xref: /netbsd/sys/kern/uipc_usrreq.c (revision 051f0471)
1 /*	$NetBSD: uipc_usrreq.c,v 1.203 2022/05/28 22:08:46 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2000, 2004, 2008, 2009, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
62  */
63 
64 /*
65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  * 3. All advertising materials mentioning features or use of this software
76  *    must display the following acknowledgement:
77  *	This product includes software developed by the University of
78  *	California, Berkeley and its contributors.
79  * 4. Neither the name of the University nor the names of its contributors
80  *    may be used to endorse or promote products derived from this software
81  *    without specific prior written permission.
82  *
83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93  * SUCH DAMAGE.
94  *
95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
96  */
97 
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.203 2022/05/28 22:08:46 andvar Exp $");
100 
101 #ifdef _KERNEL_OPT
102 #include "opt_compat_netbsd.h"
103 #endif
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/proc.h>
108 #include <sys/filedesc.h>
109 #include <sys/domain.h>
110 #include <sys/protosw.h>
111 #include <sys/socket.h>
112 #include <sys/socketvar.h>
113 #include <sys/unpcb.h>
114 #include <sys/un.h>
115 #include <sys/namei.h>
116 #include <sys/vnode.h>
117 #include <sys/file.h>
118 #include <sys/stat.h>
119 #include <sys/mbuf.h>
120 #include <sys/kauth.h>
121 #include <sys/kmem.h>
122 #include <sys/atomic.h>
123 #include <sys/uidinfo.h>
124 #include <sys/kernel.h>
125 #include <sys/kthread.h>
126 #include <sys/compat_stub.h>
127 
128 #include <compat/sys/socket.h>
129 #include <compat/net/route_70.h>
130 
131 /*
132  * Unix communications domain.
133  *
134  * TODO:
135  *	RDM
136  *	rethink name space problems
137  *	need a proper out-of-band
138  *
139  * Notes on locking:
140  *
141  * The generic rules noted in uipc_socket2.c apply.  In addition:
142  *
143  * o We have a global lock, uipc_lock.
144  *
145  * o All datagram sockets are locked by uipc_lock.
146  *
147  * o For stream socketpairs, the two endpoints are created sharing the same
148  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
149  *   matching locks.
150  *
151  * o Stream sockets created via socket() start life with their own
152  *   independent lock.
153  *
154  * o Stream connections to a named endpoint are slightly more complicated.
155  *   Sockets that have called listen() have their lock pointer mutated to
156  *   the global uipc_lock.  When establishing a connection, the connecting
157  *   socket also has its lock mutated to uipc_lock, which matches the head
158  *   (listening socket).  We create a new socket for accept() to return, and
159  *   that also shares the head's lock.  Until the connection is completely
160  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
161  *   connection is complete, the association with the head's lock is broken.
162  *   The connecting socket and the socket returned from accept() have their
163  *   lock pointers mutated away from uipc_lock, and back to the connecting
164  *   socket's original, independent lock.  The head continues to be locked
165  *   by uipc_lock.
166  *
167  * o If uipc_lock is determined to be a significant source of contention,
168  *   it could easily be hashed out.  It is difficult to simply make it an
169  *   independent lock because of visibility / garbage collection issues:
170  *   if a socket has been associated with a lock at any point, that lock
171  *   must remain valid until the socket is no longer visible in the system.
172  *   The lock must not be freed or otherwise destroyed until any sockets
173  *   that had referenced it have also been destroyed.
174  */
175 const struct sockaddr_un sun_noname = {
176 	.sun_len = offsetof(struct sockaddr_un, sun_path),
177 	.sun_family = AF_LOCAL,
178 };
179 ino_t	unp_ino;			/* prototype for fake inode numbers */
180 
181 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
182 static void   unp_discard_later(file_t *);
183 static void   unp_discard_now(file_t *);
184 static void   unp_disconnect1(struct unpcb *);
185 static bool   unp_drop(struct unpcb *, int);
186 static int    unp_internalize(struct mbuf **);
187 static void   unp_mark(file_t *);
188 static void   unp_scan(struct mbuf *, void (*)(file_t *), int);
189 static void   unp_shutdown1(struct unpcb *);
190 static void   unp_thread(void *);
191 static void   unp_thread_kick(void);
192 
193 static kmutex_t *uipc_lock;
194 
195 static kcondvar_t unp_thread_cv;
196 static lwp_t *unp_thread_lwp;
197 static SLIST_HEAD(,file) unp_thread_discard;
198 static int unp_defer;
199 static struct sysctllog *usrreq_sysctllog;
200 static void unp_sysctl_create(void);
201 
202 /* Compat interface */
203 
204 struct mbuf * stub_compat_70_unp_addsockcred(lwp_t *, struct mbuf *);
205 
stub_compat_70_unp_addsockcred(struct lwp * lwp,struct mbuf * control)206 struct mbuf * stub_compat_70_unp_addsockcred(struct lwp *lwp,
207     struct mbuf *control)
208 {
209 
210 /* just copy our initial argument */
211 	return control;
212 }
213 
214 bool compat70_ocreds_valid = false;
215 
216 /*
217  * Initialize Unix protocols.
218  */
219 void
uipc_init(void)220 uipc_init(void)
221 {
222 	int error;
223 
224 	unp_sysctl_create();
225 
226 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
227 	cv_init(&unp_thread_cv, "unpgc");
228 
229 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
230 	    NULL, &unp_thread_lwp, "unpgc");
231 	if (error != 0)
232 		panic("uipc_init %d", error);
233 }
234 
235 static void
unp_connid(struct lwp * l,struct unpcb * unp,int flags)236 unp_connid(struct lwp *l, struct unpcb *unp, int flags)
237 {
238 	unp->unp_connid.unp_pid = l->l_proc->p_pid;
239 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
240 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
241 	unp->unp_flags |= flags;
242 }
243 
244 /*
245  * A connection succeeded: disassociate both endpoints from the head's
246  * lock, and make them share their own lock.  There is a race here: for
247  * a very brief time one endpoint will be locked by a different lock
248  * than the other end.  However, since the current thread holds the old
249  * lock (the listening socket's lock, the head) access can still only be
250  * made to one side of the connection.
251  */
252 static void
unp_setpeerlocks(struct socket * so,struct socket * so2)253 unp_setpeerlocks(struct socket *so, struct socket *so2)
254 {
255 	struct unpcb *unp;
256 	kmutex_t *lock;
257 
258 	KASSERT(solocked2(so, so2));
259 
260 	/*
261 	 * Bail out if either end of the socket is not yet fully
262 	 * connected or accepted.  We only break the lock association
263 	 * with the head when the pair of sockets stand completely
264 	 * on their own.
265 	 */
266 	KASSERT(so->so_head == NULL);
267 	if (so2->so_head != NULL)
268 		return;
269 
270 	/*
271 	 * Drop references to old lock.  A third reference (from the
272 	 * queue head) must be held as we still hold its lock.  Bonus:
273 	 * we don't need to worry about garbage collecting the lock.
274 	 */
275 	lock = so->so_lock;
276 	KASSERT(lock == uipc_lock);
277 	mutex_obj_free(lock);
278 	mutex_obj_free(lock);
279 
280 	/*
281 	 * Grab stream lock from the initiator and share between the two
282 	 * endpoints.  Issue memory barrier to ensure all modifications
283 	 * become globally visible before the lock change.  so2 is
284 	 * assumed not to have a stream lock, because it was created
285 	 * purely for the server side to accept this connection and
286 	 * started out life using the domain-wide lock.
287 	 */
288 	unp = sotounpcb(so);
289 	KASSERT(unp->unp_streamlock != NULL);
290 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
291 	lock = unp->unp_streamlock;
292 	unp->unp_streamlock = NULL;
293 	mutex_obj_hold(lock);
294 	/*
295 	 * Ensure lock is initialized before publishing it with
296 	 * solockreset.  Pairs with atomic_load_consume in solock and
297 	 * various loops to reacquire lock after wakeup.
298 	 */
299 	membar_release();
300 	/*
301 	 * possible race if lock is not held - see comment in
302 	 * uipc_usrreq(PRU_ACCEPT).
303 	 */
304 	KASSERT(mutex_owned(lock));
305 	solockreset(so, lock);
306 	solockreset(so2, lock);
307 }
308 
309 /*
310  * Reset a socket's lock back to the domain-wide lock.
