xref: /netbsd/sys/dev/pci/twe.c (revision beecddb6)
1 /*	$NetBSD: twe.c,v 1.110 2021/08/07 16:19:14 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 2000 Michael Smith
34  * Copyright (c) 2000 BSDi
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
59  */
60 
61 /*
62  * Driver for the 3ware Escalade family of RAID controllers.
63  */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.110 2021/08/07 16:19:14 thorpej Exp $");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/device.h>
72 #include <sys/queue.h>
73 #include <sys/proc.h>
74 #include <sys/buf.h>
75 #include <sys/endian.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/disk.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/kauth.h>
82 #include <sys/module.h>
83 #include <sys/bswap.h>
84 #include <sys/bus.h>
85 
86 #include <dev/pci/pcireg.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/pcidevs.h>
89 #include <dev/pci/twereg.h>
90 #include <dev/pci/twevar.h>
91 #include <dev/pci/tweio.h>
92 
93 #include "locators.h"
94 #include "ioconf.h"
95 
96 #define	PCI_CBIO	0x10
97 
98 static int	twe_aen_get(struct twe_softc *, uint16_t *);
99 static void	twe_aen_handler(struct twe_ccb *, int);
100 static void	twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
101 static uint16_t	twe_aen_dequeue(struct twe_softc *);
102 
103 static void	twe_attach(device_t, device_t, void *);
104 static int	twe_rescan(device_t, const char *, const int *);
105 static int	twe_init_connection(struct twe_softc *);
106 static int	twe_intr(void *);
107 static int	twe_match(device_t, cfdata_t, void *);
108 static int	twe_param_set(struct twe_softc *, int, int, size_t, void *);
109 static void	twe_poll(struct twe_softc *);
110 static int	twe_print(void *, const char *);
111 static int	twe_reset(struct twe_softc *);
112 static int	twe_status_check(struct twe_softc *, u_int);
113 static int	twe_status_wait(struct twe_softc *, u_int, int);
114 static void	twe_describe_controller(struct twe_softc *);
115 static void	twe_clear_pci_abort(struct twe_softc *sc);
116 static void	twe_clear_pci_parity_error(struct twe_softc *sc);
117 
118 static int	twe_add_unit(struct twe_softc *, int);
119 static int	twe_del_unit(struct twe_softc *, int);
120 static int	twe_init_connection(struct twe_softc *);
121 
122 static inline u_int32_t	twe_inl(struct twe_softc *, int);
123 static inline void twe_outl(struct twe_softc *, int, u_int32_t);
124 
125 extern struct	cfdriver twe_cd;
126 
127 CFATTACH_DECL3_NEW(twe, sizeof(struct twe_softc),
128     twe_match, twe_attach, NULL, NULL, twe_rescan, NULL, 0);
129 
130 /* FreeBSD driver revision for sysctl expected by the 3ware cli */
131 const char twever[] = "1.50.01.002";
132 
133 /*
134  * Tables to convert numeric codes to strings.
135  */
136 const struct twe_code_table twe_table_status[] = {
137 	{ 0x00,	"successful completion" },
138 
139 	/* info */
140 	{ 0x42,	"command in progress" },
141 	{ 0x6c,	"retrying interface CRC error from UDMA command" },
142 
143 	/* warning */
144 	{ 0x81,	"redundant/inconsequential request ignored" },
145 	{ 0x8e,	"failed to write zeroes to LBA 0" },
146 	{ 0x8f,	"failed to profile TwinStor zones" },
147 
148 	/* fatal */
149 	{ 0xc1,	"aborted due to system command or reconfiguration" },
150 	{ 0xc4,	"aborted" },
151 	{ 0xc5,	"access error" },
152 	{ 0xc6,	"access violation" },
153 	{ 0xc7,	"device failure" },	/* high byte may be port # */
154 	{ 0xc8,	"controller error" },
155 	{ 0xc9,	"timed out" },
156 	{ 0xcb,	"invalid unit number" },
157 	{ 0xcf,	"unit not available" },
158 	{ 0xd2,	"undefined opcode" },
159 	{ 0xdb,	"request incompatible with unit" },
160 	{ 0xdc,	"invalid request" },
161 	{ 0xff,	"firmware error, reset requested" },
162 
163 	{ 0,	NULL }
164 };
165 
166 const struct twe_code_table twe_table_unitstate[] = {
167 	{ TWE_PARAM_UNITSTATUS_Normal,		"Normal" },
168 	{ TWE_PARAM_UNITSTATUS_Initialising,	"Initializing" },
169 	{ TWE_PARAM_UNITSTATUS_Degraded,	"Degraded" },
170 	{ TWE_PARAM_UNITSTATUS_Rebuilding,	"Rebuilding" },
171 	{ TWE_PARAM_UNITSTATUS_Verifying,	"Verifying" },
172 	{ TWE_PARAM_UNITSTATUS_Corrupt,		"Corrupt" },
173 	{ TWE_PARAM_UNITSTATUS_Missing,		"Missing" },
174 
175 	{ 0,					NULL }
176 };
177 
178 const struct twe_code_table twe_table_unittype[] = {
179 	/* array descriptor configuration */
180 	{ TWE_AD_CONFIG_RAID0,			"RAID0" },
181 	{ TWE_AD_CONFIG_RAID1,			"RAID1" },
182 	{ TWE_AD_CONFIG_TwinStor,		"TwinStor" },
183 	{ TWE_AD_CONFIG_RAID5,			"RAID5" },
184 	{ TWE_AD_CONFIG_RAID10,			"RAID10" },
185 	{ TWE_UD_CONFIG_JBOD,			"JBOD" },
186 
187 	{ 0,					NULL }
188 };
189 
190 const struct twe_code_table twe_table_stripedepth[] = {
191 	{ TWE_AD_STRIPE_4k,			"4K" },
192 	{ TWE_AD_STRIPE_8k,			"8K" },
193 	{ TWE_AD_STRIPE_16k,			"16K" },
194 	{ TWE_AD_STRIPE_32k,			"32K" },
195 	{ TWE_AD_STRIPE_64k,			"64K" },
196 	{ TWE_AD_STRIPE_128k,			"128K" },
197 	{ TWE_AD_STRIPE_256k,			"256K" },
198 	{ TWE_AD_STRIPE_512k,			"512K" },
199 	{ TWE_AD_STRIPE_1024k,			"1024K" },
200 
201 	{ 0,					NULL }
202 };
203 
204 /*
205  * Asynchronous event notification messages are qualified:
206  *	a - not unit/port specific
207  *	u - unit specific
208  *	p - port specific
209  *
210  * They are further qualified with a severity:
211  *	E - LOG_EMERG
212  *	a - LOG_ALERT
213  *	c - LOG_CRIT
214  *	e - LOG_ERR
215  *	w - LOG_WARNING
216  *	n - LOG_NOTICE
217  *	i - LOG_INFO
218  *	d - LOG_DEBUG
219  *	blank - just use printf
220  */
221 const struct twe_code_table twe_table_aen[] = {
222 	{ 0x00,	"a  queue empty" },
223 	{ 0x01,	"a  soft reset" },
224 	{ 0x02,	"uc degraded mode" },
225 	{ 0x03,	"aa controller error" },
226 	{ 0x04,	"uE rebuild fail" },
227 	{ 0x05,	"un rebuild done" },
228 	{ 0x06,	"ue incomplete unit" },
229 	{ 0x07,	"un initialization done" },
230 	{ 0x08,	"uw unclean shutdown detected" },
231 	{ 0x09,	"pe drive timeout" },
232 	{ 0x0a,	"pc drive error" },
233 	{ 0x0b,	"un rebuild started" },
234 	{ 0x0c,	"un initialization started" },
235 	{ 0x0d,	"ui logical unit deleted" },
236 	{ 0x0f,	"pc SMART threshold exceeded" },
237 	{ 0x15,	"a  table undefined" },	/* XXX: Not in FreeBSD's table */
238 	{ 0x21,	"pe ATA UDMA downgrade" },
239 	{ 0x22,	"pi ATA UDMA upgrade" },
240 	{ 0x23,	"pw sector repair occurred" },
241 	{ 0x24,	"aa SBUF integrity check failure" },
242 	{ 0x25,	"pa lost cached write" },
243 	{ 0x26,	"pa drive ECC error detected" },
244 	{ 0x27,	"pe DCB checksum error" },
245 	{ 0x28,	"pn DCB unsupported version" },
246 	{ 0x29,	"ui verify started" },
247 	{ 0x2a,	"ua verify failed" },
248 	{ 0x2b,	"ui verify complete" },
249 	{ 0x2c,	"pw overwrote bad sector during rebuild" },
250 	{ 0x2d,	"pa encountered bad sector during rebuild" },
251 	{ 0x2e,	"pe replacement drive too small" },
252 	{ 0x2f,	"ue array not previously initialized" },
253 	{ 0x30,	"p  drive not supported" },
254 	{ 0xff,	"a  aen queue full" },
255 
256 	{ 0,	NULL },
257 };
258 
259 const char *
twe_describe_code(const struct twe_code_table * table,uint32_t code)260 twe_describe_code(const struct twe_code_table *table, uint32_t code)
261 {
262 
263 	for (; table->string != NULL; table++) {
264 		if (table->code == code)
265 			return (table->string);
266 	}
267 	return (NULL);
268 }
269 
270 static inline u_int32_t
twe_inl(struct twe_softc * sc,int off)271 twe_inl(struct twe_softc *sc, int off)
272 {
273 
274 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
275 	    BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
276 	return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
277 }
278 
279 static inline void
twe_outl(struct twe_softc * sc,int off,u_int32_t val)280 twe_outl(struct twe_softc *sc, int off, u_int32_t val)
281 {
282 
283 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
284 	bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
285 	    BUS_SPACE_BARRIER_WRITE);
286 }
287 
288 /*
289  * Match a supported board.
