1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27
28 #include "internal.h"
29
30 struct follow_page_context {
31 struct dev_pagemap *pgmap;
32 unsigned int page_mask;
33 };
34
sanity_check_pinned_pages(struct page ** pages,unsigned long npages)35 static inline void sanity_check_pinned_pages(struct page **pages,
36 unsigned long npages)
37 {
38 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 return;
40
41 /*
42 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 * can no longer turn them possibly shared and PageAnonExclusive() will
44 * stick around until the page is freed.
45 *
46 * We'd like to verify that our pinned anonymous pages are still mapped
47 * exclusively. The issue with anon THP is that we don't know how
48 * they are/were mapped when pinning them. However, for anon
49 * THP we can assume that either the given page (PTE-mapped THP) or
50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 * neither is the case, there is certainly something wrong.
52 */
53 for (; npages; npages--, pages++) {
54 struct page *page = *pages;
55 struct folio *folio = page_folio(page);
56
57 if (is_zero_page(page) ||
58 !folio_test_anon(folio))
59 continue;
60 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
62 else
63 /* Either a PTE-mapped or a PMD-mapped THP. */
64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
65 !PageAnonExclusive(page), page);
66 }
67 }
68
69 /*
70 * Return the folio with ref appropriately incremented,
71 * or NULL if that failed.
72 */
try_get_folio(struct page * page,int refs)73 static inline struct folio *try_get_folio(struct page *page, int refs)
74 {
75 struct folio *folio;
76
77 retry:
78 folio = page_folio(page);
79 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
80 return NULL;
81 if (unlikely(!folio_ref_try_add(folio, refs)))
82 return NULL;
83
84 /*
85 * At this point we have a stable reference to the folio; but it
86 * could be that between calling page_folio() and the refcount
87 * increment, the folio was split, in which case we'd end up
88 * holding a reference on a folio that has nothing to do with the page
89 * we were given anymore.
90 * So now that the folio is stable, recheck that the page still
91 * belongs to this folio.
92 */
93 if (unlikely(page_folio(page) != folio)) {
94 if (!put_devmap_managed_folio_refs(folio, refs))
95 folio_put_refs(folio, refs);
96 goto retry;
97 }
98
99 return folio;
100 }
101
gup_put_folio(struct folio * folio,int refs,unsigned int flags)102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
103 {
104 if (flags & FOLL_PIN) {
105 if (is_zero_folio(folio))
106 return;
107 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108 if (folio_test_large(folio))
109 atomic_sub(refs, &folio->_pincount);
110 else
111 refs *= GUP_PIN_COUNTING_BIAS;
112 }
113
114 if (!put_devmap_managed_folio_refs(folio, refs))
115 folio_put_refs(folio, refs);
116 }
117
118 /**
119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount
120 * @folio: pointer to folio to be grabbed
121 * @refs: the value to (effectively) add to the folio's refcount
122 * @flags: gup flags: these are the FOLL_* flag values
123 *
124 * This might not do anything at all, depending on the flags argument.
125 *
126 * "grab" names in this file mean, "look at flags to decide whether to use
127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
128 *
129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
130 * time.
131 *
132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
133 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
134 *
135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not
136 * be grabbed.
137 *
138 * It is called when we have a stable reference for the folio, typically in
139 * GUP slow path.
140 */
try_grab_folio(struct folio * folio,int refs,unsigned int flags)141 int __must_check try_grab_folio(struct folio *folio, int refs,
142 unsigned int flags)
143 {
144 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
145 return -ENOMEM;
146
147 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
148 return -EREMOTEIO;
149
150 if (flags & FOLL_GET)
151 folio_ref_add(folio, refs);
152 else if (flags & FOLL_PIN) {
153 /*
154 * Don't take a pin on the zero page - it's not going anywhere
155 * and it is used in a *lot* of places.
156 */
157 if (is_zero_folio(folio))
158 return 0;
159
160 /*
161 * Increment the normal page refcount field at least once,
162 * so that the page really is pinned.
163 */
164 if (folio_test_large(folio)) {
165 folio_ref_add(folio, refs);
166 atomic_add(refs, &folio->_pincount);
167 } else {
168 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
169 }
170
171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
172 }
173
174 return 0;
175 }
176
177 /**
178 * unpin_user_page() - release a dma-pinned page
179 * @page: pointer to page to be released
180 *
181 * Pages that were pinned via pin_user_pages*() must be released via either
182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
183 * that such pages can be separately tracked and uniquely handled. In
184 * particular, interactions with RDMA and filesystems need special handling.
