1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
16 */
17
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25
26 static DEFINE_SPINLOCK(dbg_lock);
27
get_key_fmt(int fmt)28 static const char *get_key_fmt(int fmt)
29 {
30 switch (fmt) {
31 case UBIFS_SIMPLE_KEY_FMT:
32 return "simple";
33 default:
34 return "unknown/invalid format";
35 }
36 }
37
get_key_hash(int hash)38 static const char *get_key_hash(int hash)
39 {
40 switch (hash) {
41 case UBIFS_KEY_HASH_R5:
42 return "R5";
43 case UBIFS_KEY_HASH_TEST:
44 return "test";
45 default:
46 return "unknown/invalid name hash";
47 }
48 }
49
get_key_type(int type)50 static const char *get_key_type(int type)
51 {
52 switch (type) {
53 case UBIFS_INO_KEY:
54 return "inode";
55 case UBIFS_DENT_KEY:
56 return "direntry";
57 case UBIFS_XENT_KEY:
58 return "xentry";
59 case UBIFS_DATA_KEY:
60 return "data";
61 case UBIFS_TRUN_KEY:
62 return "truncate";
63 default:
64 return "unknown/invalid key";
65 }
66 }
67
get_dent_type(int type)68 static const char *get_dent_type(int type)
69 {
70 switch (type) {
71 case UBIFS_ITYPE_REG:
72 return "file";
73 case UBIFS_ITYPE_DIR:
74 return "dir";
75 case UBIFS_ITYPE_LNK:
76 return "symlink";
77 case UBIFS_ITYPE_BLK:
78 return "blkdev";
79 case UBIFS_ITYPE_CHR:
80 return "char dev";
81 case UBIFS_ITYPE_FIFO:
82 return "fifo";
83 case UBIFS_ITYPE_SOCK:
84 return "socket";
85 default:
86 return "unknown/invalid type";
87 }
88 }
89
dbg_snprintf_key(const struct ubifs_info * c,const union ubifs_key * key,char * buffer,int len)90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91 const union ubifs_key *key, char *buffer, int len)
92 {
93 char *p = buffer;
94 int type = key_type(c, key);
95
96 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 switch (type) {
98 case UBIFS_INO_KEY:
99 len -= snprintf(p, len, "(%lu, %s)",
100 (unsigned long)key_inum(c, key),
101 get_key_type(type));
102 break;
103 case UBIFS_DENT_KEY:
104 case UBIFS_XENT_KEY:
105 len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 (unsigned long)key_inum(c, key),
107 get_key_type(type), key_hash(c, key));
108 break;
109 case UBIFS_DATA_KEY:
110 len -= snprintf(p, len, "(%lu, %s, %u)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type), key_block(c, key));
113 break;
114 case UBIFS_TRUN_KEY:
115 len -= snprintf(p, len, "(%lu, %s)",
116 (unsigned long)key_inum(c, key),
117 get_key_type(type));
118 break;
119 default:
120 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 key->u32[0], key->u32[1]);
122 }
123 } else
124 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 ubifs_assert(c, len > 0);
126 return p;
127 }
128
dbg_ntype(int type)129 const char *dbg_ntype(int type)
130 {
131 switch (type) {
132 case UBIFS_PAD_NODE:
133 return "padding node";
134 case UBIFS_SB_NODE:
135 return "superblock node";
136 case UBIFS_MST_NODE:
137 return "master node";
138 case UBIFS_REF_NODE:
139 return "reference node";
140 case UBIFS_INO_NODE:
141 return "inode node";
142 case UBIFS_DENT_NODE:
143 return "direntry node";
144 case UBIFS_XENT_NODE:
145 return "xentry node";
146 case UBIFS_DATA_NODE:
147 return "data node";
148 case UBIFS_TRUN_NODE:
149 return "truncate node";
150 case UBIFS_IDX_NODE:
151 return "indexing node";
152 case UBIFS_CS_NODE:
153 return "commit start node";
154 case UBIFS_ORPH_NODE:
155 return "orphan node";
156 case UBIFS_AUTH_NODE:
157 return "auth node";
158 default:
159 return "unknown node";
160 }
161 }
162
dbg_gtype(int type)163 static const char *dbg_gtype(int type)
164 {
165 switch (type) {
166 case UBIFS_NO_NODE_GROUP:
167 return "no node group";
168 case UBIFS_IN_NODE_GROUP:
169 return "in node group";
170 case UBIFS_LAST_OF_NODE_GROUP:
171 return "last of node group";
172 default:
173 return "unknown";
174 }
175 }
176
dbg_cstate(int cmt_state)177 const char *dbg_cstate(int cmt_state)
178 {
179 switch (cmt_state) {
180 case COMMIT_RESTING:
181 return "commit resting";
182 case COMMIT_BACKGROUND:
183 return "background commit requested";
184 case COMMIT_REQUIRED:
185 return "commit required";
186 case COMMIT_RUNNING_BACKGROUND:
187 return "BACKGROUND commit running";
188 case COMMIT_RUNNING_REQUIRED:
189 return "commit running and required";
190 case COMMIT_BROKEN:
191 return "broken commit";
192 default:
193 return "unknown commit state";
194 }
195 }
196
dbg_jhead(int jhead)197 const char *dbg_jhead(int jhead)
198 {
199 switch (jhead) {
200 case GCHD:
201 return "0 (GC)";
202 case BASEHD:
203 return "1 (base)";
204 case DATAHD:
205 return "2 (data)";
206 default:
207 return "unknown journal head";
208 }
209 }
210
dump_ch(const struct ubifs_ch * ch)211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
214 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
215 pr_err("\tnode_type %d (%s)\n", ch->node_type,
216 dbg_ntype(ch->node_type));
217 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
218 dbg_gtype(ch->group_type));
219 pr_err("\tsqnum %llu\n",
220 (unsigned long long)le64_to_cpu(ch->sqnum));
221 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
222 }
223
ubifs_dump_inode(struct ubifs_info * c,const struct inode * inode)224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226 const struct ubifs_inode *ui = ubifs_inode(inode);
227 struct fscrypt_name nm = {0};
228 union ubifs_key key;
229 struct ubifs_dent_node *dent, *pdent = NULL;
230 int count = 2;
231
232 pr_err("Dump in-memory inode:");
233 pr_err("\tinode %lu\n", inode->i_ino);
234 pr_err("\tsize %llu\n",
235 (unsigned long long)i_size_read(inode));
236 pr_err("\tnlink %u\n", inode->i_nlink);
237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
239 pr_err("\tatime %u.%u\n",
240 (unsigned int) inode_get_atime_sec(inode),
241 (unsigned int) inode_get_atime_nsec(inode));
242 pr_err("\tmtime %u.%u\n",
243 (unsigned int) inode_get_mtime_sec(inode),
244 (unsigned int) inode_get_mtime_nsec(inode));
245 pr_err("\tctime %u.%u\n",
246 (unsigned int) inode_get_ctime_sec(inode),
247 (unsigned int) inode_get_ctime_nsec(inode));
248 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
249 pr_err("\txattr_size %u\n", ui->xattr_size);
250 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
251 pr_err("\txattr_names %u\n", ui->xattr_names);
252 pr_err("\tdirty %u\n", ui->dirty);
253 pr_err("\txattr %u\n", ui->xattr);
254 pr_err("\tbulk_read %u\n", ui->bulk_read);
255 pr_err("\tsynced_i_size %llu\n",
256 (unsigned long long)ui->synced_i_size);
257 pr_err("\tui_size %llu\n",
258 (unsigned long long)ui->ui_size);
259 pr_err("\tflags %d\n", ui->flags);
260 pr_err("\tcompr_type %d\n", ui->compr_type);
261 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
263 pr_err("\tdata_len %d\n", ui->data_len);
264
265 if (!S_ISDIR(inode->i_mode))
266 return;
267
268 pr_err("List of directory entries:\n");
269 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270
271 lowest_dent_key(c, &key, inode->i_ino);
272 while (1) {
273 dent = ubifs_tnc_next_ent(c, &key, &nm);
274 if (IS_ERR(dent)) {
275 if (PTR_ERR(dent) != -ENOENT)
276 pr_err("error %ld\n", PTR_ERR(dent));
277 break;
278 }
279
280 pr_err("\t%d: inode %llu, type %s, len %d\n",
281 count++, (unsigned long long) le64_to_cpu(dent->inum),
282 get_dent_type(dent->type),
283 le16_to_cpu(dent->nlen));
284
285 fname_name(&nm) = dent->name;
286 fname_len(&nm) = le16_to_cpu(dent->nlen);
287 kfree(pdent);
288 pdent = dent;
289 key_read(c, &dent->key, &key);
290 }
291 kfree(pdent);
292 }
293
ubifs_dump_node(const struct ubifs_info * c,const void * node,int node_len)294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
295 {
296 int i, n, type, safe_len, max_node_len, min_node_len;
297 union ubifs_key key;
298 const struct ubifs_ch *ch = node;
299 char key_buf[DBG_KEY_BUF_LEN];
300
301 /* If the magic is incorrect, just hexdump the first bytes */
302 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 (void *)node, UBIFS_CH_SZ, 1);
306 return;
307 }
308
309 /* Skip dumping unknown type node */
310 type = ch->node_type;
311 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
312 pr_err("node type %d was not recognized\n", type);
313 return;
314 }
315
316 spin_lock(&dbg_lock);
317 dump_ch(node);
318
319 if (c->ranges[type].max_len == 0) {
320 max_node_len = min_node_len = c->ranges[type].len;
321 } else {
322 max_node_len = c->ranges[type].max_len;
323 min_node_len = c->ranges[type].min_len;
324 }
325 safe_len = le32_to_cpu(ch->len);
326 safe_len = safe_len > 0 ? safe_len : 0;
327 safe_len = min3(safe_len, max_node_len, node_len);
328 if (safe_len < min_node_len) {
329 pr_err("node len(%d) is too short for %s, left %d bytes:\n",
330 safe_len, dbg_ntype(type),
331 safe_len > UBIFS_CH_SZ ?