311  */
312 static void
unp_resetlock(struct socket * so)313 unp_resetlock(struct socket *so)
314 {
315 	kmutex_t *olock, *nlock;
316 	struct unpcb *unp;
317 
318 	KASSERT(solocked(so));
319 
320 	olock = so->so_lock;
321 	nlock = uipc_lock;
322 	if (olock == nlock)
323 		return;
324 	unp = sotounpcb(so);
325 	KASSERT(unp->unp_streamlock == NULL);
326 	unp->unp_streamlock = olock;
327 	mutex_obj_hold(nlock);
328 	mutex_enter(nlock);
329 	solockreset(so, nlock);
330 	mutex_exit(olock);
331 }
332 
333 static void
unp_free(struct unpcb * unp)334 unp_free(struct unpcb *unp)
335 {
336 	if (unp->unp_addr)
337 		free(unp->unp_addr, M_SONAME);
338 	if (unp->unp_streamlock != NULL)
339 		mutex_obj_free(unp->unp_streamlock);
340 	kmem_free(unp, sizeof(*unp));
341 }
342 
343 static int
unp_output(struct mbuf * m,struct mbuf * control,struct unpcb * unp)344 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
345 {
346 	struct socket *so2;
347 	const struct sockaddr_un *sun;
348 
349 	/* XXX: server side closed the socket */
350 	if (unp->unp_conn == NULL)
351 		return ECONNREFUSED;
352 	so2 = unp->unp_conn->unp_socket;
353 
354 	KASSERT(solocked(so2));
355 
356 	if (unp->unp_addr)
357 		sun = unp->unp_addr;
358 	else
359 		sun = &sun_noname;
360 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
361 		control = unp_addsockcred(curlwp, control);
362 	if (unp->unp_conn->unp_flags & UNP_OWANTCRED)
363 		MODULE_HOOK_CALL(uipc_unp_70_hook, (curlwp, control),
364 		    stub_compat_70_unp_addsockcred(curlwp, control), control);
365 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
366 	    control) == 0) {
367 		unp_dispose(control);
368 		m_freem(control);
369 		m_freem(m);
370 		/* Don't call soroverflow because we're returning this
371 		 * error directly to the sender. */
372 		so2->so_rcv.sb_overflowed++;
373 		return ENOBUFS;
374 	} else {
375 		sorwakeup(so2);
376 		return 0;
377 	}
378 }
379 
380 static void
unp_setaddr(struct socket * so,struct sockaddr * nam,bool peeraddr)381 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
382 {
383 	const struct sockaddr_un *sun = NULL;
384 	struct unpcb *unp;
385 
386 	KASSERT(solocked(so));
387 	unp = sotounpcb(so);
388 
389 	if (peeraddr) {
390 		if (unp->unp_conn && unp->unp_conn->unp_addr)
391 			sun = unp->unp_conn->unp_addr;
392 	} else {
393 		if (unp->unp_addr)
394 			sun = unp->unp_addr;
395 	}
396 	if (sun == NULL)
397 		sun = &sun_noname;
398 
399 	memcpy(nam, sun, sun->sun_len);
400 }
401 
402 static int
unp_rcvd(struct socket * so,int flags,struct lwp * l)403 unp_rcvd(struct socket *so, int flags, struct lwp *l)
404 {
405 	struct unpcb *unp = sotounpcb(so);
406 	struct socket *so2;
407 	u_int newhiwat;
408 
409 	KASSERT(solocked(so));
410 	KASSERT(unp != NULL);
411 
412 	switch (so->so_type) {
413 
414 	case SOCK_DGRAM:
415 		panic("uipc 1");
416 		/*NOTREACHED*/
417 
418 	case SOCK_SEQPACKET: /* FALLTHROUGH */
419 	case SOCK_STREAM:
420 #define	rcv (&so->so_rcv)
421 #define snd (&so2->so_snd)
422 		if (unp->unp_conn == 0)
423 			break;
424 		so2 = unp->unp_conn->unp_socket;
425 		KASSERT(solocked2(so, so2));
426 		/*
427 		 * Adjust backpressure on sender
428 		 * and wakeup any waiting to write.
429 		 */
430 		snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
431 		unp->unp_mbcnt = rcv->sb_mbcnt;
432 		newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
433 		(void)chgsbsize(so2->so_uidinfo,
434 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
435 		unp->unp_cc = rcv->sb_cc;
436 		sowwakeup(so2);
437 #undef snd
438 #undef rcv
439 		break;
440 
441 	default:
442 		panic("uipc 2");
443 	}
444 
445 	return 0;
446 }
447 
448 static int
unp_recvoob(struct socket * so,struct mbuf * m,int flags)449 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
450 {
451 	KASSERT(solocked(so));
452 
453 	return EOPNOTSUPP;
454 }
455 
456 static int
unp_send(struct socket * so,struct mbuf * m,struct sockaddr * nam,struct mbuf * control,struct lwp * l)457 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
458     struct mbuf *control, struct lwp *l)
459 {
460 	struct unpcb *unp = sotounpcb(so);
461 	int error = 0;
462 	u_int newhiwat;
463 	struct socket *so2;
464 
465 	KASSERT(solocked(so));
466 	KASSERT(unp != NULL);
467 	KASSERT(m != NULL);
468 
469 	/*
470 	 * Note: unp_internalize() rejects any control message
471 	 * other than SCM_RIGHTS, and only allows one.  This
472 	 * has the side-effect of preventing a caller from
473 	 * forging SCM_CREDS.
474 	 */
475 	if (control) {
476 		sounlock(so);
477 		error = unp_internalize(&control);
478 		solock(so);
479 		if (error != 0) {
480 			m_freem(control);
481 			m_freem(m);
482 			return error;
483 		}
484 	}
485 
486 	switch (so->so_type) {
487 
488 	case SOCK_DGRAM: {
489 		KASSERT(so->so_lock == uipc_lock);
490 		if (nam) {
491 			if ((so->so_state & SS_ISCONNECTED) != 0)
492 				error = EISCONN;
493 			else {
494 				/*
495 				 * Note: once connected, the
496 				 * socket's lock must not be
497 				 * dropped until we have sent
498 				 * the message and disconnected.
499 				 * This is necessary to prevent
500 				 * intervening control ops, like
501 				 * another connection.
502 				 */
503 				error = unp_connect(so, nam, l);
504 			}
505 		} else {
506 			if ((so->so_state & SS_ISCONNECTED) == 0)
507 				error = ENOTCONN;
508 		}
509 		if (error) {
510 			unp_dispose(control);
511 			m_freem(control);
512 			m_freem(m);
513 			return error;
514 		}
515 		error = unp_output(m, control, unp);
516 		if (nam)
517 			unp_disconnect1(unp);
518 		break;
519 	}
520 
521 	case SOCK_SEQPACKET: /* FALLTHROUGH */
522 	case SOCK_STREAM:
523 #define	rcv (&so2->so_rcv)
524 #define	snd (&so->so_snd)
525 		if (unp->unp_conn == NULL) {
526 			error = ENOTCONN;
527 			break;
528 		}
529 		so2 = unp->unp_conn->unp_socket;
530 		KASSERT(solocked2(so, so2));
531 		if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
532 			/*
533 			 * Credentials are passed only once on
534 			 * SOCK_STREAM and SOCK_SEQPACKET.
535 			 */
536 			unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
537 			control = unp_addsockcred(l, control);
538 		}
539 		if (unp->unp_conn->unp_flags & UNP_OWANTCRED) {
540 			/*
541 			 * Credentials are passed only once on
542 			 * SOCK_STREAM and SOCK_SEQPACKET.
543 			 */
544 			unp->unp_conn->unp_flags &= ~UNP_OWANTCRED;
545 			MODULE_HOOK_CALL(uipc_unp_70_hook, (curlwp, control),
546 			    stub_compat_70_unp_addsockcred(curlwp, control),
547 			    control);
548 		}
549 		/*
550 		 * Send to paired receive port, and then reduce
551 		 * send buffer hiwater marks to maintain backpressure.
552 		 * Wake up readers.
