xref: /linux/drivers/gpu/drm/ttm/ttm_bo_util.c (revision 10efe34d)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #include <linux/vmalloc.h>
33 
34 #include <drm/ttm/ttm_bo.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <drm/ttm/ttm_tt.h>
37 
38 #include <drm/drm_cache.h>
39 
40 struct ttm_transfer_obj {
41 	struct ttm_buffer_object base;
42 	struct ttm_buffer_object *bo;
43 };
44 
ttm_mem_io_reserve(struct ttm_device * bdev,struct ttm_resource * mem)45 int ttm_mem_io_reserve(struct ttm_device *bdev,
46 		       struct ttm_resource *mem)
47 {
48 	if (mem->bus.offset || mem->bus.addr)
49 		return 0;
50 
51 	mem->bus.is_iomem = false;
52 	if (!bdev->funcs->io_mem_reserve)
53 		return 0;
54 
55 	return bdev->funcs->io_mem_reserve(bdev, mem);
56 }
57 
ttm_mem_io_free(struct ttm_device * bdev,struct ttm_resource * mem)58 void ttm_mem_io_free(struct ttm_device *bdev,
59 		     struct ttm_resource *mem)
60 {
61 	if (!mem)
62 		return;
63 
64 	if (!mem->bus.offset && !mem->bus.addr)
65 		return;
66 
67 	if (bdev->funcs->io_mem_free)
68 		bdev->funcs->io_mem_free(bdev, mem);
69 
70 	mem->bus.offset = 0;
71 	mem->bus.addr = NULL;
72 }
73 
74 /**
75  * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
76  * @clear: Whether to clear rather than copy.
77  * @num_pages: Number of pages of the operation.
78  * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
79  * @src_iter: A struct ttm_kmap_iter representing the source resource.
80  *
81  * This function is intended to be able to move out async under a
82  * dma-fence if desired.
83  */
ttm_move_memcpy(bool clear,u32 num_pages,struct ttm_kmap_iter * dst_iter,struct ttm_kmap_iter * src_iter)84 void ttm_move_memcpy(bool clear,
85 		     u32 num_pages,
86 		     struct ttm_kmap_iter *dst_iter,
87 		     struct ttm_kmap_iter *src_iter)
88 {
89 	const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
90 	const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
91 	struct iosys_map src_map, dst_map;
92 	pgoff_t i;
93 
94 	/* Single TTM move. NOP */
95 	if (dst_ops->maps_tt && src_ops->maps_tt)
96 		return;
97 
98 	/* Don't move nonexistent data. Clear destination instead. */
99 	if (clear) {
100 		for (i = 0; i < num_pages; ++i) {
101 			dst_ops->map_local(dst_iter, &dst_map, i);
102 			if (dst_map.is_iomem)
103 				memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
104 			else
105 				memset(dst_map.vaddr, 0, PAGE_SIZE);
106 			if (dst_ops->unmap_local)
107 				dst_ops->unmap_local(dst_iter, &dst_map);
108 		}
109 		return;
110 	}
111 
112 	for (i = 0; i < num_pages; ++i) {
113 		dst_ops->map_local(dst_iter, &dst_map, i);
114 		src_ops->map_local(src_iter, &src_map, i);
115 
116 		drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
117 
118 		if (src_ops->unmap_local)
119 			src_ops->unmap_local(src_iter, &src_map);
120 		if (dst_ops->unmap_local)
121 			dst_ops->unmap_local(dst_iter, &dst_map);
122 	}
123 }
124 EXPORT_SYMBOL(ttm_move_memcpy);
125 
126 /**
127  * ttm_bo_move_memcpy
128  *
129  * @bo: A pointer to a struct ttm_buffer_object.
130  * @ctx: operation context
131  * @dst_mem: struct ttm_resource indicating where to move.
132  *
133  * Fallback move function for a mappable buffer object in mappable memory.
134  * The function will, if successful,
135  * free any old aperture space, and set (@new_mem)->mm_node to NULL,
136  * and update the (@bo)->mem placement flags. If unsuccessful, the old
137  * data remains untouched, and it's up to the caller to free the
138  * memory space indicated by @new_mem.
139  * Returns:
140  * !0: Failure.