332 safe_len - (int)UBIFS_CH_SZ : 0);
333 if (safe_len > UBIFS_CH_SZ)
334 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
335 (void *)node + UBIFS_CH_SZ,
336 safe_len - UBIFS_CH_SZ, 0);
337 goto out_unlock;
338 }
339 if (safe_len != le32_to_cpu(ch->len))
340 pr_err("\ttruncated node length %d\n", safe_len);
341
342 switch (type) {
343 case UBIFS_PAD_NODE:
344 {
345 const struct ubifs_pad_node *pad = node;
346
347 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
348 break;
349 }
350 case UBIFS_SB_NODE:
351 {
352 const struct ubifs_sb_node *sup = node;
353 unsigned int sup_flags = le32_to_cpu(sup->flags);
354
355 pr_err("\tkey_hash %d (%s)\n",
356 (int)sup->key_hash, get_key_hash(sup->key_hash));
357 pr_err("\tkey_fmt %d (%s)\n",
358 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
359 pr_err("\tflags %#x\n", sup_flags);
360 pr_err("\tbig_lpt %u\n",
361 !!(sup_flags & UBIFS_FLG_BIGLPT));
362 pr_err("\tspace_fixup %u\n",
363 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
364 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
365 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
366 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
367 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
368 pr_err("\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
371 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
372 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
373 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
374 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
375 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
376 pr_err("\tdefault_compr %u\n",
377 (int)le16_to_cpu(sup->default_compr));
378 pr_err("\trp_size %llu\n",
379 (unsigned long long)le64_to_cpu(sup->rp_size));
380 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
381 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
382 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
383 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
384 pr_err("\tUUID %pUB\n", sup->uuid);
385 break;
386 }
387 case UBIFS_MST_NODE:
388 {
389 const struct ubifs_mst_node *mst = node;
390
391 pr_err("\thighest_inum %llu\n",
392 (unsigned long long)le64_to_cpu(mst->highest_inum));
393 pr_err("\tcommit number %llu\n",
394 (unsigned long long)le64_to_cpu(mst->cmt_no));
395 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
396 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
397 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
398 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
399 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
400 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
401 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
402 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
403 pr_err("\tindex_size %llu\n",
404 (unsigned long long)le64_to_cpu(mst->index_size));
405 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
406 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
407 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
408 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
409 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
410 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
411 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
412 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
413 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
414 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
415 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
416 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
417 pr_err("\ttotal_free %llu\n",
418 (unsigned long long)le64_to_cpu(mst->total_free));
419 pr_err("\ttotal_dirty %llu\n",
420 (unsigned long long)le64_to_cpu(mst->total_dirty));
421 pr_err("\ttotal_used %llu\n",
422 (unsigned long long)le64_to_cpu(mst->total_used));
423 pr_err("\ttotal_dead %llu\n",
424 (unsigned long long)le64_to_cpu(mst->total_dead));
425 pr_err("\ttotal_dark %llu\n",
426 (unsigned long long)le64_to_cpu(mst->total_dark));
427 break;
428 }
429 case UBIFS_REF_NODE:
430 {
431 const struct ubifs_ref_node *ref = node;
432
433 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
434 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
435 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
436 break;
437 }
438 case UBIFS_INO_NODE:
439 {
440 const struct ubifs_ino_node *ino = node;
441
442 key_read(c, &ino->key, &key);
443 pr_err("\tkey %s\n",
444 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
445 pr_err("\tcreat_sqnum %llu\n",
446 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
447 pr_err("\tsize %llu\n",
448 (unsigned long long)le64_to_cpu(ino->size));
449 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
450 pr_err("\tatime %lld.%u\n",
451 (long long)le64_to_cpu(ino->atime_sec),
452 le32_to_cpu(ino->atime_nsec));
453 pr_err("\tmtime %lld.%u\n",
454 (long long)le64_to_cpu(ino->mtime_sec),
455 le32_to_cpu(ino->mtime_nsec));
456 pr_err("\tctime %lld.%u\n",
457 (long long)le64_to_cpu(ino->ctime_sec),
458 le32_to_cpu(ino->ctime_nsec));
459 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
460 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
461 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
462 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
463 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
464 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
465 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
466 pr_err("\tcompr_type %#x\n",
467 (int)le16_to_cpu(ino->compr_type));
468 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
469 break;
470 }
471 case UBIFS_DENT_NODE:
472 case UBIFS_XENT_NODE:
473 {
474 const struct ubifs_dent_node *dent = node;
475 int nlen = le16_to_cpu(dent->nlen);
476
477 key_read(c, &dent->key, &key);
478 pr_err("\tkey %s\n",
479 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
480 pr_err("\tinum %llu\n",
481 (unsigned long long)le64_to_cpu(dent->inum));
482 pr_err("\ttype %d\n", (int)dent->type);
483 pr_err("\tnlen %d\n", nlen);
484 pr_err("\tname ");
485
486 if (nlen > UBIFS_MAX_NLEN ||
487 nlen > safe_len - UBIFS_DENT_NODE_SZ)
488 pr_err("(bad name length, not printing, bad or corrupted node)");
489 else {
490 for (i = 0; i < nlen && dent->name[i]; i++)
491 pr_cont("%c", isprint(dent->name[i]) ?
492 dent->name[i] : '?');
493 }
494 pr_cont("\n");
495
496 break;
497 }
498 case UBIFS_DATA_NODE:
499 {
500 const struct ubifs_data_node *dn = node;
501
502 key_read(c, &dn->key, &key);
503 pr_err("\tkey %s\n",
504 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
505 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
506 pr_err("\tcompr_typ %d\n",
507 (int)le16_to_cpu(dn->compr_type));
508 pr_err("\tdata size %u\n",
509 le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
510 pr_err("\tdata (length = %d):\n",
511 safe_len - (int)UBIFS_DATA_NODE_SZ);
512 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
513 (void *)&dn->data,
514 safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
515 break;
516 }
517 case UBIFS_TRUN_NODE:
518 {
519 const struct ubifs_trun_node *trun = node;
520
521 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
522 pr_err("\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun->old_size));
524 pr_err("\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun->new_size));
526 break;
527 }
528 case UBIFS_IDX_NODE:
529 {
530 const struct ubifs_idx_node *idx = node;
531 int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
532 (ubifs_idx_node_sz(c, 1) -
533 UBIFS_IDX_NODE_SZ);
534
535 n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
536 pr_err("\tchild_cnt %d\n", (int)le16_to_cpu(idx->child_cnt));
537 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
538 pr_err("\tBranches:\n");
539
540 for (i = 0; i < n && i < c->fanout; i++) {
541 const struct ubifs_branch *br;
542
543 br = ubifs_idx_branch(c, idx, i);
544 key_read(c, &br->key, &key);
545 pr_err("\t%d: LEB %d:%d len %d key %s\n",
546 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
547 le32_to_cpu(br->len),
548 dbg_snprintf_key(c, &key, key_buf,
549 DBG_KEY_BUF_LEN));
550 }
551 break;
552 }
553 case UBIFS_CS_NODE:
554 break;
555 case UBIFS_ORPH_NODE:
556 {
557 const struct ubifs_orph_node *orph = node;
558
559 pr_err("\tcommit number %llu\n",
560 (unsigned long long)
561 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
562 pr_err("\tlast node flag %llu\n",
563 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
564 n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
565 pr_err("\t%d orphan inode numbers:\n", n);
566 for (i = 0; i < n; i++)
567 pr_err("\t ino %llu\n",
568 (unsigned long long)le64_to_cpu(orph->inos[i]));
569 break;
570 }
571 case UBIFS_AUTH_NODE:
572 {
573 break;
574 }
575 default:
576 pr_err("node type %d was not recognized\n", type);
577 }
578
579 out_unlock:
580 spin_unlock(&dbg_lock);
581 }
582
ubifs_dump_budget_req(const struct ubifs_budget_req * req)583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
584 {
585 spin_lock(&dbg_lock);
586 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
587 req->new_ino, req->dirtied_ino);
588 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
589 req->new_ino_d, req->dirtied_ino_d);
590 pr_err("\tnew_page %d, dirtied_page %d\n",
591 req->new_page, req->dirtied_page);
592 pr_err("\tnew_dent %d, mod_dent %d\n",
593 req->new_dent, req->mod_dent);
594 pr_err("\tidx_growth %d\n", req->idx_growth);
595 pr_err("\tdata_growth %d dd_growth %d\n",
596 req->data_growth, req->dd_growth);
597 spin_unlock(&dbg_lock);
598 }
599
ubifs_dump_lstats(const struct ubifs_lp_stats * lst)600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
601 {
602 spin_lock(&dbg_lock);
603 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
604 current->pid, lst->empty_lebs, lst->idx_lebs);
605 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
606 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
607 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
608 lst->total_used, lst->total_dark, lst->total_dead);
609 spin_unlock(&dbg_lock);
610 }
611
ubifs_dump_budg(struct ubifs_info * c,const struct ubifs_budg_info * bi)612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
613 {
614 int i;
615 struct rb_node *rb;
616 struct ubifs_bud *bud;
617 struct ubifs_gced_idx_leb *idx_gc;
618 long long available, outstanding, free;
619
620 spin_lock(&c->space_lock);
621 spin_lock(&dbg_lock);
622 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
623 current->pid, bi->data_growth + bi->dd_growth,
624 bi->data_growth + bi->dd_growth + bi->idx_growth);
625 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
626 bi->data_growth, bi->dd_growth, bi->idx_growth);
627 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
628 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
629 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
630 bi->page_budget, bi->inode_budget, bi->dent_budget);
631 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
632 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
633 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
634
635 if (bi != &c->bi)
636 /*
637 * If we are dumping saved budgeting data, do not print
638 * additional information which is about the current state, not
639 * the old one which corresponded to the saved budgeting data.
640 */
641 goto out_unlock;
642
643 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
644 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
645 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
646 atomic_long_read(&c->dirty_pg_cnt),
647 atomic_long_read(&c->dirty_zn_cnt),
648 atomic_long_read(&c->clean_zn_cnt));
649 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
650
651 /* If we are in R/O mode, journal heads do not exist */
652 if (c->jheads)
653 for (i = 0; i < c->jhead_cnt; i++)
654 pr_err("\tjhead %s\t LEB %d\n",
655 dbg_jhead(c->jheads[i].wbuf.jhead),
656 c->jheads[i].wbuf.lnum);
657 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
658 bud = rb_entry(rb, struct ubifs_bud, rb);
659 pr_err("\tbud LEB %d\n", bud->lnum);
660 }
661 list_for_each_entry(bud, &c->old_buds, list)
662 pr_err("\told bud LEB %d\n", bud->lnum);
663 list_for_each_entry(idx_gc, &c->idx_gc, list)
664 pr_err("\tGC'ed idx LEB %d unmap %d\n",
665 idx_gc->lnum, idx_gc->unmap);
666 pr_err("\tcommit state %d\n", c->cmt_state);
667
668 /* Print budgeting predictions */
669 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
670 outstanding = c->bi.data_growth + c->bi.dd_growth;
671 free = ubifs_get_free_space_nolock(c);
672 pr_err("Budgeting predictions:\n");
673 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
674 available, outstanding, free);
675 out_unlock:
676 spin_unlock(&dbg_lock);
677 spin_unlock(&c->space_lock);
678 }
679
ubifs_dump_lprop(const struct ubifs_info * c,const struct ubifs_lprops * lp)680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
681 {
682 int i, spc, dark = 0, dead = 0;
683 struct rb_node *rb;
684 struct ubifs_bud *bud;
685
686 spc = lp->free + lp->dirty;
687 if (spc < c->dead_wm)
688 dead = spc;
689 else
690 dark = ubifs_calc_dark(c, spc);
691
692 if (lp->flags & LPROPS_INDEX)
693 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
694 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
695 lp->flags);
696 else
697 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
698 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
699 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
700
701 if (lp->flags & LPROPS_TAKEN) {
702 if (lp->flags & LPROPS_INDEX)
703 pr_cont("index, taken");
704 else
705 pr_cont("taken");
706 } else {
707 const char *s;
708
709 if (lp->flags & LPROPS_INDEX) {
710 switch (lp->flags & LPROPS_CAT_MASK) {
711 case LPROPS_DIRTY_IDX:
712 s = "dirty index";
713 break;
714 case LPROPS_FRDI_IDX:
715 s = "freeable index";
716 break;
717 default:
718 s = "index";
719 }
720 } else {
721 switch (lp->flags & LPROPS_CAT_MASK) {
722 case LPROPS_UNCAT:
723 s = "not categorized";
724 break;
725 case LPROPS_DIRTY:
726 s = "dirty";
727 break;
728 case LPROPS_FREE:
729 s = "free";
730 break;
731 case LPROPS_EMPTY:
732 s = "empty";
733 break;
734 case LPROPS_FREEABLE:
735 s = "freeable";
736 break;
737 default:
738 s = NULL;
739 break;
740 }
741 }
742 pr_cont("%s", s);
743 }
744
745 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
746 bud = rb_entry(rb, struct ubifs_bud, rb);
747 if (bud->lnum == lp->lnum) {
748 int head = 0;
749 for (i = 0; i < c->jhead_cnt; i++) {
750 /*
751 * Note, if we are in R/O mode or in the middle
752 * of mounting/re-mounting, the write-buffers do
753 * not exist.
