1 /*
2 * Copyright (c) 1997, 1998
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: src/sys/pci/if_tl.c,v 1.51.2.5 2001/12/16 15:46:08 luigi Exp $
33 */
34
35 /*
36 * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x.
37 * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller,
38 * the National Semiconductor DP83840A physical interface and the
39 * Microchip Technology 24Cxx series serial EEPROM.
40 *
41 * Written using the following four documents:
42 *
43 * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com)
44 * National Semiconductor DP83840A data sheet (www.national.com)
45 * Microchip Technology 24C02C data sheet (www.microchip.com)
46 * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com)
47 *
48 * Written by Bill Paul <wpaul@ctr.columbia.edu>
49 * Electrical Engineering Department
50 * Columbia University, New York City
51 */
52
53 /*
54 * Some notes about the ThunderLAN:
55 *
56 * The ThunderLAN controller is a single chip containing PCI controller
57 * logic, approximately 3K of on-board SRAM, a LAN controller, and media
58 * independent interface (MII) bus. The MII allows the ThunderLAN chip to
59 * control up to 32 different physical interfaces (PHYs). The ThunderLAN
60 * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller
61 * to act as a complete ethernet interface.
62 *
63 * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards
64 * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec
65 * in full or half duplex. Some of the Compaq Deskpro machines use a
66 * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters
67 * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in
68 * concert with the ThunderLAN's internal PHY to provide full 10/100
69 * support. This is cheaper than using a standalone external PHY for both
70 * 10/100 modes and letting the ThunderLAN's internal PHY go to waste.
71 * A serial EEPROM is also attached to the ThunderLAN chip to provide
72 * power-up default register settings and for storing the adapter's
73 * station address. Although not supported by this driver, the ThunderLAN
74 * chip can also be connected to token ring PHYs.
75 *
76 * The ThunderLAN has a set of registers which can be used to issue
77 * commands, acknowledge interrupts, and to manipulate other internal
78 * registers on its DIO bus. The primary registers can be accessed
79 * using either programmed I/O (inb/outb) or via PCI memory mapping,
80 * depending on how the card is configured during the PCI probing
81 * phase. It is even possible to have both PIO and memory mapped
82 * access turned on at the same time.
83 *
84 * Frame reception and transmission with the ThunderLAN chip is done
85 * using frame 'lists.' A list structure looks more or less like this:
86 *
87 * struct tl_frag {
88 * u_int32_t fragment_address;
89 * u_int32_t fragment_size;
90 * };
91 * struct tl_list {
92 * u_int32_t forward_pointer;
93 * u_int16_t cstat;
94 * u_int16_t frame_size;
95 * struct tl_frag fragments[10];
96 * };
97 *
98 * The forward pointer in the list header can be either a 0 or the address
99 * of another list, which allows several lists to be linked together. Each
100 * list contains up to 10 fragment descriptors. This means the chip allows
101 * ethernet frames to be broken up into up to 10 chunks for transfer to
102 * and from the SRAM. Note that the forward pointer and fragment buffer
103 * addresses are physical memory addresses, not virtual. Note also that
104 * a single ethernet frame can not span lists: if the host wants to
105 * transmit a frame and the frame data is split up over more than 10
106 * buffers, the frame has to collapsed before it can be transmitted.
107 *
108 * To receive frames, the driver sets up a number of lists and populates
109 * the fragment descriptors, then it sends an RX GO command to the chip.
110 * When a frame is received, the chip will DMA it into the memory regions
111 * specified by the fragment descriptors and then trigger an RX 'end of
112 * frame interrupt' when done. The driver may choose to use only one
113 * fragment per list; this may result is slighltly less efficient use
114 * of memory in exchange for improving performance.
115 *
116 * To transmit frames, the driver again sets up lists and fragment
117 * descriptors, only this time the buffers contain frame data that
118 * is to be DMA'ed into the chip instead of out of it. Once the chip
119 * has transfered the data into its on-board SRAM, it will trigger a
120 * TX 'end of frame' interrupt. It will also generate an 'end of channel'
121 * interrupt when it reaches the end of the list.
122 */
123
124 /*
125 * Some notes about this driver:
126 *
127 * The ThunderLAN chip provides a couple of different ways to organize
128 * reception, transmission and interrupt handling. The simplest approach
129 * is to use one list each for transmission and reception. In this mode,
130 * the ThunderLAN will generate two interrupts for every received frame
131 * (one RX EOF and one RX EOC) and two for each transmitted frame (one
132 * TX EOF and one TX EOC). This may make the driver simpler but it hurts
133 * performance to have to handle so many interrupts.
134 *
135 * Initially I wanted to create a circular list of receive buffers so
136 * that the ThunderLAN chip would think there was an infinitely long
137 * receive channel and never deliver an RXEOC interrupt. However this
138 * doesn't work correctly under heavy load: while the manual says the
139 * chip will trigger an RXEOF interrupt each time a frame is copied into
140 * memory, you can't count on the chip waiting around for you to acknowledge
141 * the interrupt before it starts trying to DMA the next frame. The result
142 * is that the chip might traverse the entire circular list and then wrap
143 * around before you have a chance to do anything about it. Consequently,
144 * the receive list is terminated (with a 0 in the forward pointer in the
145 * last element). Each time an RXEOF interrupt arrives, the used list
146 * is shifted to the end of the list. This gives the appearance of an
147 * infinitely large RX chain so long as the driver doesn't fall behind
148 * the chip and allow all of the lists to be filled up.
149 *
150 * If all the lists are filled, the adapter will deliver an RX 'end of
151 * channel' interrupt when it hits the 0 forward pointer at the end of
152 * the chain. The RXEOC handler then cleans out the RX chain and resets
153 * the list head pointer in the ch_parm register and restarts the receiver.
154 *
155 * For frame transmission, it is possible to program the ThunderLAN's
156 * transmit interrupt threshold so that the chip can acknowledge multiple
157 * lists with only a single TX EOF interrupt. This allows the driver to
158 * queue several frames in one shot, and only have to handle a total
159 * two interrupts (one TX EOF and one TX EOC) no matter how many frames
160 * are transmitted. Frame transmission is done directly out of the
161 * mbufs passed to the tl_start() routine via the interface send queue.
162 * The driver simply sets up the fragment descriptors in the transmit
163 * lists to point to the mbuf data regions and sends a TX GO command.
164 *
165 * Note that since the RX and TX lists themselves are always used
166 * only by the driver, the are malloc()ed once at driver initialization
167 * time and never free()ed.
168 *
169 * Also, in order to remain as platform independent as possible, this
170 * driver uses memory mapped register access to manipulate the card
171 * as opposed to programmed I/O. This avoids the use of the inb/outb
172 * (and related) instructions which are specific to the i386 platform.
173 *
174 * Using these techniques, this driver achieves very high performance
175 * by minimizing the amount of interrupts generated during large
176 * transfers and by completely avoiding buffer copies. Frame transfer
177 * to and from the ThunderLAN chip is performed entirely by the chip
178 * itself thereby reducing the load on the host CPU.
179 */
180
181 #include <sys/param.h>
182 #include <sys/systm.h>
183 #include <sys/sockio.h>
184 #include <sys/mbuf.h>
185 #include <sys/malloc.h>
186 #include <sys/kernel.h>
187 #include <sys/socket.h>
188 #include <sys/serialize.h>
189 #include <sys/bus.h>
190 #include <sys/rman.h>
191 #include <sys/interrupt.h>
192
193 #include <net/if.h>
194 #include <net/ifq_var.h>
195 #include <net/if_arp.h>
196 #include <net/ethernet.h>
197 #include <net/if_dl.h>
198 #include <net/if_media.h>
199
200 #include <net/bpf.h>
201
202 #include <vm/vm.h> /* for vtophys */
203 #include <vm/pmap.h> /* for vtophys */
204
205 #include "../mii_layer/mii.h"
206 #include "../mii_layer/miivar.h"
207
208 #include <bus/pci/pcireg.h>
209 #include <bus/pci/pcivar.h>
210
211 /*
212 * Default to using PIO register access mode to pacify certain
213 * laptop docking stations with built-in ThunderLAN chips that
214 * don't seem to handle memory mapped mode properly.
215 */
216 #define TL_USEIOSPACE
217
218 #include "if_tlreg.h"
219
220 /* "controller miibus0" required. See GENERIC if you get errors here. */
221 #include "miibus_if.h"
222
223 /*
224 * Various supported device vendors/types and their names.
