1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11 /*
12 * This file contains miscelanious TNC-related functions shared betweend
13 * different files. This file does not form any logically separate TNC
14 * sub-system. The file was created because there is a lot of TNC code and
15 * putting it all in one file would make that file too big and unreadable.
16 */
17
18 #include "ubifs.h"
19
20 /**
21 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
22 * @c: UBIFS file-system description object
23 * @zr: root of the subtree to traverse
24 * @znode: previous znode
25 *
26 * This function implements levelorder TNC traversal. The LNC is ignored.
27 * Returns the next element or %NULL if @znode is already the last one.
28 */
ubifs_tnc_levelorder_next(const struct ubifs_info * c,struct ubifs_znode * zr,struct ubifs_znode * znode)29 struct ubifs_znode *ubifs_tnc_levelorder_next(const struct ubifs_info *c,
30 struct ubifs_znode *zr,
31 struct ubifs_znode *znode)
32 {
33 int level, iip, level_search = 0;
34 struct ubifs_znode *zn;
35
36 ubifs_assert(c, zr);
37
38 if (unlikely(!znode))
39 return zr;
40
41 if (unlikely(znode == zr)) {
42 if (znode->level == 0)
43 return NULL;
44 return ubifs_tnc_find_child(zr, 0);
45 }
46
47 level = znode->level;
48
49 iip = znode->iip;
50 while (1) {
51 ubifs_assert(c, znode->level <= zr->level);
52
53 /*
54 * First walk up until there is a znode with next branch to
55 * look at.
56 */
57 while (znode->parent != zr && iip >= znode->parent->child_cnt) {
58 znode = znode->parent;
59 iip = znode->iip;
60 }
61
62 if (unlikely(znode->parent == zr &&
63 iip >= znode->parent->child_cnt)) {
64 /* This level is done, switch to the lower one */
65 level -= 1;
66 if (level_search || level < 0)
67 /*
68 * We were already looking for znode at lower
69 * level ('level_search'). As we are here
70 * again, it just does not exist. Or all levels
71 * were finished ('level < 0').
72 */
73 return NULL;
74
75 level_search = 1;
76 iip = -1;
77 znode = ubifs_tnc_find_child(zr, 0);
78 ubifs_assert(c, znode);
79 }
80
81 /* Switch to the next index */
82 zn = ubifs_tnc_find_child(znode->parent, iip + 1);
83 if (!zn) {
84 /* No more children to look at, we have walk up */
85 iip = znode->parent->child_cnt;
86 continue;
87 }
88
89 /* Walk back down to the level we came from ('level') */
90 while (zn->level != level) {
91 znode = zn;
92 zn = ubifs_tnc_find_child(zn, 0);
93 if (!zn) {
94 /*
95 * This path is not too deep so it does not
96 * reach 'level'. Try next path.
97 */
98 iip = znode->iip;
99 break;
100 }
101 }
102
103 if (zn) {
104 ubifs_assert(c, zn->level >= 0);
105 return zn;
106 }
107 }
108 }
109
110 /**
111 * ubifs_search_zbranch - search znode branch.
112 * @c: UBIFS file-system description object
113 * @znode: znode to search in
114 * @key: key to search for
115 * @n: znode branch slot number is returned here
116 *
117 * This is a helper function which search branch with key @key in @znode using
118 * binary search. The result of the search may be:
119 * o exact match, then %1 is returned, and the slot number of the branch is
120 * stored in @n;
121 * o no exact match, then %0 is returned and the slot number of the left
122 * closest branch is returned in @n; the slot if all keys in this znode are
123 * greater than @key, then %-1 is returned in @n.