754 */
755 if (c->jheads &&
756 lp->lnum == c->jheads[i].wbuf.lnum) {
757 pr_cont(", jhead %s", dbg_jhead(i));
758 head = 1;
759 }
760 }
761 if (!head)
762 pr_cont(", bud of jhead %s",
763 dbg_jhead(bud->jhead));
764 }
765 }
766 if (lp->lnum == c->gc_lnum)
767 pr_cont(", GC LEB");
768 pr_cont(")\n");
769 }
770
ubifs_dump_lprops(struct ubifs_info * c)771 void ubifs_dump_lprops(struct ubifs_info *c)
772 {
773 int lnum, err;
774 struct ubifs_lprops lp;
775 struct ubifs_lp_stats lst;
776
777 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
778 ubifs_get_lp_stats(c, &lst);
779 ubifs_dump_lstats(&lst);
780
781 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
782 err = ubifs_read_one_lp(c, lnum, &lp);
783 if (err) {
784 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
785 continue;
786 }
787
788 ubifs_dump_lprop(c, &lp);
789 }
790 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
791 }
792
ubifs_dump_lpt_info(struct ubifs_info * c)793 void ubifs_dump_lpt_info(struct ubifs_info *c)
794 {
795 int i;
796
797 spin_lock(&dbg_lock);
798 pr_err("(pid %d) dumping LPT information\n", current->pid);
799 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
800 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
801 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
802 pr_err("\tltab_sz: %d\n", c->ltab_sz);
803 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
804 pr_err("\tbig_lpt: %u\n", c->big_lpt);
805 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
806 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
807 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
808 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
809 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
810 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
811 pr_err("\tspace_bits: %d\n", c->space_bits);
812 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
813 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
814 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
815 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
816 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
817 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
818 pr_err("\tLPT head is at %d:%d\n",
819 c->nhead_lnum, c->nhead_offs);
820 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
821 if (c->big_lpt)
822 pr_err("\tLPT lsave is at %d:%d\n",
823 c->lsave_lnum, c->lsave_offs);
824 for (i = 0; i < c->lpt_lebs; i++)
825 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
826 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
827 c->ltab[i].tgc, c->ltab[i].cmt);
828 spin_unlock(&dbg_lock);
829 }
830
ubifs_dump_leb(const struct ubifs_info * c,int lnum)831 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
832 {
833 struct ubifs_scan_leb *sleb;
834 struct ubifs_scan_node *snod;
835 void *buf;
836
837 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
838
839 buf = __vmalloc(c->leb_size, GFP_NOFS);
840 if (!buf) {
841 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
842 return;
843 }
844
845 sleb = ubifs_scan(c, lnum, 0, buf, 0);
846 if (IS_ERR(sleb)) {
847 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
848 goto out;
849 }
850
851 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
852 sleb->nodes_cnt, sleb->endpt);
853
854 list_for_each_entry(snod, &sleb->nodes, list) {
855 cond_resched();
856 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
857 snod->offs, snod->len);
858 ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
859 }
860
861 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
862 ubifs_scan_destroy(sleb);
863
864 out:
865 vfree(buf);
866 return;
867 }
868
ubifs_dump_znode(const struct ubifs_info * c,const struct ubifs_znode * znode)869 void ubifs_dump_znode(const struct ubifs_info *c,
870 const struct ubifs_znode *znode)
871 {
872 int n;
873 const struct ubifs_zbranch *zbr;
874 char key_buf[DBG_KEY_BUF_LEN];
875
876 spin_lock(&dbg_lock);
877 if (znode->parent)
878 zbr = &znode->parent->zbranch[znode->iip];
879 else
880 zbr = &c->zroot;
881
882 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
883 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
884 znode->level, znode->child_cnt, znode->flags);
885
886 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
887 spin_unlock(&dbg_lock);
888 return;
889 }
890
891 pr_err("zbranches:\n");
892 for (n = 0; n < znode->child_cnt; n++) {
893 zbr = &znode->zbranch[n];
894 if (znode->level > 0)
895 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
896 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
897 dbg_snprintf_key(c, &zbr->key, key_buf,
898 DBG_KEY_BUF_LEN));
899 else
900 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
901 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
902 dbg_snprintf_key(c, &zbr->key, key_buf,
903 DBG_KEY_BUF_LEN));
904 }
905 spin_unlock(&dbg_lock);
906 }
907
ubifs_dump_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat)908 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
909 {
910 int i;
911
912 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
913 current->pid, cat, heap->cnt);
914 for (i = 0; i < heap->cnt; i++) {
915 struct ubifs_lprops *lprops = heap->arr[i];
916
917 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
918 i, lprops->lnum, lprops->hpos, lprops->free,
919 lprops->dirty, lprops->flags);
920 }
921 pr_err("(pid %d) finish dumping heap\n", current->pid);
922 }
923
ubifs_dump_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode,struct ubifs_nnode * parent,int iip)924 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
925 struct ubifs_nnode *parent, int iip)
926 {
927 int i;
928
929 pr_err("(pid %d) dumping pnode:\n", current->pid);
930 pr_err("\taddress %zx parent %zx cnext %zx\n",
931 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
932 pr_err("\tflags %lu iip %d level %d num %d\n",
933 pnode->flags, iip, pnode->level, pnode->num);
934 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
935 struct ubifs_lprops *lp = &pnode->lprops[i];
936
937 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
938 i, lp->free, lp->dirty, lp->flags, lp->lnum);
939 }
940 }
941
ubifs_dump_tnc(struct ubifs_info * c)942 void ubifs_dump_tnc(struct ubifs_info *c)
943 {
944 struct ubifs_znode *znode;
945 int level;
946
947 pr_err("\n");
948 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
949 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
950 level = znode->level;
951 pr_err("== Level %d ==\n", level);
952 while (znode) {
953 if (level != znode->level) {
954 level = znode->level;
955 pr_err("== Level %d ==\n", level);
956 }
957 ubifs_dump_znode(c, znode);
958 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
959 }
960 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
961 }
962
dump_znode(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)963 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
964 void *priv)
965 {
966 ubifs_dump_znode(c, znode);
967 return 0;
968 }
969
970 /**
971 * ubifs_dump_index - dump the on-flash index.
972 * @c: UBIFS file-system description object
973 *
974 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
975 * which dumps only in-memory znodes and does not read znodes which from flash.
976 */
ubifs_dump_index(struct ubifs_info * c)977 void ubifs_dump_index(struct ubifs_info *c)
978 {
979 dbg_walk_index(c, NULL, dump_znode, NULL);
980 }
981
982 /**
983 * dbg_save_space_info - save information about flash space.
984 * @c: UBIFS file-system description object
985 *
986 * This function saves information about UBIFS free space, dirty space, etc, in
987 * order to check it later.
988 */
dbg_save_space_info(struct ubifs_info * c)989 void dbg_save_space_info(struct ubifs_info *c)
990 {
991 struct ubifs_debug_info *d = c->dbg;
992 int freeable_cnt;
993
994 spin_lock(&c->space_lock);
995 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
996 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
997 d->saved_idx_gc_cnt = c->idx_gc_cnt;
998
999 /*
1000 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1001 * affects the free space calculations, and UBIFS might not know about
1002 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1003 * only when we read their lprops, and we do this only lazily, upon the
1004 * need. So at any given point of time @c->freeable_cnt might be not
1005 * exactly accurate.
1006 *
1007 * Just one example about the issue we hit when we did not zero
1008 * @c->freeable_cnt.
1009 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1010 * amount of free space in @d->saved_free
1011 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1012 * information from flash, where we cache LEBs from various
1013 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1014 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1015 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1016 * -> 'ubifs_add_to_cat()').
1017 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1018 * becomes %1.
1019 * 4. We calculate the amount of free space when the re-mount is
1020 * finished in 'dbg_check_space_info()' and it does not match
1021 * @d->saved_free.
1022 */
1023 freeable_cnt = c->freeable_cnt;
1024 c->freeable_cnt = 0;
1025 d->saved_free = ubifs_get_free_space_nolock(c);
1026 c->freeable_cnt = freeable_cnt;
1027 spin_unlock(&c->space_lock);
1028 }
1029
1030 /**
1031 * dbg_check_space_info - check flash space information.
1032 * @c: UBIFS file-system description object
1033 *
1034 * This function compares current flash space information with the information
1035 * which was saved when the 'dbg_save_space_info()' function was called.
1036 * Returns zero if the information has not changed, and %-EINVAL if it has
1037 * changed.
1038 */
dbg_check_space_info(struct ubifs_info * c)1039 int dbg_check_space_info(struct ubifs_info *c)
1040 {
1041 struct ubifs_debug_info *d = c->dbg;
1042 struct ubifs_lp_stats lst;
1043 long long free;
1044 int freeable_cnt;
1045
1046 spin_lock(&c->space_lock);
1047 freeable_cnt = c->freeable_cnt;
1048 c->freeable_cnt = 0;
1049 free = ubifs_get_free_space_nolock(c);
1050 c->freeable_cnt = freeable_cnt;
1051 spin_unlock(&c->space_lock);
1052
1053 if (free != d->saved_free) {
1054 ubifs_err(c, "free space changed from %lld to %lld",
1055 d->saved_free, free);
1056 goto out;
1057 }
1058
1059 return 0;
1060
1061 out:
1062 ubifs_msg(c, "saved lprops statistics dump");
1063 ubifs_dump_lstats(&d->saved_lst);
1064 ubifs_msg(c, "saved budgeting info dump");
1065 ubifs_dump_budg(c, &d->saved_bi);
1066 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1067 ubifs_msg(c, "current lprops statistics dump");
1068 ubifs_get_lp_stats(c, &lst);
1069 ubifs_dump_lstats(&lst);
1070 ubifs_msg(c, "current budgeting info dump");
1071 ubifs_dump_budg(c, &c->bi);
1072 dump_stack();
1073 return -EINVAL;
1074 }
1075
1076 /**
1077 * dbg_check_synced_i_size - check synchronized inode size.
1078 * @c: UBIFS file-system description object
1079 * @inode: inode to check
1080 *
1081 * If inode is clean, synchronized inode size has to be equivalent to current
1082 * inode size. This function has to be called only for locked inodes (@i_mutex
1083 * has to be locked). Returns %0 if synchronized inode size if correct, and
1084 * %-EINVAL if not.
1085 */
dbg_check_synced_i_size(const struct ubifs_info * c,struct inode * inode)1086 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1087 {
1088 int err = 0;
1089 struct ubifs_inode *ui = ubifs_inode(inode);
1090
1091 if (!dbg_is_chk_gen(c))
1092 return 0;
1093 if (!S_ISREG(inode->i_mode))
1094 return 0;
1095
1096 mutex_lock(&ui->ui_mutex);
1097 spin_lock(&ui->ui_lock);
1098 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1099 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1100 ui->ui_size, ui->synced_i_size);
1101 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1102 inode->i_mode, i_size_read(inode));
1103 dump_stack();
1104 err = -EINVAL;
1105 }
1106 spin_unlock(&ui->ui_lock);
1107 mutex_unlock(&ui->ui_mutex);
1108 return err;
1109 }
1110
1111 /*
1112 * dbg_check_dir - check directory inode size and link count.
1113 * @c: UBIFS file-system description object
1114 * @dir: the directory to calculate size for
1115 * @size: the result is returned here
1116 *
1117 * This function makes sure that directory size and link count are correct.
1118 * Returns zero in case of success and a negative error code in case of
1119 * failure.
1120 *
1121 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1122 * calling this function.