225 */
226
227 static struct tl_type tl_devs[] = {
228 { TI_VENDORID, TI_DEVICEID_THUNDERLAN,
229 "Texas Instruments ThunderLAN" },
230 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10,
231 "Compaq Netelligent 10" },
232 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100,
233 "Compaq Netelligent 10/100" },
234 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_PROLIANT,
235 "Compaq Netelligent 10/100 Proliant" },
236 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_DUAL,
237 "Compaq Netelligent 10/100 Dual Port" },
238 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_INTEGRATED,
239 "Compaq NetFlex-3/P Integrated" },
240 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P,
241 "Compaq NetFlex-3/P" },
242 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETFLEX_3P_BNC,
243 "Compaq NetFlex 3/P w/ BNC" },
244 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_EMBEDDED,
245 "Compaq Netelligent 10/100 TX Embedded UTP" },
246 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_T2_UTP_COAX,
247 "Compaq Netelligent 10 T/2 PCI UTP/Coax" },
248 { COMPAQ_VENDORID, COMPAQ_DEVICEID_NETEL_10_100_TX_UTP,
249 "Compaq Netelligent 10/100 TX UTP" },
250 { OLICOM_VENDORID, OLICOM_DEVICEID_OC2183,
251 "Olicom OC-2183/2185" },
252 { OLICOM_VENDORID, OLICOM_DEVICEID_OC2325,
253 "Olicom OC-2325" },
254 { OLICOM_VENDORID, OLICOM_DEVICEID_OC2326,
255 "Olicom OC-2326 10/100 TX UTP" },
256 { 0, 0, NULL }
257 };
258
259 static int tl_probe (device_t);
260 static int tl_attach (device_t);
261 static int tl_detach (device_t);
262 static int tl_intvec_rxeoc (void *, u_int32_t);
263 static int tl_intvec_txeoc (void *, u_int32_t);
264 static int tl_intvec_txeof (void *, u_int32_t);
265 static int tl_intvec_rxeof (void *, u_int32_t);
266 static int tl_intvec_adchk (void *, u_int32_t);
267 static int tl_intvec_netsts (void *, u_int32_t);
268
269 static int tl_newbuf (struct tl_softc *,
270 struct tl_chain_onefrag *);
271 static void tl_stats_update (void *);
272 static void tl_stats_update_serialized(void *);
273 static int tl_encap (struct tl_softc *, struct tl_chain *,
274 struct mbuf *);
275
276 static void tl_intr (void *);
277 static void tl_start (struct ifnet *, struct ifaltq_subque *);
278 static int tl_ioctl (struct ifnet *, u_long, caddr_t,
279 struct ucred *);
280 static void tl_init (void *);
281 static void tl_stop (struct tl_softc *);
282 static void tl_watchdog (struct ifnet *);
283 static void tl_shutdown (device_t);
284 static int tl_ifmedia_upd (struct ifnet *);
285 static void tl_ifmedia_sts (struct ifnet *, struct ifmediareq *);
286
287 static u_int8_t tl_eeprom_putbyte (struct tl_softc *, int);
288 static u_int8_t tl_eeprom_getbyte (struct tl_softc *,
289 int, u_int8_t *);
290 static int tl_read_eeprom (struct tl_softc *, caddr_t, int, int);
291
292 static void tl_mii_sync (struct tl_softc *);
293 static void tl_mii_send (struct tl_softc *, u_int32_t, int);
294 static int tl_mii_readreg (struct tl_softc *, struct tl_mii_frame *);
295 static int tl_mii_writereg (struct tl_softc *, struct tl_mii_frame *);
296 static int tl_miibus_readreg (device_t, int, int);
297 static int tl_miibus_writereg (device_t, int, int, int);
298 static void tl_miibus_statchg (device_t);
299
300 static void tl_setmode (struct tl_softc *, int);
301 static int tl_calchash (caddr_t);
302 static void tl_setmulti (struct tl_softc *);
303 static void tl_setfilt (struct tl_softc *, caddr_t, int);
304 static void tl_softreset (struct tl_softc *, int);
305 static void tl_hardreset (device_t);
306 static int tl_list_rx_init (struct tl_softc *);
307 static int tl_list_tx_init (struct tl_softc *);
308
309 static u_int8_t tl_dio_read8 (struct tl_softc *, int);
310 static u_int16_t tl_dio_read16 (struct tl_softc *, int);
311 static u_int32_t tl_dio_read32 (struct tl_softc *, int);
312 static void tl_dio_write8 (struct tl_softc *, int, int);
313 static void tl_dio_write16 (struct tl_softc *, int, int);
314 static void tl_dio_write32 (struct tl_softc *, int, int);
315 static void tl_dio_setbit (struct tl_softc *, int, int);
316 static void tl_dio_clrbit (struct tl_softc *, int, int);
317 static void tl_dio_setbit16 (struct tl_softc *, int, int);
318 static void tl_dio_clrbit16 (struct tl_softc *, int, int);
319
320 #ifdef TL_USEIOSPACE
321 #define TL_RES SYS_RES_IOPORT
322 #define TL_RID TL_PCI_LOIO
323 #else
324 #define TL_RES SYS_RES_MEMORY
325 #define TL_RID TL_PCI_LOMEM
326 #endif
327
328 static device_method_t tl_methods[] = {
329 /* Device interface */
330 DEVMETHOD(device_probe, tl_probe),
331 DEVMETHOD(device_attach, tl_attach),
332 DEVMETHOD(device_detach, tl_detach),
333 DEVMETHOD(device_shutdown, tl_shutdown),
334
335 /* bus interface */
336 DEVMETHOD(bus_print_child, bus_generic_print_child),
337 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
338
339 /* MII interface */
340 DEVMETHOD(miibus_readreg, tl_miibus_readreg),
341 DEVMETHOD(miibus_writereg, tl_miibus_writereg),
342 DEVMETHOD(miibus_statchg, tl_miibus_statchg),
343
344 DEVMETHOD_END
345 };
346
347 static driver_t tl_driver = {
348 "tl",
349 tl_methods,
350 sizeof(struct tl_softc)
351 };
352
353 static devclass_t tl_devclass;
354
355 DECLARE_DUMMY_MODULE(if_tl);
356 DRIVER_MODULE(if_tl, pci, tl_driver, tl_devclass, NULL, NULL);
357 DRIVER_MODULE(miibus, tl, miibus_driver, miibus_devclass, NULL, NULL);
358
359 static u_int8_t
tl_dio_read8(struct tl_softc * sc,int reg)360 tl_dio_read8(struct tl_softc *sc, int reg)
361 {
362 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
363 return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)));
364 }
365
366 static u_int16_t
tl_dio_read16(struct tl_softc * sc,int reg)367 tl_dio_read16(struct tl_softc *sc, int reg)
368 {
369 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
370 return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)));
371 }
372
373 static u_int32_t
tl_dio_read32(struct tl_softc * sc,int reg)374 tl_dio_read32(struct tl_softc *sc, int reg)
375 {
376 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
377 return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3)));
378 }
379
380 static void
tl_dio_write8(struct tl_softc * sc,int reg,int val)381 tl_dio_write8(struct tl_softc *sc, int reg, int val)
382 {
383 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
384 CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val);
385 return;
386 }
387
388 static void
tl_dio_write16(struct tl_softc * sc,int reg,int val)389 tl_dio_write16(struct tl_softc *sc, int reg, int val)
390 {
391 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
392 CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val);
393 return;
394 }
395
396 static void
tl_dio_write32(struct tl_softc * sc,int reg,int val)397 tl_dio_write32(struct tl_softc *sc, int reg, int val)
398 {
399 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
400 CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val);
401 return;
402 }
403
404 static void
tl_dio_setbit(struct tl_softc * sc,int reg,int bit)405 tl_dio_setbit(struct tl_softc *sc, int reg, int bit)
406 {
407 u_int8_t f;
408
409 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
410 f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
411 f |= bit;
412 CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
413
414 return;
415 }
416
417 static void
tl_dio_clrbit(struct tl_softc * sc,int reg,int bit)418 tl_dio_clrbit(struct tl_softc *sc, int reg, int bit)
419 {
420 u_int8_t f;
421
422 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
423 f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3));
424 f &= ~bit;
425 CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f);
426
427 return;
428 }
429
430 static void
tl_dio_setbit16(struct tl_softc * sc,int reg,int bit)431 tl_dio_setbit16(struct tl_softc *sc, int reg, int bit)
432 {
433 u_int16_t f;
434
435 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
436 f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
437 f |= bit;
438 CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
439
440 return;
441 }
442
443 static void
tl_dio_clrbit16(struct tl_softc * sc,int reg,int bit)444 tl_dio_clrbit16(struct tl_softc *sc, int reg, int bit)
445 {
446 u_int16_t f;
447
448 CSR_WRITE_2(sc, TL_DIO_ADDR, reg);
449 f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3));
450 f &= ~bit;
451 CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f);
452
453 return;
454 }
455
456 /*
457 * Send an instruction or address to the EEPROM, check for ACK.
458 */
459 static u_int8_t
tl_eeprom_putbyte(struct tl_softc * sc,int byte)460 tl_eeprom_putbyte(struct tl_softc *sc, int byte)
461 {
462 int i, ack = 0;
463
464 /*
465 * Make sure we're in TX mode.
466 */
467 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN);
468
469 /*
470 * Feed in each bit and stobe the clock.
471 */
472 for (i = 0x80; i; i >>= 1) {
473 if (byte & i) {
474 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA);
475 } else {
476 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA);
477 }
478 DELAY(1);
479 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
480 DELAY(1);
481 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
482 }
483
484 /*
485 * Turn off TX mode.
486 */
487 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
488
489 /*
490 * Check for ack.
491 */
492 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
493 ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA;
494 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
495
496 return(ack);
497 }
498
499 /*
500 * Read a byte of data stored in the EEPROM at address 'addr.'
501 */
502 static u_int8_t
tl_eeprom_getbyte(struct tl_softc * sc,int addr,u_int8_t * dest)503 tl_eeprom_getbyte(struct tl_softc *sc, int addr, u_int8_t *dest)
504 {
505 int i;
506 u_int8_t byte = 0;
507
508 tl_dio_write8(sc, TL_NETSIO, 0);
509
510 EEPROM_START;
511
512 /*
513 * Send write control code to EEPROM.