124 */
ubifs_search_zbranch(const struct ubifs_info * c,const struct ubifs_znode * znode,const union ubifs_key * key,int * n)125 int ubifs_search_zbranch(const struct ubifs_info *c,
126 const struct ubifs_znode *znode,
127 const union ubifs_key *key, int *n)
128 {
129 int beg = 0, end = znode->child_cnt, mid;
130 int cmp;
131 const struct ubifs_zbranch *zbr = &znode->zbranch[0];
132
133 ubifs_assert(c, end > beg);
134
135 while (end > beg) {
136 mid = (beg + end) >> 1;
137 cmp = keys_cmp(c, key, &zbr[mid].key);
138 if (cmp > 0)
139 beg = mid + 1;
140 else if (cmp < 0)
141 end = mid;
142 else {
143 *n = mid;
144 return 1;
145 }
146 }
147
148 *n = end - 1;
149
150 /* The insert point is after *n */
151 ubifs_assert(c, *n >= -1 && *n < znode->child_cnt);
152 if (*n == -1)
153 ubifs_assert(c, keys_cmp(c, key, &zbr[0].key) < 0);
154 else
155 ubifs_assert(c, keys_cmp(c, key, &zbr[*n].key) > 0);
156 if (*n + 1 < znode->child_cnt)
157 ubifs_assert(c, keys_cmp(c, key, &zbr[*n + 1].key) < 0);
158
159 return 0;
160 }
161
162 /**
163 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
164 * @znode: znode to start at (root of the sub-tree to traverse)
165 *
166 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
167 * ignored.
168 */
ubifs_tnc_postorder_first(struct ubifs_znode * znode)169 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
170 {
171 if (unlikely(!znode))
172 return NULL;
173
174 while (znode->level > 0) {
175 struct ubifs_znode *child;
176
177 child = ubifs_tnc_find_child(znode, 0);
178 if (!child)
179 return znode;
180 znode = child;
181 }
182
183 return znode;
184 }
185
186 /**
187 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
188 * @c: UBIFS file-system description object
189 * @znode: previous znode
190 *
191 * This function implements postorder TNC traversal. The LNC is ignored.
192 * Returns the next element or %NULL if @znode is already the last one.
193 */
ubifs_tnc_postorder_next(const struct ubifs_info * c,struct ubifs_znode * znode)194 struct ubifs_znode *ubifs_tnc_postorder_next(const struct ubifs_info *c,
195 struct ubifs_znode *znode)
196 {
197 struct ubifs_znode *zn;
198
199 ubifs_assert(c, znode);
200 if (unlikely(!znode->parent))
201 return NULL;
202
203 /* Switch to the next index in the parent */
204 zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
205 if (!zn)
206 /* This is in fact the last child, return parent */
207 return znode->parent;
208
209 /* Go to the first znode in this new subtree */
210 return ubifs_tnc_postorder_first(zn);
211 }
212
213 /**
214 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
215 * @c: UBIFS file-system description object
216 * @znode: znode defining subtree to destroy
217 *
218 * This function destroys subtree of the TNC tree. Returns number of clean
219 * znodes in the subtree.
220 */
ubifs_destroy_tnc_subtree(const struct ubifs_info * c,struct ubifs_znode * znode)221 long ubifs_destroy_tnc_subtree(const struct ubifs_info *c,
222 struct ubifs_znode *znode)
223 {
224 struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
225 long clean_freed = 0;
226 int n;
227
228 ubifs_assert(c, zn);
229 while (1) {
230 for (n = 0; n < zn->child_cnt; n++) {
231 if (!zn->zbranch[n].znode)
232 continue;
233
234 if (zn->level > 0 &&
235 !ubifs_zn_dirty(zn->zbranch[n].znode))
236 clean_freed += 1;
237
238 cond_resched();
239 kfree(zn->zbranch[n].znode);
240 }
241
242 if (zn == znode) {
243 if (!ubifs_zn_dirty(zn))
244 clean_freed += 1;
245 kfree(zn);
246 return clean_freed;
247 }
248
249 zn = ubifs_tnc_postorder_next(c, zn);
250 }
251 }
252
253 /**
254 * ubifs_destroy_tnc_tree - destroy all znodes connected to the TNC tree.
255 * @c: UBIFS file-system description object
256 *
257 * This function destroys the whole TNC tree and updates clean global znode
258 * count.
259 */
ubifs_destroy_tnc_tree(struct ubifs_info * c)260 void ubifs_destroy_tnc_tree(struct ubifs_info *c)
261 {
262 long n, freed;
263
264 if (!c->zroot.znode)
265 return;
266
267 n = atomic_long_read(&c->clean_zn_cnt);
268 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
269 ubifs_assert(c, freed == n);
270 atomic_long_sub(n, &ubifs_clean_zn_cnt);
271
272 c->zroot.znode = NULL;
273 }
274
275 /**
276 * read_znode - read an indexing node from flash and fill znode.