290  */
291 static int
twe_match(device_t parent,cfdata_t cfdata,void * aux)292 twe_match(device_t parent, cfdata_t cfdata, void *aux)
293 {
294 	struct pci_attach_args *pa;
295 
296 	pa = aux;
297 
298 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
299 	    (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
300 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
301 }
302 
303 /*
304  * Attach a supported board.
305  *
306  * XXX This doesn't fail gracefully.
307  */
308 static void
twe_attach(device_t parent,device_t self,void * aux)309 twe_attach(device_t parent, device_t self, void *aux)
310 {
311 	struct pci_attach_args *pa;
312 	struct twe_softc *sc;
313 	pci_chipset_tag_t pc;
314 	pci_intr_handle_t ih;
315 	pcireg_t csr;
316 	const char *intrstr;
317 	int s, size, i, rv, rseg;
318 	size_t max_segs, max_xfer;
319 	bus_dma_segment_t seg;
320 	const struct sysctlnode *node;
321 	struct twe_cmd *tc;
322 	struct twe_ccb *ccb;
323 	char intrbuf[PCI_INTRSTR_LEN];
324 
325 	sc = device_private(self);
326 	sc->sc_dev = self;
327 	pa = aux;
328 	pc = pa->pa_pc;
329 	sc->sc_dmat = pa->pa_dmat;
330 	SIMPLEQ_INIT(&sc->sc_ccb_queue);
331 	SLIST_INIT(&sc->sc_ccb_freelist);
332 
333 	aprint_naive(": RAID controller\n");
334 	aprint_normal(": 3ware Escalade\n");
335 
336 
337 	if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
338 	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
339 		aprint_error_dev(self, "can't map i/o space\n");
340 		return;
341 	}
342 
343 	/* Enable the device. */
344 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
345 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
346 	    csr | PCI_COMMAND_MASTER_ENABLE);
347 
348 	/* Map and establish the interrupt. */
349 	if (pci_intr_map(pa, &ih)) {
350 		aprint_error_dev(self, "can't map interrupt\n");
351 		return;
352 	}
353 
354 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
355 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_BIO, twe_intr, sc,
356 	    device_xname(self));
357 	if (sc->sc_ih == NULL) {
358 		aprint_error_dev(self, "can't establish interrupt%s%s\n",
359 			(intrstr) ? " at " : "",
360 			(intrstr) ? intrstr : "");
361 		return;
362 	}
363 
364 	if (intrstr != NULL)
365 		aprint_normal_dev(self, "interrupting at %s\n", intrstr);
366 
367 	/*
368 	 * Allocate and initialise the command blocks and CCBs.
369 	 */
370 	size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
371 
372 	if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
373 	    &rseg, BUS_DMA_NOWAIT)) != 0) {
374 		aprint_error_dev(self,
375 		    "unable to allocate commands, rv = %d\n", rv);
376 		return;
377 	}
378 
379 	if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
380 	    (void **)&sc->sc_cmds,
381 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
382 		aprint_error_dev(self,
383 		    "unable to map commands, rv = %d\n", rv);
384 		return;
385 	}
386 
387 	if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
388 	    BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
389 		aprint_error_dev(self,
390 		    "unable to create command DMA map, rv = %d\n", rv);
391 		return;
392 	}
393 
394 	if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
395 	    size, NULL, BUS_DMA_NOWAIT)) != 0) {
396 		aprint_error_dev(self,
397 		    "unable to load command DMA map, rv = %d\n", rv);
398 		return;
399 	}
400 
401 	sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
402 	memset(sc->sc_cmds, 0, size);
403 
404 	tc = (struct twe_cmd *)sc->sc_cmds;
405 	max_segs = twe_get_maxsegs();
406 	max_xfer = twe_get_maxxfer(max_segs);
407 
408 	ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_WAITOK);
409 	sc->sc_ccbs = ccb;
410 
411 	for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
412 		ccb->ccb_cmd = tc;
413 		ccb->ccb_cmdid = i;
414 		ccb->ccb_flags = 0;
415 		rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
416 		    max_segs, PAGE_SIZE, 0,
417 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
418 		    &ccb->ccb_dmamap_xfer);
419 		if (rv != 0) {
420 			aprint_error_dev(self,
421 			    "can't create dmamap, rv = %d\n", rv);
422 			return;
423 		}
424 
425 		/* Save the first CCB for AEN retrieval. */
426 		if (i != 0)
427 			SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
428 			    ccb_chain.slist);
429 	}
430 
431 	/* Wait for the controller to become ready. */
432 	if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
433 		aprint_error_dev(self, "microcontroller not ready\n");
434 		return;
435 	}
436 
437 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
438 
439 	/* Reset the controller. */
440 	s = splbio();
441 	rv = twe_reset(sc);
442 	splx(s);
443 	if (rv) {
444 		aprint_error_dev(self, "reset failed\n");
445 		return;
446 	}
447 
448 	/* Initialise connection with controller. */
449 	twe_init_connection(sc);
450 
451 	twe_describe_controller(sc);
452 
453 	/* Find and attach RAID array units. */
454 	twe_rescan(self, NULL, NULL);
455 
456 	/* ...and finally, enable interrupts. */
457 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
458 	    TWE_CTL_UNMASK_RESP_INTR |
459 	    TWE_CTL_ENABLE_INTRS);
460 
461 	/* sysctl set-up for 3ware cli */
462 	if (sysctl_createv(NULL, 0, NULL, &node,
463 				0, CTLTYPE_NODE, device_xname(self),
464 				SYSCTL_DESCR("twe driver information"),
465 				NULL, 0, NULL, 0,
466 				CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
467 		aprint_error_dev(self, "could not create %s.%s sysctl node\n",
468 		    "hw", device_xname(self));
469 		return;
470 	}
471 	if ((i = sysctl_createv(NULL, 0, NULL, NULL,
472 				0, CTLTYPE_STRING, "driver_version",
473 				SYSCTL_DESCR("twe0 driver version"),
474 				NULL, 0, __UNCONST(&twever), 0,
475 				CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
476 				!= 0) {
477 		aprint_error_dev(self,
478 		    "could not create %s.%s.driver_version sysctl\n",
479 		    "hw", device_xname(self));
480 		return;
481 	}
482 }
483 
484 static int
twe_rescan(device_t self,const char * ifattr,const int * locs)485 twe_rescan(device_t self, const char *ifattr, const int *locs)
486 {
487 	struct twe_softc *sc;
488 	int i;
489 
490 	sc = device_private(self);
491 	sc->sc_nunits = 0;
492 	for (i = 0; i < TWE_MAX_UNITS; i++)
493 		(void) twe_add_unit(sc, i);
494 	return 0;
495 }
496 
497 
498 void
twe_register_callbacks(struct twe_softc * sc,int unit,const struct twe_callbacks * tcb)499 twe_register_callbacks(struct twe_softc *sc, int unit,
500     const struct twe_callbacks *tcb)
501 {
502 
503 	sc->sc_units[unit].td_callbacks = tcb;
504 }
505 
506 static void
twe_recompute_openings(struct twe_softc * sc)507 twe_recompute_openings(struct twe_softc *sc)
508 {
509 	struct twe_drive *td;
510 	int unit, openings;
511 
512 	if (sc->sc_nunits != 0)
513 		openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
514 	else
515 		openings = 0;
516 	if (openings == sc->sc_openings)
517 		return;
518 	sc->sc_openings = openings;
519 
520 #ifdef TWE_DEBUG
521 	printf("%s: %d array%s, %d openings per array\n",
522 	    device_xname(sc->sc_dev), sc->sc_nunits,