514 */
515 if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
516 if_printf(&sc->arpcom.ac_if, "failed to send write command, "
517 "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
518 return(1);
519 }
520
521 /*
522 * Send address of byte we want to read.
523 */
524 if (tl_eeprom_putbyte(sc, addr)) {
525 if_printf(&sc->arpcom.ac_if, "failed to send address, "
526 "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
527 return(1);
528 }
529
530 EEPROM_STOP;
531 EEPROM_START;
532 /*
533 * Send read control code to EEPROM.
534 */
535 if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
536 if_printf(&sc->arpcom.ac_if, "failed to send write command, "
537 "status: %x\n", tl_dio_read8(sc, TL_NETSIO));
538 return(1);
539 }
540
541 /*
542 * Start reading bits from EEPROM.
543 */
544 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN);
545 for (i = 0x80; i; i >>= 1) {
546 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK);
547 DELAY(1);
548 if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA)
549 byte |= i;
550 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK);
551 DELAY(1);
552 }
553
554 EEPROM_STOP;
555
556 /*
557 * No ACK generated for read, so just return byte.
558 */
559
560 *dest = byte;
561
562 return(0);
563 }
564
565 /*
566 * Read a sequence of bytes from the EEPROM.
567 */
568 static int
tl_read_eeprom(struct tl_softc * sc,caddr_t dest,int off,int cnt)569 tl_read_eeprom(struct tl_softc *sc, caddr_t dest, int off, int cnt)
570 {
571 int err = 0, i;
572 u_int8_t byte = 0;
573
574 for (i = 0; i < cnt; i++) {
575 err = tl_eeprom_getbyte(sc, off + i, &byte);
576 if (err)
577 break;
578 *(dest + i) = byte;
579 }
580
581 return(err ? 1 : 0);
582 }
583
584 static void
tl_mii_sync(struct tl_softc * sc)585 tl_mii_sync(struct tl_softc *sc)
586 {
587 int i;
588
589 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
590
591 for (i = 0; i < 32; i++) {
592 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
593 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
594 }
595
596 return;
597 }
598
599 static void
tl_mii_send(struct tl_softc * sc,u_int32_t bits,int cnt)600 tl_mii_send(struct tl_softc *sc, u_int32_t bits, int cnt)
601 {
602 int i;
603
604 for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
605 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
606 if (bits & i) {
607 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA);
608 } else {
609 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA);
610 }
611 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
612 }
613 }
614
615 static int
tl_mii_readreg(struct tl_softc * sc,struct tl_mii_frame * frame)616 tl_mii_readreg(struct tl_softc *sc, struct tl_mii_frame *frame)
617 {
618 int i, ack;
619 int minten = 0;
620
621 tl_mii_sync(sc);
622
623 /*
624 * Set up frame for RX.
625 */
626 frame->mii_stdelim = TL_MII_STARTDELIM;
627 frame->mii_opcode = TL_MII_READOP;
628 frame->mii_turnaround = 0;
629 frame->mii_data = 0;
630
631 /*
632 * Turn off MII interrupt by forcing MINTEN low.
633 */
634 minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
635 if (minten) {
636 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
637 }
638
639 /*
640 * Turn on data xmit.
641 */
642 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
643
644 /*
645 * Send command/address info.
646 */
647 tl_mii_send(sc, frame->mii_stdelim, 2);
648 tl_mii_send(sc, frame->mii_opcode, 2);
649 tl_mii_send(sc, frame->mii_phyaddr, 5);
650 tl_mii_send(sc, frame->mii_regaddr, 5);
651
652 /*
653 * Turn off xmit.
654 */
655 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
656
657 /* Idle bit */
658 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
659 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
660
661 /* Check for ack */
662 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
663 ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA;
664
665 /* Complete the cycle */
666 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
667
668 /*
669 * Now try reading data bits. If the ack failed, we still
670 * need to clock through 16 cycles to keep the PHYs in sync.
671 */
672 if (ack) {
673 for(i = 0; i < 16; i++) {
674 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
675 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
676 }
677 goto fail;
678 }
679
680 for (i = 0x8000; i; i >>= 1) {
681 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
682 if (!ack) {
683 if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA)
684 frame->mii_data |= i;
685 }
686 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
687 }
688
689 fail:
690
691 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
692 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
693
694 /* Reenable interrupts */
695 if (minten) {
696 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
697 }
698
699 if (ack)
700 return(1);
701 return(0);
702 }
703
704 static int
tl_mii_writereg(struct tl_softc * sc,struct tl_mii_frame * frame)705 tl_mii_writereg(struct tl_softc *sc, struct tl_mii_frame *frame)
706 {
707 int minten;
708
709 tl_mii_sync(sc);
710
711 /*
712 * Set up frame for TX.
713 */
714
715 frame->mii_stdelim = TL_MII_STARTDELIM;
716 frame->mii_opcode = TL_MII_WRITEOP;
717 frame->mii_turnaround = TL_MII_TURNAROUND;
718
719 /*
720 * Turn off MII interrupt by forcing MINTEN low.
721 */
722 minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN;
723 if (minten) {
724 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN);
725 }
726
727 /*
728 * Turn on data output.
729 */
730 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN);
731
732 tl_mii_send(sc, frame->mii_stdelim, 2);
733 tl_mii_send(sc, frame->mii_opcode, 2);
734 tl_mii_send(sc, frame->mii_phyaddr, 5);
735 tl_mii_send(sc, frame->mii_regaddr, 5);
736 tl_mii_send(sc, frame->mii_turnaround, 2);
737 tl_mii_send(sc, frame->mii_data, 16);
738
739 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK);
740 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK);
741
742 /*
743 * Turn off xmit.
744 */
745 tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN);
746
747 /* Reenable interrupts */
748 if (minten)
749 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN);
750
751 return(0);
752 }
753
754 static int
tl_miibus_readreg(device_t dev,int phy,int reg)755 tl_miibus_readreg(device_t dev, int phy, int reg)
756 {
757 struct tl_softc *sc;
758 struct tl_mii_frame frame;
759
760 sc = device_get_softc(dev);
761 bzero((char *)&frame, sizeof(frame));
762
763 frame.mii_phyaddr = phy;
764 frame.mii_regaddr = reg;
765 tl_mii_readreg(sc, &frame);
766
767 return(frame.mii_data);
768 }
769
770 static int
tl_miibus_writereg(device_t dev,int phy,int reg,int data)771 tl_miibus_writereg(device_t dev, int phy, int reg, int data)
772 {
773 struct tl_softc *sc;
774 struct tl_mii_frame frame;
775
776 sc = device_get_softc(dev);
777 bzero((char *)&frame, sizeof(frame));
778
779 frame.mii_phyaddr = phy;
780 frame.mii_regaddr = reg;
781 frame.mii_data = data;
782
783 tl_mii_writereg(sc, &frame);
784
785 return(0);
786 }
787
788 static void
tl_miibus_statchg(device_t dev)789 tl_miibus_statchg(device_t dev)
790 {
791 struct tl_softc *sc;
792 struct mii_data *mii;
793
794 sc = device_get_softc(dev);
795 mii = device_get_softc(sc->tl_miibus);
796
797 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
798 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
799 } else {
800 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
801 }
802
803 return;
804 }
805
806 /*
807 * Set modes for bitrate devices.
808 */
809 static void
tl_setmode(struct tl_softc * sc,int media)810 tl_setmode(struct tl_softc *sc, int media)
811 {
812 if (IFM_SUBTYPE(media) == IFM_10_5)
813 tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
814 if (IFM_SUBTYPE(media) == IFM_10_T) {
815 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1);
816 if ((media & IFM_GMASK) == IFM_FDX) {
817 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
818 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
819 } else {
820 tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3);
821 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX);
822 }
823 }
824
825 return;
826 }
827
828 /*
829 * Calculate the hash of a MAC address for programming the multicast hash
830 * table. This hash is simply the address split into 6-bit chunks
831 * XOR'd, e.g.
832 * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555
833 * bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210
834 * Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then
835 * the folded 24-bit value is split into 6-bit portions and XOR'd.
836 */
837 static int
tl_calchash(caddr_t addr)838 tl_calchash(caddr_t addr)
839 {
840 int t;
841
842 t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 |
843 (addr[2] ^ addr[5]);
844 return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f;
845 }
846
847 /*
848 * The ThunderLAN has a perfect MAC address filter in addition to
849 * the multicast hash filter. The perfect filter can be programmed
850 * with up to four MAC addresses. The first one is always used to
851 * hold the station address, which leaves us free to use the other
852 * three for multicast addresses.
853 */
854 static void
tl_setfilt(struct tl_softc * sc,caddr_t addr,int slot)855 tl_setfilt(struct tl_softc *sc, caddr_t addr, int slot)
856 {
857 int i;
858 u_int16_t regaddr;
859
860 regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN);
861
862 for (i = 0; i < ETHER_ADDR_LEN; i++)
863 tl_dio_write8(sc, regaddr + i, *(addr + i));
864
865 return;
866 }
867
868 /*
869 * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly
870 * linked list. This is fine, except addresses are added from the head
871 * end of the list. We want to arrange for 224.0.0.1 (the "all hosts")
872 * group to always be in the perfect filter, but as more groups are added,
873 * the 224.0.0.1 entry (which is always added first) gets pushed down
874 * the list and ends up at the tail. So after 3 or 4 multicast groups
875 * are added, the all-hosts entry gets pushed out of the perfect filter
876 * and into the hash table.