553 		 */
554 		if (control) {
555 			if (sbappendcontrol(rcv, m, control) != 0)
556 				control = NULL;
557 		} else {
558 			switch(so->so_type) {
559 			case SOCK_SEQPACKET:
560 				sbappendrecord(rcv, m);
561 				break;
562 			case SOCK_STREAM:
563 				sbappend(rcv, m);
564 				break;
565 			default:
566 				panic("uipc_usrreq");
567 				break;
568 			}
569 		}
570 		snd->sb_mbmax -=
571 		    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
572 		unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
573 		newhiwat = snd->sb_hiwat -
574 		    (rcv->sb_cc - unp->unp_conn->unp_cc);
575 		(void)chgsbsize(so->so_uidinfo,
576 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
577 		unp->unp_conn->unp_cc = rcv->sb_cc;
578 		sorwakeup(so2);
579 #undef snd
580 #undef rcv
581 		if (control != NULL) {
582 			unp_dispose(control);
583 			m_freem(control);
584 		}
585 		break;
586 
587 	default:
588 		panic("uipc 4");
589 	}
590 
591 	return error;
592 }
593 
594 static int
unp_sendoob(struct socket * so,struct mbuf * m,struct mbuf * control)595 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
596 {
597 	KASSERT(solocked(so));
598 
599 	m_freem(m);
600 	m_freem(control);
601 
602 	return EOPNOTSUPP;
603 }
604 
605 /*
606  * Unix domain socket option processing.
607  */
608 int
uipc_ctloutput(int op,struct socket * so,struct sockopt * sopt)609 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
610 {
611 	struct unpcb *unp = sotounpcb(so);
612 	int optval = 0, error = 0;
613 
614 	KASSERT(solocked(so));
615 
616 	if (sopt->sopt_level != SOL_LOCAL) {
617 		error = ENOPROTOOPT;
618 	} else switch (op) {
619 
620 	case PRCO_SETOPT:
621 		switch (sopt->sopt_name) {
622 		case LOCAL_OCREDS:
623 			if (!compat70_ocreds_valid)  {
624 				error = ENOPROTOOPT;
625 				break;
626 			}
627 			/* FALLTHROUGH */
628 		case LOCAL_CREDS:
629 		case LOCAL_CONNWAIT:
630 			error = sockopt_getint(sopt, &optval);
631 			if (error)
632 				break;
633 			switch (sopt->sopt_name) {
634 #define	OPTSET(bit) \
635 	if (optval) \
636 		unp->unp_flags |= (bit); \
637 	else \
638 		unp->unp_flags &= ~(bit);
639 
640 			case LOCAL_CREDS:
641 				OPTSET(UNP_WANTCRED);
642 				break;
643 			case LOCAL_CONNWAIT:
644 				OPTSET(UNP_CONNWAIT);
645 				break;
646 			case LOCAL_OCREDS:
647 				OPTSET(UNP_OWANTCRED);
648 				break;
649 			}
650 			break;
651 #undef OPTSET
652 
653 		default:
654 			error = ENOPROTOOPT;
655 			break;
656 		}
657 		break;
658 
659 	case PRCO_GETOPT:
660 		sounlock(so);
661 		switch (sopt->sopt_name) {
662 		case LOCAL_PEEREID:
663 			if (unp->unp_flags & UNP_EIDSVALID) {
664 				error = sockopt_set(sopt, &unp->unp_connid,
665 				    sizeof(unp->unp_connid));
666 			} else {
667 				error = EINVAL;
668 			}
669 			break;
670 		case LOCAL_CREDS:
671 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
672 
673 			optval = OPTBIT(UNP_WANTCRED);
674 			error = sockopt_setint(sopt, optval);
675 			break;
676 		case LOCAL_OCREDS:
677 			if (compat70_ocreds_valid) {
678 				optval = OPTBIT(UNP_OWANTCRED);
679 				error = sockopt_setint(sopt, optval);
680 				break;
681 			}
682 #undef OPTBIT
683 			/* FALLTHROUGH */
684 		default:
685 			error = ENOPROTOOPT;
686 			break;
687 		}
688 		solock(so);
689 		break;
690 	}
691 	return (error);
692 }
693 
694 /*
695  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
696  * for stream sockets, although the total for sender and receiver is
697  * actually only PIPSIZ.
698  * Datagram sockets really use the sendspace as the maximum datagram size,
699  * and don't really want to reserve the sendspace.  Their recvspace should
700  * be large enough for at least one max-size datagram plus address.
701  */
702 #ifndef PIPSIZ
703 #define	PIPSIZ	8192
704 #endif
705 u_long	unpst_sendspace = PIPSIZ;
706 u_long	unpst_recvspace = PIPSIZ;
707 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
708 u_long	unpdg_recvspace = 16*1024;
709 
710 u_int	unp_rights;			/* files in flight */
711 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
712 
713 static int
unp_attach(struct socket * so,int proto)714 unp_attach(struct socket *so, int proto)
715 {
716 	struct unpcb *unp = sotounpcb(so);
717 	u_long sndspc, rcvspc;
718 	int error;
719 
720 	KASSERT(unp == NULL);
721 
722 	switch (so->so_type) {
723 	case SOCK_SEQPACKET:
724 		/* FALLTHROUGH */
725 	case SOCK_STREAM:
726 		if (so->so_lock == NULL) {
727 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
728 			solock(so);
729 		}
730 		sndspc = unpst_sendspace;
731 		rcvspc = unpst_recvspace;
732 		break;
733 
734 	case SOCK_DGRAM:
735 		if (so->so_lock == NULL) {
736 			mutex_obj_hold(uipc_lock);
737 			so->so_lock = uipc_lock;
738 			solock(so);
739 		}
740 		sndspc = unpdg_sendspace;
741 		rcvspc = unpdg_recvspace;
742 		break;
743 
744 	default:
745 		panic("unp_attach");
746 	}
747 
748 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
749 		error = soreserve(so, sndspc, rcvspc);
750 		if (error) {
751 			return error;
752 		}
753 	}
754 
755 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
756 	nanotime(&unp->unp_ctime);
757 	unp->unp_socket = so;
758 	so->so_pcb = unp;
759 
760 	KASSERT(solocked(so));
761 	return 0;
762 }
763 
764 static void
unp_detach(struct socket * so)765 unp_detach(struct socket *so)
766 {
767 	struct unpcb *unp;
768 	vnode_t *vp;
769 
770 	unp = sotounpcb(so);
771 	KASSERT(unp != NULL);
772 	KASSERT(solocked(so));
773  retry:
774 	if ((vp = unp->unp_vnode) != NULL) {
775 		sounlock(so);
776 		/* Acquire v_interlock to protect against unp_connect(). */
777 		/* XXXAD racy */
778 		mutex_enter(vp->v_interlock);
779 		vp->v_socket = NULL;
780 		mutex_exit(vp->v_interlock);
781 		vrele(vp);
782 		solock(so);
783 		unp->unp_vnode = NULL;
784 	}
785 	if (unp->unp_conn)
786 		unp_disconnect1(unp);
787 	while (unp->unp_refs) {
788 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
789 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
790 			solock(so);
791 			goto retry;
792 		}
793 	}
794 	soisdisconnected(so);
795 	so->so_pcb = NULL;
796 	if (unp_rights) {
797 		/*
798 		 * Normally the receive buffer is flushed later, in sofree,
799 		 * but if our receive buffer holds references to files that
800 		 * are now garbage, we will enqueue those file references to
801 		 * the garbage collector and kick it into action.
802 		 */
803 		sorflush(so);
804 		unp_free(unp);
805 		unp_thread_kick();
806 	} else
807 		unp_free(unp);
808 }
809 
810 static int
unp_accept(struct socket * so,struct sockaddr * nam)811 unp_accept(struct socket *so, struct sockaddr *nam)
812 {
813 	struct unpcb *unp = sotounpcb(so);
814 	struct socket *so2;
815 
816 	KASSERT(solocked(so));
817 	KASSERT(nam != NULL);
818 
819 	/* XXX code review required to determine if unp can ever be NULL */
820 	if (unp == NULL)
821 		return EINVAL;
822 
823 	KASSERT(so->so_lock == uipc_lock);
824 	/*
825 	 * Mark the initiating STREAM socket as connected *ONLY*
826 	 * after it's been accepted.  This prevents a client from
827 	 * overrunning a server and receiving ECONNREFUSED.
828 	 */
829 	if (unp->unp_conn == NULL) {
830 		/*
831 		 * This will use the empty socket and will not
832 		 * allocate.
833 		 */
834 		unp_setaddr(so, nam, true);
835 		return 0;
836 	}
837 	so2 = unp->unp_conn->unp_socket;
838 	if (so2->so_state & SS_ISCONNECTING) {
839 		KASSERT(solocked2(so, so->so_head));
840 		KASSERT(solocked2(so2, so->so_head));
841 		soisconnected(so2);
842 	}
843 	/*
844 	 * If the connection is fully established, break the
845 	 * association with uipc_lock and give the connected
846 	 * pair a separate lock to share.