141  */
ttm_bo_move_memcpy(struct ttm_buffer_object * bo,struct ttm_operation_ctx * ctx,struct ttm_resource * dst_mem)142 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
143 		       struct ttm_operation_ctx *ctx,
144 		       struct ttm_resource *dst_mem)
145 {
146 	struct ttm_device *bdev = bo->bdev;
147 	struct ttm_resource_manager *dst_man =
148 		ttm_manager_type(bo->bdev, dst_mem->mem_type);
149 	struct ttm_tt *ttm = bo->ttm;
150 	struct ttm_resource *src_mem = bo->resource;
151 	struct ttm_resource_manager *src_man;
152 	union {
153 		struct ttm_kmap_iter_tt tt;
154 		struct ttm_kmap_iter_linear_io io;
155 	} _dst_iter, _src_iter;
156 	struct ttm_kmap_iter *dst_iter, *src_iter;
157 	bool clear;
158 	int ret = 0;
159 
160 	if (WARN_ON(!src_mem))
161 		return -EINVAL;
162 
163 	src_man = ttm_manager_type(bdev, src_mem->mem_type);
164 	if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
165 		    dst_man->use_tt)) {
166 		ret = ttm_tt_populate(bdev, ttm, ctx);
167 		if (ret)
168 			return ret;
169 	}
170 
171 	dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
172 	if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
173 		dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
174 	if (IS_ERR(dst_iter))
175 		return PTR_ERR(dst_iter);
176 
177 	src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
178 	if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
179 		src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
180 	if (IS_ERR(src_iter)) {
181 		ret = PTR_ERR(src_iter);
182 		goto out_src_iter;
183 	}
184 
185 	clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
186 	if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
187 		ttm_move_memcpy(clear, PFN_UP(dst_mem->size), dst_iter, src_iter);
188 
189 	if (!src_iter->ops->maps_tt)
190 		ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
191 	ttm_bo_move_sync_cleanup(bo, dst_mem);
192 
193 out_src_iter:
194 	if (!dst_iter->ops->maps_tt)
195 		ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
196 
197 	return ret;
198 }
199 EXPORT_SYMBOL(ttm_bo_move_memcpy);
200 
ttm_transfered_destroy(struct ttm_buffer_object * bo)201 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
202 {
203 	struct ttm_transfer_obj *fbo;
204 
205 	fbo = container_of(bo, struct ttm_transfer_obj, base);
206 	dma_resv_fini(&fbo->base.base._resv);
207 	ttm_bo_put(fbo->bo);
208 	kfree(fbo);
209 }
210 
211 /**
212  * ttm_buffer_object_transfer
213  *
214  * @bo: A pointer to a struct ttm_buffer_object.
215  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
216  * holding the data of @bo with the old placement.
217  *
218  * This is a utility function that may be called after an accelerated move
219  * has been scheduled. A new buffer object is created as a placeholder for
220  * the old data while it's being copied. When that buffer object is idle,
221  * it can be destroyed, releasing the space of the old placement.
222  * Returns:
223  * !0: Failure.
224  */
225 
ttm_buffer_object_transfer(struct ttm_buffer_object * bo,struct ttm_buffer_object ** new_obj)226 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
227 				      struct ttm_buffer_object **new_obj)
228 {
229 	struct ttm_transfer_obj *fbo;
230 	int ret;
231 
232 	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
233 	if (!fbo)
234 		return -ENOMEM;
235 
236 	fbo->base = *bo;
237 
238 	/**
239 	 * Fix up members that we shouldn't copy directly:
240 	 * TODO: Explicit member copy would probably be better here.
