentiate the intermediate nodes from leaves.  We reserve the
162  * least significant bit.
163  */
164 typedef uintptr_t thmap_ptr_t;
165 typedef uintptr_t atomic_thmap_ptr_t;			// C11 _Atomic
166 
167 #define	THMAP_NULL		((thmap_ptr_t)0)
168 
169 #define	THMAP_LEAF_BIT		(0x1)
170 
171 #define	THMAP_ALIGNED_P(p)	(((uintptr_t)(p) & 3) == 0)
172 #define	THMAP_ALIGN(p)		((uintptr_t)(p) & ~(uintptr_t)3)
173 #define	THMAP_INODE_P(p)	(((uintptr_t)(p) & THMAP_LEAF_BIT) == 0)
174 
175 #define	THMAP_GETPTR(th, p)	((void *)((th)->baseptr + (uintptr_t)(p)))
176 #define	THMAP_GETOFF(th, p)	((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr))
177 #define	THMAP_NODE(th, p)	THMAP_GETPTR(th, THMAP_ALIGN(p))
178 
179 /*
180  * State field.
181  */
182 
183 #define	NODE_LOCKED		(1U << 31)		// lock (writers)
184 #define	NODE_DELETED		(1U << 30)		// node deleted
185 #define	NODE_COUNT(s)		((s) & 0x3fffffff)	// slot count mask
186 
187 /*
188  * There are two types of nodes:
189  * - Intermediate nodes -- arrays pointing to another level or a leaf;
190  * - Leaves, which store a key-value pair.
191  */
192 
193 typedef struct {
194 	uint32_t		state;			// C11 _Atomic
195 	thmap_ptr_t		parent;
196 	atomic_thmap_ptr_t	slots[LEVEL_SIZE];
197 } thmap_inode_t;
198 
199 #define	THMAP_INODE_LEN	sizeof(thmap_inode_t)
200 
201 typedef struct {
202 	thmap_ptr_t	key;
203 	size_t		len;
204 	void *		val;
205 } thmap_leaf_t;
206 
207 typedef struct {
208 	const uint8_t *	seed;		// secret seed
209 	unsigned	rslot;		// root-level slot index
210 	unsigned	level;		// current level in the tree
211 	unsigned	hashidx;	// current hash index (block of bits)
212 	uint32_t	hashval;	// current hash value
213 } thmap_query_t;
214 
215 typedef struct {
216 	uintptr_t	addr;
217 	size_t		len;
218 	void *		next;
219 } thmap_gc_t;
220 
221 #define	THMAP_ROOT_LEN	(sizeof(thmap_ptr_t) * ROOT_SIZE)
222 
223 struct thmap {
224 	uintptr_t		baseptr;
225 	atomic_thmap_ptr_t *	root;
226 	unsigned		flags;
227 	const thmap_ops_t *	ops;
228 	thmap_gc_t *		gc_list;		// C11 _Atomic
229 	uint8_t			seed[HASHVAL_SEEDLEN];
230 };
231 
232 static void	stage_mem_gc(thmap_t *, uintptr_t, size_t);
233 
234 /*
235  * A few low-level helper routines.
236  */
237 
238 static uintptr_t
alloc_wrapper(size_t len)239 alloc_wrapper(size_t len)
240 {
241 	return (uintptr_t)kmem_intr_alloc(len, KM_NOSLEEP);
242 }
243 
244 static void
free_wrapper(uintptr_t addr,size_t len)245 free_wrapper(uintptr_t addr, size_t len)
246 {
247 	kmem_intr_free((void *)addr, len);
248 }
249 
250 static const thmap_ops_t thmap_default_ops = {
251 	.alloc = alloc_wrapper,
252 	.free = free_wrapper
253 };
254 
255 /*
256  * NODE LOCKING.