877 *
878 * Because the multicast list is a doubly-linked list as opposed to a
879 * circular queue, we don't have the ability to just grab the tail of
880 * the list and traverse it backwards. Instead, we have to traverse
881 * the list once to find the tail, then traverse it again backwards to
882 * update the multicast filter.
883 */
884 static void
tl_setmulti(struct tl_softc * sc)885 tl_setmulti(struct tl_softc *sc)
886 {
887 struct ifnet *ifp;
888 u_int32_t hashes[2] = { 0, 0 };
889 int h, i;
890 struct ifmultiaddr *ifma;
891 u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
892 ifp = &sc->arpcom.ac_if;
893
894 /* First, zot all the existing filters. */
895 for (i = 1; i < 4; i++)
896 tl_setfilt(sc, (caddr_t)&dummy, i);
897 tl_dio_write32(sc, TL_HASH1, 0);
898 tl_dio_write32(sc, TL_HASH2, 0);
899
900 /* Now program new ones. */
901 if (ifp->if_flags & IFF_ALLMULTI) {
902 hashes[0] = 0xFFFFFFFF;
903 hashes[1] = 0xFFFFFFFF;
904 } else {
905 i = 1;
906 TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) {
907 if (ifma->ifma_addr->sa_family != AF_LINK)
908 continue;
909 /*
910 * Program the first three multicast groups
911 * into the perfect filter. For all others,
912 * use the hash table.
913 */
914 if (i < 4) {
915 tl_setfilt(sc,
916 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
917 i++;
918 continue;
919 }
920
921 h = tl_calchash(
922 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
923 if (h < 32)
924 hashes[0] |= (1 << h);
925 else
926 hashes[1] |= (1 << (h - 32));
927 }
928 }
929
930 tl_dio_write32(sc, TL_HASH1, hashes[0]);
931 tl_dio_write32(sc, TL_HASH2, hashes[1]);
932
933 return;
934 }
935
936 /*
937 * This routine is recommended by the ThunderLAN manual to insure that
938 * the internal PHY is powered up correctly. It also recommends a one
939 * second pause at the end to 'wait for the clocks to start' but in my
940 * experience this isn't necessary.
941 */
942 static void
tl_hardreset(device_t dev)943 tl_hardreset(device_t dev)
944 {
945 struct tl_softc *sc;
946 int i;
947 u_int16_t flags;
948
949 sc = device_get_softc(dev);
950
951 tl_mii_sync(sc);
952
953 flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN;
954
955 for (i = 0; i < MII_NPHY; i++)
956 tl_miibus_writereg(dev, i, MII_BMCR, flags);
957
958 tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO);
959 DELAY(50000);
960 tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_LOOP|BMCR_ISO);
961 tl_mii_sync(sc);
962 while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET);
963
964 DELAY(50000);
965 return;
966 }
967
968 static void
tl_softreset(struct tl_softc * sc,int internal)969 tl_softreset(struct tl_softc *sc, int internal)
970 {
971 u_int32_t cmd, i;
972
973 /* Assert the adapter reset bit. */
974 CMD_SET(sc, TL_CMD_ADRST);
975
976 /* Turn off interrupts */
977 CMD_SET(sc, TL_CMD_INTSOFF);
978
979 /* First, clear the stats registers. */
980 for (i = 0; i < 5; i++)
981 tl_dio_read32(sc, TL_TXGOODFRAMES);
982
983 /* Clear Areg and Hash registers */
984 for (i = 0; i < 8; i++)
985 tl_dio_write32(sc, TL_AREG0_B5, 0x00000000);
986
987 /*
988 * Set up Netconfig register. Enable one channel and
989 * one fragment mode.
990 */
991 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG);
992 if (internal && !sc->tl_bitrate) {
993 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
994 } else {
995 tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN);
996 }
997
998 /* Handle cards with bitrate devices. */
999 if (sc->tl_bitrate)
1000 tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE);
1001
1002 /*
1003 * Load adapter irq pacing timer and tx threshold.
1004 * We make the transmit threshold 1 initially but we may
1005 * change that later.
1006 */
1007 cmd = CSR_READ_4(sc, TL_HOSTCMD);
1008 cmd |= TL_CMD_NES;
1009 cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK);
1010 CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR));
1011 CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003));
1012
1013 /* Unreset the MII */
1014 tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST);
1015
1016 /* Take the adapter out of reset */
1017 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP);
1018
1019 /* Wait for things to settle down a little. */
1020 DELAY(500);
1021
1022 return;
1023 }
1024
1025 /*
1026 * Probe for a ThunderLAN chip. Check the PCI vendor and device IDs
1027 * against our list and return its name if we find a match.
1028 */
1029 static int
tl_probe(device_t dev)1030 tl_probe(device_t dev)
1031 {
1032 struct tl_type *t;
1033
1034 t = tl_devs;
1035
1036 while(t->tl_name != NULL) {
1037 if ((pci_get_vendor(dev) == t->tl_vid) &&
1038 (pci_get_device(dev) == t->tl_did)) {
1039 device_set_desc(dev, t->tl_name);
1040 return(0);
1041 }
1042 t++;
1043 }
1044
1045 return(ENXIO);
1046 }
1047
1048 static int
tl_attach(device_t dev)1049 tl_attach(device_t dev)
1050 {
1051 int i;
1052 u_int16_t did, vid;
1053 struct tl_type *t;
1054 struct ifnet *ifp;
1055 struct tl_softc *sc;
1056 int error = 0, rid;
1057 uint8_t eaddr[ETHER_ADDR_LEN];
1058
1059 vid = pci_get_vendor(dev);
1060 did = pci_get_device(dev);
1061 sc = device_get_softc(dev);
1062
1063 t = tl_devs;
1064 while(t->tl_name != NULL) {
1065 if (vid == t->tl_vid && did == t->tl_did)
1066 break;
1067 t++;
1068 }
1069
1070 KKASSERT(t->tl_name != NULL);
1071
1072 pci_enable_busmaster(dev);
1073
1074 #ifdef TL_USEIOSPACE
1075 rid = TL_PCI_LOIO;
1076 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1077 RF_ACTIVE);
1078
1079 /*
1080 * Some cards have the I/O and memory mapped address registers
1081 * reversed. Try both combinations before giving up.
1082 */
1083 if (sc->tl_res == NULL) {
1084 rid = TL_PCI_LOMEM;
1085 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1086 RF_ACTIVE);
1087 }
1088 #else
1089 rid = TL_PCI_LOMEM;
1090 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1091 RF_ACTIVE);
1092 if (sc->tl_res == NULL) {
1093 rid = TL_PCI_LOIO;
1094 sc->tl_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1095 RF_ACTIVE);
1096 }
1097 #endif
1098
1099 if (sc->tl_res == NULL) {
1100 device_printf(dev, "couldn't map ports/memory\n");
1101 error = ENXIO;
1102 return(error);
1103 }
1104
1105 sc->tl_btag = rman_get_bustag(sc->tl_res);
1106 sc->tl_bhandle = rman_get_bushandle(sc->tl_res);
1107
1108 #ifdef notdef
1109 /*
1110 * The ThunderLAN manual suggests jacking the PCI latency
1111 * timer all the way up to its maximum value. I'm not sure
1112 * if this is really necessary, but what the manual wants,
1113 * the manual gets.
1114 */
1115 command = pci_read_config(dev, TL_PCI_LATENCY_TIMER, 4);
1116 command |= 0x0000FF00;
1117 pci_write_config(dev, TL_PCI_LATENCY_TIMER, command, 4);
1118 #endif
1119
1120 /* Allocate interrupt */
1121 rid = 0;
1122 sc->tl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1123 RF_SHAREABLE | RF_ACTIVE);
1124
1125 if (sc->tl_irq == NULL) {
1126 device_printf(dev, "couldn't map interrupt\n");
1127 error = ENXIO;
1128 goto fail;
1129 }
1130
1131 /*
1132 * Now allocate memory for the TX and RX lists.
1133 */
1134 sc->tl_ldata = contigmalloc(sizeof(struct tl_list_data), M_DEVBUF,
1135 M_WAITOK | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
1136
1137 if (sc->tl_ldata == NULL) {
1138 device_printf(dev, "no memory for list buffers!\n");
1139 error = ENXIO;
1140 goto fail;
1141 }
1142
1143 sc->tl_dinfo = t;
1144 if (t->tl_vid == COMPAQ_VENDORID || t->tl_vid == TI_VENDORID)
1145 sc->tl_eeaddr = TL_EEPROM_EADDR;
1146 if (t->tl_vid == OLICOM_VENDORID)
1147 sc->tl_eeaddr = TL_EEPROM_EADDR_OC;
1148
1149 /* Reset the adapter. */
1150 tl_softreset(sc, 1);
1151 tl_hardreset(dev);
1152 tl_softreset(sc, 1);
1153
1154 ifp = &sc->arpcom.ac_if;
1155 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1156
1157 /*
1158 * Get station address from the EEPROM.