1123 */
dbg_check_dir(struct ubifs_info * c,const struct inode * dir)1124 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1125 {
1126 unsigned int nlink = 2;
1127 union ubifs_key key;
1128 struct ubifs_dent_node *dent, *pdent = NULL;
1129 struct fscrypt_name nm = {0};
1130 loff_t size = UBIFS_INO_NODE_SZ;
1131
1132 if (!dbg_is_chk_gen(c))
1133 return 0;
1134
1135 if (!S_ISDIR(dir->i_mode))
1136 return 0;
1137
1138 lowest_dent_key(c, &key, dir->i_ino);
1139 while (1) {
1140 int err;
1141
1142 dent = ubifs_tnc_next_ent(c, &key, &nm);
1143 if (IS_ERR(dent)) {
1144 err = PTR_ERR(dent);
1145 if (err == -ENOENT)
1146 break;
1147 kfree(pdent);
1148 return err;
1149 }
1150
1151 fname_name(&nm) = dent->name;
1152 fname_len(&nm) = le16_to_cpu(dent->nlen);
1153 size += CALC_DENT_SIZE(fname_len(&nm));
1154 if (dent->type == UBIFS_ITYPE_DIR)
1155 nlink += 1;
1156 kfree(pdent);
1157 pdent = dent;
1158 key_read(c, &dent->key, &key);
1159 }
1160 kfree(pdent);
1161
1162 if (i_size_read(dir) != size) {
1163 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1164 dir->i_ino, (unsigned long long)i_size_read(dir),
1165 (unsigned long long)size);
1166 ubifs_dump_inode(c, dir);
1167 dump_stack();
1168 return -EINVAL;
1169 }
1170 if (dir->i_nlink != nlink) {
1171 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1172 dir->i_ino, dir->i_nlink, nlink);
1173 ubifs_dump_inode(c, dir);
1174 dump_stack();
1175 return -EINVAL;
1176 }
1177
1178 return 0;
1179 }
1180
1181 /**
1182 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1183 * @c: UBIFS file-system description object
1184 * @zbr1: first zbranch
1185 * @zbr2: following zbranch
1186 *
1187 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1188 * names of the direntries/xentries which are referred by the keys. This
1189 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1190 * sure the name of direntry/xentry referred by @zbr1 is less than
1191 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1192 * and a negative error code in case of failure.
1193 */
dbg_check_key_order(struct ubifs_info * c,struct ubifs_zbranch * zbr1,struct ubifs_zbranch * zbr2)1194 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1195 struct ubifs_zbranch *zbr2)
1196 {
1197 int err, nlen1, nlen2, cmp;
1198 struct ubifs_dent_node *dent1, *dent2;
1199 union ubifs_key key;
1200 char key_buf[DBG_KEY_BUF_LEN];
1201
1202 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1203 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1204 if (!dent1)
1205 return -ENOMEM;
1206 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1207 if (!dent2) {
1208 err = -ENOMEM;
1209 goto out_free;
1210 }
1211
1212 err = ubifs_tnc_read_node(c, zbr1, dent1);
1213 if (err)
1214 goto out_free;
1215 err = ubifs_validate_entry(c, dent1);
1216 if (err)
1217 goto out_free;
1218
1219 err = ubifs_tnc_read_node(c, zbr2, dent2);
1220 if (err)
1221 goto out_free;
1222 err = ubifs_validate_entry(c, dent2);
1223 if (err)
1224 goto out_free;
1225
1226 /* Make sure node keys are the same as in zbranch */
1227 err = 1;
1228 key_read(c, &dent1->key, &key);
1229 if (keys_cmp(c, &zbr1->key, &key)) {
1230 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1231 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1232 DBG_KEY_BUF_LEN));
1233 ubifs_err(c, "but it should have key %s according to tnc",
1234 dbg_snprintf_key(c, &zbr1->key, key_buf,
1235 DBG_KEY_BUF_LEN));
1236 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1237 goto out_free;
1238 }
1239
1240 key_read(c, &dent2->key, &key);
1241 if (keys_cmp(c, &zbr2->key, &key)) {
1242 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1243 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1244 DBG_KEY_BUF_LEN));
1245 ubifs_err(c, "but it should have key %s according to tnc",
1246 dbg_snprintf_key(c, &zbr2->key, key_buf,
1247 DBG_KEY_BUF_LEN));
1248 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1249 goto out_free;
1250 }
1251
1252 nlen1 = le16_to_cpu(dent1->nlen);
1253 nlen2 = le16_to_cpu(dent2->nlen);
1254
1255 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1256 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1257 err = 0;
1258 goto out_free;
1259 }
1260 if (cmp == 0 && nlen1 == nlen2)
1261 ubifs_err(c, "2 xent/dent nodes with the same name");
1262 else
1263 ubifs_err(c, "bad order of colliding key %s",
1264 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1265
1266 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1267 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1268 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1269 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1270
1271 out_free:
1272 kfree(dent2);
1273 kfree(dent1);
1274 return err;
1275 }
1276
1277 /**
1278 * dbg_check_znode - check if znode is all right.
1279 * @c: UBIFS file-system description object
1280 * @zbr: zbranch which points to this znode
1281 *
1282 * This function makes sure that znode referred to by @zbr is all right.
1283 * Returns zero if it is, and %-EINVAL if it is not.
1284 */
dbg_check_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)1285 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1286 {
1287 struct ubifs_znode *znode = zbr->znode;
1288 struct ubifs_znode *zp = znode->parent;
1289 int n, err, cmp;
1290
1291 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1292 err = 1;
1293 goto out;
1294 }
1295 if (znode->level < 0) {
1296 err = 2;
1297 goto out;
1298 }
1299 if (znode->iip < 0 || znode->iip >= c->fanout) {
1300 err = 3;
1301 goto out;
1302 }
1303
1304 if (zbr->len == 0)
1305 /* Only dirty zbranch may have no on-flash nodes */
1306 if (!ubifs_zn_dirty(znode)) {
1307 err = 4;
1308 goto out;
1309 }
1310
1311 if (ubifs_zn_dirty(znode)) {
1312 /*
1313 * If znode is dirty, its parent has to be dirty as well. The
1314 * order of the operation is important, so we have to have
1315 * memory barriers.
1316 */
1317 smp_mb();
1318 if (zp && !ubifs_zn_dirty(zp)) {
1319 /*
1320 * The dirty flag is atomic and is cleared outside the
1321 * TNC mutex, so znode's dirty flag may now have
1322 * been cleared. The child is always cleared before the
1323 * parent, so we just need to check again.
1324 */
1325 smp_mb();
1326 if (ubifs_zn_dirty(znode)) {
1327 err = 5;
1328 goto out;
1329 }
1330 }
1331 }
1332
1333 if (zp) {
1334 const union ubifs_key *min, *max;
1335
1336 if (znode->level != zp->level - 1) {
1337 err = 6;
1338 goto out;
1339 }
1340
1341 /* Make sure the 'parent' pointer in our znode is correct */
1342 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1343 if (!err) {
1344 /* This zbranch does not exist in the parent */
1345 err = 7;
1346 goto out;
1347 }
1348
1349 if (znode->iip >= zp->child_cnt) {
1350 err = 8;
1351 goto out;
1352 }
1353
1354 if (znode->iip != n) {
1355 /* This may happen only in case of collisions */
1356 if (keys_cmp(c, &zp->zbranch[n].key,
1357 &zp->zbranch[znode->iip].key)) {
1358 err = 9;
1359 goto out;
1360 }
1361 n = znode->iip;
1362 }
1363
1364 /*
1365 * Make sure that the first key in our znode is greater than or
1366 * equal to the key in the pointing zbranch.
1367 */
1368 min = &zbr->key;
1369 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1370 if (cmp == 1) {
1371 err = 10;
1372 goto out;
1373 }
1374
1375 if (n + 1 < zp->child_cnt) {
1376 max = &zp->zbranch[n + 1].key;
1377
1378 /*
1379 * Make sure the last key in our znode is less or
1380 * equivalent than the key in the zbranch which goes
1381 * after our pointing zbranch.
1382 */
1383 cmp = keys_cmp(c, max,
1384 &znode->zbranch[znode->child_cnt - 1].key);
1385 if (cmp == -1) {
1386 err = 11;
1387 goto out;
1388 }
1389 }
1390 } else {
1391 /* This may only be root znode */
1392 if (zbr != &c->zroot) {
1393 err = 12;
1394 goto out;
1395 }
1396 }
1397
1398 /*
1399 * Make sure that next key is greater or equivalent then the previous
1400 * one.
1401 */
1402 for (n = 1; n < znode->child_cnt; n++) {
1403 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1404 &znode->zbranch[n].key);
1405 if (cmp > 0) {
1406 err = 13;
1407 goto out;
1408 }
1409 if (cmp == 0) {
1410 /* This can only be keys with colliding hash */
1411 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1412 err = 14;
1413 goto out;
1414 }
1415
1416 if (znode->level != 0 || c->replaying)
1417 continue;
1418
1419 /*
1420 * Colliding keys should follow binary order of
1421 * corresponding xentry/dentry names.
1422 */
1423 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1424 &znode->zbranch[n]);
1425 if (err < 0)
1426 return err;
1427 if (err) {
1428 err = 15;
1429 goto out;
1430 }
1431 }
1432 }
1433
1434 for (n = 0; n < znode->child_cnt; n++) {
1435 if (!znode->zbranch[n].znode &&
1436 (znode->zbranch[n].lnum == 0 ||
1437 znode->zbranch[n].len == 0)) {
1438 err = 16;
1439 goto out;
1440 }
1441
1442 if (znode->zbranch[n].lnum != 0 &&
1443 znode->zbranch[n].len == 0) {
1444 err = 17;
1445 goto out;
1446 }
1447
1448 if (znode->zbranch[n].lnum == 0 &&
1449 znode->zbranch[n].len != 0) {
1450 err = 18;
1451 goto out;
1452 }
1453
1454 if (znode->zbranch[n].lnum == 0 &&
1455 znode->zbranch[n].offs != 0) {
1456 err = 19;
1457 goto out;
1458 }
1459
1460 if (znode->level != 0 && znode->zbranch[n].znode)
1461 if (znode->zbranch[n].znode->parent != znode) {
1462 err = 20;
1463 goto out;
1464 }
1465 }
1466
1467 return 0;
1468
1469 out:
1470 ubifs_err(c, "failed, error %d", err);
1471 ubifs_msg(c, "dump of the znode");
1472 ubifs_dump_znode(c, znode);
1473 if (zp) {
1474 ubifs_msg(c, "dump of the parent znode");
1475 ubifs_dump_znode(c, zp);
1476 }
1477 dump_stack();
1478 return -EINVAL;
1479 }
1480
1481 /**
1482 * dbg_check_tnc - check TNC tree.
1483 * @c: UBIFS file-system description object
1484 * @extra: do extra checks that are possible at start commit
1485 *
1486 * This function traverses whole TNC tree and checks every znode. Returns zero
1487 * if everything is all right and %-EINVAL if something is wrong with TNC.
1488 */
dbg_check_tnc(struct ubifs_info * c,int extra)1489 int dbg_check_tnc(struct ubifs_info *c, int extra)
1490 {
1491 struct ubifs_znode *znode;
1492 long clean_cnt = 0, dirty_cnt = 0;
1493 int err, last;
1494
1495 if (!dbg_is_chk_index(c))
1496 return 0;
1497
1498 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1499 if (!c->zroot.znode)
1500 return 0;
1501
1502 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1503 while (1) {
1504 struct ubifs_znode *prev;
1505 struct ubifs_zbranch *zbr;
1506
1507 if (!znode->parent)
1508 zbr = &c->zroot;
1509 else
1510 zbr = &znode->parent->zbranch[znode->iip];
1511
1512 err = dbg_check_znode(c, zbr);
1513 if (err)
1514 return err;
1515
1516 if (extra) {
1517 if (ubifs_zn_dirty(znode))
1518 dirty_cnt += 1;
1519 else
1520 clean_cnt += 1;
1521 }
1522
1523 prev = znode;
1524 znode = ubifs_tnc_postorder_next(c, znode);
1525 if (!znode)
1526 break;
1527
1528 /*
1529 * If the last key of this znode is equivalent to the first key
1530 * of the next znode (collision), then check order of the keys.
1531 */
1532 last = prev->child_cnt - 1;
1533 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1534 !keys_cmp(c, &prev->zbranch[last].key,
1535 &znode->zbranch[0].key)) {
1536 err = dbg_check_key_order(c, &prev->zbranch[last],
1537 &znode->zbranch[0]);
1538 if (err < 0)
1539 return err;
1540 if (err) {
1541 ubifs_msg(c, "first znode");
1542 ubifs_dump_znode(c, prev);
1543 ubifs_msg(c, "second znode");
1544 ubifs_dump_znode(c, znode);
1545 return -EINVAL;
1546 }
1547 }
1548 }
1549
1550 if (extra) {
1551 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1552 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1553 atomic_long_read(&c->clean_zn_cnt),
1554 clean_cnt);
1555 return -EINVAL;
1556 }
1557 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1558 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1559 atomic_long_read(&c->dirty_zn_cnt),
1560 dirty_cnt);
1561 return -EINVAL;
1562 }
1563 }
1564
1565 return 0;
1566 }
1567
1568 /**
1569 * dbg_walk_index - walk the on-flash index.