523 	    sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
524 #endif
525 
526 	for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
527 		td = &sc->sc_units[unit];
528 		if (td->td_dev != NULL)
529 			(*td->td_callbacks->tcb_openings)(td->td_dev,
530 			    sc->sc_openings);
531 	}
532 }
533 
534 static int
twe_add_unit(struct twe_softc * sc,int unit)535 twe_add_unit(struct twe_softc *sc, int unit)
536 {
537 	struct twe_param *dtp, *atp;
538 	struct twe_array_descriptor *ad;
539 	struct twe_drive *td;
540 	struct twe_attach_args twea;
541 	uint32_t newsize;
542 	int rv;
543 	uint16_t dsize;
544 	uint8_t newtype, newstripe;
545 	int locs[TWECF_NLOCS];
546 
547 	if (unit < 0 || unit >= TWE_MAX_UNITS)
548 		return (EINVAL);
549 
550 	/* Find attached units. */
551 	rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
552 	    TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
553 	if (rv != 0) {
554 		aprint_error_dev(sc->sc_dev,
555 		    "error %d fetching unit summary\n", rv);
556 		return (rv);
557 	}
558 
559 	/* For each detected unit, collect size and store in an array. */
560 	td = &sc->sc_units[unit];
561 
562 	/* Unit present? */
563 	if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
564 		/*
565 		 * XXX Should we check to see if a device has been
566 		 * XXX attached at this index and detach it if it
567 		 * XXX has?  ("rescan" semantics)
568 		 */
569 		rv = 0;
570 		goto out;
571    	}
572 
573 	rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
574 	    TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
575 	if (rv != 0) {
576 		aprint_error_dev(sc->sc_dev,
577 		    "error %d fetching descriptor size for unit %d\n",
578 		    rv, unit);
579 		goto out;
580 	}
581 
582 	rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
583 	    TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
584 	if (rv != 0) {
585 		aprint_error_dev(sc->sc_dev,
586 		    "error %d fetching array descriptor for unit %d\n",
587 		    rv, unit);
588 		goto out;
589 	}
590 
591 	ad = (struct twe_array_descriptor *)atp->tp_data;
592 	newtype = ad->configuration;
593 	newstripe = ad->stripe_size;
594 	free(atp, M_DEVBUF);
595 
596 	rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
597 	    TWE_PARAM_UNITINFO_Capacity, &newsize);
598 	if (rv != 0) {
599 		aprint_error_dev(sc->sc_dev,
600 		    "error %d fetching capacity for unit %d\n",
601 		    rv, unit);
602 		goto out;
603 	}
604 
605 	/*
606 	 * Have a device, so we need to attach it.  If there is currently
607 	 * something sitting at the slot, and the parameters are different,
608 	 * then we detach the old device before attaching the new one.
609 	 */
610 	if (td->td_dev != NULL &&
611 	    td->td_size == newsize &&
612 	    td->td_type == newtype &&
613 	    td->td_stripe == newstripe) {
614 		/* Same as the old device; just keep using it. */
615 		rv = 0;
616 		goto out;
617 	} else if (td->td_dev != NULL) {
618 		/* Detach the old device first. */
619 		(void) config_detach(td->td_dev, DETACH_FORCE);
620 		td->td_dev = NULL;
621 	} else if (td->td_size == 0)
622 		sc->sc_nunits++;
623 
624 	/*
625 	 * Committed to the new array unit; assign its parameters and
626 	 * recompute the number of available command openings.
627 	 */
628 	td->td_size = newsize;
629 	td->td_type = newtype;
630 	td->td_stripe = newstripe;
631 	twe_recompute_openings(sc);
632 
633 	twea.twea_unit = unit;
634 
635 	locs[TWECF_UNIT] = unit;
636 
637 	td->td_dev = config_found(sc->sc_dev, &twea, twe_print,
638 	    CFARGS(.submatch = config_stdsubmatch,
639 		   .locators = locs));
640 
641 	rv = 0;
642  out:
643 	free(dtp, M_DEVBUF);
644 	return (rv);
645 }
646 
647 static int
twe_del_unit(struct twe_softc * sc,int unit)648 twe_del_unit(struct twe_softc *sc, int unit)
649 {
650 	struct twe_drive *td;
651 
652 	if (unit < 0 || unit >= TWE_MAX_UNITS)
653 		return (EINVAL);
654 
655 	td = &sc->sc_units[unit];
656 	if (td->td_size != 0)
657 		sc->sc_nunits--;
658 	td->td_size = 0;
659 	td->td_type = 0;
660 	td->td_stripe = 0;
661 	if (td->td_dev != NULL) {
662 		(void) config_detach(td->td_dev, DETACH_FORCE);
663 		td->td_dev = NULL;
664 	}
665 	twe_recompute_openings(sc);
666 	return (0);
667 }
668 
669 /*
670  * Reset the controller.
671  * MUST BE CALLED AT splbio()!
672  */
673 static int
twe_reset(struct twe_softc * sc)674 twe_reset(struct twe_softc *sc)
675 {
676 	uint16_t aen;
677 	u_int status;
678 	int got, rv;
679 
680 	/* Issue a soft reset. */
681 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
682 	    TWE_CTL_CLEAR_HOST_INTR |
683 	    TWE_CTL_CLEAR_ATTN_INTR |
684 	    TWE_CTL_MASK_CMD_INTR |
685 	    TWE_CTL_MASK_RESP_INTR |
686 	    TWE_CTL_CLEAR_ERROR_STS |
687 	    TWE_CTL_DISABLE_INTRS);
688 
689 	/* Wait for attention... */
690 	if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
691 		aprint_error_dev(sc->sc_dev,
692 		    "timeout waiting for attention interrupt\n");
693 		return (-1);
694 	}
695 
696 	/* ...and ACK it. */
697 	twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
698 
699 	/*
700 	 * Pull AENs out of the controller; look for a soft reset AEN.
701 	 * Open code this, since we want to detect reset even if the
702 	 * queue for management tools is full.
703 	 *
704 	 * Note that since:
705 	 *	- interrupts are blocked
706 	 *	- we have reset the controller
707 	 *	- acknowledged the pending ATTENTION
708 	 * that there is no way a pending asynchronous AEN fetch would
709 	 * finish, so clear the flag.
710 	 */
711 	sc->sc_flags &= ~TWEF_AEN;
712 	for (got = 0;;) {
713 		rv = twe_aen_get(sc, &aen);
714 		if (rv != 0)
715 			printf("%s: error %d while draining event queue\n",
716 			    device_xname(sc->sc_dev), rv);
717 		if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
718 			break;
719 		if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
720 			got = 1;
721 		twe_aen_enqueue(sc, aen, 1);
722 	}
723 
724 	if (!got) {
725 		printf("%s: reset not reported\n", device_xname(sc->sc_dev));
726 		return (-1);
727 	}
728 
729 	/* Check controller status. */
730 	status = twe_inl(sc, TWE_REG_STS);
731 	if (twe_status_check(sc, status)) {
732 		printf("%s: controller errors detected\n",
733 		    device_xname(sc->sc_dev));
734 		return (-1);
735 	}
736 
737 	/* Drain the response queue. */
738 	for (;;) {
739 		status = twe_inl(sc, TWE_REG_STS);
740 		if (twe_status_check(sc, status) != 0) {
741 			aprint_error_dev(sc->sc_dev,
742 			    "can't drain response queue\n");
743 			return (-1);
744 		}
745 		if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
746 			break;
747 		(void)twe_inl(sc, TWE_REG_RESP_QUEUE);
748 	}
749 
750 	return (0);
751 }
752 
753 /*
754  * Print autoconfiguration message for a sub-device.
755  */
756 static int
twe_print(void * aux,const char * pnp)757 twe_print(void *aux, const char *pnp)
758 {
759 	struct twe_attach_args *twea;
760 
761 	twea = aux;
762 
763 	if (pnp != NULL)
764 		aprint_normal("block device at %s", pnp);
765 	aprint_normal(" unit %d", twea->twea_unit);
766 	return (UNCONF);
767 }
768 
769 /*
770  * Interrupt service routine.