241 	 */
242 
243 	atomic_inc(&ttm_glob.bo_count);
244 	drm_vma_node_reset(&fbo->base.base.vma_node);
245 
246 	kref_init(&fbo->base.kref);
247 	fbo->base.destroy = &ttm_transfered_destroy;
248 	fbo->base.pin_count = 0;
249 	if (bo->type != ttm_bo_type_sg)
250 		fbo->base.base.resv = &fbo->base.base._resv;
251 
252 	dma_resv_init(&fbo->base.base._resv);
253 	fbo->base.base.dev = NULL;
254 	ret = dma_resv_trylock(&fbo->base.base._resv);
255 	WARN_ON(!ret);
256 
257 	if (fbo->base.resource) {
258 		ttm_resource_set_bo(fbo->base.resource, &fbo->base);
259 		bo->resource = NULL;
260 		ttm_bo_set_bulk_move(&fbo->base, NULL);
261 	} else {
262 		fbo->base.bulk_move = NULL;
263 	}
264 
265 	ret = dma_resv_reserve_fences(&fbo->base.base._resv, 1);
266 	if (ret) {
267 		kfree(fbo);
268 		return ret;
269 	}
270 
271 	ttm_bo_get(bo);
272 	fbo->bo = bo;
273 
274 	ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
275 
276 	*new_obj = &fbo->base;
277 	return 0;
278 }
279 
280 /**
281  * ttm_io_prot
282  *
283  * @bo: ttm buffer object
284  * @res: ttm resource object
285  * @tmp: Page protection flag for a normal, cached mapping.
286  *
287  * Utility function that returns the pgprot_t that should be used for
288  * setting up a PTE with the caching model indicated by @c_state.
289  */
ttm_io_prot(struct ttm_buffer_object * bo,struct ttm_resource * res,pgprot_t tmp)290 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
291 		     pgprot_t tmp)
292 {
293 	struct ttm_resource_manager *man;
294 	enum ttm_caching caching;
295 
296 	man = ttm_manager_type(bo->bdev, res->mem_type);
297 	if (man->use_tt) {
298 		caching = bo->ttm->caching;
299 		if (bo->ttm->page_flags & TTM_TT_FLAG_DECRYPTED)
300 			tmp = pgprot_decrypted(tmp);
301 	} else  {
302 		caching = res->bus.caching;
303 	}
304 
305 	return ttm_prot_from_caching(caching, tmp);
306 }
307 EXPORT_SYMBOL(ttm_io_prot);
308 
ttm_bo_ioremap(struct ttm_buffer_object * bo,unsigned long offset,unsigned long size,struct ttm_bo_kmap_obj * map)309 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
310 			  unsigned long offset,
311 			  unsigned long size,
312 			  struct ttm_bo_kmap_obj *map)
313 {
314 	struct ttm_resource *mem = bo->resource;
315 
316 	if (bo->resource->bus.addr) {
317 		map->bo_kmap_type = ttm_bo_map_premapped;
318 		map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
319 	} else {
320 		resource_size_t res = bo->resource->bus.offset + offset;
321 
322 		map->bo_kmap_type = ttm_bo_map_iomap;
323 		if (mem->bus.caching == ttm_write_combined)
324 			map->virtual = ioremap_wc(res, size);
325 #ifdef CONFIG_X86
326 		else if (mem->bus.caching == ttm_cached)
327 			map->virtual = ioremap_cache(res, size);
328 #endif
329 		else
330 			map->virtual = ioremap(res, size);
331 	}
332 	return (!map->virtual) ? -ENOMEM : 0;
333 }
334 
ttm_bo_kmap_ttm(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)335 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
336 			   unsigned long start_page,
337 			   unsigned long num_pages,
338 			   struct ttm_bo_kmap_obj *map)
339 {
340 	struct ttm_resource *mem = bo->resource;
341 	struct ttm_operation_ctx ctx = {
342 		.interruptible = false,
343 		.no_wait_gpu = false
344 	};
345 	struct ttm_tt *ttm = bo->ttm;
346 	struct ttm_resource_manager *man =
347 			ttm_manager_type(bo->bdev, bo->resource->mem_type);
348 	pgprot_t prot;
349 	int ret;
350 
351 	BUG_ON(!ttm);
352 
353 	ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
354 	if (ret)
355 		return ret;
356 
357 	if (num_pages == 1 && ttm->caching == ttm_cached &&
358 	    !(man->use_tt && (ttm->page_flags & TTM_TT_FLAG_DECRYPTED))) {
359 		/*
360 		 * We're mapping a single page, and the desired
361 		 * page protection is consistent with the bo.