185 */
unpin_user_page(struct page * page)186 void unpin_user_page(struct page *page)
187 {
188 sanity_check_pinned_pages(&page, 1);
189 gup_put_folio(page_folio(page), 1, FOLL_PIN);
190 }
191 EXPORT_SYMBOL(unpin_user_page);
192
193 /**
194 * unpin_folio() - release a dma-pinned folio
195 * @folio: pointer to folio to be released
196 *
197 * Folios that were pinned via memfd_pin_folios() or other similar routines
198 * must be released either using unpin_folio() or unpin_folios().
199 */
unpin_folio(struct folio * folio)200 void unpin_folio(struct folio *folio)
201 {
202 gup_put_folio(folio, 1, FOLL_PIN);
203 }
204 EXPORT_SYMBOL_GPL(unpin_folio);
205
206 /**
207 * folio_add_pin - Try to get an additional pin on a pinned folio
208 * @folio: The folio to be pinned
209 *
210 * Get an additional pin on a folio we already have a pin on. Makes no change
211 * if the folio is a zero_page.
212 */
folio_add_pin(struct folio * folio)213 void folio_add_pin(struct folio *folio)
214 {
215 if (is_zero_folio(folio))
216 return;
217
218 /*
219 * Similar to try_grab_folio(): be sure to *also* increment the normal
220 * page refcount field at least once, so that the page really is
221 * pinned.
222 */
223 if (folio_test_large(folio)) {
224 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
225 folio_ref_inc(folio);
226 atomic_inc(&folio->_pincount);
227 } else {
228 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 }
231 }
232
gup_folio_range_next(struct page * start,unsigned long npages,unsigned long i,unsigned int * ntails)233 static inline struct folio *gup_folio_range_next(struct page *start,
234 unsigned long npages, unsigned long i, unsigned int *ntails)
235 {
236 struct page *next = nth_page(start, i);
237 struct folio *folio = page_folio(next);
238 unsigned int nr = 1;
239
240 if (folio_test_large(folio))
241 nr = min_t(unsigned int, npages - i,
242 folio_nr_pages(folio) - folio_page_idx(folio, next));
243
244 *ntails = nr;
245 return folio;
246 }
247
gup_folio_next(struct page ** list,unsigned long npages,unsigned long i,unsigned int * ntails)248 static inline struct folio *gup_folio_next(struct page **list,
249 unsigned long npages, unsigned long i, unsigned int *ntails)
250 {
251 struct folio *folio = page_folio(list[i]);
252 unsigned int nr;
253
254 for (nr = i + 1; nr < npages; nr++) {
255 if (page_folio(list[nr]) != folio)
256 break;
257 }
258
259 *ntails = nr - i;
260 return folio;
261 }
262
263 /**
264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
265 * @pages: array of pages to be maybe marked dirty, and definitely released.
266 * @npages: number of pages in the @pages array.
267 * @make_dirty: whether to mark the pages dirty
268 *
269 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
270 * variants called on that page.
271 *
272 * For each page in the @pages array, make that page (or its head page, if a
273 * compound page) dirty, if @make_dirty is true, and if the page was previously
274 * listed as clean. In any case, releases all pages using unpin_user_page(),
275 * possibly via unpin_user_pages(), for the non-dirty case.
276 *
277 * Please see the unpin_user_page() documentation for details.
278 *
279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
280 * required, then the caller should a) verify that this is really correct,
281 * because _lock() is usually required, and b) hand code it:
282 * set_page_dirty_lock(), unpin_user_page().
283 *
284 */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
286 bool make_dirty)
287 {
288 unsigned long i;
289 struct folio *folio;
290 unsigned int nr;
291
292 if (!make_dirty) {
293 unpin_user_pages(pages, npages);
294 return;
295 }
296
297 sanity_check_pinned_pages(pages, npages);
298 for (i = 0; i < npages; i += nr) {
299 folio = gup_folio_next(pages, npages, i, &nr);
300 /*
301 * Checking PageDirty at this point may race with
302 * clear_page_dirty_for_io(), but that's OK. Two key
303 * cases:
304 *
305 * 1) This code sees the page as already dirty, so it
306 * skips the call to set_page_dirty(). That could happen
307 * because clear_page_dirty_for_io() called
308 * folio_mkclean(), followed by set_page_dirty().