771  */
772 static int
twe_intr(void * arg)773 twe_intr(void *arg)
774 {
775 	struct twe_softc *sc;
776 	u_int status;
777 	int caught, rv;
778 
779 	sc = arg;
780 	caught = 0;
781 	status = twe_inl(sc, TWE_REG_STS);
782 	twe_status_check(sc, status);
783 
784 	/* Host interrupts - purpose unknown. */
785 	if ((status & TWE_STS_HOST_INTR) != 0) {
786 #ifdef DEBUG
787 		printf("%s: host interrupt\n", device_xname(sc->sc_dev));
788 #endif
789 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
790 		caught = 1;
791 	}
792 
793 	/*
794 	 * Attention interrupts, signalled when a controller or child device
795 	 * state change has occurred.
796 	 */
797 	if ((status & TWE_STS_ATTN_INTR) != 0) {
798 		rv = twe_aen_get(sc, NULL);
799 		if (rv != 0)
800 			aprint_error_dev(sc->sc_dev,
801 			    "unable to retrieve AEN (%d)\n", rv);
802 		else
803 			twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
804 		caught = 1;
805 	}
806 
807 	/*
808 	 * Command interrupts, signalled when the controller can accept more
809 	 * commands.  We don't use this; instead, we try to submit commands
810 	 * when we receive them, and when other commands have completed.
811 	 * Mask it so we don't get another one.
812 	 */
813 	if ((status & TWE_STS_CMD_INTR) != 0) {
814 #ifdef DEBUG
815 		printf("%s: command interrupt\n", device_xname(sc->sc_dev));
816 #endif
817 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
818 		caught = 1;
819 	}
820 
821 	if ((status & TWE_STS_RESP_INTR) != 0) {
822 		twe_poll(sc);
823 		caught = 1;
824 	}
825 
826 	return (caught);
827 }
828 
829 /*
830  * Fetch an AEN.  Even though this is really like parameter
831  * retrieval, we handle this specially, because we issue this
832  * AEN retrieval command from interrupt context, and thus
833  * reserve a CCB for it to avoid resource shortage.
834  *
835  * XXX There are still potential resource shortages we could
836  * XXX encounter.  Consider pre-allocating all AEN-related
837  * XXX resources.
838  *
839  * MUST BE CALLED AT splbio()!
840  */
841 static int
twe_aen_get(struct twe_softc * sc,uint16_t * aenp)842 twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
843 {
844 	struct twe_ccb *ccb;
845 	struct twe_cmd *tc;
846 	struct twe_param *tp;
847 	int rv;
848 
849 	/*
850 	 * If we're already retrieving an AEN, just wait; another
851 	 * retrieval will be chained after the current one completes.
852 	 */
853 	if (sc->sc_flags & TWEF_AEN) {
854 		/*
855 		 * It is a fatal software programming error to attempt
856 		 * to fetch an AEN synchronously when an AEN fetch is
857 		 * already pending.
858 		 */
859 		KASSERT(aenp == NULL);
860 		return (0);
861 	}
862 
863 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
864 	if (tp == NULL)
865 		return (ENOMEM);
866 
867 	ccb = twe_ccb_alloc(sc,
868 	    TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
869 	KASSERT(ccb != NULL);
870 
871 	ccb->ccb_data = tp;
872 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
873 	ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
874 	ccb->ccb_tx.tx_context = tp;
875 	ccb->ccb_tx.tx_dv = sc->sc_dev;
876 
877 	tc = ccb->ccb_cmd;
878 	tc->tc_size = 2;
879 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
880 	tc->tc_unit = 0;
881 	tc->tc_count = htole16(1);
882 
883 	/* Fill in the outbound parameter data. */
884 	tp->tp_table_id = htole16(TWE_PARAM_AEN);
885 	tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
886 	tp->tp_param_size = 2;
887 
888 	/* Map the transfer. */
889 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
890 		twe_ccb_free(sc, ccb);
891 		goto done;
892 	}
893 
894 	/* Enqueue the command and wait. */
895 	if (aenp != NULL) {
896 		rv = twe_ccb_poll(sc, ccb, 5);
897 		twe_ccb_unmap(sc, ccb);
898 		twe_ccb_free(sc, ccb);
899 		if (rv == 0)
900 			*aenp = le16toh(*(uint16_t *)tp->tp_data);
901 		free(tp, M_DEVBUF);
902 	} else {
903 		sc->sc_flags |= TWEF_AEN;
904 		twe_ccb_enqueue(sc, ccb);
905 		rv = 0;
906 	}
907 
908  done:
909 	return (rv);
910 }
911 
912 /*
913  * Handle an AEN returned by the controller.
914  * MUST BE CALLED AT splbio()!
915  */
916 static void
twe_aen_handler(struct twe_ccb * ccb,int error)917 twe_aen_handler(struct twe_ccb *ccb, int error)
918 {
919 	struct twe_softc *sc;
920 	struct twe_param *tp;
921 	uint16_t aen;
922 	int rv;
923 
924 	sc = device_private(ccb->ccb_tx.tx_dv);
925 	tp = ccb->ccb_tx.tx_context;
926 	twe_ccb_unmap(sc, ccb);
927 
928 	sc->sc_flags &= ~TWEF_AEN;
929 
930 	if (error) {
931 		aprint_error_dev(sc->sc_dev, "error retrieving AEN\n");
932 		aen = TWE_AEN_QUEUE_EMPTY;
933 	} else
934 		aen = le16toh(*(u_int16_t *)tp->tp_data);
935 	free(tp, M_DEVBUF);
936 	twe_ccb_free(sc, ccb);
937 
938 	if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
939 		twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
940 		return;
941 	}
942 
943 	twe_aen_enqueue(sc, aen, 0);
944 
945 	/*
946 	 * Chain another retrieval in case interrupts have been
947 	 * coalesced.
948 	 */
949 	rv = twe_aen_get(sc, NULL);
950 	if (rv != 0)
951 		aprint_error_dev(sc->sc_dev,
952 		    "unable to retrieve AEN (%d)\n", rv);
953 }
954 
955 static void
twe_aen_enqueue(struct twe_softc * sc,uint16_t aen,int quiet)956 twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
957 {
958 	const char *str, *msg;
959 	int s, next, nextnext, level;
960 
961 	/*
962 	 * First report the AEN on the console.  Maybe.
963 	 */
964 	if (! quiet) {
965 		str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
966 		if (str == NULL) {
967 			aprint_error_dev(sc->sc_dev,
968 			    "unknown AEN 0x%04x\n", aen);
969 		} else {
970 			msg = str + 3;
971 			switch (str[1]) {
972 			case 'E':	level = LOG_EMERG; break;
973 			case 'a':	level = LOG_ALERT; break;
974 			case 'c':	level = LOG_CRIT; break;
975 			case 'e':	level = LOG_ERR; break;
976 			case 'w':	level = LOG_WARNING; break;
977 			case 'n':	level = LOG_NOTICE; break;
978 			case 'i':	level = LOG_INFO; break;
979 			case 'd':	level = LOG_DEBUG; break;
980 			default:
981 				/* Don't use syslog. */
982 				level = -1;
983 			}
984 
985 			if (level < 0) {
986 				switch (str[0]) {
987 				case 'u':
988 				case 'p':
989 					printf("%s: %s %d: %s\n",
990 					    device_xname(sc->sc_dev),
991 					    str[0] == 'u' ? "unit" : "port",
992 					    TWE_AEN_UNIT(aen), msg);
993 					break;
994 
995 				default:
996 					printf("%s: %s\n",
997 					    device_xname(sc->sc_dev), msg);
998 				}
999 			} else {
1000 				switch (str[0]) {
1001 				case 'u':
1002 				case 'p':
1003 					log(level, "%s: %s %d: %s\n",
1004 					    device_xname(sc->sc_dev),
1005 					    str[0] == 'u' ? "unit" : "port",
1006 					    TWE_AEN_UNIT(aen), msg);
1007 					break;
1008 
1009 				default:
1010 					log(level, "%s: %s\n",
1011 					    device_xname(sc->sc_dev), msg);
1012 				}
1013 			}
1014 		}
1015 	}
1016 
1017 	/* Now enqueue the AEN for mangement tools. */
1018 	s = splbio();
1019 
1020 	next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
1021 	nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
1022 
1023 	/*
1024 	 * If this is the last free slot, then queue up a "queue
1025 	 * full" message.