362 		 */
363 
364 		map->bo_kmap_type = ttm_bo_map_kmap;
365 		map->page = ttm->pages[start_page];
366 		map->virtual = kmap(map->page);
367 	} else {
368 		/*
369 		 * We need to use vmap to get the desired page protection
370 		 * or to make the buffer object look contiguous.
371 		 */
372 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
373 		map->bo_kmap_type = ttm_bo_map_vmap;
374 		map->virtual = vmap(ttm->pages + start_page, num_pages,
375 				    0, prot);
376 	}
377 	return (!map->virtual) ? -ENOMEM : 0;
378 }
379 
380 /**
381  * ttm_bo_kmap
382  *
383  * @bo: The buffer object.
384  * @start_page: The first page to map.
385  * @num_pages: Number of pages to map.
386  * @map: pointer to a struct ttm_bo_kmap_obj representing the map.
387  *
388  * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
389  * data in the buffer object. The ttm_kmap_obj_virtual function can then be
390  * used to obtain a virtual address to the data.
391  *
392  * Returns
393  * -ENOMEM: Out of memory.
394  * -EINVAL: Invalid range.
395  */
ttm_bo_kmap(struct ttm_buffer_object * bo,unsigned long start_page,unsigned long num_pages,struct ttm_bo_kmap_obj * map)396 int ttm_bo_kmap(struct ttm_buffer_object *bo,
397 		unsigned long start_page, unsigned long num_pages,
398 		struct ttm_bo_kmap_obj *map)
399 {
400 	unsigned long offset, size;
401 	int ret;
402 
403 	map->virtual = NULL;
404 	map->bo = bo;
405 	if (num_pages > PFN_UP(bo->resource->size))
406 		return -EINVAL;
407 	if ((start_page + num_pages) > PFN_UP(bo->resource->size))
408 		return -EINVAL;
409 
410 	ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
411 	if (ret)
412 		return ret;
413 	if (!bo->resource->bus.is_iomem) {
414 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
415 	} else {
416 		offset = start_page << PAGE_SHIFT;
417 		size = num_pages << PAGE_SHIFT;
418 		return ttm_bo_ioremap(bo, offset, size, map);
419 	}
420 }
421 EXPORT_SYMBOL(ttm_bo_kmap);
422 
423 /**
424  * ttm_bo_kunmap
425  *
426  * @map: Object describing the map to unmap.
427  *
428  * Unmaps a kernel map set up by ttm_bo_kmap.
429  */
ttm_bo_kunmap(struct ttm_bo_kmap_obj * map)430 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
431 {
432 	if (!map->virtual)
433 		return;
434 	switch (map->bo_kmap_type) {
435 	case ttm_bo_map_iomap:
436 		iounmap(map->virtual);
437 		break;
438 	case ttm_bo_map_vmap:
439 		vunmap(map->virtual);
440 		break;
441 	case ttm_bo_map_kmap:
442 		kunmap(map->page);
443 		break;
444 	case ttm_bo_map_premapped:
445 		break;
446 	default:
447 		BUG();
448 	}
449 	ttm_mem_io_free(map->bo->bdev, map->bo->resource);
450 	map->virtual = NULL;
451 	map->page = NULL;
452 }
453 EXPORT_SYMBOL(ttm_bo_kunmap);
454 
455 /**
456  * ttm_bo_vmap
457  *
458  * @bo: The buffer object.
459  * @map: pointer to a struct iosys_map representing the map.
460  *
461  * Sets up a kernel virtual mapping, using ioremap or vmap to the
462  * data in the buffer object. The parameter @map returns the virtual
463  * address as struct iosys_map. Unmap the buffer with ttm_bo_vunmap().
464  *
465  * Returns
466  * -ENOMEM: Out of memory.
467  * -EINVAL: Invalid range.