309 * However, now the page is going to get written back,
310 * which meets the original intention of setting it
311 * dirty, so all is well: clear_page_dirty_for_io() goes
312 * on to call TestClearPageDirty(), and write the page
313 * back.
314 *
315 * 2) This code sees the page as clean, so it calls
316 * set_page_dirty(). The page stays dirty, despite being
317 * written back, so it gets written back again in the
318 * next writeback cycle. This is harmless.
319 */
320 if (!folio_test_dirty(folio)) {
321 folio_lock(folio);
322 folio_mark_dirty(folio);
323 folio_unlock(folio);
324 }
325 gup_put_folio(folio, nr, FOLL_PIN);
326 }
327 }
328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
329
330 /**
331 * unpin_user_page_range_dirty_lock() - release and optionally dirty
332 * gup-pinned page range
333 *
334 * @page: the starting page of a range maybe marked dirty, and definitely released.
335 * @npages: number of consecutive pages to release.
336 * @make_dirty: whether to mark the pages dirty
337 *
338 * "gup-pinned page range" refers to a range of pages that has had one of the
339 * pin_user_pages() variants called on that page.
340 *
341 * For the page ranges defined by [page .. page+npages], make that range (or
342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343 * page range was previously listed as clean.
344 *
345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346 * required, then the caller should a) verify that this is really correct,
347 * because _lock() is usually required, and b) hand code it:
348 * set_page_dirty_lock(), unpin_user_page().
349 *
350 */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
352 bool make_dirty)
353 {
354 unsigned long i;
355 struct folio *folio;
356 unsigned int nr;
357
358 for (i = 0; i < npages; i += nr) {
359 folio = gup_folio_range_next(page, npages, i, &nr);
360 if (make_dirty && !folio_test_dirty(folio)) {
361 folio_lock(folio);
362 folio_mark_dirty(folio);
363 folio_unlock(folio);
364 }
365 gup_put_folio(folio, nr, FOLL_PIN);
366 }
367 }
368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
369
gup_fast_unpin_user_pages(struct page ** pages,unsigned long npages)370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
371 {
372 unsigned long i;
373 struct folio *folio;
374 unsigned int nr;
375
376 /*
377 * Don't perform any sanity checks because we might have raced with
378 * fork() and some anonymous pages might now actually be shared --
379 * which is why we're unpinning after all.
380 */
381 for (i = 0; i < npages; i += nr) {
382 folio = gup_folio_next(pages, npages, i, &nr);
383 gup_put_folio(folio, nr, FOLL_PIN);
384 }
385 }
386
387 /**
388 * unpin_user_pages() - release an array of gup-pinned pages.
389 * @pages: array of pages to be marked dirty and released.
390 * @npages: number of pages in the @pages array.
391 *
392 * For each page in the @pages array, release the page using unpin_user_page().
393 *
394 * Please see the unpin_user_page() documentation for details.
395 */
unpin_user_pages(struct page ** pages,unsigned long npages)396 void unpin_user_pages(struct page **pages, unsigned long npages)
397 {
398 unsigned long i;
399 struct folio *folio;
400 unsigned int nr;
401
402 /*
403 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 * leaving them pinned), but probably not. More likely, gup/pup returned
405 * a hard -ERRNO error to the caller, who erroneously passed it here.
406 */
407 if (WARN_ON(IS_ERR_VALUE(npages)))
408 return;
409
410 sanity_check_pinned_pages(pages, npages);
411 for (i = 0; i < npages; i += nr) {
412 folio = gup_folio_next(pages, npages, i, &nr);
413 gup_put_folio(folio, nr, FOLL_PIN);
414 }
415 }
416 EXPORT_SYMBOL(unpin_user_pages);
417
418 /**
419 * unpin_user_folio() - release pages of a folio
420 * @folio: pointer to folio to be released
421 * @npages: number of pages of same folio
422 *
423 * Release npages of the folio
424 */
unpin_user_folio(struct folio * folio,unsigned long npages)425 void unpin_user_folio(struct folio *folio, unsigned long npages)
426 {
427 gup_put_folio(folio, npages, FOLL_PIN);
428 }
429 EXPORT_SYMBOL(unpin_user_folio);
430
431 /**
432 * unpin_folios() - release an array of gup-pinned folios.