1026 	 */
1027 	if (nextnext == sc->sc_aen_tail)
1028 		aen = TWE_AEN_QUEUE_FULL;
1029 
1030 	if (next != sc->sc_aen_tail) {
1031 		sc->sc_aen_queue[sc->sc_aen_head] = aen;
1032 		sc->sc_aen_head = next;
1033 	}
1034 
1035 	if (sc->sc_flags & TWEF_AENQ_WAIT) {
1036 		sc->sc_flags &= ~TWEF_AENQ_WAIT;
1037 		wakeup(&sc->sc_aen_queue);
1038 	}
1039 
1040 	splx(s);
1041 }
1042 
1043 /* NOTE: Must be called at splbio(). */
1044 static uint16_t
twe_aen_dequeue(struct twe_softc * sc)1045 twe_aen_dequeue(struct twe_softc *sc)
1046 {
1047 	uint16_t aen;
1048 
1049 	if (sc->sc_aen_tail == sc->sc_aen_head)
1050 		aen = TWE_AEN_QUEUE_EMPTY;
1051 	else {
1052 		aen = sc->sc_aen_queue[sc->sc_aen_tail];
1053 		sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
1054 	}
1055 
1056 	return (aen);
1057 }
1058 
1059 /*
1060  * These are short-hand functions that execute TWE_OP_GET_PARAM to
1061  * fetch 1, 2, and 4 byte parameter values, respectively.
1062  */
1063 int
twe_param_get_1(struct twe_softc * sc,int table_id,int param_id,uint8_t * valp)1064 twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
1065     uint8_t *valp)
1066 {
1067 	struct twe_param *tp;
1068 	int rv;
1069 
1070 	rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
1071 	if (rv != 0)
1072 		return (rv);
1073 	*valp = *(uint8_t *)tp->tp_data;
1074 	free(tp, M_DEVBUF);
1075 	return (0);
1076 }
1077 
1078 int
twe_param_get_2(struct twe_softc * sc,int table_id,int param_id,uint16_t * valp)1079 twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
1080     uint16_t *valp)
1081 {
1082 	struct twe_param *tp;
1083 	int rv;
1084 
1085 	rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
1086 	if (rv != 0)
1087 		return (rv);
1088 	*valp = le16toh(*(uint16_t *)tp->tp_data);
1089 	free(tp, M_DEVBUF);
1090 	return (0);
1091 }
1092 
1093 int
twe_param_get_4(struct twe_softc * sc,int table_id,int param_id,uint32_t * valp)1094 twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
1095     uint32_t *valp)
1096 {
1097 	struct twe_param *tp;
1098 	int rv;
1099 
1100 	rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
1101 	if (rv != 0)
1102 		return (rv);
1103 	*valp = le32toh(*(uint32_t *)tp->tp_data);
1104 	free(tp, M_DEVBUF);
1105 	return (0);
1106 }
1107 
1108 /*
1109  * Execute a TWE_OP_GET_PARAM command.  If a callback function is provided,
1110  * it will be called with generated context when the command has completed.
1111  * If no callback is provided, the command will be executed synchronously
1112  * and a pointer to a buffer containing the data returned.
1113  *
1114  * The caller or callback is responsible for freeing the buffer.
1115  *
1116  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1117  */
1118 int
twe_param_get(struct twe_softc * sc,int table_id,int param_id,size_t size,void (* func)(struct twe_ccb *,int),struct twe_param ** pbuf)1119 twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
1120 	      void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
1121 {
1122 	struct twe_ccb *ccb;
1123 	struct twe_cmd *tc;
1124 	struct twe_param *tp;
1125 	int rv, s;
1126 
1127 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
1128 	if (tp == NULL)
1129 		return ENOMEM;
1130 
1131 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1132 	KASSERT(ccb != NULL);
1133 
1134 	ccb->ccb_data = tp;
1135 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1136 	ccb->ccb_tx.tx_handler = func;
1137 	ccb->ccb_tx.tx_context = tp;
1138 	ccb->ccb_tx.tx_dv = sc->sc_dev;
1139 
1140 	tc = ccb->ccb_cmd;
1141 	tc->tc_size = 2;
1142 	tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
1143 	tc->tc_unit = 0;
1144 	tc->tc_count = htole16(1);
1145 
1146 	/* Fill in the outbound parameter data. */
1147 	tp->tp_table_id = htole16(table_id);
1148 	tp->tp_param_id = param_id;
1149 	tp->tp_param_size = size;
1150 
1151 	/* Map the transfer. */
1152 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1153 		twe_ccb_free(sc, ccb);
1154 		goto done;
1155 	}
1156 
1157 	/* Submit the command and either wait or let the callback handle it. */
1158 	if (func == NULL) {
1159 		s = splbio();
1160 		rv = twe_ccb_poll(sc, ccb, 5);
1161 		twe_ccb_unmap(sc, ccb);
1162 		twe_ccb_free(sc, ccb);
1163 		splx(s);
1164 	} else {
1165 #ifdef DEBUG
1166 		if (pbuf != NULL)
1167 			panic("both func and pbuf defined");
1168 #endif
1169 		twe_ccb_enqueue(sc, ccb);
1170 		return 0;
1171 	}
1172 
1173 done:
1174 	if (pbuf == NULL || rv != 0)
1175 		free(tp, M_DEVBUF);
1176 	else if (pbuf != NULL && rv == 0)
1177 		*pbuf = tp;
1178 	return rv;
1179 }
1180 
1181 /*
1182  * Execute a TWE_OP_SET_PARAM command.
1183  *
1184  * NOTE: We assume we can sleep here to wait for a CCB to become available.
1185  */
1186 static int
twe_param_set(struct twe_softc * sc,int table_id,int param_id,size_t size,void * sbuf)1187 twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
1188 	      void *sbuf)
1189 {
1190 	struct twe_ccb *ccb;
1191 	struct twe_cmd *tc;
1192 	struct twe_param *tp;
1193 	int rv, s;
1194 
1195 	tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1196 	ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1197 	ccb->ccb_data = tp;
1198 	ccb->ccb_datasize = TWE_SECTOR_SIZE;
1199 	ccb->ccb_tx.tx_handler = 0;
1200 	ccb->ccb_tx.tx_context = tp;
1201 	ccb->ccb_tx.tx_dv = sc->sc_dev;
1202 
1203 	tc = ccb->ccb_cmd;
1204 	tc->tc_size = 2;
1205 	tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
1206 	tc->tc_unit = 0;
1207 	tc->tc_count = htole16(1);
1208 
1209 	/* Fill in the outbound parameter data. */
1210 	tp->tp_table_id = htole16(table_id);
1211 	tp->tp_param_id = param_id;
1212 	tp->tp_param_size = size;
1213 	memcpy(tp->tp_data, sbuf, size);
1214 
1215 	/* Map the transfer. */
1216 	if ((rv = twe_ccb_map(sc, ccb)) != 0) {
1217 		twe_ccb_free(sc, ccb);
1218 		goto done;
1219 	}
1220 
1221 	/* Submit the command and wait. */
1222 	s = splbio();
1223 	rv = twe_ccb_poll(sc, ccb, 5);
1224 	twe_ccb_unmap(sc, ccb);
1225 	twe_ccb_free(sc, ccb);
1226 	splx(s);
1227 done:
1228 	free(tp, M_DEVBUF);
1229 	return (rv);
1230 }
1231 
1232 /*
1233  * Execute a TWE_OP_INIT_CONNECTION command.  Return non-zero on error.
1234  * Must be called with interrupts blocked.
1235  */
1236 static int
twe_init_connection(struct twe_softc * sc)1237 twe_init_connection(struct twe_softc *sc)
1238 {
1239 	struct twe_ccb *ccb;
1240 	struct twe_cmd *tc;
1241 	int rv;
1242 
1243 	if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
1244 		return (EAGAIN);
1245 
1246 	/* Build the command. */
1247 	tc = ccb->ccb_cmd;
1248 	tc->tc_size = 3;
1249 	tc->tc_opcode = TWE_OP_INIT_CONNECTION;
1250 	tc->tc_unit = 0;
1251 	tc->tc_count = htole16(TWE_MAX_CMDS);
1252 	tc->tc_args.init_connection.response_queue_pointer = 0;
1253 
1254 	/* Submit the command for immediate execution. */
1255 	rv = twe_ccb_poll(sc, ccb, 5);
1256 	twe_ccb_free(sc, ccb);
1257 	return (rv);
1258 }
1259 
1260 /*
1261  * Poll the controller for completed commands.  Must be called with
1262  * interrupts blocked.