468  */
ttm_bo_vmap(struct ttm_buffer_object * bo,struct iosys_map * map)469 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map)
470 {
471 	struct ttm_resource *mem = bo->resource;
472 	int ret;
473 
474 	dma_resv_assert_held(bo->base.resv);
475 
476 	ret = ttm_mem_io_reserve(bo->bdev, mem);
477 	if (ret)
478 		return ret;
479 
480 	if (mem->bus.is_iomem) {
481 		void __iomem *vaddr_iomem;
482 
483 		if (mem->bus.addr)
484 			vaddr_iomem = (void __iomem *)mem->bus.addr;
485 		else if (mem->bus.caching == ttm_write_combined)
486 			vaddr_iomem = ioremap_wc(mem->bus.offset,
487 						 bo->base.size);
488 #ifdef CONFIG_X86
489 		else if (mem->bus.caching == ttm_cached)
490 			vaddr_iomem = ioremap_cache(mem->bus.offset,
491 						  bo->base.size);
492 #endif
493 		else
494 			vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
495 
496 		if (!vaddr_iomem)
497 			return -ENOMEM;
498 
499 		iosys_map_set_vaddr_iomem(map, vaddr_iomem);
500 
501 	} else {
502 		struct ttm_operation_ctx ctx = {
503 			.interruptible = false,
504 			.no_wait_gpu = false
505 		};
506 		struct ttm_tt *ttm = bo->ttm;
507 		pgprot_t prot;
508 		void *vaddr;
509 
510 		ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
511 		if (ret)
512 			return ret;
513 
514 		/*
515 		 * We need to use vmap to get the desired page protection
516 		 * or to make the buffer object look contiguous.
517 		 */
518 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
519 		vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
520 		if (!vaddr)
521 			return -ENOMEM;
522 
523 		iosys_map_set_vaddr(map, vaddr);
524 	}
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL(ttm_bo_vmap);
529 
530 /**
531  * ttm_bo_vunmap
532  *
533  * @bo: The buffer object.
534  * @map: Object describing the map to unmap.
535  *
536  * Unmaps a kernel map set up by ttm_bo_vmap().
537  */
ttm_bo_vunmap(struct ttm_buffer_object * bo,struct iosys_map * map)538 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map)
539 {
540 	struct ttm_resource *mem = bo->resource;
541 
542 	dma_resv_assert_held(bo->base.resv);
543 
544 	if (iosys_map_is_null(map))
545 		return;
546 
547 	if (!map->is_iomem)
548 		vunmap(map->vaddr);
549 	else if (!mem->bus.addr)
550 		iounmap(map->vaddr_iomem);
551 	iosys_map_clear(map);
552 
553 	ttm_mem_io_free(bo->bdev, bo->resource);
554 }
555 EXPORT_SYMBOL(ttm_bo_vunmap);
556 
ttm_bo_wait_free_node(struct ttm_buffer_object * bo,bool dst_use_tt)557 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
558 				 bool dst_use_tt)
559 {
560 	long ret;
561 
562 	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
563 				    false, 15 * HZ);
564 	if (ret == 0)
565 		return -EBUSY;
566 	if (ret < 0)
567 		return ret;
568 
569 	if (!dst_use_tt)
570 		ttm_bo_tt_destroy(bo);
571 	ttm_resource_free(bo, &bo->resource);
572 	return 0;
573 }
574 
ttm_bo_move_to_ghost(struct ttm_buffer_object * bo,struct dma_fence * fence,bool dst_use_tt)575 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
576 				struct dma_fence *fence,
577 				bool dst_use_tt)
578 {
579 	struct ttm_buffer_object *ghost_obj;
580 	int ret;
581 
582 	/**
583 	 * This should help pipeline ordinary buffer moves.
584 	 *
585 	 * Hang old buffer memory on a new buffer object,
586 	 * and leave it to be released when the GPU
587 	 * operation has completed.
588 	 */
589 
590 	ret = ttm_buffer_object_transfer(bo, &ghost_obj);
591 	if (ret)
592 		return ret;
593 
594 	dma_resv_add_fence(&ghost_obj->base._resv, fence,
595 			   DMA_RESV_USAGE_KERNEL);
596 
597 	/**
598 	 * If we're not moving to fixed memory, the TTM object
599 	 * needs to stay alive. Otherwhise hang it on the ghost
600 	 * bo to be unbound and destroyed.