1570 * @c: UBIFS file-system description object
1571 * @leaf_cb: called for each leaf node
1572 * @znode_cb: called for each indexing node
1573 * @priv: private data which is passed to callbacks
1574 *
1575 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1576 * node and @znode_cb for each indexing node. Returns zero in case of success
1577 * and a negative error code in case of failure.
1578 *
1579 * It would be better if this function removed every znode it pulled to into
1580 * the TNC, so that the behavior more closely matched the non-debugging
1581 * behavior.
1582 */
dbg_walk_index(struct ubifs_info * c,dbg_leaf_callback leaf_cb,dbg_znode_callback znode_cb,void * priv)1583 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1584 dbg_znode_callback znode_cb, void *priv)
1585 {
1586 int err;
1587 struct ubifs_zbranch *zbr;
1588 struct ubifs_znode *znode, *child;
1589
1590 mutex_lock(&c->tnc_mutex);
1591 /* If the root indexing node is not in TNC - pull it */
1592 if (!c->zroot.znode) {
1593 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1594 if (IS_ERR(c->zroot.znode)) {
1595 err = PTR_ERR(c->zroot.znode);
1596 c->zroot.znode = NULL;
1597 goto out_unlock;
1598 }
1599 }
1600
1601 /*
1602 * We are going to traverse the indexing tree in the postorder manner.
1603 * Go down and find the leftmost indexing node where we are going to
1604 * start from.
1605 */
1606 znode = c->zroot.znode;
1607 while (znode->level > 0) {
1608 zbr = &znode->zbranch[0];
1609 child = zbr->znode;
1610 if (!child) {
1611 child = ubifs_load_znode(c, zbr, znode, 0);
1612 if (IS_ERR(child)) {
1613 err = PTR_ERR(child);
1614 goto out_unlock;
1615 }
1616 }
1617
1618 znode = child;
1619 }
1620
1621 /* Iterate over all indexing nodes */
1622 while (1) {
1623 int idx;
1624
1625 cond_resched();
1626
1627 if (znode_cb) {
1628 err = znode_cb(c, znode, priv);
1629 if (err) {
1630 ubifs_err(c, "znode checking function returned error %d",
1631 err);
1632 ubifs_dump_znode(c, znode);
1633 goto out_dump;
1634 }
1635 }
1636 if (leaf_cb && znode->level == 0) {
1637 for (idx = 0; idx < znode->child_cnt; idx++) {
1638 zbr = &znode->zbranch[idx];
1639 err = leaf_cb(c, zbr, priv);
1640 if (err) {
1641 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1642 err, zbr->lnum, zbr->offs);
1643 goto out_dump;
1644 }
1645 }
1646 }
1647
1648 if (!znode->parent)
1649 break;
1650
1651 idx = znode->iip + 1;
1652 znode = znode->parent;
1653 if (idx < znode->child_cnt) {
1654 /* Switch to the next index in the parent */
1655 zbr = &znode->zbranch[idx];
1656 child = zbr->znode;
1657 if (!child) {
1658 child = ubifs_load_znode(c, zbr, znode, idx);
1659 if (IS_ERR(child)) {
1660 err = PTR_ERR(child);
1661 goto out_unlock;
1662 }
1663 zbr->znode = child;
1664 }
1665 znode = child;
1666 } else
1667 /*
1668 * This is the last child, switch to the parent and
1669 * continue.
1670 */
1671 continue;
1672
1673 /* Go to the lowest leftmost znode in the new sub-tree */
1674 while (znode->level > 0) {
1675 zbr = &znode->zbranch[0];
1676 child = zbr->znode;
1677 if (!child) {
1678 child = ubifs_load_znode(c, zbr, znode, 0);
1679 if (IS_ERR(child)) {
1680 err = PTR_ERR(child);
1681 goto out_unlock;
1682 }
1683 zbr->znode = child;
1684 }
1685 znode = child;
1686 }
1687 }
1688
1689 mutex_unlock(&c->tnc_mutex);
1690 return 0;
1691
1692 out_dump:
1693 if (znode->parent)
1694 zbr = &znode->parent->zbranch[znode->iip];
1695 else
1696 zbr = &c->zroot;
1697 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1698 ubifs_dump_znode(c, znode);
1699 out_unlock:
1700 mutex_unlock(&c->tnc_mutex);
1701 return err;
1702 }
1703
1704 /**
1705 * add_size - add znode size to partially calculated index size.
1706 * @c: UBIFS file-system description object
1707 * @znode: znode to add size for
1708 * @priv: partially calculated index size
1709 *
1710 * This is a helper function for 'dbg_check_idx_size()' which is called for
1711 * every indexing node and adds its size to the 'long long' variable pointed to
1712 * by @priv.
1713 */
add_size(struct ubifs_info * c,struct ubifs_znode * znode,void * priv)1714 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1715 {
1716 long long *idx_size = priv;
1717 int add;
1718
1719 add = ubifs_idx_node_sz(c, znode->child_cnt);
1720 add = ALIGN(add, 8);
1721 *idx_size += add;
1722 return 0;
1723 }
1724
1725 /**
1726 * dbg_check_idx_size - check index size.
1727 * @c: UBIFS file-system description object
1728 * @idx_size: size to check
1729 *
1730 * This function walks the UBIFS index, calculates its size and checks that the
1731 * size is equivalent to @idx_size. Returns zero in case of success and a
1732 * negative error code in case of failure.
1733 */
dbg_check_idx_size(struct ubifs_info * c,long long idx_size)1734 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1735 {
1736 int err;
1737 long long calc = 0;
1738
1739 if (!dbg_is_chk_index(c))
1740 return 0;
1741
1742 err = dbg_walk_index(c, NULL, add_size, &calc);
1743 if (err) {
1744 ubifs_err(c, "error %d while walking the index", err);
1745 goto out_err;
1746 }
1747
1748 if (calc != idx_size) {
1749 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1750 calc, idx_size);
1751 dump_stack();
1752 err = -EINVAL;
1753 goto out_err;
1754 }
1755
1756 return 0;
1757
1758 out_err:
1759 ubifs_destroy_tnc_tree(c);
1760 return err;
1761 }
1762
1763 /**
1764 * struct fsck_inode - information about an inode used when checking the file-system.
1765 * @rb: link in the RB-tree of inodes
1766 * @inum: inode number
1767 * @mode: inode type, permissions, etc
1768 * @nlink: inode link count
1769 * @xattr_cnt: count of extended attributes
1770 * @references: how many directory/xattr entries refer this inode (calculated
1771 * while walking the index)
1772 * @calc_cnt: for directory inode count of child directories
1773 * @size: inode size (read from on-flash inode)
1774 * @xattr_sz: summary size of all extended attributes (read from on-flash
1775 * inode)
1776 * @calc_sz: for directories calculated directory size
1777 * @calc_xcnt: count of extended attributes
1778 * @calc_xsz: calculated summary size of all extended attributes
1779 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1780 * inode (read from on-flash inode)
1781 * @calc_xnms: calculated sum of lengths of all extended attribute names
1782 */
1783 struct fsck_inode {
1784 struct rb_node rb;
1785 ino_t inum;
1786 umode_t mode;
1787 unsigned int nlink;
1788 unsigned int xattr_cnt;
1789 int references;
1790 int calc_cnt;
1791 long long size;
1792 unsigned int xattr_sz;
1793 long long calc_sz;
1794 long long calc_xcnt;
1795 long long calc_xsz;
1796 unsigned int xattr_nms;
1797 long long calc_xnms;
1798 };
1799
1800 /**
1801 * struct fsck_data - private FS checking information.
1802 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1803 */
1804 struct fsck_data {
1805 struct rb_root inodes;
1806 };
1807
1808 /**
1809 * add_inode - add inode information to RB-tree of inodes.
1810 * @c: UBIFS file-system description object
1811 * @fsckd: FS checking information
1812 * @ino: raw UBIFS inode to add
1813 *
1814 * This is a helper function for 'check_leaf()' which adds information about
1815 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1816 * case of success and a negative error code in case of failure.
1817 */
add_inode(struct ubifs_info * c,struct fsck_data * fsckd,struct ubifs_ino_node * ino)1818 static struct fsck_inode *add_inode(struct ubifs_info *c,
1819 struct fsck_data *fsckd,
1820 struct ubifs_ino_node *ino)
1821 {
1822 struct rb_node **p, *parent = NULL;
1823 struct fsck_inode *fscki;
1824 ino_t inum = key_inum_flash(c, &ino->key);
1825 struct inode *inode;
1826 struct ubifs_inode *ui;
1827
1828 p = &fsckd->inodes.rb_node;
1829 while (*p) {
1830 parent = *p;
1831 fscki = rb_entry(parent, struct fsck_inode, rb);
1832 if (inum < fscki->inum)
1833 p = &(*p)->rb_left;
1834 else if (inum > fscki->inum)
1835 p = &(*p)->rb_right;
1836 else
1837 return fscki;
1838 }
1839
1840 if (inum > c->highest_inum) {
1841 ubifs_err(c, "too high inode number, max. is %lu",
1842 (unsigned long)c->highest_inum);
1843 return ERR_PTR(-EINVAL);
1844 }
1845
1846 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1847 if (!fscki)
1848 return ERR_PTR(-ENOMEM);
1849
1850 inode = ilookup(c->vfs_sb, inum);
1851
1852 fscki->inum = inum;
1853 /*
1854 * If the inode is present in the VFS inode cache, use it instead of
1855 * the on-flash inode which might be out-of-date. E.g., the size might
1856 * be out-of-date. If we do not do this, the following may happen, for
1857 * example:
1858 * 1. A power cut happens
1859 * 2. We mount the file-system R/O, the replay process fixes up the
1860 * inode size in the VFS cache, but on on-flash.
1861 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1862 * size.
1863 */
1864 if (!inode) {
1865 fscki->nlink = le32_to_cpu(ino->nlink);
1866 fscki->size = le64_to_cpu(ino->size);
1867 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1868 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1869 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1870 fscki->mode = le32_to_cpu(ino->mode);
1871 } else {
1872 ui = ubifs_inode(inode);
1873 fscki->nlink = inode->i_nlink;
1874 fscki->size = inode->i_size;
1875 fscki->xattr_cnt = ui->xattr_cnt;
1876 fscki->xattr_sz = ui->xattr_size;
1877 fscki->xattr_nms = ui->xattr_names;
1878 fscki->mode = inode->i_mode;
1879 iput(inode);
1880 }
1881
1882 if (S_ISDIR(fscki->mode)) {
1883 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1884 fscki->calc_cnt = 2;
1885 }
1886
1887 rb_link_node(&fscki->rb, parent, p);
1888 rb_insert_color(&fscki->rb, &fsckd->inodes);
1889
1890 return fscki;
1891 }
1892
1893 /**
1894 * search_inode - search inode in the RB-tree of inodes.
1895 * @fsckd: FS checking information
1896 * @inum: inode number to search
1897 *
1898 * This is a helper function for 'check_leaf()' which searches inode @inum in
1899 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1900 * the inode was not found.
1901 */
search_inode(struct fsck_data * fsckd,ino_t inum)1902 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1903 {
1904 struct rb_node *p;
1905 struct fsck_inode *fscki;
1906
1907 p = fsckd->inodes.rb_node;
1908 while (p) {
1909 fscki = rb_entry(p, struct fsck_inode, rb);
1910 if (inum < fscki->inum)
1911 p = p->rb_left;
1912 else if (inum > fscki->inum)
1913 p = p->rb_right;
1914 else
1915 return fscki;
1916 }
1917 return NULL;
1918 }
1919
1920 /**
1921 * read_add_inode - read inode node and add it to RB-tree of inodes.