1263  */
1264 static void
twe_poll(struct twe_softc * sc)1265 twe_poll(struct twe_softc *sc)
1266 {
1267 	struct twe_ccb *ccb;
1268 	int found;
1269 	u_int status, cmdid;
1270 
1271 	found = 0;
1272 
1273 	for (;;) {
1274 		status = twe_inl(sc, TWE_REG_STS);
1275 		twe_status_check(sc, status);
1276 
1277 		if ((status & TWE_STS_RESP_QUEUE_EMPTY))
1278 			break;
1279 
1280 		found = 1;
1281 		cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
1282 		cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
1283 		if (cmdid >= TWE_MAX_QUEUECNT) {
1284 			aprint_error_dev(sc->sc_dev, "bad cmdid %d\n", cmdid);
1285 			continue;
1286 		}
1287 
1288 		ccb = sc->sc_ccbs + cmdid;
1289 		if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
1290 			printf("%s: CCB for cmdid %d not active\n",
1291 			    device_xname(sc->sc_dev), cmdid);
1292 			continue;
1293 		}
1294 		ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
1295 
1296 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1297 		    (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1298 		    sizeof(struct twe_cmd),
1299 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1300 
1301 		/* Pass notification to upper layers. */
1302 		if (ccb->ccb_tx.tx_handler != NULL)
1303 			(*ccb->ccb_tx.tx_handler)(ccb,
1304 			    ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
1305 	}
1306 
1307 	/* If any commands have completed, run the software queue. */
1308 	if (found)
1309 		twe_ccb_enqueue(sc, NULL);
1310 }
1311 
1312 /*
1313  * Wait for `status' to be set in the controller status register.  Return
1314  * zero if found, non-zero if the operation timed out.
1315  */
1316 static int
twe_status_wait(struct twe_softc * sc,u_int32_t status,int timo)1317 twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
1318 {
1319 
1320 	for (timo *= 10; timo != 0; timo--) {
1321 		if ((twe_inl(sc, TWE_REG_STS) & status) == status)
1322 			break;
1323 		delay(100000);
1324 	}
1325 
1326 	return (timo == 0);
1327 }
1328 
1329 /*
1330  * Clear a PCI parity error.
1331  */
1332 static void
twe_clear_pci_parity_error(struct twe_softc * sc)1333 twe_clear_pci_parity_error(struct twe_softc *sc)
1334 {
1335 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0,
1336 	    TWE_CTL_CLEAR_PARITY_ERROR);
1337 
1338 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
1339 }
1340 
1341 
1342 /*
1343  * Clear a PCI abort.
1344  */
1345 static void
twe_clear_pci_abort(struct twe_softc * sc)1346 twe_clear_pci_abort(struct twe_softc *sc)
1347 {
1348 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
1349 
1350 	//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
1351 }
1352 
1353 /*
1354  * Complain if the status bits aren't what we expect.
1355  */
1356 static int
twe_status_check(struct twe_softc * sc,u_int status)1357 twe_status_check(struct twe_softc *sc, u_int status)
1358 {
1359 	int rv;
1360 
1361 	rv = 0;
1362 
1363 	if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
1364 		aprint_error_dev(sc->sc_dev, "missing status bits: 0x%08x\n",
1365 		    status & ~TWE_STS_EXPECTED_BITS);
1366 		rv = -1;
1367 	}
1368 
1369 	if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
1370 		aprint_error_dev(sc->sc_dev, "unexpected status bits: 0x%08x\n",
1371 		    status & TWE_STS_UNEXPECTED_BITS);
1372 		rv = -1;
1373 		if (status & TWE_STS_PCI_PARITY_ERROR) {
1374 			aprint_error_dev(sc->sc_dev, "PCI parity error: Reseat"
1375 			    " card, move card or buggy device present.\n");
1376 			twe_clear_pci_parity_error(sc);
1377 		}
1378 		if (status & TWE_STS_PCI_ABORT) {
1379 			aprint_error_dev(sc->sc_dev, "PCI abort, clearing.\n");
1380 			twe_clear_pci_abort(sc);
1381 		}
1382 	}
1383 
1384 	return (rv);
1385 }
1386 
1387 /*
1388  * Allocate and initialise a CCB.
1389  */
1390 static inline void
twe_ccb_init(struct twe_softc * sc,struct twe_ccb * ccb,int flags)1391 twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
1392 {
1393 	struct twe_cmd *tc;
1394 
1395 	ccb->ccb_tx.tx_handler = NULL;
1396 	ccb->ccb_flags = flags;
1397 	tc = ccb->ccb_cmd;
1398 	tc->tc_status = 0;
1399 	tc->tc_flags = 0;
1400 	tc->tc_cmdid = ccb->ccb_cmdid;
1401 }
1402 
1403 struct twe_ccb *
twe_ccb_alloc(struct twe_softc * sc,int flags)1404 twe_ccb_alloc(struct twe_softc *sc, int flags)
1405 {
1406 	struct twe_ccb *ccb;
1407 	int s;
1408 
1409 	s = splbio();
1410 	if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
1411 		/* Use the reserved CCB. */
1412 		ccb = sc->sc_ccbs;
1413 	} else {
1414 		/* Allocate a CCB and command block. */
1415 		if (__predict_false((ccb =
1416 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1417 			splx(s);
1418 			return (NULL);
1419 		}
1420 		SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1421 	}
1422 #ifdef DIAGNOSTIC
1423 	if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
1424 		panic("twe_ccb_alloc: got reserved CCB for non-AEN");
1425 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1426 		panic("twe_ccb_alloc: CCB %ld already allocated",
1427 		    (long)(ccb - sc->sc_ccbs));
1428 	flags |= TWE_CCB_ALLOCED;
1429 #endif
1430 	splx(s);
1431 
1432 	twe_ccb_init(sc, ccb, flags);
1433 	return (ccb);
1434 }
1435 
1436 struct twe_ccb *
twe_ccb_alloc_wait(struct twe_softc * sc,int flags)1437 twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
1438 {
1439 	struct twe_ccb *ccb;
1440 	int s;
1441 
1442 	KASSERT((flags & TWE_CCB_AEN) == 0);
1443 
1444 	s = splbio();
1445 	while (__predict_false((ccb =
1446 				SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
1447 		sc->sc_flags |= TWEF_WAIT_CCB;
1448 		(void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
1449 	}
1450 	SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
1451 #ifdef DIAGNOSTIC
1452 	if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
1453 		panic("twe_ccb_alloc_wait: CCB %ld already allocated",
1454 		    (long)(ccb - sc->sc_ccbs));
1455 	flags |= TWE_CCB_ALLOCED;
1456 #endif
1457 	splx(s);
1458 
1459 	twe_ccb_init(sc, ccb, flags);
1460 	return (ccb);
1461 }
1462 
1463 /*
1464  * Free a CCB.
1465  */
1466 void
twe_ccb_free(struct twe_softc * sc,struct twe_ccb * ccb)1467 twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
1468 {
1469 	int s;
1470 
1471 	s = splbio();
1472 	if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
1473 		SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
1474 		if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
1475 			sc->sc_flags &= ~TWEF_WAIT_CCB;
1476 			wakeup(&sc->sc_ccb_freelist);
1477 		}
1478 	}
1479 	ccb->ccb_flags = 0;
1480 	splx(s);
1481 }
1482 
1483 /*
1484  * Map the specified CCB's command block and data buffer (if any) into
1485  * controller visible space.  Perform DMA synchronisation.
1486  */
1487 int
twe_ccb_map(struct twe_softc * sc,struct twe_ccb * ccb)1488 twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
1489 {
1490 	struct twe_cmd *tc;
1491 	int flags, nsegs, i, s, rv;
1492 	void *data;
1493 
1494 	/*
1495 	 * The data as a whole must be 512-byte aligned.
1496 	 */
1497 	if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
1498 		s = splvm();
1499 		/* XXX */
1500 		rv = uvm_km_kmem_alloc(kmem_va_arena,
1501 		    ccb->ccb_datasize, (VM_NOSLEEP | VM_INSTANTFIT),
1502 		    (vmem_addr_t *)&ccb->ccb_abuf);
1503 		splx(s);
1504 		data = (void *)ccb->ccb_abuf;
1505 		if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1506 			memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
1507 	} else {
1508 		ccb->ccb_abuf = (vaddr_t)0;
1509 		data = ccb->ccb_data;
1510 	}
1511 
1512 	/*
1513 	 * Map the data buffer into bus space and build the S/G list.