277 * @c: UBIFS file-system description object
278 * @zzbr: the zbranch describing the node to read
279 * @znode: znode to read to
280 *
281 * This function reads an indexing node from the flash media and fills znode
282 * with the read data. Returns zero in case of success and a negative error
283 * code in case of failure. The read indexing node is validated and if anything
284 * is wrong with it, this function prints complaint messages and returns
285 * %-EINVAL.
286 */
read_znode(struct ubifs_info * c,struct ubifs_zbranch * zzbr,struct ubifs_znode * znode)287 static int read_znode(struct ubifs_info *c, struct ubifs_zbranch *zzbr,
288 struct ubifs_znode *znode)
289 {
290 int lnum = zzbr->lnum;
291 int offs = zzbr->offs;
292 int len = zzbr->len;
293 int i, err, type, cmp;
294 struct ubifs_idx_node *idx;
295
296 idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
297 if (!idx)
298 return -ENOMEM;
299
300 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
301 if (err < 0) {
302 kfree(idx);
303 return err;
304 }
305
306 err = ubifs_node_check_hash(c, idx, zzbr->hash);
307 if (err) {
308 ubifs_bad_hash(c, idx, zzbr->hash, lnum, offs);
309 kfree(idx);
310 return err;
311 }
312
313 znode->child_cnt = le16_to_cpu(idx->child_cnt);
314 znode->level = le16_to_cpu(idx->level);
315
316 dbg_tnc("LEB %d:%d, level %d, %d branch",
317 lnum, offs, znode->level, znode->child_cnt);
318
319 if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
320 ubifs_err(c, "current fanout %d, branch count %d",
321 c->fanout, znode->child_cnt);
322 ubifs_err(c, "max levels %d, znode level %d",
323 UBIFS_MAX_LEVELS, znode->level);
324 err = 1;
325 goto out_dump;
326 }
327
328 for (i = 0; i < znode->child_cnt; i++) {
329 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
330 struct ubifs_zbranch *zbr = &znode->zbranch[i];
331
332 key_read(c, &br->key, &zbr->key);
333 zbr->lnum = le32_to_cpu(br->lnum);
334 zbr->offs = le32_to_cpu(br->offs);
335 zbr->len = le32_to_cpu(br->len);
336 ubifs_copy_hash(c, ubifs_branch_hash(c, br), zbr->hash);
337 zbr->znode = NULL;
338
339 /* Validate branch */
340
341 if (zbr->lnum < c->main_first ||
342 zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
343 zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
344 ubifs_err(c, "bad branch %d", i);
345 err = 2;
346 goto out_dump;
347 }
348
349 switch (key_type(c, &zbr->key)) {
350 case UBIFS_INO_KEY:
351 case UBIFS_DATA_KEY:
352 case UBIFS_DENT_KEY:
353 case UBIFS_XENT_KEY:
354 break;
355 default:
356 ubifs_err(c, "bad key type at slot %d: %d",
357 i, key_type(c, &zbr->key));
358 err = 3;
359 goto out_dump;
360 }
361
362 if (znode->level)
363 continue;
364
365 type = key_type(c, &zbr->key);
366 if (c->ranges[type].max_len == 0) {
367 if (zbr->len != c->ranges[type].len) {
368 ubifs_err(c, "bad target node (type %d) length (%d)",
369 type, zbr->len);
370 ubifs_err(c, "have to be %d", c->ranges[type].len);
371 err = 4;
372 goto out_dump;
373 }
374 } else if (zbr->len < c->ranges[type].min_len ||
375 zbr->len > c->ranges[type].max_len) {
376 ubifs_err(c, "bad target node (type %d) length (%d)",
377 type, zbr->len);
378 ubifs_err(c, "have to be in range of %d-%d",
379 c->ranges[type].min_len,
380 c->ranges[type].max_len);
381 err = 5;
382 goto out_dump;
383 }
384 }
385
386 /*
387 * Ensure that the next key is greater or equivalent to the
388 * previous one.