1922 * @c: UBIFS file-system description object
1923 * @fsckd: FS checking information
1924 * @inum: inode number to read
1925 *
1926 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1927 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1928 * information pointer in case of success and a negative error code in case of
1929 * failure.
1930 */
read_add_inode(struct ubifs_info * c,struct fsck_data * fsckd,ino_t inum)1931 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1932 struct fsck_data *fsckd, ino_t inum)
1933 {
1934 int n, err;
1935 union ubifs_key key;
1936 struct ubifs_znode *znode;
1937 struct ubifs_zbranch *zbr;
1938 struct ubifs_ino_node *ino;
1939 struct fsck_inode *fscki;
1940
1941 fscki = search_inode(fsckd, inum);
1942 if (fscki)
1943 return fscki;
1944
1945 ino_key_init(c, &key, inum);
1946 err = ubifs_lookup_level0(c, &key, &znode, &n);
1947 if (!err) {
1948 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1949 return ERR_PTR(-ENOENT);
1950 } else if (err < 0) {
1951 ubifs_err(c, "error %d while looking up inode %lu",
1952 err, (unsigned long)inum);
1953 return ERR_PTR(err);
1954 }
1955
1956 zbr = &znode->zbranch[n];
1957 if (zbr->len < UBIFS_INO_NODE_SZ) {
1958 ubifs_err(c, "bad node %lu node length %d",
1959 (unsigned long)inum, zbr->len);
1960 return ERR_PTR(-EINVAL);
1961 }
1962
1963 ino = kmalloc(zbr->len, GFP_NOFS);
1964 if (!ino)
1965 return ERR_PTR(-ENOMEM);
1966
1967 err = ubifs_tnc_read_node(c, zbr, ino);
1968 if (err) {
1969 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1970 zbr->lnum, zbr->offs, err);
1971 kfree(ino);
1972 return ERR_PTR(err);
1973 }
1974
1975 fscki = add_inode(c, fsckd, ino);
1976 kfree(ino);
1977 if (IS_ERR(fscki)) {
1978 ubifs_err(c, "error %ld while adding inode %lu node",
1979 PTR_ERR(fscki), (unsigned long)inum);
1980 return fscki;
1981 }
1982
1983 return fscki;
1984 }
1985
1986 /**
1987 * check_leaf - check leaf node.
1988 * @c: UBIFS file-system description object
1989 * @zbr: zbranch of the leaf node to check
1990 * @priv: FS checking information
1991 *
1992 * This is a helper function for 'dbg_check_filesystem()' which is called for
1993 * every single leaf node while walking the indexing tree. It checks that the
1994 * leaf node referred from the indexing tree exists, has correct CRC, and does
1995 * some other basic validation. This function is also responsible for building
1996 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1997 * calculates reference count, size, etc for each inode in order to later
1998 * compare them to the information stored inside the inodes and detect possible
1999 * inconsistencies. Returns zero in case of success and a negative error code
2000 * in case of failure.
2001 */
check_leaf(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * priv)2002 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2003 void *priv)
2004 {
2005 ino_t inum;
2006 void *node;
2007 struct ubifs_ch *ch;
2008 int err, type = key_type(c, &zbr->key);
2009 struct fsck_inode *fscki;
2010
2011 if (zbr->len < UBIFS_CH_SZ) {
2012 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2013 zbr->len, zbr->lnum, zbr->offs);
2014 return -EINVAL;
2015 }
2016
2017 node = kmalloc(zbr->len, GFP_NOFS);
2018 if (!node)
2019 return -ENOMEM;
2020
2021 err = ubifs_tnc_read_node(c, zbr, node);
2022 if (err) {
2023 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2024 zbr->lnum, zbr->offs, err);
2025 goto out_free;
2026 }
2027
2028 /* If this is an inode node, add it to RB-tree of inodes */
2029 if (type == UBIFS_INO_KEY) {
2030 fscki = add_inode(c, priv, node);
2031 if (IS_ERR(fscki)) {
2032 err = PTR_ERR(fscki);
2033 ubifs_err(c, "error %d while adding inode node", err);
2034 goto out_dump;
2035 }
2036 goto out;
2037 }
2038
2039 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2040 type != UBIFS_DATA_KEY) {
2041 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2042 type, zbr->lnum, zbr->offs);
2043 err = -EINVAL;
2044 goto out_free;
2045 }
2046
2047 ch = node;
2048 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2049 ubifs_err(c, "too high sequence number, max. is %llu",
2050 c->max_sqnum);
2051 err = -EINVAL;
2052 goto out_dump;
2053 }
2054
2055 if (type == UBIFS_DATA_KEY) {
2056 long long blk_offs;
2057 struct ubifs_data_node *dn = node;
2058
2059 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2060
2061 /*
2062 * Search the inode node this data node belongs to and insert
2063 * it to the RB-tree of inodes.
2064 */
2065 inum = key_inum_flash(c, &dn->key);
2066 fscki = read_add_inode(c, priv, inum);
2067 if (IS_ERR(fscki)) {
2068 err = PTR_ERR(fscki);
2069 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2070 err, (unsigned long)inum);
2071 goto out_dump;
2072 }
2073
2074 /* Make sure the data node is within inode size */
2075 blk_offs = key_block_flash(c, &dn->key);
2076 blk_offs <<= UBIFS_BLOCK_SHIFT;
2077 blk_offs += le32_to_cpu(dn->size);
2078 if (blk_offs > fscki->size) {
2079 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2080 zbr->lnum, zbr->offs, fscki->size);
2081 err = -EINVAL;
2082 goto out_dump;
2083 }
2084 } else {
2085 int nlen;
2086 struct ubifs_dent_node *dent = node;
2087 struct fsck_inode *fscki1;
2088
2089 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2090
2091 err = ubifs_validate_entry(c, dent);
2092 if (err)
2093 goto out_dump;
2094
2095 /*
2096 * Search the inode node this entry refers to and the parent
2097 * inode node and insert them to the RB-tree of inodes.
2098 */
2099 inum = le64_to_cpu(dent->inum);
2100 fscki = read_add_inode(c, priv, inum);
2101 if (IS_ERR(fscki)) {
2102 err = PTR_ERR(fscki);
2103 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2104 err, (unsigned long)inum);
2105 goto out_dump;
2106 }
2107
2108 /* Count how many direntries or xentries refers this inode */
2109 fscki->references += 1;
2110
2111 inum = key_inum_flash(c, &dent->key);
2112 fscki1 = read_add_inode(c, priv, inum);
2113 if (IS_ERR(fscki1)) {
2114 err = PTR_ERR(fscki1);
2115 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2116 err, (unsigned long)inum);
2117 goto out_dump;
2118 }
2119
2120 nlen = le16_to_cpu(dent->nlen);
2121 if (type == UBIFS_XENT_KEY) {
2122 fscki1->calc_xcnt += 1;
2123 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2124 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2125 fscki1->calc_xnms += nlen;
2126 } else {
2127 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2128 if (dent->type == UBIFS_ITYPE_DIR)
2129 fscki1->calc_cnt += 1;
2130 }
2131 }
2132
2133 out:
2134 kfree(node);
2135 return 0;
2136
2137 out_dump:
2138 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2139 ubifs_dump_node(c, node, zbr->len);
2140 out_free:
2141 kfree(node);
2142 return err;
2143 }
2144
2145 /**
2146 * free_inodes - free RB-tree of inodes.
2147 * @fsckd: FS checking information
2148 */
free_inodes(struct fsck_data * fsckd)2149 static void free_inodes(struct fsck_data *fsckd)
2150 {
2151 struct fsck_inode *fscki, *n;
2152
2153 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2154 kfree(fscki);
2155 }
2156
2157 /**
2158 * check_inodes - checks all inodes.
2159 * @c: UBIFS file-system description object
2160 * @fsckd: FS checking information
2161 *
2162 * This is a helper function for 'dbg_check_filesystem()' which walks the
2163 * RB-tree of inodes after the index scan has been finished, and checks that
2164 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2165 * %-EINVAL if not, and a negative error code in case of failure.
2166 */
check_inodes(struct ubifs_info * c,struct fsck_data * fsckd)2167 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2168 {
2169 int n, err;
2170 union ubifs_key key;
2171 struct ubifs_znode *znode;
2172 struct ubifs_zbranch *zbr;
2173 struct ubifs_ino_node *ino;
2174 struct fsck_inode *fscki;
2175 struct rb_node *this = rb_first(&fsckd->inodes);
2176
2177 while (this) {
2178 fscki = rb_entry(this, struct fsck_inode, rb);
2179 this = rb_next(this);
2180
2181 if (S_ISDIR(fscki->mode)) {
2182 /*
2183 * Directories have to have exactly one reference (they
2184 * cannot have hardlinks), although root inode is an
2185 * exception.
2186 */
2187 if (fscki->inum != UBIFS_ROOT_INO &&
2188 fscki->references != 1) {
2189 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2190 (unsigned long)fscki->inum,
2191 fscki->references);
2192 goto out_dump;
2193 }
2194 if (fscki->inum == UBIFS_ROOT_INO &&
2195 fscki->references != 0) {
2196 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2197 (unsigned long)fscki->inum,
2198 fscki->references);
2199 goto out_dump;
2200 }
2201 if (fscki->calc_sz != fscki->size) {
2202 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2203 (unsigned long)fscki->inum,
2204 fscki->size, fscki->calc_sz);
2205 goto out_dump;
2206 }
2207 if (fscki->calc_cnt != fscki->nlink) {
2208 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2209 (unsigned long)fscki->inum,
2210 fscki->nlink, fscki->calc_cnt);
2211 goto out_dump;
2212 }
2213 } else {
2214 if (fscki->references != fscki->nlink) {
2215 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2216 (unsigned long)fscki->inum,
2217 fscki->nlink, fscki->references);
2218 goto out_dump;
2219 }
2220 }
2221 if (fscki->xattr_sz != fscki->calc_xsz) {
2222 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2223 (unsigned long)fscki->inum, fscki->xattr_sz,
2224 fscki->calc_xsz);
2225 goto out_dump;
2226 }
2227 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2228 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2229 (unsigned long)fscki->inum,
2230 fscki->xattr_cnt, fscki->calc_xcnt);
2231 goto out_dump;
2232 }
2233 if (fscki->xattr_nms != fscki->calc_xnms) {
2234 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2235 (unsigned long)fscki->inum, fscki->xattr_nms,
2236 fscki->calc_xnms);
2237 goto out_dump;
2238 }
2239 }
2240
2241 return 0;
2242
2243 out_dump:
2244 /* Read the bad inode and dump it */
2245 ino_key_init(c, &key, fscki->inum);
2246 err = ubifs_lookup_level0(c, &key, &znode, &n);
2247 if (!err) {
2248 ubifs_err(c, "inode %lu not found in index",
2249 (unsigned long)fscki->inum);
2250 return -ENOENT;
2251 } else if (err < 0) {
2252 ubifs_err(c, "error %d while looking up inode %lu",
2253 err, (unsigned long)fscki->inum);
2254 return err;
2255 }
2256
2257 zbr = &znode->zbranch[n];
2258 ino = kmalloc(zbr->len, GFP_NOFS);
2259 if (!ino)
2260 return -ENOMEM;
2261
2262 err = ubifs_tnc_read_node(c, zbr, ino);
2263 if (err) {
2264 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2265 zbr->lnum, zbr->offs, err);
2266 kfree(ino);
2267 return err;
2268 }
2269
2270 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2271 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2272 ubifs_dump_node(c, ino, zbr->len);
2273 kfree(ino);
2274 return -EINVAL;
2275 }
2276
2277 /**
2278 * dbg_check_filesystem - check the file-system.
2279 * @c: UBIFS file-system description object
2280 *
2281 * This function checks the file system, namely:
2282 * o makes sure that all leaf nodes exist and their CRCs are correct;
2283 * o makes sure inode nlink, size, xattr size/count are correct (for all
2284 * inodes).