1159 */
1160 if (tl_read_eeprom(sc, eaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) {
1161 device_printf(dev, "failed to read station address\n");
1162 error = ENXIO;
1163 goto fail;
1164 }
1165
1166 /*
1167 * XXX Olicom, in its desire to be different from the
1168 * rest of the world, has done strange things with the
1169 * encoding of the station address in the EEPROM. First
1170 * of all, they store the address at offset 0xF8 rather
1171 * than at 0x83 like the ThunderLAN manual suggests.
1172 * Second, they store the address in three 16-bit words in
1173 * network byte order, as opposed to storing it sequentially
1174 * like all the other ThunderLAN cards. In order to get
1175 * the station address in a form that matches what the Olicom
1176 * diagnostic utility specifies, we have to byte-swap each
1177 * word. To make things even more confusing, neither 00:00:28
1178 * nor 00:00:24 appear in the IEEE OUI database.
1179 */
1180 if (sc->tl_dinfo->tl_vid == OLICOM_VENDORID) {
1181 for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1182 u_int16_t *p;
1183 p = (u_int16_t *)&eaddr[i];
1184 *p = ntohs(*p);
1185 }
1186 }
1187
1188 ifp->if_softc = sc;
1189 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1190 ifp->if_ioctl = tl_ioctl;
1191 ifp->if_start = tl_start;
1192 ifp->if_watchdog = tl_watchdog;
1193 ifp->if_init = tl_init;
1194 ifp->if_mtu = ETHERMTU;
1195 ifq_set_maxlen(&ifp->if_snd, TL_TX_LIST_CNT - 1);
1196 ifq_set_ready(&ifp->if_snd);
1197 callout_init(&sc->tl_stat_timer);
1198
1199 /* Reset the adapter again. */
1200 tl_softreset(sc, 1);
1201 tl_hardreset(dev);
1202 tl_softreset(sc, 1);
1203
1204 /*
1205 * Do MII setup. If no PHYs are found, then this is a
1206 * bitrate ThunderLAN chip that only supports 10baseT
1207 * and AUI/BNC.
1208 */
1209 if (mii_phy_probe(dev, &sc->tl_miibus,
1210 tl_ifmedia_upd, tl_ifmedia_sts)) {
1211 struct ifmedia *ifm;
1212 sc->tl_bitrate = 1;
1213 ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts);
1214 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1215 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
1216 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1217 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
1218 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T);
1219 /* Reset again, this time setting bitrate mode. */
1220 tl_softreset(sc, 1);
1221 ifm = &sc->ifmedia;
1222 ifm->ifm_media = ifm->ifm_cur->ifm_media;
1223 tl_ifmedia_upd(ifp);
1224 }
1225
1226 /*
1227 * Call MI attach routine.
1228 */
1229 ether_ifattach(ifp, eaddr, NULL);
1230
1231 ifq_set_cpuid(&ifp->if_snd, rman_get_cpuid(sc->tl_irq));
1232
1233 error = bus_setup_intr(dev, sc->tl_irq, INTR_MPSAFE,
1234 tl_intr, sc, &sc->tl_intrhand,
1235 ifp->if_serializer);
1236
1237 if (error) {
1238 ether_ifdetach(ifp);
1239 device_printf(dev, "couldn't set up irq\n");
1240 goto fail;
1241 }
1242
1243 return(0);
1244
1245 fail:
1246 tl_detach(dev);
1247 return(error);
1248 }
1249
1250 static int
tl_detach(device_t dev)1251 tl_detach(device_t dev)
1252 {
1253 struct tl_softc *sc = device_get_softc(dev);
1254 struct ifnet *ifp = &sc->arpcom.ac_if;
1255
1256 if (device_is_attached(dev)) {
1257 lwkt_serialize_enter(ifp->if_serializer);
1258 tl_stop(sc);
1259 bus_teardown_intr(dev, sc->tl_irq, sc->tl_intrhand);
1260 lwkt_serialize_exit(ifp->if_serializer);
1261
1262 ether_ifdetach(ifp);
1263 }
1264
1265 if (sc->tl_miibus)
1266 device_delete_child(dev, sc->tl_miibus);
1267 bus_generic_detach(dev);
1268
1269 if (sc->tl_ldata)
1270 contigfree(sc->tl_ldata, sizeof(struct tl_list_data), M_DEVBUF);
1271 if (sc->tl_bitrate)
1272 ifmedia_removeall(&sc->ifmedia);
1273 if (sc->tl_irq)
1274 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->tl_irq);
1275 if (sc->tl_res)
1276 bus_release_resource(dev, TL_RES, TL_RID, sc->tl_res);
1277
1278 return(0);
1279 }
1280
1281 /*
1282 * Initialize the transmit lists.
1283 */
1284 static int
tl_list_tx_init(struct tl_softc * sc)1285 tl_list_tx_init(struct tl_softc *sc)
1286 {
1287 struct tl_chain_data *cd;
1288 struct tl_list_data *ld;
1289 int i;
1290
1291 cd = &sc->tl_cdata;
1292 ld = sc->tl_ldata;
1293 for (i = 0; i < TL_TX_LIST_CNT; i++) {
1294 cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i];
1295 if (i == (TL_TX_LIST_CNT - 1))
1296 cd->tl_tx_chain[i].tl_next = NULL;
1297 else
1298 cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1];
1299 }
1300
1301 cd->tl_tx_free = &cd->tl_tx_chain[0];
1302 cd->tl_tx_tail = cd->tl_tx_head = NULL;
1303 sc->tl_txeoc = 1;
1304
1305 return(0);
1306 }
1307
1308 /*
1309 * Initialize the RX lists and allocate mbufs for them.
1310 */
1311 static int
tl_list_rx_init(struct tl_softc * sc)1312 tl_list_rx_init(struct tl_softc *sc)
1313 {
1314 struct tl_chain_data *cd;
1315 struct tl_list_data *ld;
1316 int i;
1317
1318 cd = &sc->tl_cdata;
1319 ld = sc->tl_ldata;
1320
1321 for (i = 0; i < TL_RX_LIST_CNT; i++) {
1322 cd->tl_rx_chain[i].tl_ptr =
1323 (struct tl_list_onefrag *)&ld->tl_rx_list[i];
1324 if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS)
1325 return(ENOBUFS);
1326 if (i == (TL_RX_LIST_CNT - 1)) {
1327 cd->tl_rx_chain[i].tl_next = NULL;
1328 ld->tl_rx_list[i].tlist_fptr = 0;
1329 } else {
1330 cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1];
1331 ld->tl_rx_list[i].tlist_fptr =
1332 vtophys(&ld->tl_rx_list[i + 1]);
1333 }
1334 }
1335
1336 cd->tl_rx_head = &cd->tl_rx_chain[0];
1337 cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1338
1339 return(0);
1340 }
1341
1342 static int
tl_newbuf(struct tl_softc * sc,struct tl_chain_onefrag * c)1343 tl_newbuf(struct tl_softc *sc, struct tl_chain_onefrag *c)
1344 {
1345 struct mbuf *m_new;
1346
1347 m_new = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1348 if (m_new == NULL)
1349 return (ENOBUFS);
1350
1351 c->tl_mbuf = m_new;
1352 c->tl_next = NULL;
1353 c->tl_ptr->tlist_frsize = MCLBYTES;
1354 c->tl_ptr->tlist_fptr = 0;
1355 c->tl_ptr->tl_frag.tlist_dadr = vtophys(mtod(m_new, caddr_t));
1356 c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1357 c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1358
1359 return(0);
1360 }
1361
1362 /*
1363 * Interrupt handler for RX 'end of frame' condition (EOF). This
1364 * tells us that a full ethernet frame has been captured and we need
1365 * to handle it.
1366 *
1367 * Reception is done using 'lists' which consist of a header and a
1368 * series of 10 data count/data address pairs that point to buffers.
1369 * Initially you're supposed to create a list, populate it with pointers
1370 * to buffers, then load the physical address of the list into the
1371 * ch_parm register. The adapter is then supposed to DMA the received
1372 * frame into the buffers for you.
1373 *
1374 * To make things as fast as possible, we have the chip DMA directly
1375 * into mbufs. This saves us from having to do a buffer copy: we can
1376 * just hand the mbufs directly to ether_input(). Once the frame has
1377 * been sent on its way, the 'list' structure is assigned a new buffer
1378 * and moved to the end of the RX chain. As long we we stay ahead of
1379 * the chip, it will always think it has an endless receive channel.
1380 *
1381 * If we happen to fall behind and the chip manages to fill up all of
1382 * the buffers, it will generate an end of channel interrupt and wait
1383 * for us to empty the chain and restart the receiver.