601 	 */
602 
603 	if (dst_use_tt)
604 		ghost_obj->ttm = NULL;
605 	else
606 		bo->ttm = NULL;
607 
608 	dma_resv_unlock(&ghost_obj->base._resv);
609 	ttm_bo_put(ghost_obj);
610 	return 0;
611 }
612 
ttm_bo_move_pipeline_evict(struct ttm_buffer_object * bo,struct dma_fence * fence)613 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
614 				       struct dma_fence *fence)
615 {
616 	struct ttm_device *bdev = bo->bdev;
617 	struct ttm_resource_manager *from;
618 
619 	from = ttm_manager_type(bdev, bo->resource->mem_type);
620 
621 	/**
622 	 * BO doesn't have a TTM we need to bind/unbind. Just remember
623 	 * this eviction and free up the allocation
624 	 */
625 	spin_lock(&from->move_lock);
626 	if (!from->move || dma_fence_is_later(fence, from->move)) {
627 		dma_fence_put(from->move);
628 		from->move = dma_fence_get(fence);
629 	}
630 	spin_unlock(&from->move_lock);
631 
632 	ttm_resource_free(bo, &bo->resource);
633 }
634 
635 /**
636  * ttm_bo_move_accel_cleanup - cleanup helper for hw copies
637  *
638  * @bo: A pointer to a struct ttm_buffer_object.
639  * @fence: A fence object that signals when moving is complete.
640  * @evict: This is an evict move. Don't return until the buffer is idle.
641  * @pipeline: evictions are to be pipelined.
642  * @new_mem: struct ttm_resource indicating where to move.
643  *
644  * Accelerated move function to be called when an accelerated move
645  * has been scheduled. The function will create a new temporary buffer object
646  * representing the old placement, and put the sync object on both buffer
647  * objects. After that the newly created buffer object is unref'd to be
648  * destroyed when the move is complete. This will help pipeline
649  * buffer moves.
650  */
ttm_bo_move_accel_cleanup(struct ttm_buffer_object * bo,struct dma_fence * fence,bool evict,bool pipeline,struct ttm_resource * new_mem)651 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
652 			      struct dma_fence *fence,
653 			      bool evict,
654 			      bool pipeline,
655 			      struct ttm_resource *new_mem)
656 {
657 	struct ttm_device *bdev = bo->bdev;
658 	struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
659 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
660 	int ret = 0;
661 
662 	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
663 	if (!evict)
664 		ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
665 	else if (!from->use_tt && pipeline)
666 		ttm_bo_move_pipeline_evict(bo, fence);
667 	else
668 		ret = ttm_bo_wait_free_node(bo, man->use_tt);
669 
670 	if (ret)
671 		return ret;
672 
673 	ttm_bo_assign_mem(bo, new_mem);
674 
675 	return 0;
676 }
677 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
678 
679 /**
680  * ttm_bo_move_sync_cleanup - cleanup by waiting for the move to finish
681  *
682  * @bo: A pointer to a struct ttm_buffer_object.
683  * @new_mem: struct ttm_resource indicating where to move.
684  *
685  * Special case of ttm_bo_move_accel_cleanup where the bo is guaranteed
686  * by the caller to be idle. Typically used after memcpy buffer moves.
687  */
ttm_bo_move_sync_cleanup(struct ttm_buffer_object * bo,struct ttm_resource * new_mem)688 void ttm_bo_move_sync_cleanup(struct ttm_buffer_object *bo,
689 			      struct ttm_resource *new_mem)
690 {
691 	struct ttm_device *bdev = bo->bdev;
692 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
693 	int ret;
694 
695 	ret = ttm_bo_wait_free_node(bo, man->use_tt);
696 	if (WARN_ON(ret))
697 		return;
698 
699 	ttm_bo_assign_mem(bo, new_mem);
700 }
701 EXPORT_SYMBOL(ttm_bo_move_sync_cleanup);
702 
703 /**
704  * ttm_bo_pipeline_gutting - purge the contents of a bo
705  * @bo: The buffer object
706  *
707  * Purge the contents of a bo, async if the bo is not idle.
708  * After a successful call, the bo is left unpopulated in
709  * system placement. The function may wait uninterruptible
710  * for idle on OOM.
711  *
712  * Return: 0 if successful, negative error code on failure.