257  */
258 
259 static inline bool __diagused
node_locked_p(thmap_inode_t * node)260 node_locked_p(thmap_inode_t *node)
261 {
262 	return (atomic_load_relaxed(&node->state) & NODE_LOCKED) != 0;
263 }
264 
265 static void
lock_node(thmap_inode_t * node)266 lock_node(thmap_inode_t *node)
267 {
268 	unsigned bcount = SPINLOCK_BACKOFF_MIN;
269 	uint32_t s;
270 again:
271 	s = atomic_load_relaxed(&node->state);
272 	if (s & NODE_LOCKED) {
273 		SPINLOCK_BACKOFF(bcount);
274 		goto again;
275 	}
276 	/* Acquire from prior release in unlock_node.() */
277 	if (!atomic_compare_exchange_weak_explicit_32(&node->state,
278 	    &s, s | NODE_LOCKED, memory_order_acquire, memory_order_relaxed)) {
279 		bcount = SPINLOCK_BACKOFF_MIN;
280 		goto again;
281 	}
282 }
283 
284 static void
unlock_node(thmap_inode_t * node)285 unlock_node(thmap_inode_t *node)
286 {
287 	uint32_t s = atomic_load_relaxed(&node->state) & ~NODE_LOCKED;
288 
289 	ASSERT(node_locked_p(node));
290 	/* Release to subsequent acquire in lock_node(). */
291 	atomic_store_release(&node->state, s);
292 }
293 
294 /*
295  * HASH VALUE AND KEY OPERATIONS.
296  */
297 
298 static inline uint32_t
hash(const uint8_t seed[static HASHVAL_SEEDLEN],const void * key,size_t len,uint32_t level)299 hash(const uint8_t seed[static HASHVAL_SEEDLEN], const void *key, size_t len,
300     uint32_t level)
301 {
302 	struct blake2s B;
303 	uint32_t h;
304 
305 	if (level == 0)
306 		return murmurhash3(key, len, 0);
307 
308 	/*
309 	 * Byte order is not significant here because this is
310 	 * intentionally secret and independent for each thmap.
311 	 *
312 	 * XXX We get 32 bytes of output at a time; we could march
313 	 * through them sequentially rather than throwing away 28 bytes
314 	 * and recomputing BLAKE2 each time.  But the number of
315 	 * iterations ought to be geometric in the collision
316 	 * probability at each level which should be very small anyway.
317 	 */
318 	blake2s_init(&B, sizeof h, seed, HASHVAL_SEEDLEN);
319 	blake2s_update(&B, &level, sizeof level);
320 	blake2s_update(&B, key, len);
321 	blake2s_final(&B, &h);
322 
323 	return h;
324 }
325 
326 static inline void
hashval_init(thmap_query_t * query,const uint8_t seed[static HASHVAL_SEEDLEN],const void * restrict key,size_t len)327 hashval_init(thmap_query_t *query, const uint8_t seed[static HASHVAL_SEEDLEN],
328     const void * restrict key, size_t len)
329 {
330 	const uint32_t hashval = hash(seed, key, len, 0);
331 
332 	query->seed = seed;
333 	query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK;
334 	query->level = 0;
335 	query->hashval = hashval;
336 	query->hashidx = 0;
337 }
338 
339 /*
340  * hashval_getslot: given the key, compute the hash (if not already cached)
341  * and return the offset for the current level.