2285 *
2286 * The function reads whole indexing tree and all nodes, so it is pretty
2287 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2288 * not, and a negative error code in case of failure.
2289 */
dbg_check_filesystem(struct ubifs_info * c)2290 int dbg_check_filesystem(struct ubifs_info *c)
2291 {
2292 int err;
2293 struct fsck_data fsckd;
2294
2295 if (!dbg_is_chk_fs(c))
2296 return 0;
2297
2298 fsckd.inodes = RB_ROOT;
2299 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2300 if (err)
2301 goto out_free;
2302
2303 err = check_inodes(c, &fsckd);
2304 if (err)
2305 goto out_free;
2306
2307 free_inodes(&fsckd);
2308 return 0;
2309
2310 out_free:
2311 ubifs_err(c, "file-system check failed with error %d", err);
2312 dump_stack();
2313 free_inodes(&fsckd);
2314 return err;
2315 }
2316
2317 /**
2318 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2319 * @c: UBIFS file-system description object
2320 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2321 *
2322 * This function returns zero if the list of data nodes is sorted correctly,
2323 * and %-EINVAL if not.
2324 */
dbg_check_data_nodes_order(struct ubifs_info * c,struct list_head * head)2325 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2326 {
2327 struct list_head *cur;
2328 struct ubifs_scan_node *sa, *sb;
2329
2330 if (!dbg_is_chk_gen(c))
2331 return 0;
2332
2333 for (cur = head->next; cur->next != head; cur = cur->next) {
2334 ino_t inuma, inumb;
2335 uint32_t blka, blkb;
2336
2337 cond_resched();
2338 sa = container_of(cur, struct ubifs_scan_node, list);
2339 sb = container_of(cur->next, struct ubifs_scan_node, list);
2340
2341 if (sa->type != UBIFS_DATA_NODE) {
2342 ubifs_err(c, "bad node type %d", sa->type);
2343 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2344 return -EINVAL;
2345 }
2346 if (sb->type != UBIFS_DATA_NODE) {
2347 ubifs_err(c, "bad node type %d", sb->type);
2348 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2349 return -EINVAL;
2350 }
2351
2352 inuma = key_inum(c, &sa->key);
2353 inumb = key_inum(c, &sb->key);
2354
2355 if (inuma < inumb)
2356 continue;
2357 if (inuma > inumb) {
2358 ubifs_err(c, "larger inum %lu goes before inum %lu",
2359 (unsigned long)inuma, (unsigned long)inumb);
2360 goto error_dump;
2361 }
2362
2363 blka = key_block(c, &sa->key);
2364 blkb = key_block(c, &sb->key);
2365
2366 if (blka > blkb) {
2367 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2368 goto error_dump;
2369 }
2370 if (blka == blkb) {
2371 ubifs_err(c, "two data nodes for the same block");
2372 goto error_dump;
2373 }
2374 }
2375
2376 return 0;
2377
2378 error_dump:
2379 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2380 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2381 return -EINVAL;
2382 }
2383
2384 /**
2385 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2386 * @c: UBIFS file-system description object
2387 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2388 *
2389 * This function returns zero if the list of non-data nodes is sorted correctly,
2390 * and %-EINVAL if not.
2391 */
dbg_check_nondata_nodes_order(struct ubifs_info * c,struct list_head * head)2392 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2393 {
2394 struct list_head *cur;
2395 struct ubifs_scan_node *sa, *sb;
2396
2397 if (!dbg_is_chk_gen(c))
2398 return 0;
2399
2400 for (cur = head->next; cur->next != head; cur = cur->next) {
2401 ino_t inuma, inumb;
2402 uint32_t hasha, hashb;
2403
2404 cond_resched();
2405 sa = container_of(cur, struct ubifs_scan_node, list);
2406 sb = container_of(cur->next, struct ubifs_scan_node, list);
2407
2408 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2409 sa->type != UBIFS_XENT_NODE) {
2410 ubifs_err(c, "bad node type %d", sa->type);
2411 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2412 return -EINVAL;
2413 }
2414 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2415 sb->type != UBIFS_XENT_NODE) {
2416 ubifs_err(c, "bad node type %d", sb->type);
2417 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2418 return -EINVAL;
2419 }
2420
2421 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2422 ubifs_err(c, "non-inode node goes before inode node");
2423 goto error_dump;
2424 }
2425
2426 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2427 continue;
2428
2429 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2430 /* Inode nodes are sorted in descending size order */
2431 if (sa->len < sb->len) {
2432 ubifs_err(c, "smaller inode node goes first");
2433 goto error_dump;
2434 }
2435 continue;
2436 }
2437
2438 /*
2439 * This is either a dentry or xentry, which should be sorted in
2440 * ascending (parent ino, hash) order.
2441 */
2442 inuma = key_inum(c, &sa->key);
2443 inumb = key_inum(c, &sb->key);
2444
2445 if (inuma < inumb)
2446 continue;
2447 if (inuma > inumb) {
2448 ubifs_err(c, "larger inum %lu goes before inum %lu",
2449 (unsigned long)inuma, (unsigned long)inumb);
2450 goto error_dump;
2451 }
2452
2453 hasha = key_block(c, &sa->key);
2454 hashb = key_block(c, &sb->key);
2455
2456 if (hasha > hashb) {
2457 ubifs_err(c, "larger hash %u goes before %u",
2458 hasha, hashb);
2459 goto error_dump;
2460 }
2461 }
2462
2463 return 0;
2464
2465 error_dump:
2466 ubifs_msg(c, "dumping first node");
2467 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2468 ubifs_msg(c, "dumping second node");
2469 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2470 return -EINVAL;
2471 }
2472
chance(unsigned int n,unsigned int out_of)2473 static inline int chance(unsigned int n, unsigned int out_of)
2474 {
2475 return !!(get_random_u32_below(out_of) + 1 <= n);
2476
2477 }
2478
power_cut_emulated(struct ubifs_info * c,int lnum,int write)2479 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2480 {
2481 struct ubifs_debug_info *d = c->dbg;
2482
2483 ubifs_assert(c, dbg_is_tst_rcvry(c));
2484
2485 if (!d->pc_cnt) {
2486 /* First call - decide delay to the power cut */
2487 if (chance(1, 2)) {
2488 unsigned long delay;
2489
2490 if (chance(1, 2)) {
2491 d->pc_delay = 1;
2492 /* Fail within 1 minute */
2493 delay = get_random_u32_below(60000);
2494 d->pc_timeout = jiffies;
2495 d->pc_timeout += msecs_to_jiffies(delay);
2496 ubifs_warn(c, "failing after %lums", delay);
2497 } else {
2498 d->pc_delay = 2;
2499 delay = get_random_u32_below(10000);
2500 /* Fail within 10000 operations */
2501 d->pc_cnt_max = delay;
2502 ubifs_warn(c, "failing after %lu calls", delay);
2503 }
2504 }
2505
2506 d->pc_cnt += 1;
2507 }
2508
2509 /* Determine if failure delay has expired */
2510 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2511 return 0;
2512 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2513 return 0;
2514
2515 if (lnum == UBIFS_SB_LNUM) {
2516 if (write && chance(1, 2))
2517 return 0;
2518 if (chance(19, 20))
2519 return 0;
2520 ubifs_warn(c, "failing in super block LEB %d", lnum);
2521 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2522 if (chance(19, 20))
2523 return 0;
2524 ubifs_warn(c, "failing in master LEB %d", lnum);
2525 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2526 if (write && chance(99, 100))
2527 return 0;
2528 if (chance(399, 400))
2529 return 0;
2530 ubifs_warn(c, "failing in log LEB %d", lnum);
2531 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2532 if (write && chance(7, 8))
2533 return 0;
2534 if (chance(19, 20))
2535 return 0;
2536 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2537 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2538 if (write && chance(1, 2))
2539 return 0;
2540 if (chance(9, 10))
2541 return 0;
2542 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2543 } else if (lnum == c->ihead_lnum) {
2544 if (chance(99, 100))
2545 return 0;
2546 ubifs_warn(c, "failing in index head LEB %d", lnum);
2547 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2548 if (chance(9, 10))
2549 return 0;
2550 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2551 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2552 !ubifs_search_bud(c, lnum)) {
2553 if (chance(19, 20))
2554 return 0;
2555 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2556 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2557 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2558 if (chance(999, 1000))
2559 return 0;
2560 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2561 } else {
2562 if (chance(9999, 10000))
2563 return 0;
2564 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2565 }
2566
2567 d->pc_happened = 1;
2568 ubifs_warn(c, "========== Power cut emulated ==========");
2569 dump_stack();
2570 return 1;
2571 }
2572
corrupt_data(const struct ubifs_info * c,const void * buf,unsigned int len)2573 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2574 unsigned int len)
2575 {
2576 unsigned int from, to, ffs = chance(1, 2);
2577 unsigned char *p = (void *)buf;
2578
2579 from = get_random_u32_below(len);
2580 /* Corruption span max to end of write unit */
2581 to = min(len, ALIGN(from + 1, c->max_write_size));
2582
2583 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2584 ffs ? "0xFFs" : "random data");
2585
2586 if (ffs)
2587 memset(p + from, 0xFF, to - from);
2588 else
2589 get_random_bytes(p + from, to - from);
2590
2591 return to;
2592 }
2593
dbg_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)2594 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2595 int offs, int len)
2596 {
2597 int err, failing;
2598
2599 if (dbg_is_power_cut(c))
2600 return -EROFS;
2601
2602 failing = power_cut_emulated(c, lnum, 1);
2603 if (failing) {
2604 len = corrupt_data(c, buf, len);
2605 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2606 len, lnum, offs);
2607 }
2608 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2609 if (err)
2610 return err;
2611 if (failing)
2612 return -EROFS;
2613 return 0;
2614 }
2615
dbg_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)2616 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2617 int len)
2618 {
2619 int err;
2620
2621 if (dbg_is_power_cut(c))
2622 return -EROFS;
2623 if (power_cut_emulated(c, lnum, 1))
2624 return -EROFS;
2625 err = ubi_leb_change(c->ubi, lnum, buf, len);
2626 if (err)
2627 return err;
2628 if (power_cut_emulated(c, lnum, 1))
2629 return -EROFS;
2630 return 0;
2631 }
2632
dbg_leb_unmap(struct ubifs_info * c,int lnum)2633 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2634 {
2635 int err;
2636
2637 if (dbg_is_power_cut(c))
2638 return -EROFS;
2639 if (power_cut_emulated(c, lnum, 0))
2640 return -EROFS;
2641 err = ubi_leb_unmap(c->ubi, lnum);
2642 if (err)
2643 return err;
2644 if (power_cut_emulated(c, lnum, 0))
2645 return -EROFS;
2646 return 0;
2647 }
2648
dbg_leb_map(struct ubifs_info * c,int lnum)2649 int dbg_leb_map(struct ubifs_info *c, int lnum)
2650 {
2651 int err;
2652
2653 if (dbg_is_power_cut(c))
2654 return -EROFS;
2655 if (power_cut_emulated(c, lnum, 0))
2656 return -EROFS;
2657 err = ubi_leb_map(c->ubi, lnum);
2658 if (err)
2659 return err;
2660 if (power_cut_emulated(c, lnum, 0))
2661 return -EROFS;
2662 return 0;
2663 }
2664
2665 /*
2666 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2667 * contain the stuff specific to particular file-system mounts.
2668 */
2669 static struct dentry *dfs_rootdir;
2670
dfs_file_open(struct inode * inode,struct file * file)2671 static int dfs_file_open(struct inode *inode, struct file *file)
2672 {
2673 file->private_data = inode->i_private;
2674 return nonseekable_open(inode, file);
2675 }
2676
2677 /**
2678 * provide_user_output - provide output to the user reading a debugfs file.
2679 * @val: boolean value for the answer
2680 * @u: the buffer to store the answer at
2681 * @count: size of the buffer
2682 * @ppos: position in the @u output buffer
2683 *
2684 * This is a simple helper function which stores @val boolean value in the user
2685 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2686 * bytes written to @u in case of success and a negative error code in case of
2687 * failure.