847 	 * There is a race here: sotounpcb(so2)->unp_streamlock
848 	 * is not locked, so when changing so2->so_lock
849 	 * another thread can grab it while so->so_lock is still
850 	 * pointing to the (locked) uipc_lock.
851 	 * this should be harmless, except that this makes
852 	 * solocked2() and solocked() unreliable.
853 	 * Another problem is that unp_setaddr() expects the
854 	 * the socket locked. Grabbing sotounpcb(so2)->unp_streamlock
855 	 * fixes both issues.
856 	 */
857 	mutex_enter(sotounpcb(so2)->unp_streamlock);
858 	unp_setpeerlocks(so2, so);
859 	/*
860 	 * Only now return peer's address, as we may need to
861 	 * block in order to allocate memory.
862 	 *
863 	 * XXX Minor race: connection can be broken while
864 	 * lock is dropped in unp_setaddr().  We will return
865 	 * error == 0 and sun_noname as the peer address.
866 	 */
867 	unp_setaddr(so, nam, true);
868 	/* so_lock now points to unp_streamlock */
869 	mutex_exit(so2->so_lock);
870 	return 0;
871 }
872 
873 static int
unp_ioctl(struct socket * so,u_long cmd,void * nam,struct ifnet * ifp)874 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
875 {
876 	return EOPNOTSUPP;
877 }
878 
879 static int
unp_stat(struct socket * so,struct stat * ub)880 unp_stat(struct socket *so, struct stat *ub)
881 {
882 	struct unpcb *unp;
883 	struct socket *so2;
884 
885 	KASSERT(solocked(so));
886 
887 	unp = sotounpcb(so);
888 	if (unp == NULL)
889 		return EINVAL;
890 
891 	ub->st_blksize = so->so_snd.sb_hiwat;
892 	switch (so->so_type) {
893 	case SOCK_SEQPACKET: /* FALLTHROUGH */
894 	case SOCK_STREAM:
895 		if (unp->unp_conn == 0)
896 			break;
897 
898 		so2 = unp->unp_conn->unp_socket;
899 		KASSERT(solocked2(so, so2));
900 		ub->st_blksize += so2->so_rcv.sb_cc;
901 		break;
902 	default:
903 		break;
904 	}
905 	ub->st_dev = NODEV;
906 	if (unp->unp_ino == 0)
907 		unp->unp_ino = unp_ino++;
908 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
909 	ub->st_ino = unp->unp_ino;
910 	ub->st_uid = so->so_uidinfo->ui_uid;
911 	ub->st_gid = so->so_egid;
912 	return (0);
913 }
914 
915 static int
unp_peeraddr(struct socket * so,struct sockaddr * nam)916 unp_peeraddr(struct socket *so, struct sockaddr *nam)
917 {
918 	KASSERT(solocked(so));
919 	KASSERT(sotounpcb(so) != NULL);
920 	KASSERT(nam != NULL);
921 
922 	unp_setaddr(so, nam, true);
923 	return 0;
924 }
925 
926 static int
unp_sockaddr(struct socket * so,struct sockaddr * nam)927 unp_sockaddr(struct socket *so, struct sockaddr *nam)
928 {
929 	KASSERT(solocked(so));
930 	KASSERT(sotounpcb(so) != NULL);
931 	KASSERT(nam != NULL);
932 
933 	unp_setaddr(so, nam, false);
934 	return 0;
935 }
936 
937 /*
938  * we only need to perform this allocation until syscalls other than
939  * bind are adjusted to use sockaddr_big.
940  */
941 static struct sockaddr_un *
makeun_sb(struct sockaddr * nam,size_t * addrlen)942 makeun_sb(struct sockaddr *nam, size_t *addrlen)
943 {
944 	struct sockaddr_un *sun;
945 
946 	*addrlen = nam->sa_len + 1;
947 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
948 	memcpy(sun, nam, nam->sa_len);
949 	*(((char *)sun) + nam->sa_len) = '\0';
950 	return sun;
951 }
952 
953 static int
unp_bind(struct socket * so,struct sockaddr * nam,struct lwp * l)954 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
955 {
956 	struct sockaddr_un *sun;
957 	struct unpcb *unp;
958 	vnode_t *vp;
959 	struct vattr vattr;
960 	size_t addrlen;
961 	int error;
962 	struct pathbuf *pb;
963 	struct nameidata nd;
964 	proc_t *p;
965 
966 	unp = sotounpcb(so);
967 
968 	KASSERT(solocked(so));
969 	KASSERT(unp != NULL);
970 	KASSERT(nam != NULL);
971 
972 	if (unp->unp_vnode != NULL)
973 		return (EINVAL);
974 	if ((unp->unp_flags & UNP_BUSY) != 0) {
975 		/*
976 		 * EALREADY may not be strictly accurate, but since this
977 		 * is a major application error it's hardly a big deal.
978 		 */
979 		return (EALREADY);
980 	}
981 	unp->unp_flags |= UNP_BUSY;
982 	sounlock(so);
983 
984 	p = l->l_proc;
985 	sun = makeun_sb(nam, &addrlen);
986 
987 	pb = pathbuf_create(sun->sun_path);
988 	if (pb == NULL) {
989 		error = ENOMEM;
990 		goto bad;
991 	}
992 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
993 
994 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
995 	if ((error = namei(&nd)) != 0) {
996 		pathbuf_destroy(pb);
997 		goto bad;
998 	}
999 	vp = nd.ni_vp;
1000 	if (vp != NULL) {
1001 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
1002 		if (nd.ni_dvp == vp)
1003 			vrele(nd.ni_dvp);
1004 		else
1005 			vput(nd.ni_dvp);
1006 		vrele(vp);
1007 		pathbuf_destroy(pb);
1008 		error = EADDRINUSE;
1009 		goto bad;
1010 	}
1011 	vattr_null(&vattr);
1012 	vattr.va_type = VSOCK;
1013 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
1014 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
1015 	if (error) {
1016 		vput(nd.ni_dvp);
1017 		pathbuf_destroy(pb);
1018 		goto bad;
1019 	}
1020 	vp = nd.ni_vp;
1021 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1022 	solock(so);
1023 	vp->v_socket = unp->unp_socket;
1024 	unp->unp_vnode = vp;
1025 	unp->unp_addrlen = addrlen;
1026 	unp->unp_addr = sun;
1027 	VOP_UNLOCK(vp);
1028 	vput(nd.ni_dvp);
1029 	unp->unp_flags &= ~UNP_BUSY;
1030 	pathbuf_destroy(pb);
1031 	return (0);
1032 
1033  bad:
1034 	free(sun, M_SONAME);
1035 	solock(so);
1036 	unp->unp_flags &= ~UNP_BUSY;
1037 	return (error);
1038 }
1039 
1040 static int
unp_listen(struct socket * so,struct lwp * l)1041 unp_listen(struct socket *so, struct lwp *l)
1042 {
1043 	struct unpcb *unp = sotounpcb(so);
1044 
1045 	KASSERT(solocked(so));
1046 	KASSERT(unp != NULL);
1047 
1048 	/*
1049 	 * If the socket can accept a connection, it must be
1050 	 * locked by uipc_lock.