713  */
ttm_bo_pipeline_gutting(struct ttm_buffer_object * bo)714 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
715 {
716 	struct ttm_buffer_object *ghost;
717 	struct ttm_tt *ttm;
718 	int ret;
719 
720 	/* If already idle, no need for ghost object dance. */
721 	if (dma_resv_test_signaled(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP)) {
722 		if (!bo->ttm) {
723 			/* See comment below about clearing. */
724 			ret = ttm_tt_create(bo, true);
725 			if (ret)
726 				return ret;
727 		} else {
728 			ttm_tt_unpopulate(bo->bdev, bo->ttm);
729 			if (bo->type == ttm_bo_type_device)
730 				ttm_tt_mark_for_clear(bo->ttm);
731 		}
732 		ttm_resource_free(bo, &bo->resource);
733 		return 0;
734 	}
735 
736 	/*
737 	 * We need an unpopulated ttm_tt after giving our current one,
738 	 * if any, to the ghost object. And we can't afford to fail
739 	 * creating one *after* the operation. If the bo subsequently gets
740 	 * resurrected, make sure it's cleared (if ttm_bo_type_device)
741 	 * to avoid leaking sensitive information to user-space.
742 	 */
743 
744 	ttm = bo->ttm;
745 	bo->ttm = NULL;
746 	ret = ttm_tt_create(bo, true);
747 	swap(bo->ttm, ttm);
748 	if (ret)
749 		return ret;
750 
751 	ret = ttm_buffer_object_transfer(bo, &ghost);
752 	if (ret)
753 		goto error_destroy_tt;
754 
755 	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
756 	/* Last resort, wait for the BO to be idle when we are OOM */
757 	if (ret) {
758 		dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
759 				      false, MAX_SCHEDULE_TIMEOUT);
760 	}
761 
762 	dma_resv_unlock(&ghost->base._resv);
763 	ttm_bo_put(ghost);
764 	bo->ttm = ttm;
765 	return 0;
766 
767 error_destroy_tt:
768 	ttm_tt_destroy(bo->bdev, ttm);
769 	return ret;
770 }
771 
ttm_lru_walk_trylock(struct ttm_lru_walk * walk,struct ttm_buffer_object * bo,bool * needs_unlock)772 static bool ttm_lru_walk_trylock(struct ttm_lru_walk *walk,
773 				 struct ttm_buffer_object *bo,
774 				 bool *needs_unlock)
775 {
776 	struct ttm_operation_ctx *ctx = walk->ctx;
777 
778 	*needs_unlock = false;
779 
780 	if (dma_resv_trylock(bo->base.resv)) {
781 		*needs_unlock = true;
782 		return true;
783 	}
784 
785 	if (bo->base.resv == ctx->resv && ctx->allow_res_evict) {
786 		dma_resv_assert_held(bo->base.resv);
787 		return true;
788 	}
789 
790 	return false;
791 }
792 
ttm_lru_walk_ticketlock(struct ttm_lru_walk * walk,struct ttm_buffer_object * bo,bool * needs_unlock)793 static int ttm_lru_walk_ticketlock(struct ttm_lru_walk *walk,
794 				   struct ttm_buffer_object *bo,
795 				   bool *needs_unlock)
796 {
797 	struct dma_resv *resv = bo->base.resv;
798 	int ret;
799 
800 	if (walk->ctx->interruptible)
801 		ret = dma_resv_lock_interruptible(resv, walk->ticket);
802 	else
803 		ret = dma_resv_lock(resv, walk->ticket);
804 
805 	if (!ret) {
806 		*needs_unlock = true;
807 		/*
808 		 * Only a single ticketlock per loop. Ticketlocks are prone
809 		 * to return -EDEADLK causing the eviction to fail, so
810 		 * after waiting for the ticketlock, revert back to
811 		 * trylocking for this walk.
812 		 */
813 		walk->ticket = NULL;
814 	} else if (ret == -EDEADLK) {
815 		/* Caller needs to exit the ww transaction. */
816 		ret = -ENOSPC;
817 	}
818 
819 	return ret;
820 }
821 
ttm_lru_walk_unlock(struct ttm_buffer_object * bo,bool locked)822 static void ttm_lru_walk_unlock(struct ttm_buffer_object *bo, bool locked)
823 {
824 	if (locked)
825 		dma_resv_unlock(bo->base.resv);
826 }
827 
828 /**
829  * ttm_lru_walk_for_evict() - Perform a LRU list walk, with actions taken on
830  * valid items.