1384 */
1385 static int
tl_intvec_rxeof(void * xsc,u_int32_t type)1386 tl_intvec_rxeof(void *xsc, u_int32_t type)
1387 {
1388 struct tl_softc *sc;
1389 int r = 0, total_len = 0;
1390 struct ether_header *eh;
1391 struct mbuf *m;
1392 struct ifnet *ifp;
1393 struct tl_chain_onefrag *cur_rx;
1394
1395 sc = xsc;
1396 ifp = &sc->arpcom.ac_if;
1397
1398 while(sc->tl_cdata.tl_rx_head != NULL) {
1399 cur_rx = sc->tl_cdata.tl_rx_head;
1400 if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1401 break;
1402 r++;
1403 sc->tl_cdata.tl_rx_head = cur_rx->tl_next;
1404 m = cur_rx->tl_mbuf;
1405 total_len = cur_rx->tl_ptr->tlist_frsize;
1406
1407 if (tl_newbuf(sc, cur_rx) == ENOBUFS) {
1408 IFNET_STAT_INC(ifp, ierrors, 1);
1409 cur_rx->tl_ptr->tlist_frsize = MCLBYTES;
1410 cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1411 cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES;
1412 continue;
1413 }
1414
1415 sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr =
1416 vtophys(cur_rx->tl_ptr);
1417 sc->tl_cdata.tl_rx_tail->tl_next = cur_rx;
1418 sc->tl_cdata.tl_rx_tail = cur_rx;
1419
1420 eh = mtod(m, struct ether_header *);
1421 m->m_pkthdr.rcvif = ifp;
1422 m->m_pkthdr.len = m->m_len = total_len;
1423
1424 /*
1425 * Note: when the ThunderLAN chip is in 'capture all
1426 * frames' mode, it will receive its own transmissions.
1427 * We drop don't need to process our own transmissions,
1428 * so we drop them here and continue.
1429 */
1430 /*if (ifp->if_flags & IFF_PROMISC && */
1431 if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr,
1432 ETHER_ADDR_LEN)) {
1433 m_freem(m);
1434 continue;
1435 }
1436
1437 ifp->if_input(ifp, m, NULL, -1);
1438 }
1439
1440 return(r);
1441 }
1442
1443 /*
1444 * The RX-EOC condition hits when the ch_parm address hasn't been
1445 * initialized or the adapter reached a list with a forward pointer
1446 * of 0 (which indicates the end of the chain). In our case, this means
1447 * the card has hit the end of the receive buffer chain and we need to
1448 * empty out the buffers and shift the pointer back to the beginning again.
1449 */
1450 static int
tl_intvec_rxeoc(void * xsc,u_int32_t type)1451 tl_intvec_rxeoc(void *xsc, u_int32_t type)
1452 {
1453 struct tl_softc *sc;
1454 int r;
1455 struct tl_chain_data *cd;
1456
1457
1458 sc = xsc;
1459 cd = &sc->tl_cdata;
1460
1461 /* Flush out the receive queue and ack RXEOF interrupts. */
1462 r = tl_intvec_rxeof(xsc, type);
1463 CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000)));
1464 r = 1;
1465 cd->tl_rx_head = &cd->tl_rx_chain[0];
1466 cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1];
1467 CSR_WRITE_4(sc, TL_CH_PARM, vtophys(sc->tl_cdata.tl_rx_head->tl_ptr));
1468 r |= (TL_CMD_GO|TL_CMD_RT);
1469 return(r);
1470 }
1471
1472 static int
tl_intvec_txeof(void * xsc,u_int32_t type)1473 tl_intvec_txeof(void *xsc, u_int32_t type)
1474 {
1475 struct tl_softc *sc;
1476 int r = 0;
1477 struct tl_chain *cur_tx;
1478
1479 sc = xsc;
1480
1481 /*
1482 * Go through our tx list and free mbufs for those
1483 * frames that have been sent.
1484 */
1485 while (sc->tl_cdata.tl_tx_head != NULL) {
1486 cur_tx = sc->tl_cdata.tl_tx_head;
1487 if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP))
1488 break;
1489 sc->tl_cdata.tl_tx_head = cur_tx->tl_next;
1490
1491 r++;
1492 m_freem(cur_tx->tl_mbuf);
1493 cur_tx->tl_mbuf = NULL;
1494
1495 cur_tx->tl_next = sc->tl_cdata.tl_tx_free;
1496 sc->tl_cdata.tl_tx_free = cur_tx;
1497 if (!cur_tx->tl_ptr->tlist_fptr)
1498 break;
1499 }
1500
1501 return(r);
1502 }
1503
1504 /*
1505 * The transmit end of channel interrupt. The adapter triggers this
1506 * interrupt to tell us it hit the end of the current transmit list.
1507 *
1508 * A note about this: it's possible for a condition to arise where
1509 * tl_start() may try to send frames between TXEOF and TXEOC interrupts.
1510 * You have to avoid this since the chip expects things to go in a
1511 * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC.
1512 * When the TXEOF handler is called, it will free all of the transmitted
1513 * frames and reset the tx_head pointer to NULL. However, a TXEOC
1514 * interrupt should be received and acknowledged before any more frames
1515 * are queued for transmission. If tl_statrt() is called after TXEOF
1516 * resets the tx_head pointer but _before_ the TXEOC interrupt arrives,
1517 * it could attempt to issue a transmit command prematurely.
1518 *
1519 * To guard against this, tl_start() will only issue transmit commands
1520 * if the tl_txeoc flag is set, and only the TXEOC interrupt handler
1521 * can set this flag once tl_start() has cleared it.
1522 */
1523 static int
tl_intvec_txeoc(void * xsc,u_int32_t type)1524 tl_intvec_txeoc(void *xsc, u_int32_t type)
1525 {
1526 struct tl_softc *sc;
1527 struct ifnet *ifp;
1528 u_int32_t cmd;
1529
1530 sc = xsc;
1531 ifp = &sc->arpcom.ac_if;
1532
1533 /* Clear the timeout timer. */
1534 ifp->if_timer = 0;
1535
1536 if (sc->tl_cdata.tl_tx_head == NULL) {
1537 ifq_clr_oactive(&ifp->if_snd);
1538 sc->tl_cdata.tl_tx_tail = NULL;
1539 sc->tl_txeoc = 1;
1540 } else {
1541 sc->tl_txeoc = 0;
1542 /* First we have to ack the EOC interrupt. */
1543 CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type);
1544 /* Then load the address of the next TX list. */
1545 CSR_WRITE_4(sc, TL_CH_PARM,
1546 vtophys(sc->tl_cdata.tl_tx_head->tl_ptr));
1547 /* Restart TX channel. */
1548 cmd = CSR_READ_4(sc, TL_HOSTCMD);
1549 cmd &= ~TL_CMD_RT;
1550 cmd |= TL_CMD_GO|TL_CMD_INTSON;
1551 CMD_PUT(sc, cmd);
1552 return(0);
1553 }
1554
1555 return(1);
1556 }
1557
1558 static int
tl_intvec_adchk(void * xsc,u_int32_t type)1559 tl_intvec_adchk(void *xsc, u_int32_t type)
1560 {
1561 struct tl_softc *sc;
1562
1563 sc = xsc;
1564
1565 if (type) {
1566 if_printf(&sc->arpcom.ac_if, "adapter check: %x\n",
1567 (unsigned int)CSR_READ_4(sc, TL_CH_PARM));
1568 }
1569
1570 tl_softreset(sc, 1);
1571 tl_stop(sc);
1572 tl_init(sc);
1573 CMD_SET(sc, TL_CMD_INTSON);
1574
1575 return(0);
1576 }
1577
1578 static int
tl_intvec_netsts(void * xsc,u_int32_t type)1579 tl_intvec_netsts(void *xsc, u_int32_t type)
1580 {
1581 struct tl_softc *sc;
1582 u_int16_t netsts;
1583
1584 sc = xsc;
1585
1586 netsts = tl_dio_read16(sc, TL_NETSTS);
1587 tl_dio_write16(sc, TL_NETSTS, netsts);
1588
1589 if_printf(&sc->arpcom.ac_if, "network status: %x\n", netsts);
1590
1591 return(1);
1592 }
1593
1594 static void
tl_intr(void * xsc)1595 tl_intr(void *xsc)
1596 {
1597 struct tl_softc *sc;
1598 struct ifnet *ifp;
1599 int r = 0;
1600 u_int32_t type = 0;
1601 u_int16_t ints = 0;
1602 u_int8_t ivec = 0;
1603
1604 sc = xsc;
1605
1606 /* Disable interrupts */
1607 ints = CSR_READ_2(sc, TL_HOST_INT);
1608 CSR_WRITE_2(sc, TL_HOST_INT, ints);
1609 type = (ints << 16) & 0xFFFF0000;
1610 ivec = (ints & TL_VEC_MASK) >> 5;
1611 ints = (ints & TL_INT_MASK) >> 2;
1612
1613 ifp = &sc->arpcom.ac_if;
1614
1615 switch(ints) {
1616 case (TL_INTR_INVALID):
1617 #ifdef DIAGNOSTIC
1618 if_printf(ifp, "got an invalid interrupt!\n");
1619 #endif
1620 /* Re-enable interrupts but don't ack this one. */
1621 CMD_PUT(sc, type);
1622 r = 0;
1623 break;
1624 case (TL_INTR_TXEOF):
1625 r = tl_intvec_txeof(sc, type);
1626 break;
1627 case (TL_INTR_TXEOC):
1628 r = tl_intvec_txeoc(sc, type);
1629 break;
1630 case (TL_INTR_STATOFLOW):
1631 tl_stats_update_serialized(sc);
1632 r = 1;
1633 break;
1634 case (TL_INTR_RXEOF):
1635 r = tl_intvec_rxeof(sc, type);
1636 break;
1637 case (TL_INTR_DUMMY):
1638 if_printf(ifp, "got a dummy interrupt\n");
1639 r = 1;
1640 break;
1641 case (TL_INTR_ADCHK):
1642 if (ivec)