1051 	 */
1052 	unp_resetlock(so);
1053 	if (unp->unp_vnode == NULL)
1054 		return EINVAL;
1055 
1056 	unp_connid(l, unp, UNP_EIDSBIND);
1057 	return 0;
1058 }
1059 
1060 static int
unp_disconnect(struct socket * so)1061 unp_disconnect(struct socket *so)
1062 {
1063 	KASSERT(solocked(so));
1064 	KASSERT(sotounpcb(so) != NULL);
1065 
1066 	unp_disconnect1(sotounpcb(so));
1067 	return 0;
1068 }
1069 
1070 static int
unp_shutdown(struct socket * so)1071 unp_shutdown(struct socket *so)
1072 {
1073 	KASSERT(solocked(so));
1074 	KASSERT(sotounpcb(so) != NULL);
1075 
1076 	socantsendmore(so);
1077 	unp_shutdown1(sotounpcb(so));
1078 	return 0;
1079 }
1080 
1081 static int
unp_abort(struct socket * so)1082 unp_abort(struct socket *so)
1083 {
1084 	KASSERT(solocked(so));
1085 	KASSERT(sotounpcb(so) != NULL);
1086 
1087 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
1088 	KASSERT(so->so_head == NULL);
1089 	KASSERT(so->so_pcb != NULL);
1090 	unp_detach(so);
1091 	return 0;
1092 }
1093 
1094 static int
unp_connect1(struct socket * so,struct socket * so2,struct lwp * l)1095 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
1096 {
1097 	struct unpcb *unp = sotounpcb(so);
1098 	struct unpcb *unp2;
1099 
1100 	if (so2->so_type != so->so_type)
1101 		return EPROTOTYPE;
1102 
1103 	/*
1104 	 * All three sockets involved must be locked by same lock:
1105 	 *
1106 	 * local endpoint (so)
1107 	 * remote endpoint (so2)
1108 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1109 	 */
1110 	KASSERT(solocked2(so, so2));
1111 	KASSERT(so->so_head == NULL);
1112 	if (so2->so_head != NULL) {
1113 		KASSERT(so2->so_lock == uipc_lock);
1114 		KASSERT(solocked2(so2, so2->so_head));
1115 	}
1116 
1117 	unp2 = sotounpcb(so2);
1118 	unp->unp_conn = unp2;
1119 
1120 	switch (so->so_type) {
1121 
1122 	case SOCK_DGRAM:
1123 		unp->unp_nextref = unp2->unp_refs;
1124 		unp2->unp_refs = unp;
1125 		soisconnected(so);
1126 		break;
1127 
1128 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1129 	case SOCK_STREAM:
1130 
1131 		/*
1132 		 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1133 		 * which are unp_connect() or unp_connect2().
1134 		 */
1135 
1136 		break;
1137 
1138 	default:
1139 		panic("unp_connect1");
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 int
unp_connect(struct socket * so,struct sockaddr * nam,struct lwp * l)1146 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1147 {
1148 	struct sockaddr_un *sun;
1149 	vnode_t *vp;
1150 	struct socket *so2, *so3;
1151 	struct unpcb *unp, *unp2, *unp3;
1152 	size_t addrlen;
1153 	int error;
1154 	struct pathbuf *pb;
1155 	struct nameidata nd;
1156 
1157 	unp = sotounpcb(so);
1158 	if ((unp->unp_flags & UNP_BUSY) != 0) {
1159 		/*
1160 		 * EALREADY may not be strictly accurate, but since this
1161 		 * is a major application error it's hardly a big deal.
1162 		 */
1163 		return (EALREADY);
1164 	}
1165 	unp->unp_flags |= UNP_BUSY;
1166 	sounlock(so);
1167 
1168 	sun = makeun_sb(nam, &addrlen);
1169 	pb = pathbuf_create(sun->sun_path);
1170 	if (pb == NULL) {
1171 		error = ENOMEM;
1172 		goto bad2;
1173 	}
1174 
1175 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1176 
1177 	if ((error = namei(&nd)) != 0) {
1178 		pathbuf_destroy(pb);
1179 		goto bad2;
1180 	}
1181 	vp = nd.ni_vp;
1182 	pathbuf_destroy(pb);
1183 	if (vp->v_type != VSOCK) {
1184 		error = ENOTSOCK;
1185 		goto bad;
1186 	}
1187 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1188 		goto bad;
1189 	/* Acquire v_interlock to protect against unp_detach(). */
1190 	mutex_enter(vp->v_interlock);
1191 	so2 = vp->v_socket;
1192 	if (so2 == NULL) {
1193 		mutex_exit(vp->v_interlock);
1194 		error = ECONNREFUSED;
1195 		goto bad;
1196 	}
1197 	if (so->so_type != so2->so_type) {
1198 		mutex_exit(vp->v_interlock);
1199 		error = EPROTOTYPE;
1200 		goto bad;
1201 	}
1202 	solock(so);
1203 	unp_resetlock(so);
1204 	mutex_exit(vp->v_interlock);
1205 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1206 		/*
1207 		 * This may seem somewhat fragile but is OK: if we can
1208 		 * see SO_ACCEPTCONN set on the endpoint, then it must
1209 		 * be locked by the domain-wide uipc_lock.
1210 		 */
1211 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1212 		    so2->so_lock == uipc_lock);
1213 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1214 		    (so3 = sonewconn(so2, false)) == NULL) {
1215 			error = ECONNREFUSED;
1216 			sounlock(so);
1217 			goto bad;
1218 		}
1219 		unp2 = sotounpcb(so2);
1220 		unp3 = sotounpcb(so3);
1221 		if (unp2->unp_addr) {
1222 			unp3->unp_addr = malloc(unp2->unp_addrlen,
1223 			    M_SONAME, M_WAITOK);
1224 			memcpy(unp3->unp_addr, unp2->unp_addr,
1225 			    unp2->unp_addrlen);
1226 			unp3->unp_addrlen = unp2->unp_addrlen;
1227 		}
1228 		unp3->unp_flags = unp2->unp_flags;
1229 		so2 = so3;
1230 		/*
1231 		 * The connector's (client's) credentials are copied from its
1232 		 * process structure at the time of connect() (which is now).
1233 		 */
1234 		unp_connid(l, unp3, UNP_EIDSVALID);
1235 		 /*
1236 		  * The receiver's (server's) credentials are copied from the
1237 		  * unp_peercred member of socket on which the former called
1238 		  * listen(); unp_listen() cached that process's credentials
1239 		  * at that time so we can use them now.
1240 		  */
1241 		if (unp2->unp_flags & UNP_EIDSBIND) {
1242 			memcpy(&unp->unp_connid, &unp2->unp_connid,
1243 			    sizeof(unp->unp_connid));
1244 			unp->unp_flags |= UNP_EIDSVALID;
1245 		}
1246 	}
1247 	error = unp_connect1(so, so2, l);
1248 	if (error) {
1249 		sounlock(so);
1250 		goto bad;
1251 	}
1252 	unp2 = sotounpcb(so2);
1253 	switch (so->so_type) {
1254 
1255 	/*
1256 	 * SOCK_DGRAM and default cases are handled in prior call to
1257 	 * unp_connect1(), do not add a default case without fixing
1258 	 * unp_connect1().
1259 	 */
1260 
1261 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1262 	case SOCK_STREAM:
1263 		unp2->unp_conn = unp;
1264 		if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1265 			soisconnecting(so);
1266 		else
1267 			soisconnected(so);
1268 		soisconnected(so2);
1269 		/*
1270 		 * If the connection is fully established, break the
1271 		 * association with uipc_lock and give the connected
1272 		 * pair a separate lock to share.
1273 		 */
1274 		KASSERT(so2->so_head != NULL);
1275 		unp_setpeerlocks(so, so2);
1276 		break;
1277 
1278 	}
1279 	sounlock(so);
1280  bad:
1281 	vput(vp);
1282  bad2:
1283 	free(sun, M_SONAME);
1284 	solock(so);
1285 	unp->unp_flags &= ~UNP_BUSY;
1286 	return (error);
1287 }
1288 
1289 int
unp_connect2(struct socket * so,struct socket * so2)1290 unp_connect2(struct socket *so, struct socket *so2)
1291 {
1292 	struct unpcb *unp = sotounpcb(so);
1293 	struct unpcb *unp2;
1294 	int error = 0;
1295 
1296 	KASSERT(solocked2(so, so2));
1297 
1298 	error = unp_connect1(so, so2, curlwp);
1299 	if (error)
1300 		return error;
1301 
1302 	unp2 = sotounpcb(so2);
1303 	switch (so->so_type) {
1304 
1305 	/*
1306 	 * SOCK_DGRAM and default cases are handled in prior call to
1307 	 * unp_connect1(), do not add a default case without fixing
1308 	 * unp_connect1().