342  */
343 static unsigned
hashval_getslot(thmap_query_t * query,const void * restrict key,size_t len)344 hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len)
345 {
346 	const unsigned offset = query->level * LEVEL_BITS;
347 	const unsigned shift = offset & HASHVAL_MOD;
348 	const unsigned i = offset >> HASHVAL_SHIFT;
349 
350 	if (query->hashidx != i) {
351 		/* Generate a hash value for a required range. */
352 		query->hashval = hash(query->seed, key, len, i);
353 		query->hashidx = i;
354 	}
355 	return (query->hashval >> shift) & LEVEL_MASK;
356 }
357 
358 static unsigned
hashval_getleafslot(const thmap_t * thmap,const thmap_leaf_t * leaf,unsigned level)359 hashval_getleafslot(const thmap_t *thmap,
360     const thmap_leaf_t *leaf, unsigned level)
361 {
362 	const void *key = THMAP_GETPTR(thmap, leaf->key);
363 	const unsigned offset = level * LEVEL_BITS;
364 	const unsigned shift = offset & HASHVAL_MOD;
365 	const unsigned i = offset >> HASHVAL_SHIFT;
366 
367 	return (hash(thmap->seed, key, leaf->len, i) >> shift) & LEVEL_MASK;
368 }
369 
370 static inline unsigned
hashval_getl0slot(const thmap_t * thmap,const thmap_query_t * query,const thmap_leaf_t * leaf)371 hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query,
372     const thmap_leaf_t *leaf)
373 {
374 	if (__predict_true(query->hashidx == 0)) {
375 		return query->hashval & LEVEL_MASK;
376 	}
377 	return hashval_getleafslot(thmap, leaf, 0);
378 }
379 
380 static bool
key_cmp_p(const thmap_t * thmap,const thmap_leaf_t * leaf,const void * restrict key,size_t len)381 key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf,
382     const void * restrict key, size_t len)
383 {
384 	const void *leafkey = THMAP_GETPTR(thmap, leaf->key);
385 	return len == leaf->len && memcmp(key, leafkey, len) == 0;
386 }
387 
388 /*
389  * INTER-NODE OPERATIONS.
390  */
391 
392 static thmap_inode_t *
node_create(thmap_t * thmap,thmap_inode_t * parent)393 node_create(thmap_t *thmap, thmap_inode_t *parent)
394 {
395 	thmap_inode_t *node;
396 	uintptr_t p;
397 
398 	p = thmap->ops->alloc(THMAP_INODE_LEN);
399 	if (!p) {
400 		return NULL;
401 	}
402 	node = THMAP_GETPTR(thmap, p);
403 	ASSERT(THMAP_ALIGNED_P(node));
404 
405 	memset(node, 0, THMAP_INODE_LEN);
406 	if (parent) {
407 		/* Not yet published, no need for ordering. */
408 		atomic_store_relaxed(&node->state, NODE_LOCKED);
409 		node->parent = THMAP_GETOFF(thmap, parent);
410 	}
411 	return node;
412 }
413 
414 static void
node_insert(thmap_inode_t * node,unsigned slot,thmap_ptr_t child)415 node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child)
416 {
417 	ASSERT(node_locked_p(node) || node->parent == THMAP_NULL);
418 	ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
419 	ASSERT(atomic_load_relaxed(&node->slots[slot]) == THMAP_NULL);
420 
421 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) < LEVEL_SIZE);
422 
423 	/*
424 	 * If node is public already, caller is responsible for issuing
425 	 * release fence; if node is not public, no ordering is needed.
426 	 * Hence relaxed ordering.
427 	 */
428 	atomic_store_relaxed(&node->slots[slot], child);
429 	atomic_store_relaxed(&node->state,
430 	    atomic_load_relaxed(&node->state) + 1);
431 }
432 
433 static void
node_remove(thmap_inode_t * node,unsigned slot)434 node_remove(thmap_inode_t *node, unsigned slot)
435 {
436 	ASSERT(node_locked_p(node));
437 	ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
438 	ASSERT(atomic_load_relaxed(&node->slots[slot]) != THMAP_NULL);
439 
440 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) > 0);
441 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) <= LEVEL_SIZE);
442 
443 	/* Element will be GC-ed later; no need for ordering here. */
444 	atomic_store_relaxed(&node->slots[slot], THMAP_NULL);
445 	atomic_store_relaxed(&node->state,
446 	    atomic_load_relaxed(&node->state) - 1);
447 }
448 
449 /*
450  * LEAF OPERATIONS.
451  */
452 
453 static thmap_leaf_t *
leaf_create(const thmap_t * thmap,const void * key,size_t len,void * val)454 leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val)
455 {
456 	thmap_leaf_t *leaf;
457 	uintptr_t leaf_off, key_off;
458 
459 	leaf_off = thmap->ops->alloc(sizeof(thmap_leaf_t));
460 	if (!leaf_off) {
461 		return NULL;
462 	}
463 	leaf = THMAP_GETPTR(thmap, leaf_off);
464 	ASSERT(THMAP_ALIGNED_P(leaf));
465 
466 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
467 		/*
468 		 * Copy the key.