1643 r = tl_intvec_adchk(sc, type);
1644 else
1645 r = tl_intvec_netsts(sc, type);
1646 break;
1647 case (TL_INTR_RXEOC):
1648 r = tl_intvec_rxeoc(sc, type);
1649 break;
1650 default:
1651 if_printf(ifp, "bogus interrupt type\n");
1652 break;
1653 }
1654
1655 /* Re-enable interrupts */
1656 if (r) {
1657 CMD_PUT(sc, TL_CMD_ACK | r | type);
1658 }
1659
1660 if (!ifq_is_empty(&ifp->if_snd))
1661 if_devstart(ifp);
1662 }
1663
1664 static
1665 void
tl_stats_update(void * xsc)1666 tl_stats_update(void *xsc)
1667 {
1668 struct tl_softc *sc = xsc;
1669 struct ifnet *ifp = &sc->arpcom.ac_if;
1670
1671 lwkt_serialize_enter(ifp->if_serializer);
1672 tl_stats_update_serialized(xsc);
1673 lwkt_serialize_exit(ifp->if_serializer);
1674 }
1675
1676 static
1677 void
tl_stats_update_serialized(void * xsc)1678 tl_stats_update_serialized(void *xsc)
1679 {
1680 struct tl_softc *sc;
1681 struct ifnet *ifp;
1682 struct tl_stats tl_stats;
1683 struct mii_data *mii;
1684 u_int32_t *p;
1685
1686 bzero((char *)&tl_stats, sizeof(struct tl_stats));
1687
1688 sc = xsc;
1689 ifp = &sc->arpcom.ac_if;
1690
1691 p = (u_int32_t *)&tl_stats;
1692
1693 CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC);
1694 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1695 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1696 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1697 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1698 *p++ = CSR_READ_4(sc, TL_DIO_DATA);
1699
1700 IFNET_STAT_INC(ifp, opackets, tl_tx_goodframes(tl_stats));
1701 IFNET_STAT_INC(ifp, collisions, tl_stats.tl_tx_single_collision +
1702 tl_stats.tl_tx_multi_collision);
1703 IFNET_STAT_INC(ifp, ipackets, tl_rx_goodframes(tl_stats));
1704 IFNET_STAT_INC(ifp, ierrors, tl_stats.tl_crc_errors +
1705 tl_stats.tl_code_errors + tl_rx_overrun(tl_stats));
1706 IFNET_STAT_INC(ifp, oerrors, tl_tx_underrun(tl_stats));
1707
1708 if (tl_tx_underrun(tl_stats)) {
1709 u_int8_t tx_thresh;
1710 tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH;
1711 if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) {
1712 tx_thresh >>= 4;
1713 tx_thresh++;
1714 if_printf(ifp, "tx underrun -- increasing "
1715 "tx threshold to %d bytes\n",
1716 (64 * (tx_thresh * 4)));
1717 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1718 tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4);
1719 }
1720 }
1721
1722 callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1723
1724 if (!sc->tl_bitrate) {
1725 mii = device_get_softc(sc->tl_miibus);
1726 mii_tick(mii);
1727 }
1728 }
1729
1730 /*
1731 * Encapsulate an mbuf chain in a list by coupling the mbuf data
1732 * pointers to the fragment pointers.
1733 */
1734 static int
tl_encap(struct tl_softc * sc,struct tl_chain * c,struct mbuf * m_head)1735 tl_encap(struct tl_softc *sc, struct tl_chain *c, struct mbuf *m_head)
1736 {
1737 int frag = 0;
1738 struct tl_frag *f = NULL;
1739 int total_len;
1740 struct mbuf *m;
1741
1742 /*
1743 * Start packing the mbufs in this chain into
1744 * the fragment pointers. Stop when we run out
1745 * of fragments or hit the end of the mbuf chain.
1746 */
1747 total_len = 0;
1748
1749 for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1750 if (m->m_len != 0) {
1751 if (frag == TL_MAXFRAGS)
1752 break;
1753 total_len+= m->m_len;
1754 c->tl_ptr->tl_frag[frag].tlist_dadr =
1755 vtophys(mtod(m, vm_offset_t));
1756 c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len;
1757 frag++;
1758 }
1759 }
1760
1761 /*
1762 * Handle special cases.
1763 * Special case #1: we used up all 10 fragments, but
1764 * we have more mbufs left in the chain. Copy the
1765 * data into an mbuf cluster. Note that we don't
1766 * bother clearing the values in the other fragment
1767 * pointers/counters; it wouldn't gain us anything,
1768 * and would waste cycles.
1769 */
1770 if (m != NULL) {
1771 struct mbuf *m_new;
1772
1773 m_new = m_getl(m_head->m_pkthdr.len, M_NOWAIT, MT_DATA,
1774 M_PKTHDR, NULL);
1775 if (m_new == NULL) {
1776 if_printf(&sc->arpcom.ac_if, "no memory for tx list\n");
1777 return (1);
1778 }
1779 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1780 mtod(m_new, void *));
1781 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1782 m_freem(m_head);
1783 m_head = m_new;
1784 f = &c->tl_ptr->tl_frag[0];
1785 f->tlist_dadr = vtophys(mtod(m_new, caddr_t));
1786 f->tlist_dcnt = total_len = m_new->m_len;
1787 frag = 1;
1788 }
1789
1790 /*
1791 * Special case #2: the frame is smaller than the minimum
1792 * frame size. We have to pad it to make the chip happy.
1793 */
1794 if (total_len < TL_MIN_FRAMELEN) {
1795 if (frag == TL_MAXFRAGS) {
1796 if_printf(&sc->arpcom.ac_if, "all frags filled but "
1797 "frame still to small!\n");
1798 }
1799 f = &c->tl_ptr->tl_frag[frag];
1800 f->tlist_dcnt = TL_MIN_FRAMELEN - total_len;
1801 f->tlist_dadr = vtophys(&sc->tl_ldata->tl_pad);
1802 total_len += f->tlist_dcnt;
1803 frag++;
1804 }
1805
1806 c->tl_mbuf = m_head;
1807 c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG;
1808 c->tl_ptr->tlist_frsize = total_len;
1809 c->tl_ptr->tlist_cstat = TL_CSTAT_READY;
1810 c->tl_ptr->tlist_fptr = 0;
1811
1812 return(0);
1813 }
1814
1815 /*
1816 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1817 * to the mbuf data regions directly in the transmit lists. We also save a
1818 * copy of the pointers since the transmit list fragment pointers are
1819 * physical addresses.
1820 */
1821 static void
tl_start(struct ifnet * ifp,struct ifaltq_subque * ifsq)1822 tl_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
1823 {
1824 struct tl_softc *sc;
1825 struct mbuf *m_head = NULL;
1826 u_int32_t cmd;
1827 struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
1828
1829 ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
1830
1831 sc = ifp->if_softc;
1832
1833 /*
1834 * Check for an available queue slot. If there are none,
1835 * punt.
1836 */
1837 if (sc->tl_cdata.tl_tx_free == NULL) {
1838 ifq_set_oactive(&ifp->if_snd);
1839 return;
1840 }
1841
1842 start_tx = sc->tl_cdata.tl_tx_free;
1843
1844 while(sc->tl_cdata.tl_tx_free != NULL) {
1845 m_head = ifq_dequeue(&ifp->if_snd);
1846 if (m_head == NULL)
1847 break;
1848
1849 /* Pick a chain member off the free list. */
1850 cur_tx = sc->tl_cdata.tl_tx_free;
1851 sc->tl_cdata.tl_tx_free = cur_tx->tl_next;
1852
1853 cur_tx->tl_next = NULL;
1854
1855 /* Pack the data into the list. */
1856 tl_encap(sc, cur_tx, m_head);
1857
1858 /* Chain it together */
1859 if (prev != NULL) {
1860 prev->tl_next = cur_tx;
1861 prev->tl_ptr->tlist_fptr = vtophys(cur_tx->tl_ptr);
1862 }
1863 prev = cur_tx;
1864
1865 BPF_MTAP(ifp, cur_tx->tl_mbuf);
1866 }
1867
1868 /*
1869 * If there are no packets queued, bail.
1870 */
1871 if (cur_tx == NULL)
1872 return;
1873
1874 /*
1875 * That's all we can stands, we can't stands no more.
1876 * If there are no other transfers pending, then issue the
1877 * TX GO command to the adapter to start things moving.
1878 * Otherwise, just leave the data in the queue and let
1879 * the EOF/EOC interrupt handler send.
1880 */
1881 if (sc->tl_cdata.tl_tx_head == NULL) {
1882 sc->tl_cdata.tl_tx_head = start_tx;
1883 sc->tl_cdata.tl_tx_tail = cur_tx;
1884
1885 if (sc->tl_txeoc) {
1886 sc->tl_txeoc = 0;
1887 CSR_WRITE_4(sc, TL_CH_PARM, vtophys(start_tx->tl_ptr));
1888 cmd = CSR_READ_4(sc, TL_HOSTCMD);
1889 cmd &= ~TL_CMD_RT;
1890 cmd |= TL_CMD_GO|TL_CMD_INTSON;
1891 CMD_PUT(sc, cmd);
1892 }
1893 } else {
1894 sc->tl_cdata.tl_tx_tail->tl_next = start_tx;
1895 sc->tl_cdata.tl_tx_tail = cur_tx;
1896 }
1897
1898 /*
1899 * Set a timeout in case the chip goes out to lunch.