831  * @walk: describe the walks and actions taken
832  * @bdev: The TTM device.
833  * @man: The struct ttm_resource manager whose LRU lists we're walking.
834  * @target: The end condition for the walk.
835  *
836  * The LRU lists of @man are walk, and for each struct ttm_resource encountered,
837  * the corresponding ttm_buffer_object is locked and taken a reference on, and
838  * the LRU lock is dropped. the LRU lock may be dropped before locking and, in
839  * that case, it's verified that the item actually remains on the LRU list after
840  * the lock, and that the buffer object didn't switch resource in between.
841  *
842  * With a locked object, the actions indicated by @walk->process_bo are
843  * performed, and after that, the bo is unlocked, the refcount dropped and the
844  * next struct ttm_resource is processed. Here, the walker relies on
845  * TTM's restartable LRU list implementation.
846  *
847  * Typically @walk->process_bo() would return the number of pages evicted,
848  * swapped or shrunken, so that when the total exceeds @target, or when the
849  * LRU list has been walked in full, iteration is terminated. It's also terminated
850  * on error. Note that the definition of @target is done by the caller, it
851  * could have a different meaning than the number of pages.
852  *
853  * Note that the way dma_resv individualization is done, locking needs to be done
854  * either with the LRU lock held (trylocking only) or with a reference on the
855  * object.
856  *
857  * Return: The progress made towards target or negative error code on error.
858  */
ttm_lru_walk_for_evict(struct ttm_lru_walk * walk,struct ttm_device * bdev,struct ttm_resource_manager * man,s64 target)859 s64 ttm_lru_walk_for_evict(struct ttm_lru_walk *walk, struct ttm_device *bdev,
860 			   struct ttm_resource_manager *man, s64 target)
861 {
862 	struct ttm_resource_cursor cursor;
863 	struct ttm_resource *res;
864 	s64 progress = 0;
865 	s64 lret;
866 
867 	spin_lock(&bdev->lru_lock);
868 	ttm_resource_manager_for_each_res(man, &cursor, res) {
869 		struct ttm_buffer_object *bo = res->bo;
870 		bool bo_needs_unlock = false;
871 		bool bo_locked = false;
872 		int mem_type;
873 
874 		/*
875 		 * Attempt a trylock before taking a reference on the bo,
876 		 * since if we do it the other way around, and the trylock fails,
877 		 * we need to drop the lru lock to put the bo.
878 		 */
879 		if (ttm_lru_walk_trylock(walk, bo, &bo_needs_unlock))
880 			bo_locked = true;
881 		else if (!walk->ticket || walk->ctx->no_wait_gpu ||
882 			 walk->trylock_only)
883 			continue;
884 
885 		if (!ttm_bo_get_unless_zero(bo)) {
886 			ttm_lru_walk_unlock(bo, bo_needs_unlock);
887 			continue;
888 		}
889 
890 		mem_type = res->mem_type;
891 		spin_unlock(&bdev->lru_lock);
892 
893 		lret = 0;
894 		if (!bo_locked)
895 			lret = ttm_lru_walk_ticketlock(walk, bo, &bo_needs_unlock);
896 
897 		/*
898 		 * Note that in between the release of the lru lock and the
899 		 * ticketlock, the bo may have switched resource,
900 		 * and also memory type, since the resource may have been
901 		 * freed and allocated again with a different memory type.
902 		 * In that case, just skip it.
903 		 */
904 		if (!lret && bo->resource && bo->resource->mem_type == mem_type)
905 			lret = walk->ops->process_bo(walk, bo);
906 
907 		ttm_lru_walk_unlock(bo, bo_needs_unlock);
908 		ttm_bo_put(bo);
909 		if (lret == -EBUSY || lret == -EALREADY)
910 			lret = 0;
911 		progress = (lret < 0) ? lret : progress + lret;
912 
913 		spin_lock(&bdev->lru_lock);
914 		if (progress < 0 || progress >= target)
915 			break;
916 	}
917 	ttm_resource_cursor_fini(&cursor);
918 	spin_unlock(&bdev->lru_lock);
919 
920 	return progress;
921 }
922