1514 	 */
1515 	rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
1516 	    ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
1517 	    ((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
1518 	    BUS_DMA_READ : BUS_DMA_WRITE));
1519 	if (rv != 0) {
1520 		if (ccb->ccb_abuf != (vaddr_t)0) {
1521 			s = splvm();
1522 			/* XXX */
1523 			uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1524 			    ccb->ccb_datasize);
1525 			splx(s);
1526 		}
1527 		return (rv);
1528 	}
1529 
1530 	nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
1531 	tc = ccb->ccb_cmd;
1532 	tc->tc_size += 2 * nsegs;
1533 
1534 	/* The location of the S/G list is dependent upon command type. */
1535 	switch (tc->tc_opcode >> 5) {
1536 	case 2:
1537 		for (i = 0; i < nsegs; i++) {
1538 			tc->tc_args.param.sgl[i].tsg_address =
1539 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1540 			tc->tc_args.param.sgl[i].tsg_length =
1541 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1542 		}
1543 		/* XXX Needed? */
1544 		for (; i < TWE_SG_SIZE; i++) {
1545 			tc->tc_args.param.sgl[i].tsg_address = 0;
1546 			tc->tc_args.param.sgl[i].tsg_length = 0;
1547 		}
1548 		break;
1549 	case 3:
1550 		for (i = 0; i < nsegs; i++) {
1551 			tc->tc_args.io.sgl[i].tsg_address =
1552 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
1553 			tc->tc_args.io.sgl[i].tsg_length =
1554 			    htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
1555 		}
1556 		/* XXX Needed? */
1557 		for (; i < TWE_SG_SIZE; i++) {
1558 			tc->tc_args.io.sgl[i].tsg_address = 0;
1559 			tc->tc_args.io.sgl[i].tsg_length = 0;
1560 		}
1561 		break;
1562 	default:
1563 		/*
1564 		 * In all likelihood, this is a command passed from
1565 		 * management tools in userspace where no S/G list is
1566 		 * necessary because no data is being passed.
1567 		 */
1568 		break;
1569 	}
1570 
1571 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1572 		flags = BUS_DMASYNC_PREREAD;
1573 	else
1574 		flags = 0;
1575 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1576 		flags |= BUS_DMASYNC_PREWRITE;
1577 
1578 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1579 	    ccb->ccb_datasize, flags);
1580 	return (0);
1581 }
1582 
1583 /*
1584  * Unmap the specified CCB's command block and data buffer (if any) and
1585  * perform DMA synchronisation.
1586  */
1587 void
twe_ccb_unmap(struct twe_softc * sc,struct twe_ccb * ccb)1588 twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
1589 {
1590 	int flags, s;
1591 
1592 	if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1593 		flags = BUS_DMASYNC_POSTREAD;
1594 	else
1595 		flags = 0;
1596 	if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
1597 		flags |= BUS_DMASYNC_POSTWRITE;
1598 
1599 	bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
1600 	    ccb->ccb_datasize, flags);
1601 	bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
1602 
1603 	if (ccb->ccb_abuf != (vaddr_t)0) {
1604 		if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
1605 			memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
1606 			    ccb->ccb_datasize);
1607 		s = splvm();
1608 		/* XXX */
1609 		uvm_km_kmem_free(kmem_va_arena, ccb->ccb_abuf,
1610 		    ccb->ccb_datasize);
1611 		splx(s);
1612 	}
1613 }
1614 
1615 /*
1616  * Submit a command to the controller and poll on completion.  Return
1617  * non-zero on timeout (but don't check status, as some command types don't
1618  * return status).  Must be called with interrupts blocked.
1619  */
1620 int
twe_ccb_poll(struct twe_softc * sc,struct twe_ccb * ccb,int timo)1621 twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
1622 {
1623 	int rv;
1624 
1625 	if ((rv = twe_ccb_submit(sc, ccb)) != 0)
1626 		return (rv);
1627 
1628 	for (timo *= 1000; timo != 0; timo--) {
1629 		twe_poll(sc);
1630 		if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
1631 			break;
1632 		DELAY(100);
1633 	}
1634 
1635 	return (timo == 0);
1636 }
1637 
1638 /*
1639  * If a CCB is specified, enqueue it.  Pull CCBs off the software queue in
1640  * the order that they were enqueued and try to submit their command blocks
1641  * to the controller for execution.
1642  */
1643 void
twe_ccb_enqueue(struct twe_softc * sc,struct twe_ccb * ccb)1644 twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
1645 {
1646 	int s;
1647 
1648 	s = splbio();
1649 
1650 	if (ccb != NULL)
1651 		SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
1652 
1653 	while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
1654 		if (twe_ccb_submit(sc, ccb))
1655 			break;
1656 		SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
1657 	}
1658 
1659 	splx(s);
1660 }
1661 
1662 /*
1663  * Submit the command block associated with the specified CCB to the
1664  * controller for execution.  Must be called with interrupts blocked.
1665  */
1666 int
twe_ccb_submit(struct twe_softc * sc,struct twe_ccb * ccb)1667 twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
1668 {
1669 	bus_addr_t pa;
1670 	int rv;
1671 	u_int status;
1672 
1673 	/* Check to see if we can post a command. */
1674 	status = twe_inl(sc, TWE_REG_STS);
1675 	twe_status_check(sc, status);
1676 
1677 	if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
1678 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1679 		    (char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
1680 		    sizeof(struct twe_cmd),
1681 		    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1682 #ifdef DIAGNOSTIC
1683 		if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
1684 			panic("%s: CCB %ld not ALLOCED\n",
1685 			    device_xname(sc->sc_dev), (long)(ccb - sc->sc_ccbs));
1686 #endif
1687 		ccb->ccb_flags |= TWE_CCB_ACTIVE;
1688 		pa = sc->sc_cmds_paddr +
1689 		    ccb->ccb_cmdid * sizeof(struct twe_cmd);
1690 		twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
1691 		rv = 0;
1692 	} else
1693 		rv = EBUSY;
1694 
1695 	return (rv);
1696 }
1697 
1698 
1699 /*
1700  * Accept an open operation on the control device.
1701  */
1702 static int
tweopen(dev_t dev,int flag,int mode,struct lwp * l)1703 tweopen(dev_t dev, int flag, int mode, struct lwp *l)
1704 {
1705 	struct twe_softc *twe;
1706 
1707 	if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
1708 		return (ENXIO);
1709 	if ((twe->sc_flags & TWEF_OPEN) != 0)
1710 		return (EBUSY);
1711 
1712 	twe->sc_flags |= TWEF_OPEN;
1713 	return (0);
1714 }
1715 
1716 /*
1717  * Accept the last close on the control device.
1718  */
1719 static int
tweclose(dev_t dev,int flag,int mode,struct lwp * l)1720 tweclose(dev_t dev, int flag, int mode,
1721     struct lwp *l)
1722 {
1723 	struct twe_softc *twe;
1724 
1725 	twe = device_lookup_private(&twe_cd, minor(dev));
1726 	twe->sc_flags &= ~TWEF_OPEN;
1727 	return (0);
1728 }
1729 
1730 void
twe_ccb_wait_handler(struct twe_ccb * ccb,int error)1731 twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
1732 {
1733 
1734 	/* Just wake up the sleeper. */
1735 	wakeup(ccb);
1736 }
1737 
1738 /*
1739  * Handle control operations.
1740  */
1741 static int
tweioctl(dev_t dev,u_long cmd,void * data,int flag,struct lwp * l)1742 tweioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
1743 {
1744 	struct twe_softc *twe;
1745 	struct twe_ccb *ccb;
1746 	struct twe_param *param;
1747 	struct twe_usercommand *tu;
1748 	struct twe_paramcommand *tp;
1749 	struct twe_drivecommand *td;
1750 	void *pdata = NULL;
1751 	int s, error = 0;
1752 	u_int8_t cmdid;
1753 
1754 	twe = device_lookup_private(&twe_cd, minor(dev));
1755 	tu = (struct twe_usercommand *)data;
1756 	tp = (struct twe_paramcommand *)data;
1757 	td = (struct twe_drivecommand *)data;
1758 
1759 	/* This is intended to be compatible with the FreeBSD interface. */
1760 	switch (cmd) {
1761 	case TWEIO_COMMAND:
1762 		error = kauth_authorize_device_passthru(l->l_cred, dev,
1763 		    KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1764 		if (error)
1765 			return (error);
1766 
1767 		/* XXX mutex */
1768 		if (tu->tu_size > 0) {
1769 			/*
1770 			 * XXX Handle > TWE_SECTOR_SIZE?  Let's see if
1771 			 * it's really necessary, first.