469 		 */
470 		key_off = thmap->ops->alloc(len);
471 		if (!key_off) {
472 			thmap->ops->free(leaf_off, sizeof(thmap_leaf_t));
473 			return NULL;
474 		}
475 		memcpy(THMAP_GETPTR(thmap, key_off), key, len);
476 		leaf->key = key_off;
477 	} else {
478 		/* Otherwise, we use a reference. */
479 		leaf->key = (uintptr_t)key;
480 	}
481 	leaf->len = len;
482 	leaf->val = val;
483 	return leaf;
484 }
485 
486 static void
leaf_free(const thmap_t * thmap,thmap_leaf_t * leaf)487 leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf)
488 {
489 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
490 		thmap->ops->free(leaf->key, leaf->len);
491 	}
492 	thmap->ops->free(THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
493 }
494 
495 static thmap_leaf_t *
get_leaf(const thmap_t * thmap,thmap_inode_t * parent,unsigned slot)496 get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot)
497 {
498 	thmap_ptr_t node;
499 
500 	/* Consume from prior release in thmap_put(). */
501 	node = atomic_load_consume(&parent->slots[slot]);
502 	if (THMAP_INODE_P(node)) {
503 		return NULL;
504 	}
505 	return THMAP_NODE(thmap, node);
506 }
507 
508 /*
509  * ROOT OPERATIONS.
510  */
511 
512 /*
513  * root_try_put: Try to set a root pointer at query->rslot.
514  *
515  * => Implies release operation on success.
516  * => Implies no ordering on failure.
517  */
518 static inline int
root_try_put(thmap_t * thmap,const thmap_query_t * query,thmap_leaf_t * leaf)519 root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf)
520 {
521 	thmap_ptr_t expected;
522 	const unsigned i = query->rslot;
523 	thmap_inode_t *node;
524 	thmap_ptr_t nptr;
525 	unsigned slot;
526 
527 	/*
528 	 * Must pre-check first.  No ordering required because we will
529 	 * check again before taking any actions, and start over if
530 	 * this changes from null.
531 	 */
532 	if (atomic_load_relaxed(&thmap->root[i])) {
533 		return EEXIST;
534 	}
535 
536 	/*
537 	 * Create an intermediate node.  Since there is no parent set,
538 	 * it will be created unlocked and the CAS operation will
539 	 * release it to readers.
540 	 */
541 	node = node_create(thmap, NULL);
542 	if (__predict_false(node == NULL)) {
543 		return ENOMEM;
544 	}
545 	slot = hashval_getl0slot(thmap, query, leaf);
546 	node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT);
547 	nptr = THMAP_GETOFF(thmap, node);
548 again:
549 	if (atomic_load_relaxed(&thmap->root[i])) {
550 		thmap->ops->free(nptr, THMAP_INODE_LEN);
551 		return EEXIST;
552 	}
553 	/* Release to subsequent consume in find_edge_node(). */
554 	expected = THMAP_NULL;
555 	if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->root[i], &expected,
556 	    nptr, memory_order_release, memory_order_relaxed)) {
557 		goto again;
558 	}
559 	return 0;
560 }
561 
562 /*
563  * find_edge_node: given the hash, traverse the tree to find the edge node.
564  *
565  * => Returns an aligned (clean) pointer to the parent node.
566  * => Returns the slot number and sets current level.