1309 	 */
1310 
1311 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1312 	case SOCK_STREAM:
1313 		unp2->unp_conn = unp;
1314 		soisconnected(so);
1315 		soisconnected(so2);
1316 		break;
1317 
1318 	}
1319 	return error;
1320 }
1321 
1322 static void
unp_disconnect1(struct unpcb * unp)1323 unp_disconnect1(struct unpcb *unp)
1324 {
1325 	struct unpcb *unp2 = unp->unp_conn;
1326 	struct socket *so;
1327 
1328 	if (unp2 == 0)
1329 		return;
1330 	unp->unp_conn = 0;
1331 	so = unp->unp_socket;
1332 	switch (so->so_type) {
1333 	case SOCK_DGRAM:
1334 		if (unp2->unp_refs == unp)
1335 			unp2->unp_refs = unp->unp_nextref;
1336 		else {
1337 			unp2 = unp2->unp_refs;
1338 			for (;;) {
1339 				KASSERT(solocked2(so, unp2->unp_socket));
1340 				if (unp2 == 0)
1341 					panic("unp_disconnect1");
1342 				if (unp2->unp_nextref == unp)
1343 					break;
1344 				unp2 = unp2->unp_nextref;
1345 			}
1346 			unp2->unp_nextref = unp->unp_nextref;
1347 		}
1348 		unp->unp_nextref = 0;
1349 		so->so_state &= ~SS_ISCONNECTED;
1350 		break;
1351 
1352 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1353 	case SOCK_STREAM:
1354 		KASSERT(solocked2(so, unp2->unp_socket));
1355 		soisdisconnected(so);
1356 		unp2->unp_conn = 0;
1357 		soisdisconnected(unp2->unp_socket);
1358 		break;
1359 	}
1360 }
1361 
1362 static void
unp_shutdown1(struct unpcb * unp)1363 unp_shutdown1(struct unpcb *unp)
1364 {
1365 	struct socket *so;
1366 
1367 	switch(unp->unp_socket->so_type) {
1368 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1369 	case SOCK_STREAM:
1370 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1371 			socantrcvmore(so);
1372 		break;
1373 	default:
1374 		break;
1375 	}
1376 }
1377 
1378 static bool
unp_drop(struct unpcb * unp,int errno)1379 unp_drop(struct unpcb *unp, int errno)
1380 {
1381 	struct socket *so = unp->unp_socket;
1382 
1383 	KASSERT(solocked(so));
1384 
1385 	so->so_error = errno;
1386 	unp_disconnect1(unp);
1387 	if (so->so_head) {
1388 		so->so_pcb = NULL;
1389 		/* sofree() drops the socket lock */
1390 		sofree(so);
1391 		unp_free(unp);
1392 		return true;
1393 	}
1394 	return false;
1395 }
1396 
1397 #ifdef notdef
unp_drain(void)1398 unp_drain(void)
1399 {
1400 
1401 }
1402 #endif
1403 
1404 int
unp_externalize(struct mbuf * rights,struct lwp * l,int flags)1405 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1406 {
1407 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1408 	struct proc * const p = l->l_proc;
1409 	file_t **rp;
1410 	int error = 0;
1411 
1412 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1413 	    sizeof(file_t *);
1414 	if (nfds == 0)
1415 		goto noop;
1416 
1417 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1418 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1419 
1420 	/* Make sure the recipient should be able to see the files.. */
1421 	rp = (file_t **)CMSG_DATA(cm);
1422 	for (size_t i = 0; i < nfds; i++) {
1423 		file_t * const fp = *rp++;
1424 		if (fp == NULL) {
1425 			error = EINVAL;
1426 			goto out;
1427 		}
1428 		/*
1429 		 * If we are in a chroot'ed directory, and
1430 		 * someone wants to pass us a directory, make
1431 		 * sure it's inside the subtree we're allowed
1432 		 * to access.
1433 		 */
1434 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1435 			vnode_t *vp = fp->f_vnode;
1436 			if ((vp->v_type == VDIR) &&
1437 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1438 				error = EPERM;
1439 				goto out;
1440 			}
1441 		}
1442 	}
1443 
1444  restart:
1445 	/*
1446 	 * First loop -- allocate file descriptor table slots for the
1447 	 * new files.
1448 	 */
1449 	for (size_t i = 0; i < nfds; i++) {
1450 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1451 			/*
1452 			 * Back out what we've done so far.
1453 			 */
1454 			while (i-- > 0) {
1455 				fd_abort(p, NULL, fdp[i]);
1456 			}
1457 			if (error == ENOSPC) {
1458 				fd_tryexpand(p);
1459 				error = 0;
1460 				goto restart;
1461 			}
1462 			/*
1463 			 * This is the error that has historically
1464 			 * been returned, and some callers may
1465 			 * expect it.
1466 			 */
1467 			error = EMSGSIZE;
1468 			goto out;
1469 		}
1470 	}
1471 
1472 	/*
1473 	 * Now that adding them has succeeded, update all of the
1474 	 * file passing state and affix the descriptors.
1475 	 */
1476 	rp = (file_t **)CMSG_DATA(cm);
1477 	int *ofdp = (int *)CMSG_DATA(cm);
1478 	for (size_t i = 0; i < nfds; i++) {
1479 		file_t * const fp = *rp++;
1480 		const int fd = fdp[i];
1481 		atomic_dec_uint(&unp_rights);
1482 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1483 		fd_affix(p, fp, fd);
1484 		/*
1485 		 * Done with this file pointer, replace it with a fd;
1486 		 */
1487 		*ofdp++ = fd;
1488 		mutex_enter(&fp->f_lock);
1489 		fp->f_msgcount--;
1490 		mutex_exit(&fp->f_lock);
1491 		/*
1492 		 * Note that fd_affix() adds a reference to the file.
1493 		 * The file may already have been closed by another
1494 		 * LWP in the process, so we must drop the reference
1495 		 * added by unp_internalize() with closef().
1496 		 */
1497 		closef(fp);
1498 	}
1499 
1500 	/*
1501 	 * Adjust length, in case of transition from large file_t
1502 	 * pointers to ints.
1503 	 */
1504 	if (sizeof(file_t *) != sizeof(int)) {
1505 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1506 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1507 	}
1508  out:
1509 	if (__predict_false(error != 0)) {
1510 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
1511 		for (size_t i = 0; i < nfds; i++)
1512 			unp_discard_now(fpp[i]);
1513 		/*
1514 		 * Truncate the array so that nobody will try to interpret
1515 		 * what is now garbage in it.
1516 		 */
1517 		cm->cmsg_len = CMSG_LEN(0);
1518 		rights->m_len = CMSG_SPACE(0);
1519 	}
1520 	rw_exit(&p->p_cwdi->cwdi_lock);
1521 	kmem_free(fdp, nfds * sizeof(int));
1522 
1523  noop:
1524 	/*
1525 	 * Don't disclose kernel memory in the alignment space.
1526 	 */
1527 	KASSERT(cm->cmsg_len <= rights->m_len);
1528 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1529 	    cm->cmsg_len);
1530 	return error;
1531 }
1532 
1533 static int
unp_internalize(struct mbuf ** controlp)1534 unp_internalize(struct mbuf **controlp)
1535 {
1536 	filedesc_t *fdescp = curlwp->l_fd;
1537 	fdtab_t *dt;
1538 	struct mbuf *control = *controlp;
1539 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1540 	file_t **rp, **files;
1541 	file_t *fp;
1542 	int i, fd, *fdp;
1543 	int nfds, error;
1544 	u_int maxmsg;
1545 
1546 	error = 0;
1547 	newcm = NULL;
1548 
1549 	/* Sanity check the control message header. */
1550 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1551 	    cm->cmsg_len > control->m_len ||
1552 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1553 		return (EINVAL);
1554 
1555 	/*
1556 	 * Verify that the file descriptors are valid, and acquire
1557 	 * a reference to each.
1558 	 */
1559 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1560 	fdp = (int *)CMSG_DATA(cm);
1561 	maxmsg = maxfiles / unp_rights_ratio;
1562 	for (i = 0; i < nfds; i++) {
1563 		fd = *fdp++;
1564 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1565 			atomic_dec_uint(&unp_rights);
1566 			nfds = i;
1567 			error = EAGAIN;
1568 			goto out;
1569 		}
1570 		if ((fp = fd_getfile(fd)) == NULL
1571 		    || fp->f_type == DTYPE_KQUEUE) {
1572 		    	if (fp)
1573 		    		fd_putfile(fd);
1574 			atomic_dec_uint(&unp_rights);
1575 			nfds = i;
1576 			error = EBADF;
1577 			goto out;
1578 		}
1579 	}
1580 
1581 	/* Allocate new space and copy header into it. */
1582 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1583 	if (newcm == NULL) {
1584 		error = E2BIG;
1585 		goto out;
1586 	}
1587 	memcpy(newcm, cm, sizeof(struct cmsghdr));
1588 	memset(newcm + 1, 0, CMSG_LEN(0) - sizeof(struct cmsghdr));
1589 	files = (file_t **)CMSG_DATA(newcm);
1590 
1591 	/*
1592 	 * Transform the file descriptors into file_t pointers, in
1593 	 * reverse order so that if pointers are bigger than ints, the
1594 	 * int won't get until we're done.  No need to lock, as we have
1595 	 * already validated the descriptors with fd_getfile().