433 * @folios: array of folios to be marked dirty and released.
434 * @nfolios: number of folios in the @folios array.
435 *
436 * For each folio in the @folios array, release the folio using gup_put_folio.
437 *
438 * Please see the unpin_folio() documentation for details.
439 */
unpin_folios(struct folio ** folios,unsigned long nfolios)440 void unpin_folios(struct folio **folios, unsigned long nfolios)
441 {
442 unsigned long i = 0, j;
443
444 /*
445 * If this WARN_ON() fires, then the system *might* be leaking folios
446 * (by leaving them pinned), but probably not. More likely, gup/pup
447 * returned a hard -ERRNO error to the caller, who erroneously passed
448 * it here.
449 */
450 if (WARN_ON(IS_ERR_VALUE(nfolios)))
451 return;
452
453 while (i < nfolios) {
454 for (j = i + 1; j < nfolios; j++)
455 if (folios[i] != folios[j])
456 break;
457
458 if (folios[i])
459 gup_put_folio(folios[i], j - i, FOLL_PIN);
460 i = j;
461 }
462 }
463 EXPORT_SYMBOL_GPL(unpin_folios);
464
465 /*
466 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
467 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
468 * cache bouncing on large SMP machines for concurrent pinned gups.
469 */
mm_set_has_pinned_flag(unsigned long * mm_flags)470 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
471 {
472 if (!test_bit(MMF_HAS_PINNED, mm_flags))
473 set_bit(MMF_HAS_PINNED, mm_flags);
474 }
475
476 #ifdef CONFIG_MMU
477
478 #ifdef CONFIG_HAVE_GUP_FAST
record_subpages(struct page * page,unsigned long sz,unsigned long addr,unsigned long end,struct page ** pages)479 static int record_subpages(struct page *page, unsigned long sz,
480 unsigned long addr, unsigned long end,
481 struct page **pages)
482 {
483 struct page *start_page;
484 int nr;
485
486 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
487 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
488 pages[nr] = nth_page(start_page, nr);
489
490 return nr;
491 }
492
493 /**
494 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
495 * @page: pointer to page to be grabbed
496 * @refs: the value to (effectively) add to the folio's refcount
497 * @flags: gup flags: these are the FOLL_* flag values.
498 *
499 * "grab" names in this file mean, "look at flags to decide whether to use
500 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
501 *
502 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
503 * same time. (That's true throughout the get_user_pages*() and
504 * pin_user_pages*() APIs.) Cases:
505 *
506 * FOLL_GET: folio's refcount will be incremented by @refs.
507 *
508 * FOLL_PIN on large folios: folio's refcount will be incremented by
509 * @refs, and its pincount will be incremented by @refs.
510 *
511 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
512 * @refs * GUP_PIN_COUNTING_BIAS.
513 *
514 * Return: The folio containing @page (with refcount appropriately
515 * incremented) for success, or NULL upon failure. If neither FOLL_GET
516 * nor FOLL_PIN was set, that's considered failure, and furthermore,
517 * a likely bug in the caller, so a warning is also emitted.
518 *
519 * It uses add ref unless zero to elevate the folio refcount and must be called
520 * in fast path only.
521 */
try_grab_folio_fast(struct page * page,int refs,unsigned int flags)522 static struct folio *try_grab_folio_fast(struct page *page, int refs,
523 unsigned int flags)
524 {
525 struct folio *folio;
526
527 /* Raise warn if it is not called in fast GUP */
528 VM_WARN_ON_ONCE(!irqs_disabled());
529
530 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
531 return NULL;
532
533 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
534 return NULL;
535
536 if (flags & FOLL_GET)
537 return try_get_folio(page, refs);
538
539 /* FOLL_PIN is set */
540
541 /*
542 * Don't take a pin on the zero page - it's not going anywhere
543 * and it is used in a *lot* of places.
544 */
545 if (is_zero_page(page))
546 return page_folio(page);
547
548 folio = try_get_folio(page, refs);
549 if (!folio)
550 return NULL;
551
552 /*
553 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
554 * right zone, so fail and let the caller fall back to the slow
555 * path.