567  */
568 static thmap_inode_t *
find_edge_node(const thmap_t * thmap,thmap_query_t * query,const void * restrict key,size_t len,unsigned * slot)569 find_edge_node(const thmap_t *thmap, thmap_query_t *query,
570     const void * restrict key, size_t len, unsigned *slot)
571 {
572 	thmap_ptr_t root_slot;
573 	thmap_inode_t *parent;
574 	thmap_ptr_t node;
575 	unsigned off;
576 
577 	ASSERT(query->level == 0);
578 
579 	/* Consume from prior release in root_try_put(). */
580 	root_slot = atomic_load_consume(&thmap->root[query->rslot]);
581 	parent = THMAP_NODE(thmap, root_slot);
582 	if (!parent) {
583 		return NULL;
584 	}
585 descend:
586 	off = hashval_getslot(query, key, len);
587 	/* Consume from prior release in thmap_put(). */
588 	node = atomic_load_consume(&parent->slots[off]);
589 
590 	/* Descend the tree until we find a leaf or empty slot. */
591 	if (node && THMAP_INODE_P(node)) {
592 		parent = THMAP_NODE(thmap, node);
593 		query->level++;
594 		goto descend;
595 	}
596 	/*
597 	 * NODE_DELETED does not become stale until GC runs, which
598 	 * cannot happen while we are in the middle of an operation,
599 	 * hence relaxed ordering.
600 	 */
601 	if (atomic_load_relaxed(&parent->state) & NODE_DELETED) {
602 		return NULL;
603 	}
604 	*slot = off;
605 	return parent;
606 }
607 
608 /*
609  * find_edge_node_locked: traverse the tree, like find_edge_node(),
610  * but attempt to lock the edge node.
611  *
612  * => Returns NULL if the deleted node is found.  This indicates that
613  *    the caller must re-try from the root, as the root slot might have
614  *    changed too.
615  */
616 static thmap_inode_t *
find_edge_node_locked(const thmap_t * thmap,thmap_query_t * query,const void * restrict key,size_t len,unsigned * slot)617 find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query,
618     const void * restrict key, size_t len, unsigned *slot)
619 {
620 	thmap_inode_t *node;
621 	thmap_ptr_t target;
622 retry:
623 	/*
624 	 * Find the edge node and lock it!  Re-check the state since
625 	 * the tree might change by the time we acquire the lock.
626 	 */
627 	node = find_edge_node(thmap, query, key, len, slot);
628 	if (!node) {
629 		/* The root slot is empty -- let the caller decide. */
630 		query->level = 0;
631 		return NULL;
632 	}
633 	lock_node(node);
634 	if (__predict_false(atomic_load_relaxed(&node->state) & NODE_DELETED)) {
635 		/*
636 		 * The node has been deleted.  The tree might have a new
637 		 * shape now, therefore we must re-start from the root.
638 		 */
639 		unlock_node(node);
640 		query->level = 0;
641 		return NULL;
642 	}
643 	target = atomic_load_relaxed(&node->slots[*slot]);
644 	if (__predict_false(target && THMAP_INODE_P(target))) {
645 		/*
646 		 * The target slot has been changed and it is now an
647 		 * intermediate node.  Re-start from the top internode.
648 		 */
649 		unlock_node(node);
650 		query->level = 0;
651 		goto retry;
652 	}
653 	return node;
654 }
655 
656 /*
657  * thmap_get: lookup a value given the key.
658  */
659 void *
thmap_get(thmap_t * thmap,const void * key,size_t len)660 thmap_get(thmap_t *thmap, const void *key, size_t len)
661 {
662 	thmap_query_t query;
663 	thmap_inode_t *parent;
664 	thmap_leaf_t *leaf;
665 	unsigned slot;
666 
667 	hashval_init(&query, thmap->seed, key, len);
668 	parent = find_edge_node(thmap, &query, key, len, &slot);
669 	if (!parent) {
670 		return NULL;
671 	}
672 	leaf = get_leaf(thmap, parent, slot);
673 	if (!leaf) {
674 		return NULL;
675 	}
676 	if (!key_cmp_p(thmap, leaf, key, len)) {
677 		return NULL;
678 	}
679 	return leaf->val;
680 }
681 
682 /*
683  * thmap_put: insert a value given the key.
684  *
685  * => If the key is already present, return the associated value.
686  * => Otherwise, on successful insert, return the given value.