1596 	 */
1597 	fdp = (int *)CMSG_DATA(cm) + nfds;
1598 	rp = files + nfds;
1599 	for (i = 0; i < nfds; i++) {
1600 		dt = atomic_load_consume(&fdescp->fd_dt);
1601 		fp = atomic_load_consume(&dt->dt_ff[*--fdp]->ff_file);
1602 		KASSERT(fp != NULL);
1603 		mutex_enter(&fp->f_lock);
1604 		*--rp = fp;
1605 		fp->f_count++;
1606 		fp->f_msgcount++;
1607 		mutex_exit(&fp->f_lock);
1608 	}
1609 
1610  out:
1611  	/* Release descriptor references. */
1612 	fdp = (int *)CMSG_DATA(cm);
1613 	for (i = 0; i < nfds; i++) {
1614 		fd_putfile(*fdp++);
1615 		if (error != 0) {
1616 			atomic_dec_uint(&unp_rights);
1617 		}
1618 	}
1619 
1620 	if (error == 0) {
1621 		if (control->m_flags & M_EXT) {
1622 			m_freem(control);
1623 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
1624 		}
1625 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1626 		    M_MBUF, NULL, NULL);
1627 		cm = newcm;
1628 		/*
1629 		 * Adjust message & mbuf to note amount of space
1630 		 * actually used.
1631 		 */
1632 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1633 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1634 	}
1635 
1636 	return error;
1637 }
1638 
1639 struct mbuf *
unp_addsockcred(struct lwp * l,struct mbuf * control)1640 unp_addsockcred(struct lwp *l, struct mbuf *control)
1641 {
1642 	struct sockcred *sc;
1643 	struct mbuf *m;
1644 	void *p;
1645 
1646 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1647 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
1648 	if (m == NULL)
1649 		return control;
1650 
1651 	sc = p;
1652 	sc->sc_pid = l->l_proc->p_pid;
1653 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
1654 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1655 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
1656 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
1657 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1658 
1659 	for (int i = 0; i < sc->sc_ngroups; i++)
1660 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1661 
1662 	return m_add(control, m);
1663 }
1664 
1665 /*
1666  * Do a mark-sweep GC of files in the system, to free up any which are
1667  * caught in flight to an about-to-be-closed socket.  Additionally,
1668  * process deferred file closures.
1669  */
1670 static void
unp_gc(file_t * dp)1671 unp_gc(file_t *dp)
1672 {
1673 	extern	struct domain unixdomain;
1674 	file_t *fp, *np;
1675 	struct socket *so, *so1;
1676 	u_int i, oflags, rflags;
1677 	bool didwork;
1678 
1679 	KASSERT(curlwp == unp_thread_lwp);
1680 	KASSERT(mutex_owned(&filelist_lock));
1681 
1682 	/*
1683 	 * First, process deferred file closures.
1684 	 */
1685 	while (!SLIST_EMPTY(&unp_thread_discard)) {
1686 		fp = SLIST_FIRST(&unp_thread_discard);
1687 		KASSERT(fp->f_unpcount > 0);
1688 		KASSERT(fp->f_count > 0);
1689 		KASSERT(fp->f_msgcount > 0);
1690 		KASSERT(fp->f_count >= fp->f_unpcount);
1691 		KASSERT(fp->f_count >= fp->f_msgcount);
1692 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
1693 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1694 		i = fp->f_unpcount;
1695 		fp->f_unpcount = 0;
1696 		mutex_exit(&filelist_lock);
1697 		for (; i != 0; i--) {
1698 			unp_discard_now(fp);
1699 		}
1700 		mutex_enter(&filelist_lock);
1701 	}
1702 
1703 	/*
1704 	 * Clear mark bits.  Ensure that we don't consider new files
1705 	 * entering the file table during this loop (they will not have
1706 	 * FSCAN set).
1707 	 */
1708 	unp_defer = 0;
1709 	LIST_FOREACH(fp, &filehead, f_list) {
1710 		for (oflags = fp->f_flag;; oflags = rflags) {
1711 			rflags = atomic_cas_uint(&fp->f_flag, oflags,
1712 			    (oflags | FSCAN) & ~(FMARK|FDEFER));
1713 			if (__predict_true(oflags == rflags)) {
1714 				break;
1715 			}
1716 		}
1717 	}
1718 
1719 	/*
1720 	 * Iterate over the set of sockets, marking ones believed (based on
1721 	 * refcount) to be referenced from a process, and marking for rescan
1722 	 * sockets which are queued on a socket.  Recan continues descending
1723 	 * and searching for sockets referenced by sockets (FDEFER), until
1724 	 * there are no more socket->socket references to be discovered.
1725 	 */
1726 	do {
1727 		didwork = false;
1728 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1729 			KASSERT(mutex_owned(&filelist_lock));
1730 			np = LIST_NEXT(fp, f_list);
1731 			mutex_enter(&fp->f_lock);
1732 			if ((fp->f_flag & FDEFER) != 0) {
1733 				atomic_and_uint(&fp->f_flag, ~FDEFER);
1734 				unp_defer--;
1735 				if (fp->f_count == 0) {
1736 					/*
1737 					 * XXX: closef() doesn't pay attention
1738 					 * to FDEFER
1739 					 */
1740 					mutex_exit(&fp->f_lock);
1741 					continue;
1742 				}
1743 			} else {
1744 				if (fp->f_count == 0 ||
1745 				    (fp->f_flag & FMARK) != 0 ||
1746 				    fp->f_count == fp->f_msgcount ||
1747 				    fp->f_unpcount != 0) {
1748 					mutex_exit(&fp->f_lock);
1749 					continue;
1750 				}
1751 			}
1752 			atomic_or_uint(&fp->f_flag, FMARK);
1753 
1754 			if (fp->f_type != DTYPE_SOCKET ||
1755 			    (so = fp->f_socket) == NULL ||
1756 			    so->so_proto->pr_domain != &unixdomain ||
1757 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1758 				mutex_exit(&fp->f_lock);
1759 				continue;
1760 			}
1761 
1762 			/* Gain file ref, mark our position, and unlock. */
1763 			didwork = true;
1764 			LIST_INSERT_AFTER(fp, dp, f_list);
1765 			fp->f_count++;
1766 			mutex_exit(&fp->f_lock);
1767 			mutex_exit(&filelist_lock);
1768 
1769 			/*
1770 			 * Mark files referenced from sockets queued on the
1771 			 * accept queue as well.
1772 			 */
1773 			solock(so);
1774 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1775 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
1776 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1777 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1778 				}
1779 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1780 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1781 				}
1782 			}
1783 			sounlock(so);
1784 
1785 			/* Re-lock and restart from where we left off. */
1786 			closef(fp);
1787 			mutex_enter(&filelist_lock);
1788 			np = LIST_NEXT(dp, f_list);
1789 			LIST_REMOVE(dp, f_list);
1790 		}
1791 		/*
1792 		 * Bail early if we did nothing in the loop above.  Could
1793 		 * happen because of concurrent activity causing unp_defer
1794 		 * to get out of sync.
1795 		 */
1796 	} while (unp_defer != 0 && didwork);
1797 
1798 	/*
1799 	 * Sweep pass.
1800 	 *
1801 	 * We grab an extra reference to each of the files that are
1802 	 * not otherwise accessible and then free the rights that are
1803 	 * stored in messages on them.
1804 	 */
1805 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1806 		KASSERT(mutex_owned(&filelist_lock));
1807 		np = LIST_NEXT(fp, f_list);
1808 		mutex_enter(&fp->f_lock);
1809 
1810 		/*
1811 		 * Ignore non-sockets.
1812 		 * Ignore dead sockets, or sockets with pending close.
1813 		 * Ignore sockets obviously referenced elsewhere.
1814 		 * Ignore sockets marked as referenced by our scan.
1815 		 * Ignore new sockets that did not exist during the scan.
1816 		 */
1817 		if (fp->f_type != DTYPE_SOCKET ||
1818 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
1819 		    fp->f_count != fp->f_msgcount ||
1820 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1821 			mutex_exit(&fp->f_lock);
1822 			continue;
1823 		}
1824 
1825 		/* Gain file ref, mark our position, and unlock. */
1826 		LIST_INSERT_AFTER(fp, dp, f_list);
1827 		fp->f_count++;
1828 		mutex_exit(&fp->f_lock);
1829 		mutex_exit(&filelist_lock);
1830 
1831 		/*
1832 		 * Flush all data from the socket's receive buffer.