389 */
390 for (i = 0; i < znode->child_cnt - 1; i++) {
391 const union ubifs_key *key1, *key2;
392
393 key1 = &znode->zbranch[i].key;
394 key2 = &znode->zbranch[i + 1].key;
395
396 cmp = keys_cmp(c, key1, key2);
397 if (cmp > 0) {
398 ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1);
399 err = 6;
400 goto out_dump;
401 } else if (cmp == 0 && !is_hash_key(c, key1)) {
402 /* These can only be keys with colliding hash */
403 ubifs_err(c, "keys %d and %d are not hashed but equivalent",
404 i, i + 1);
405 err = 7;
406 goto out_dump;
407 }
408 }
409
410 kfree(idx);
411 return 0;
412
413 out_dump:
414 ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
415 ubifs_dump_node(c, idx, c->max_idx_node_sz);
416 kfree(idx);
417 return -EINVAL;
418 }
419
420 /**
421 * ubifs_load_znode - load znode to TNC cache.
422 * @c: UBIFS file-system description object
423 * @zbr: znode branch
424 * @parent: znode's parent
425 * @iip: index in parent
426 *
427 * This function loads znode pointed to by @zbr into the TNC cache and
428 * returns pointer to it in case of success and a negative error code in case
429 * of failure.
430 */
ubifs_load_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr,struct ubifs_znode * parent,int iip)431 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
432 struct ubifs_zbranch *zbr,
433 struct ubifs_znode *parent, int iip)
434 {
435 int err;
436 struct ubifs_znode *znode;
437
438 ubifs_assert(c, !zbr->znode);
439 /*
440 * A slab cache is not presently used for znodes because the znode size
441 * depends on the fanout which is stored in the superblock.
442 */
443 znode = kzalloc(c->max_znode_sz, GFP_NOFS);
444 if (!znode)
445 return ERR_PTR(-ENOMEM);
446
447 err = read_znode(c, zbr, znode);
448 if (err)
449 goto out;
450
451 atomic_long_inc(&c->clean_zn_cnt);
452
453 /*
454 * Increment the global clean znode counter as well. It is OK that
455 * global and per-FS clean znode counters may be inconsistent for some
456 * short time (because we might be preempted at this point), the global
457 * one is only used in shrinker.
458 */
459 atomic_long_inc(&ubifs_clean_zn_cnt);
460
461 zbr->znode = znode;
462 znode->parent = parent;
463 znode->time = ktime_get_seconds();
464 znode->iip = iip;
465
466 return znode;
467
468 out:
469 kfree(znode);
470 return ERR_PTR(err);
471 }
472
473 /**
474 * ubifs_tnc_read_node - read a leaf node from the flash media.
475 * @c: UBIFS file-system description object
476 * @zbr: key and position of the node
477 * @node: node is returned here
478 *
479 * This function reads a node defined by @zbr from the flash media. Returns
480 * zero in case of success or a negative error code in case of failure.
481 */
ubifs_tnc_read_node(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)482 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
483 void *node)
484 {
485 union ubifs_key key1, *key = &zbr->key;
486 int err, type = key_type(c, key);
487 struct ubifs_wbuf *wbuf;
488
489 /*
490 * 'zbr' has to point to on-flash node. The node may sit in a bud and
491 * may even be in a write buffer, so we have to take care about this.
492 */
493 wbuf = ubifs_get_wbuf(c, zbr->lnum);
494 if (wbuf)
495 err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
496 zbr->lnum, zbr->offs);
497 else
498 err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
499 zbr->offs);
500
501 if (err) {
502 dbg_tnck(key, "key ");
503 return err;
504 }
505
506 /* Make sure the key of the read node is correct */
507 key_read(c, node + UBIFS_KEY_OFFSET, &key1);
508 if (!keys_eq(c, key, &key1)) {
509 ubifs_err(c, "bad key in node at LEB %d:%d",
510 zbr->lnum, zbr->offs);
511 dbg_tnck(key, "looked for key ");
512 dbg_tnck(&key1, "but found node's key ");
513 ubifs_dump_node(c, node, zbr->len);
514 return -EINVAL;
515 }
516
517 err = ubifs_node_check_hash(c, node, zbr->hash);
518 if (err) {
519 ubifs_bad_hash(c, node, zbr->hash, zbr->lnum, zbr->offs);
520 return err;
521 }
522
523 return 0;
524 }
525