687  */
688 void *
thmap_put(thmap_t * thmap,const void * key,size_t len,void * val)689 thmap_put(thmap_t *thmap, const void *key, size_t len, void *val)
690 {
691 	thmap_query_t query;
692 	thmap_leaf_t *leaf, *other;
693 	thmap_inode_t *parent, *child;
694 	unsigned slot, other_slot;
695 	thmap_ptr_t target;
696 
697 	/*
698 	 * First, pre-allocate and initialize the leaf node.
699 	 */
700 	leaf = leaf_create(thmap, key, len, val);
701 	if (__predict_false(!leaf)) {
702 		return NULL;
703 	}
704 	hashval_init(&query, thmap->seed, key, len);
705 retry:
706 	/*
707 	 * Try to insert into the root first, if its slot is empty.
708 	 */
709 	switch (root_try_put(thmap, &query, leaf)) {
710 	case 0:
711 		/* Success: the leaf was inserted; no locking involved. */
712 		return val;
713 	case EEXIST:
714 		break;
715 	case ENOMEM:
716 		return NULL;
717 	default:
718 		__unreachable();
719 	}
720 
721 	/*
722 	 * Release node via store in node_insert (*) to subsequent
723 	 * consume in get_leaf() or find_edge_node().
724 	 */
725 	atomic_thread_fence(memory_order_release);
726 
727 	/*
728 	 * Find the edge node and the target slot.
729 	 */
730 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
731 	if (!parent) {
732 		goto retry;
733 	}
734 	target = atomic_load_relaxed(&parent->slots[slot]); // tagged offset
735 	if (THMAP_INODE_P(target)) {
736 		/*
737 		 * Empty slot: simply insert the new leaf.  The release
738 		 * fence is already issued for us.
739 		 */
740 		target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
741 		node_insert(parent, slot, target); /* (*) */
742 		goto out;
743 	}
744 
745 	/*
746 	 * Collision or duplicate.
747 	 */
748 	other = THMAP_NODE(thmap, target);
749 	if (key_cmp_p(thmap, other, key, len)) {
750 		/*
751 		 * Duplicate.  Free the pre-allocated leaf and
752 		 * return the present value.
753 		 */
754 		leaf_free(thmap, leaf);
755 		val = other->val;
756 		goto out;
757 	}
758 descend:
759 	/*
760 	 * Collision -- expand the tree.  Create an intermediate node
761 	 * which will be locked (NODE_LOCKED) for us.  At this point,
762 	 * we advance to the next level.
763 	 */
764 	child = node_create(thmap, parent);
765 	if (__predict_false(!child)) {
766 		leaf_free(thmap, leaf);
767 		val = NULL;
768 		goto out;
769 	}
770 	query.level++;
771 
772 	/*
773 	 * Insert the other (colliding) leaf first.  The new child is
774 	 * not yet published, so memory order is relaxed.
775 	 */
776 	other_slot = hashval_getleafslot(thmap, other, query.level);
777 	target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT;
778 	node_insert(child, other_slot, target);
779 
780 	/*
781 	 * Insert the intermediate node into the parent node.
782 	 * It becomes the new parent for the our new leaf.
783 	 *
784 	 * Ensure that stores to the child (and leaf) reach global
785 	 * visibility before it gets inserted to the parent, as
786 	 * consumed by get_leaf() or find_edge_node().
787 	 */
788 	atomic_store_release(&parent->slots[slot], THMAP_GETOFF(thmap, child));
789 
790 	unlock_node(parent);
791 	ASSERT(node_locked_p(child));
792 	parent = child;
793 
794 	/*
795 	 * Get the new slot and check for another collision
796 	 * at the next level.
797 	 */
798 	slot = hashval_getslot(&query, key, len);
799 	if (slot == other_slot) {
800 		/* Another collision -- descend and expand again. */
801 		goto descend;
802 	}
803 
804 	/*
805 	 * Insert our new leaf once we expanded enough.  The release
806 	 * fence is already issued for us.
807 	 */
808 	target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
809 	node_insert(parent, slot, target); /* (*) */
810 out:
811 	unlock_node(parent);
812 	return val;
813 }
814 
815 /*
816  * thmap_del: remove the entry given the key.