1772 			 */
1773 			if (tu->tu_size > TWE_SECTOR_SIZE) {
1774 #ifdef TWE_DEBUG
1775 				printf("%s: TWEIO_COMMAND: tu_size = %zu\n",
1776 				    device_xname(twe->sc_dev), tu->tu_size);
1777 #endif
1778 				return EINVAL;
1779 			}
1780 			pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
1781 			error = copyin(tu->tu_data, pdata, tu->tu_size);
1782 			if (error != 0)
1783 				goto done;
1784 			ccb = twe_ccb_alloc_wait(twe,
1785 			    TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
1786 			KASSERT(ccb != NULL);
1787 			ccb->ccb_data = pdata;
1788 			ccb->ccb_datasize = TWE_SECTOR_SIZE;
1789 		} else {
1790 			ccb = twe_ccb_alloc_wait(twe, 0);
1791 			KASSERT(ccb != NULL);
1792 		}
1793 
1794 		ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
1795 		ccb->ccb_tx.tx_context = NULL;
1796 		ccb->ccb_tx.tx_dv = twe->sc_dev;
1797 
1798 		cmdid = ccb->ccb_cmdid;
1799 		memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
1800 		ccb->ccb_cmd->tc_cmdid = cmdid;
1801 
1802 		/* Map the transfer. */
1803 		if ((error = twe_ccb_map(twe, ccb)) != 0) {
1804 			twe_ccb_free(twe, ccb);
1805 			goto done;
1806 		}
1807 
1808 		/* Submit the command and wait up to 1 minute. */
1809 		error = 0;
1810 		twe_ccb_enqueue(twe, ccb);
1811 		s = splbio();
1812 		while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
1813 			if ((error = tsleep(ccb, PRIBIO, "tweioctl",
1814 					    60 * hz)) != 0)
1815 				break;
1816 		splx(s);
1817 
1818 		/* Copy the command back to the ioctl argument. */
1819 		memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
1820 #ifdef TWE_DEBUG
1821 		printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
1822 		    "tc_status = 0x%02x\n", device_xname(twe->sc_dev),
1823 		    tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
1824 #endif
1825 
1826 		s = splbio();
1827 		twe_ccb_free(twe, ccb);
1828 		splx(s);
1829 
1830 		if (tu->tu_size > 0)
1831 			error = copyout(pdata, tu->tu_data, tu->tu_size);
1832 		goto done;
1833 
1834 	case TWEIO_STATS:
1835 		return (ENOENT);
1836 
1837 	case TWEIO_AEN_POLL:
1838 		s = splbio();
1839 		*(u_int *)data = twe_aen_dequeue(twe);
1840 		splx(s);
1841 		return (0);
1842 
1843 	case TWEIO_AEN_WAIT:
1844 		s = splbio();
1845 		while ((*(u_int *)data =
1846 		    twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
1847 			twe->sc_flags |= TWEF_AENQ_WAIT;
1848 			error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
1849 			    "tweaen", 0);
1850 			if (error == EINTR) {
1851 				splx(s);
1852 				return (error);
1853 			}
1854 		}
1855 		splx(s);
1856 		return (0);
1857 
1858 	case TWEIO_GET_PARAM:
1859 		error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
1860 		    tp->tp_size, 0, &param);
1861 		if (error != 0)
1862 			return (error);
1863 		if (param->tp_param_size > tp->tp_size) {
1864 			error = EFAULT;
1865 			goto done;
1866 		}
1867 		error = copyout(param->tp_data, tp->tp_data,
1868 		    param->tp_param_size);
1869 		free(param, M_DEVBUF);
1870 		goto done;
1871 
1872 	case TWEIO_SET_PARAM:
1873 		pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
1874 		if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
1875 			goto done;
1876 		error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
1877 		    tp->tp_size, pdata);
1878 		goto done;
1879 
1880 	case TWEIO_RESET:
1881 		s = splbio();
1882 		twe_reset(twe);
1883 		splx(s);
1884 		return (0);
1885 
1886 	case TWEIO_ADD_UNIT:
1887 		/* XXX mutex */
1888 		return (twe_add_unit(twe, td->td_unit));
1889 
1890 	case TWEIO_DEL_UNIT:
1891 		/* XXX mutex */
1892 		return (twe_del_unit(twe, td->td_unit));
1893 
1894 	default:
1895 		return EINVAL;
1896 	}
1897 done:
1898 	if (pdata)
1899 		free(pdata, M_DEVBUF);
1900 	return error;
1901 }
1902 
1903 const struct cdevsw twe_cdevsw = {
1904 	.d_open = tweopen,
1905 	.d_close = tweclose,
1906 	.d_read = noread,
1907 	.d_write = nowrite,
1908 	.d_ioctl = tweioctl,
1909 	.d_stop = nostop,
1910 	.d_tty = notty,
1911 	.d_poll = nopoll,
1912 	.d_mmap = nommap,
1913 	.d_kqfilter = nokqfilter,
1914 	.d_discard = nodiscard,
1915 	.d_flag = D_OTHER
1916 };
1917 
1918 /*
1919  * Print some information about the controller
1920  */
1921 static void
twe_describe_controller(struct twe_softc * sc)1922 twe_describe_controller(struct twe_softc *sc)
1923 {
1924 	struct twe_param *p[6];
1925 	int i, rv = 0;
1926 	uint32_t dsize;
1927 	uint8_t ports;
1928 
1929 	ports = 0;
1930 
1931 	/* get the port count */
1932 	rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
1933 		TWE_PARAM_CONTROLLER_PortCount, &ports);
1934 
1935 	/* get version strings */
1936 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
1937 		16, NULL, &p[0]);
1938 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
1939 		16, NULL, &p[1]);
1940 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
1941 		16, NULL, &p[2]);
1942 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
1943 		8, NULL, &p[3]);
1944 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
1945 		8, NULL, &p[4]);
1946 	rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
1947 		8, NULL, &p[5]);
1948 
1949 	if (rv) {
1950 		/* some error occurred */
1951 		aprint_error_dev(sc->sc_dev,
1952 		    "failed to fetch version information\n");
1953 		return;
1954 	}
1955 
1956 	aprint_normal_dev(sc->sc_dev, "%d ports, Firmware %.16s, BIOS %.16s\n",
1957 	    ports, p[1]->tp_data, p[2]->tp_data);
1958 
1959 	aprint_verbose_dev(sc->sc_dev,
1960 	    "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
1961 	    p[0]->tp_data, p[3]->tp_data,
1962 	    p[4]->tp_data, p[5]->tp_data);
1963 
1964 	free(p[0], M_DEVBUF);
1965 	free(p[1], M_DEVBUF);
1966 	free(p[2], M_DEVBUF);
1967 	free(p[3], M_DEVBUF);
1968 	free(p[4], M_DEVBUF);
1969 	free(p[5], M_DEVBUF);
1970 
1971 	rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
1972 	    TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
1973 	if (rv) {
1974 		aprint_error_dev(sc->sc_dev,
1975 		    "failed to get drive status summary\n");
1976 		return;
1977 	}
1978 	for (i = 0; i < ports; i++) {
1979 		if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
1980 			continue;
1981 		rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
1982 		    TWE_PARAM_DRIVEINFO_Size, &dsize);
1983 		if (rv) {
1984 			aprint_error_dev(sc->sc_dev,
1985 			    "unable to get drive size for port %d\n", i);
1986 			continue;
1987 		}
1988 		rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
1989 		    TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
1990 		if (rv) {
1991 			aprint_error_dev(sc->sc_dev,
1992 			    "unable to get drive model for port %d\n", i);
1993 			continue;
1994 		}
1995 		aprint_verbose_dev(sc->sc_dev, "port %d: %.40s %d MB\n",
1996 		    i, p[1]->tp_data, dsize / 2048);
1997 		free(p[1], M_DEVBUF);
1998 	}
1999 	free(p[0], M_DEVBUF);
2000 }
2001 
2002 MODULE(MODULE_CLASS_DRIVER, twe, "pci");
2003 
2004 #ifdef _MODULE
2005 #include "ioconf.c"
2006 #endif
2007 
2008 static int
twe_modcmd(modcmd_t cmd,void * opaque)2009 twe_modcmd(modcmd_t cmd, void *opaque)
2010 {
2011 	int error = 0;
2012 
2013 #ifdef _MODULE
2014 	switch (cmd) {
2015 	case MODULE_CMD_INIT:
2016 		error = config_init_component(cfdriver_ioconf_twe,
2017 		    cfattach_ioconf_twe, cfdata_ioconf_twe);
2018 		break;
2019 	case MODULE_CMD_FINI:
2020 		error = config_fini_component(cfdriver_ioconf_twe,
2021 		    cfattach_ioconf_twe, cfdata_ioconf_twe);
2022 		break;
2023 	default:
2024 		error = ENOTTY;
2025 		break;
2026 	}
2027 #endif
2028 
2029 	return error;
2030 }
2031