2688 */
provide_user_output(int val,char __user * u,size_t count,loff_t * ppos)2689 static int provide_user_output(int val, char __user *u, size_t count,
2690 loff_t *ppos)
2691 {
2692 char buf[3];
2693
2694 if (val)
2695 buf[0] = '1';
2696 else
2697 buf[0] = '0';
2698 buf[1] = '\n';
2699 buf[2] = 0x00;
2700
2701 return simple_read_from_buffer(u, count, ppos, buf, 2);
2702 }
2703
dfs_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2704 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2705 loff_t *ppos)
2706 {
2707 struct dentry *dent = file->f_path.dentry;
2708 struct ubifs_info *c = file->private_data;
2709 struct ubifs_debug_info *d = c->dbg;
2710 int val;
2711
2712 if (dent == d->dfs_chk_gen)
2713 val = d->chk_gen;
2714 else if (dent == d->dfs_chk_index)
2715 val = d->chk_index;
2716 else if (dent == d->dfs_chk_orph)
2717 val = d->chk_orph;
2718 else if (dent == d->dfs_chk_lprops)
2719 val = d->chk_lprops;
2720 else if (dent == d->dfs_chk_fs)
2721 val = d->chk_fs;
2722 else if (dent == d->dfs_tst_rcvry)
2723 val = d->tst_rcvry;
2724 else if (dent == d->dfs_ro_error)
2725 val = c->ro_error;
2726 else
2727 return -EINVAL;
2728
2729 return provide_user_output(val, u, count, ppos);
2730 }
2731
2732 /**
2733 * interpret_user_input - interpret user debugfs file input.
2734 * @u: user-provided buffer with the input
2735 * @count: buffer size
2736 *
2737 * This is a helper function which interpret user input to a boolean UBIFS
2738 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2739 * in case of failure.
2740 */
interpret_user_input(const char __user * u,size_t count)2741 static int interpret_user_input(const char __user *u, size_t count)
2742 {
2743 size_t buf_size;
2744 char buf[8];
2745
2746 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2747 if (copy_from_user(buf, u, buf_size))
2748 return -EFAULT;
2749
2750 if (buf[0] == '1')
2751 return 1;
2752 else if (buf[0] == '0')
2753 return 0;
2754
2755 return -EINVAL;
2756 }
2757
dfs_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2758 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2759 size_t count, loff_t *ppos)
2760 {
2761 struct ubifs_info *c = file->private_data;
2762 struct ubifs_debug_info *d = c->dbg;
2763 struct dentry *dent = file->f_path.dentry;
2764 int val;
2765
2766 if (file->f_path.dentry == d->dfs_dump_lprops) {
2767 ubifs_dump_lprops(c);
2768 return count;
2769 }
2770 if (file->f_path.dentry == d->dfs_dump_budg) {
2771 ubifs_dump_budg(c, &c->bi);
2772 return count;
2773 }
2774 if (file->f_path.dentry == d->dfs_dump_tnc) {
2775 mutex_lock(&c->tnc_mutex);
2776 ubifs_dump_tnc(c);
2777 mutex_unlock(&c->tnc_mutex);
2778 return count;
2779 }
2780
2781 val = interpret_user_input(u, count);
2782 if (val < 0)
2783 return val;
2784
2785 if (dent == d->dfs_chk_gen)
2786 d->chk_gen = val;
2787 else if (dent == d->dfs_chk_index)
2788 d->chk_index = val;
2789 else if (dent == d->dfs_chk_orph)
2790 d->chk_orph = val;
2791 else if (dent == d->dfs_chk_lprops)
2792 d->chk_lprops = val;
2793 else if (dent == d->dfs_chk_fs)
2794 d->chk_fs = val;
2795 else if (dent == d->dfs_tst_rcvry)
2796 d->tst_rcvry = val;
2797 else if (dent == d->dfs_ro_error)
2798 c->ro_error = !!val;
2799 else
2800 return -EINVAL;
2801
2802 return count;
2803 }
2804
2805 static const struct file_operations dfs_fops = {
2806 .open = dfs_file_open,
2807 .read = dfs_file_read,
2808 .write = dfs_file_write,
2809 .owner = THIS_MODULE,
2810 };
2811
2812 /**
2813 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2814 * @c: UBIFS file-system description object
2815 *
2816 * This function creates all debugfs files for this instance of UBIFS.
2817 *
2818 * Note, the only reason we have not merged this function with the
2819 * 'ubifs_debugging_init()' function is because it is better to initialize
2820 * debugfs interfaces at the very end of the mount process, and remove them at
2821 * the very beginning of the mount process.
2822 */
dbg_debugfs_init_fs(struct ubifs_info * c)2823 void dbg_debugfs_init_fs(struct ubifs_info *c)
2824 {
2825 int n;
2826 const char *fname;
2827 struct ubifs_debug_info *d = c->dbg;
2828
2829 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN, UBIFS_DFS_DIR_NAME,
2830 c->vi.ubi_num, c->vi.vol_id);
2831 if (n >= UBIFS_DFS_DIR_LEN) {
2832 /* The array size is too small */
2833 return;
2834 }
2835
2836 fname = d->dfs_dir_name;
2837 d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2838
2839 fname = "dump_lprops";
2840 d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2841 &dfs_fops);
2842
2843 fname = "dump_budg";
2844 d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845 &dfs_fops);
2846
2847 fname = "dump_tnc";
2848 d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2849 &dfs_fops);
2850
2851 fname = "chk_general";
2852 d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2853 d->dfs_dir, c, &dfs_fops);
2854
2855 fname = "chk_index";
2856 d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857 d->dfs_dir, c, &dfs_fops);
2858
2859 fname = "chk_orphans";
2860 d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861 d->dfs_dir, c, &dfs_fops);
2862
2863 fname = "chk_lprops";
2864 d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865 d->dfs_dir, c, &dfs_fops);
2866
2867 fname = "chk_fs";
2868 d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869 d->dfs_dir, c, &dfs_fops);
2870
2871 fname = "tst_recovery";
2872 d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873 d->dfs_dir, c, &dfs_fops);
2874
2875 fname = "ro_error";
2876 d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2877 d->dfs_dir, c, &dfs_fops);
2878 }
2879
2880 /**
2881 * dbg_debugfs_exit_fs - remove all debugfs files.
2882 * @c: UBIFS file-system description object
2883 */
dbg_debugfs_exit_fs(struct ubifs_info * c)2884 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2885 {
2886 debugfs_remove_recursive(c->dbg->dfs_dir);
2887 }
2888
2889 struct ubifs_global_debug_info ubifs_dbg;
2890
2891 static struct dentry *dfs_chk_gen;
2892 static struct dentry *dfs_chk_index;
2893 static struct dentry *dfs_chk_orph;
2894 static struct dentry *dfs_chk_lprops;
2895 static struct dentry *dfs_chk_fs;
2896 static struct dentry *dfs_tst_rcvry;
2897
dfs_global_file_read(struct file * file,char __user * u,size_t count,loff_t * ppos)2898 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2899 size_t count, loff_t *ppos)
2900 {
2901 struct dentry *dent = file->f_path.dentry;
2902 int val;
2903
2904 if (dent == dfs_chk_gen)
2905 val = ubifs_dbg.chk_gen;
2906 else if (dent == dfs_chk_index)
2907 val = ubifs_dbg.chk_index;
2908 else if (dent == dfs_chk_orph)
2909 val = ubifs_dbg.chk_orph;
2910 else if (dent == dfs_chk_lprops)
2911 val = ubifs_dbg.chk_lprops;
2912 else if (dent == dfs_chk_fs)
2913 val = ubifs_dbg.chk_fs;
2914 else if (dent == dfs_tst_rcvry)
2915 val = ubifs_dbg.tst_rcvry;
2916 else
2917 return -EINVAL;
2918
2919 return provide_user_output(val, u, count, ppos);
2920 }
2921
dfs_global_file_write(struct file * file,const char __user * u,size_t count,loff_t * ppos)2922 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2923 size_t count, loff_t *ppos)
2924 {
2925 struct dentry *dent = file->f_path.dentry;
2926 int val;
2927
2928 val = interpret_user_input(u, count);
2929 if (val < 0)
2930 return val;
2931
2932 if (dent == dfs_chk_gen)
2933 ubifs_dbg.chk_gen = val;
2934 else if (dent == dfs_chk_index)
2935 ubifs_dbg.chk_index = val;
2936 else if (dent == dfs_chk_orph)
2937 ubifs_dbg.chk_orph = val;
2938 else if (dent == dfs_chk_lprops)
2939 ubifs_dbg.chk_lprops = val;
2940 else if (dent == dfs_chk_fs)
2941 ubifs_dbg.chk_fs = val;
2942 else if (dent == dfs_tst_rcvry)
2943 ubifs_dbg.tst_rcvry = val;
2944 else
2945 return -EINVAL;
2946
2947 return count;
2948 }
2949
2950 static const struct file_operations dfs_global_fops = {
2951 .read = dfs_global_file_read,
2952 .write = dfs_global_file_write,
2953 .owner = THIS_MODULE,
2954 };
2955
2956 /**
2957 * dbg_debugfs_init - initialize debugfs file-system.
2958 *
2959 * UBIFS uses debugfs file-system to expose various debugging knobs to
2960 * user-space. This function creates "ubifs" directory in the debugfs
2961 * file-system.
2962 */
dbg_debugfs_init(void)2963 void dbg_debugfs_init(void)
2964 {
2965 const char *fname;
2966
2967 fname = "ubifs";
2968 dfs_rootdir = debugfs_create_dir(fname, NULL);
2969
2970 fname = "chk_general";
2971 dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2972 NULL, &dfs_global_fops);
2973
2974 fname = "chk_index";
2975 dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2976 dfs_rootdir, NULL, &dfs_global_fops);
2977
2978 fname = "chk_orphans";
2979 dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2980 dfs_rootdir, NULL, &dfs_global_fops);
2981
2982 fname = "chk_lprops";
2983 dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2984 dfs_rootdir, NULL, &dfs_global_fops);
2985
2986 fname = "chk_fs";
2987 dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2988 NULL, &dfs_global_fops);
2989
2990 fname = "tst_recovery";
2991 dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2992 dfs_rootdir, NULL, &dfs_global_fops);
2993 }
2994
2995 /**
2996 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2997 */
dbg_debugfs_exit(void)2998 void dbg_debugfs_exit(void)
2999 {
3000 debugfs_remove_recursive(dfs_rootdir);
3001 }
3002
ubifs_assert_failed(struct ubifs_info * c,const char * expr,const char * file,int line)3003 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3004 const char *file, int line)
3005 {
3006 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3007
3008 switch (c->assert_action) {
3009 case ASSACT_PANIC:
3010 BUG();
3011 break;
3012
3013 case ASSACT_RO:
3014 ubifs_ro_mode(c, -EINVAL);
3015 break;
3016
3017 case ASSACT_REPORT:
3018 default:
3019 dump_stack();
3020 break;
3021
3022 }
3023 }
3024
3025 /**
3026 * ubifs_debugging_init - initialize UBIFS debugging.
3027 * @c: UBIFS file-system description object
3028 *
3029 * This function initializes debugging-related data for the file system.
3030 * Returns zero in case of success and a negative error code in case of
3031 * failure.
3032 */
ubifs_debugging_init(struct ubifs_info * c)3033 int ubifs_debugging_init(struct ubifs_info *c)
3034 {
3035 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3036 if (!c->dbg)
3037 return -ENOMEM;
3038
3039 return 0;
3040 }
3041
3042 /**
3043 * ubifs_debugging_exit - free debugging data.
3044 * @c: UBIFS file-system description object
3045 */
ubifs_debugging_exit(struct ubifs_info * c)3046 void ubifs_debugging_exit(struct ubifs_info *c)
3047 {
3048 kfree(c->dbg);
3049 }
3050