817  */
818 void *
thmap_del(thmap_t * thmap,const void * key,size_t len)819 thmap_del(thmap_t *thmap, const void *key, size_t len)
820 {
821 	thmap_query_t query;
822 	thmap_leaf_t *leaf;
823 	thmap_inode_t *parent;
824 	unsigned slot;
825 	void *val;
826 
827 	hashval_init(&query, thmap->seed, key, len);
828 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
829 	if (!parent) {
830 		/* Root slot empty: not found. */
831 		return NULL;
832 	}
833 	leaf = get_leaf(thmap, parent, slot);
834 	if (!leaf || !key_cmp_p(thmap, leaf, key, len)) {
835 		/* Not found. */
836 		unlock_node(parent);
837 		return NULL;
838 	}
839 
840 	/* Remove the leaf. */
841 	ASSERT(THMAP_NODE(thmap, atomic_load_relaxed(&parent->slots[slot]))
842 	    == leaf);
843 	node_remove(parent, slot);
844 
845 	/*
846 	 * Collapse the levels if removing the last item.
847 	 */
848 	while (query.level &&
849 	    NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
850 		thmap_inode_t *node = parent;
851 
852 		ASSERT(atomic_load_relaxed(&node->state) == NODE_LOCKED);
853 
854 		/*
855 		 * Ascend one level up.
856 		 * => Mark our current parent as deleted.
857 		 * => Lock the parent one level up.
858 		 */
859 		query.level--;
860 		slot = hashval_getslot(&query, key, len);
861 		parent = THMAP_NODE(thmap, node->parent);
862 		ASSERT(parent != NULL);
863 
864 		lock_node(parent);
865 		ASSERT((atomic_load_relaxed(&parent->state) & NODE_DELETED)
866 		    == 0);
867 
868 		/*
869 		 * Lock is exclusive, so nobody else can be writing at
870 		 * the same time, and no need for atomic R/M/W, but
871 		 * readers may read without the lock and so need atomic
872 		 * load/store.  No ordering here needed because the
873 		 * entry itself stays valid until GC.
874 		 */
875 		atomic_store_relaxed(&node->state,
876 		    atomic_load_relaxed(&node->state) | NODE_DELETED);
877 		unlock_node(node); // memory_order_release
878 
879 		ASSERT(THMAP_NODE(thmap,
880 		    atomic_load_relaxed(&parent->slots[slot])) == node);
881 		node_remove(parent, slot);
882 
883 		/* Stage the removed node for G/C. */
884 		stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN);
885 	}
886 
887 	/*
888 	 * If the top node is empty, then we need to remove it from the
889 	 * root level.  Mark the node as deleted and clear the slot.
890 	 *
891 	 * Note: acquiring the lock on the top node effectively prevents
892 	 * the root slot from changing.
893 	 */
894 	if (NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
895 		const unsigned rslot = query.rslot;
896 		const thmap_ptr_t nptr =
897 		    atomic_load_relaxed(&thmap->root[rslot]);
898 
899 		ASSERT(query.level == 0);
900 		ASSERT(parent->parent == THMAP_NULL);
901 		ASSERT(THMAP_GETOFF(thmap, parent) == nptr);
902 
903 		/* Mark as deleted and remove from the root-level slot. */
904 		atomic_store_relaxed(&parent->state,
905 		    atomic_load_relaxed(&parent->state) | NODE_DELETED);
906 		atomic_store_relaxed(&thmap->root[rslot], THMAP_NULL);
907 
908 		stage_mem_gc(thmap, nptr, THMAP_INODE_LEN);
909 	}
910 	unlock_node(parent);
911 
912 	/*
913 	 * Save the value and stage the leaf for G/C.
914 	 */
915 	val = leaf->val;
916 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
917 		stage_mem_gc(thmap, leaf->key, leaf->len);
918 	}
919 	stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
920 	return val;
921 }
922 
923 /*
924  * G/C routines.