1900 */
1901 ifp->if_timer = 5;
1902
1903 return;
1904 }
1905
1906 static void
tl_init(void * xsc)1907 tl_init(void *xsc)
1908 {
1909 struct tl_softc *sc = xsc;
1910 struct ifnet *ifp = &sc->arpcom.ac_if;
1911 struct mii_data *mii;
1912
1913 /*
1914 * Cancel pending I/O.
1915 */
1916 tl_stop(sc);
1917
1918 /* Initialize TX FIFO threshold */
1919 tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH);
1920 tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG);
1921
1922 /* Set PCI burst size */
1923 tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG);
1924
1925 /*
1926 * Set 'capture all frames' bit for promiscuous mode.
1927 */
1928 if (ifp->if_flags & IFF_PROMISC)
1929 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
1930 else
1931 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
1932
1933 /*
1934 * Set capture broadcast bit to capture broadcast frames.
1935 */
1936 if (ifp->if_flags & IFF_BROADCAST)
1937 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1938 else
1939 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX);
1940
1941 tl_dio_write16(sc, TL_MAXRX, MCLBYTES);
1942
1943 /* Init our MAC address */
1944 tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0);
1945
1946 /* Init multicast filter, if needed. */
1947 tl_setmulti(sc);
1948
1949 /* Init circular RX list. */
1950 if (tl_list_rx_init(sc) == ENOBUFS) {
1951 if_printf(ifp, "initialization failed: no "
1952 "memory for rx buffers\n");
1953 tl_stop(sc);
1954 return;
1955 }
1956
1957 /* Init TX pointers. */
1958 tl_list_tx_init(sc);
1959
1960 /* Enable PCI interrupts. */
1961 CMD_SET(sc, TL_CMD_INTSON);
1962
1963 /* Load the address of the rx list */
1964 CMD_SET(sc, TL_CMD_RT);
1965 CSR_WRITE_4(sc, TL_CH_PARM, vtophys(&sc->tl_ldata->tl_rx_list[0]));
1966
1967 if (!sc->tl_bitrate) {
1968 if (sc->tl_miibus != NULL) {
1969 mii = device_get_softc(sc->tl_miibus);
1970 mii_mediachg(mii);
1971 }
1972 }
1973
1974 /* Send the RX go command */
1975 CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT);
1976
1977 ifp->if_flags |= IFF_RUNNING;
1978 ifq_clr_oactive(&ifp->if_snd);
1979
1980 /* Start the stats update counter */
1981 callout_reset(&sc->tl_stat_timer, hz, tl_stats_update, sc);
1982 }
1983
1984 /*
1985 * Set media options.
1986 */
1987 static int
tl_ifmedia_upd(struct ifnet * ifp)1988 tl_ifmedia_upd(struct ifnet *ifp)
1989 {
1990 struct tl_softc *sc;
1991 struct mii_data *mii = NULL;
1992
1993 sc = ifp->if_softc;
1994
1995 if (sc->tl_bitrate)
1996 tl_setmode(sc, sc->ifmedia.ifm_media);
1997 else {
1998 mii = device_get_softc(sc->tl_miibus);
1999 mii_mediachg(mii);
2000 }
2001
2002 return(0);
2003 }
2004
2005 /*
2006 * Report current media status.
2007 */
2008 static void
tl_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)2009 tl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2010 {
2011 struct tl_softc *sc;
2012 struct mii_data *mii;
2013
2014 sc = ifp->if_softc;
2015
2016 ifmr->ifm_active = IFM_ETHER;
2017
2018 if (sc->tl_bitrate) {
2019 if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1)
2020 ifmr->ifm_active = IFM_ETHER|IFM_10_5;
2021 else
2022 ifmr->ifm_active = IFM_ETHER|IFM_10_T;
2023 if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3)
2024 ifmr->ifm_active |= IFM_HDX;
2025 else
2026 ifmr->ifm_active |= IFM_FDX;
2027 return;
2028 } else {
2029 mii = device_get_softc(sc->tl_miibus);
2030 mii_pollstat(mii);
2031 ifmr->ifm_active = mii->mii_media_active;
2032 ifmr->ifm_status = mii->mii_media_status;
2033 }
2034
2035 return;
2036 }
2037
2038 static int
tl_ioctl(struct ifnet * ifp,u_long command,caddr_t data,struct ucred * cr)2039 tl_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2040 {
2041 struct tl_softc *sc = ifp->if_softc;
2042 struct ifreq *ifr = (struct ifreq *) data;
2043 int error = 0;
2044
2045 switch(command) {
2046 case SIOCSIFFLAGS:
2047 if (ifp->if_flags & IFF_UP) {
2048 if (ifp->if_flags & IFF_RUNNING &&
2049 ifp->if_flags & IFF_PROMISC &&
2050 !(sc->tl_if_flags & IFF_PROMISC)) {
2051 tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF);
2052 tl_setmulti(sc);
2053 } else if (ifp->if_flags & IFF_RUNNING &&
2054 !(ifp->if_flags & IFF_PROMISC) &&
2055 sc->tl_if_flags & IFF_PROMISC) {
2056 tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF);
2057 tl_setmulti(sc);
2058 } else
2059 tl_init(sc);
2060 } else {
2061 if (ifp->if_flags & IFF_RUNNING) {
2062 tl_stop(sc);
2063 }
2064 }
2065 sc->tl_if_flags = ifp->if_flags;
2066 error = 0;
2067 break;
2068 case SIOCADDMULTI:
2069 case SIOCDELMULTI:
2070 tl_setmulti(sc);
2071 error = 0;
2072 break;
2073 case SIOCSIFMEDIA:
2074 case SIOCGIFMEDIA:
2075 if (sc->tl_bitrate)
2076 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2077 else {
2078 struct mii_data *mii;
2079 mii = device_get_softc(sc->tl_miibus);
2080 error = ifmedia_ioctl(ifp, ifr,
2081 &mii->mii_media, command);
2082 }
2083 break;
2084 default:
2085 error = ether_ioctl(ifp, command, data);
2086 break;
2087 }
2088 return(error);
2089 }
2090
2091 static void
tl_watchdog(struct ifnet * ifp)2092 tl_watchdog(struct ifnet *ifp)
2093 {
2094 struct tl_softc *sc;
2095
2096 sc = ifp->if_softc;
2097
2098 if_printf(ifp, "device timeout\n");
2099
2100 IFNET_STAT_INC(ifp, oerrors, 1);
2101
2102 tl_softreset(sc, 1);
2103 tl_init(sc);
2104
2105 return;
2106 }
2107
2108 /*
2109 * Stop the adapter and free any mbufs allocated to the
2110 * RX and TX lists.
2111 */
2112 static void
tl_stop(struct tl_softc * sc)2113 tl_stop(struct tl_softc *sc)
2114 {
2115 int i;
2116 struct ifnet *ifp;
2117
2118 ifp = &sc->arpcom.ac_if;
2119
2120 /* Stop the stats updater. */
2121 callout_stop(&sc->tl_stat_timer);
2122
2123 /* Stop the transmitter */
2124 CMD_CLR(sc, TL_CMD_RT);
2125 CMD_SET(sc, TL_CMD_STOP);
2126 CSR_WRITE_4(sc, TL_CH_PARM, 0);
2127
2128 /* Stop the receiver */
2129 CMD_SET(sc, TL_CMD_RT);
2130 CMD_SET(sc, TL_CMD_STOP);
2131 CSR_WRITE_4(sc, TL_CH_PARM, 0);
2132
2133 /*
2134 * Disable host interrupts.
2135 */
2136 CMD_SET(sc, TL_CMD_INTSOFF);
2137
2138 /*
2139 * Clear list pointer.
2140 */
2141 CSR_WRITE_4(sc, TL_CH_PARM, 0);
2142
2143 /*
2144 * Free the RX lists.
2145 */
2146 for (i = 0; i < TL_RX_LIST_CNT; i++) {
2147 if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) {
2148 m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf);
2149 sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL;
2150 }
2151 }
2152 bzero((char *)&sc->tl_ldata->tl_rx_list,
2153 sizeof(sc->tl_ldata->tl_rx_list));
2154
2155 /*
2156 * Free the TX list buffers.
2157 */
2158 for (i = 0; i < TL_TX_LIST_CNT; i++) {
2159 if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) {
2160 m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf);
2161 sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL;
2162 }
2163 }
2164 bzero((char *)&sc->tl_ldata->tl_tx_list,
2165 sizeof(sc->tl_ldata->tl_tx_list));
2166
2167 ifp->if_flags &= ~IFF_RUNNING;
2168 ifq_clr_oactive(&ifp->if_snd);
2169
2170 return;
2171 }
2172
2173 /*
2174 * Stop all chip I/O so that the kernel's probe routines don't
2175 * get confused by errant DMAs when rebooting.
2176 */
2177 static void
tl_shutdown(device_t dev)2178 tl_shutdown(device_t dev)
2179 {
2180 struct tl_softc *sc;
2181
2182 sc = device_get_softc(dev);
2183
2184 tl_stop(sc);
2185
2186 return;
2187 }
2188