1833 		 * This will cause files referenced only by the
1834 		 * socket to be queued for close.
1835 		 */
1836 		so = fp->f_socket;
1837 		solock(so);
1838 		sorflush(so);
1839 		sounlock(so);
1840 
1841 		/* Re-lock and restart from where we left off. */
1842 		closef(fp);
1843 		mutex_enter(&filelist_lock);
1844 		np = LIST_NEXT(dp, f_list);
1845 		LIST_REMOVE(dp, f_list);
1846 	}
1847 }
1848 
1849 /*
1850  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
1851  * wake once per second to garbage collect.  Run continually while we
1852  * have deferred closes to process.
1853  */
1854 static void
unp_thread(void * cookie)1855 unp_thread(void *cookie)
1856 {
1857 	file_t *dp;
1858 
1859 	/* Allocate a dummy file for our scans. */
1860 	if ((dp = fgetdummy()) == NULL) {
1861 		panic("unp_thread");
1862 	}
1863 
1864 	mutex_enter(&filelist_lock);
1865 	for (;;) {
1866 		KASSERT(mutex_owned(&filelist_lock));
1867 		if (SLIST_EMPTY(&unp_thread_discard)) {
1868 			if (unp_rights != 0) {
1869 				(void)cv_timedwait(&unp_thread_cv,
1870 				    &filelist_lock, hz);
1871 			} else {
1872 				cv_wait(&unp_thread_cv, &filelist_lock);
1873 			}
1874 		}
1875 		unp_gc(dp);
1876 	}
1877 	/* NOTREACHED */
1878 }
1879 
1880 /*
1881  * Kick the garbage collector into action if there is something for
1882  * it to process.
1883  */
1884 static void
unp_thread_kick(void)1885 unp_thread_kick(void)
1886 {
1887 
1888 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1889 		mutex_enter(&filelist_lock);
1890 		cv_signal(&unp_thread_cv);
1891 		mutex_exit(&filelist_lock);
1892 	}
1893 }
1894 
1895 void
unp_dispose(struct mbuf * m)1896 unp_dispose(struct mbuf *m)
1897 {
1898 
1899 	if (m)
1900 		unp_scan(m, unp_discard_later, 1);
1901 }
1902 
1903 void
unp_scan(struct mbuf * m0,void (* op)(file_t *),int discard)1904 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1905 {
1906 	struct mbuf *m;
1907 	file_t **rp, *fp;
1908 	struct cmsghdr *cm;
1909 	int i, qfds;
1910 
1911 	while (m0) {
1912 		for (m = m0; m; m = m->m_next) {
1913 			if (m->m_type != MT_CONTROL ||
1914 			    m->m_len < sizeof(*cm)) {
1915 			    	continue;
1916 			}
1917 			cm = mtod(m, struct cmsghdr *);
1918 			if (cm->cmsg_level != SOL_SOCKET ||
1919 			    cm->cmsg_type != SCM_RIGHTS)
1920 				continue;
1921 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1922 			    / sizeof(file_t *);
1923 			rp = (file_t **)CMSG_DATA(cm);
1924 			for (i = 0; i < qfds; i++) {
1925 				fp = *rp;
1926 				if (discard) {
1927 					*rp = 0;
1928 				}
1929 				(*op)(fp);
1930 				rp++;
1931 			}
1932 		}
1933 		m0 = m0->m_nextpkt;
1934 	}
1935 }
1936 
1937 void
unp_mark(file_t * fp)1938 unp_mark(file_t *fp)
1939 {
1940 
1941 	if (fp == NULL)
1942 		return;
1943 
1944 	/* If we're already deferred, don't screw up the defer count */
1945 	mutex_enter(&fp->f_lock);
1946 	if (fp->f_flag & (FMARK | FDEFER)) {
1947 		mutex_exit(&fp->f_lock);
1948 		return;
1949 	}
1950 
1951 	/*
1952 	 * Minimize the number of deferrals...  Sockets are the only type of
1953 	 * file which can hold references to another file, so just mark
1954 	 * other files, and defer unmarked sockets for the next pass.
1955 	 */
1956 	if (fp->f_type == DTYPE_SOCKET) {
1957 		unp_defer++;
1958 		KASSERT(fp->f_count != 0);
1959 		atomic_or_uint(&fp->f_flag, FDEFER);
1960 	} else {
1961 		atomic_or_uint(&fp->f_flag, FMARK);
1962 	}
1963 	mutex_exit(&fp->f_lock);
1964 }
1965 
1966 static void
unp_discard_now(file_t * fp)1967 unp_discard_now(file_t *fp)
1968 {
1969 
1970 	if (fp == NULL)
1971 		return;
1972 
1973 	KASSERT(fp->f_count > 0);
1974 	KASSERT(fp->f_msgcount > 0);
1975 
1976 	mutex_enter(&fp->f_lock);
1977 	fp->f_msgcount--;
1978 	mutex_exit(&fp->f_lock);
1979 	atomic_dec_uint(&unp_rights);
1980 	(void)closef(fp);
1981 }
1982 
1983 static void
unp_discard_later(file_t * fp)1984 unp_discard_later(file_t *fp)
1985 {
1986 
1987 	if (fp == NULL)
1988 		return;
1989 
1990 	KASSERT(fp->f_count > 0);
1991 	KASSERT(fp->f_msgcount > 0);
1992 
1993 	mutex_enter(&filelist_lock);
1994 	if (fp->f_unpcount++ == 0) {
1995 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1996 	}
1997 	mutex_exit(&filelist_lock);
1998 }
1999 
2000 static void
unp_sysctl_create(void)2001 unp_sysctl_create(void)
2002 {
2003 
2004 	KASSERT(usrreq_sysctllog == NULL);
2005 	sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2006 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2007 		       CTLTYPE_LONG, "sendspace",
2008 		       SYSCTL_DESCR("Default stream send space"),
2009 		       NULL, 0, &unpst_sendspace, 0,
2010 		       CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
2011 	sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2012 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2013 		       CTLTYPE_LONG, "recvspace",
2014 		       SYSCTL_DESCR("Default stream recv space"),
2015 		       NULL, 0, &unpst_recvspace, 0,
2016 		       CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
2017 	sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2018 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2019 		       CTLTYPE_LONG, "sendspace",
2020 		       SYSCTL_DESCR("Default datagram send space"),
2021 		       NULL, 0, &unpdg_sendspace, 0,
2022 		       CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
2023 	sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2024 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2025 		       CTLTYPE_LONG, "recvspace",
2026 		       SYSCTL_DESCR("Default datagram recv space"),
2027 		       NULL, 0, &unpdg_recvspace, 0,
2028 		       CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
2029 	sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2030 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
2031 		       CTLTYPE_INT, "inflight",
2032 		       SYSCTL_DESCR("File descriptors in flight"),
2033 		       NULL, 0, &unp_rights, 0,
2034 		       CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
2035 	sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL,
2036 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
2037 		       CTLTYPE_INT, "deferred",
2038 		       SYSCTL_DESCR("File descriptors deferred for close"),
2039 		       NULL, 0, &unp_defer, 0,
2040 		       CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
2041 }
2042 
2043 const struct pr_usrreqs unp_usrreqs = {
2044 	.pr_attach	= unp_attach,
2045 	.pr_detach	= unp_detach,
2046 	.pr_accept	= unp_accept,
2047 	.pr_bind	= unp_bind,
2048 	.pr_listen	= unp_listen,
2049 	.pr_connect	= unp_connect,
2050 	.pr_connect2	= unp_connect2,
2051 	.pr_disconnect	= unp_disconnect,
2052 	.pr_shutdown	= unp_shutdown,
2053 	.pr_abort	= unp_abort,
2054 	.pr_ioctl	= unp_ioctl,
2055 	.pr_stat	= unp_stat,
2056 	.pr_peeraddr	= unp_peeraddr,
2057 	.pr_sockaddr	= unp_sockaddr,
2058 	.pr_rcvd	= unp_rcvd,
2059 	.pr_recvoob	= unp_recvoob,
2060 	.pr_send	= unp_send,
2061 	.pr_sendoob	= unp_sendoob,
2062 };
2063