925  */
926 
927 static void
stage_mem_gc(thmap_t * thmap,uintptr_t addr,size_t len)928 stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len)
929 {
930 	thmap_gc_t *head, *gc;
931 
932 	gc = kmem_intr_alloc(sizeof(thmap_gc_t), KM_NOSLEEP);
933 	gc->addr = addr;
934 	gc->len = len;
935 retry:
936 	head = atomic_load_relaxed(&thmap->gc_list);
937 	gc->next = head; // not yet published
938 
939 	/* Release to subsequent acquire in thmap_stage_gc(). */
940 	if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->gc_list, &head, gc,
941 	    memory_order_release, memory_order_relaxed)) {
942 		goto retry;
943 	}
944 }
945 
946 void *
thmap_stage_gc(thmap_t * thmap)947 thmap_stage_gc(thmap_t *thmap)
948 {
949 	/* Acquire from prior release in stage_mem_gc(). */
950 	return atomic_exchange_explicit(&thmap->gc_list, NULL,
951 	    memory_order_acquire);
952 }
953 
954 void
thmap_gc(thmap_t * thmap,void * ref)955 thmap_gc(thmap_t *thmap, void *ref)
956 {
957 	thmap_gc_t *gc = ref;
958 
959 	while (gc) {
960 		thmap_gc_t *next = gc->next;
961 		thmap->ops->free(gc->addr, gc->len);
962 		kmem_intr_free(gc, sizeof(thmap_gc_t));
963 		gc = next;
964 	}
965 }
966 
967 /*
968  * thmap_create: construct a new trie-hash map object.
969  */
970 thmap_t *
thmap_create(uintptr_t baseptr,const thmap_ops_t * ops,unsigned flags)971 thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags)
972 {
973 	thmap_t *thmap;
974 	uintptr_t root;
975 
976 	/*
977 	 * Setup the map object.
978 	 */
979 	if (!THMAP_ALIGNED_P(baseptr)) {
980 		return NULL;
981 	}
982 	thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP);
983 	thmap->baseptr = baseptr;
984 	thmap->ops = ops ? ops : &thmap_default_ops;
985 	thmap->flags = flags;
986 
987 	if ((thmap->flags & THMAP_SETROOT) == 0) {
988 		/* Allocate the root level. */
989 		root = thmap->ops->alloc(THMAP_ROOT_LEN);
990 		thmap->root = THMAP_GETPTR(thmap, root);
991 		if (!thmap->root) {
992 			kmem_free(thmap, sizeof(thmap_t));
993 			return NULL;
994 		}
995 		memset(thmap->root, 0, THMAP_ROOT_LEN);
996 	}
997 
998 	cprng_strong(kern_cprng, thmap->seed, sizeof thmap->seed, 0);
999 
1000 	return thmap;
1001 }
1002 
1003 int
thmap_setroot(thmap_t * thmap,uintptr_t root_off)1004 thmap_setroot(thmap_t *thmap, uintptr_t root_off)
1005 {
1006 	if (thmap->root) {
1007 		return -1;
1008 	}
1009 	thmap->root = THMAP_GETPTR(thmap, root_off);
1010 	return 0;
1011 }
1012 
1013 uintptr_t
thmap_getroot(const thmap_t * thmap)1014 thmap_getroot(const thmap_t *thmap)
1015 {
1016 	return THMAP_GETOFF(thmap, thmap->root);
1017 }
1018 
1019 void
thmap_destroy(thmap_t * thmap)1020 thmap_destroy(thmap_t *thmap)
1021 {
1022 	uintptr_t root = THMAP_GETOFF(thmap, thmap->root);
1023 	void *ref;
1024 
1025 	ref = thmap_stage_gc(thmap);
1026 	thmap_gc(thmap, ref);
1027 
1028 	if ((thmap->flags & THMAP_SETROOT) == 0) {
1029 		thmap->ops->free(root, THMAP_ROOT_LEN);
1030 	}
1031 	kmem_free(thmap, sizeof(thmap_t));
1032 }
1033