556 */
557 if (unlikely((flags & FOLL_LONGTERM) &&
558 !folio_is_longterm_pinnable(folio))) {
559 if (!put_devmap_managed_folio_refs(folio, refs))
560 folio_put_refs(folio, refs);
561 return NULL;
562 }
563
564 /*
565 * When pinning a large folio, use an exact count to track it.
566 *
567 * However, be sure to *also* increment the normal folio
568 * refcount field at least once, so that the folio really
569 * is pinned. That's why the refcount from the earlier
570 * try_get_folio() is left intact.
571 */
572 if (folio_test_large(folio))
573 atomic_add(refs, &folio->_pincount);
574 else
575 folio_ref_add(folio,
576 refs * (GUP_PIN_COUNTING_BIAS - 1));
577 /*
578 * Adjust the pincount before re-checking the PTE for changes.
579 * This is essentially a smp_mb() and is paired with a memory
580 * barrier in folio_try_share_anon_rmap_*().
581 */
582 smp_mb__after_atomic();
583
584 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
585
586 return folio;
587 }
588 #endif /* CONFIG_HAVE_GUP_FAST */
589
no_page_table(struct vm_area_struct * vma,unsigned int flags,unsigned long address)590 static struct page *no_page_table(struct vm_area_struct *vma,
591 unsigned int flags, unsigned long address)
592 {
593 if (!(flags & FOLL_DUMP))
594 return NULL;
595
596 /*
597 * When core dumping, we don't want to allocate unnecessary pages or
598 * page tables. Return error instead of NULL to skip handle_mm_fault,
599 * then get_dump_page() will return NULL to leave a hole in the dump.
600 * But we can only make this optimization where a hole would surely
601 * be zero-filled if handle_mm_fault() actually did handle it.
602 */
603 if (is_vm_hugetlb_page(vma)) {
604 struct hstate *h = hstate_vma(vma);
605
606 if (!hugetlbfs_pagecache_present(h, vma, address))
607 return ERR_PTR(-EFAULT);
608 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
609 return ERR_PTR(-EFAULT);
610 }
611
612 return NULL;
613 }
614
615 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,struct follow_page_context * ctx)616 static struct page *follow_huge_pud(struct vm_area_struct *vma,
617 unsigned long addr, pud_t *pudp,
618 int flags, struct follow_page_context *ctx)
619 {
620 struct mm_struct *mm = vma->vm_mm;
621 struct page *page;
622 pud_t pud = *pudp;
623 unsigned long pfn = pud_pfn(pud);
624 int ret;
625
626 assert_spin_locked(pud_lockptr(mm, pudp));
627
628 if ((flags & FOLL_WRITE) && !pud_write(pud))
629 return NULL;
630
631 if (!pud_present(pud))
632 return NULL;
633
634 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
635
636 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
637 pud_devmap(pud)) {
638 /*
639 * device mapped pages can only be returned if the caller
640 * will manage the page reference count.
641 *
642 * At least one of FOLL_GET | FOLL_PIN must be set, so
643 * assert that here:
644 */
645 if (!(flags & (FOLL_GET | FOLL_PIN)))
646 return ERR_PTR(-EEXIST);
647
648 if (flags & FOLL_TOUCH)
649 touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
650
651 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
652 if (!ctx->pgmap)
653 return ERR_PTR(-EFAULT);
654 }
655
656 page = pfn_to_page(pfn);
657
658 if (!pud_devmap(pud) && !pud_write(pud) &&
659 gup_must_unshare(vma, flags, page))
660 return ERR_PTR(-EMLINK);
661
662 ret = try_grab_folio(page_folio(page), 1, flags);
663 if (ret)
664 page = ERR_PTR(ret);
665 else
666 ctx->page_mask = HPAGE_PUD_NR - 1;
667
668 return page;
669 }
670
671 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)672 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
673 struct vm_area_struct *vma,
674 unsigned int flags)
675 {
676 /* If the pmd is writable, we can write to the page. */
677 if (pmd_write(pmd))
678 return true;
679
680 /* Maybe FOLL_FORCE is set to override it? */
681 if (!(flags & FOLL_FORCE))
682 return false;
683
684 /* But FOLL_FORCE has no effect on shared mappings */
685 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
686 return false;
687
688 /* ... or read-only private ones */
689 if (!(vma->vm_flags & VM_MAYWRITE))
690 return false;
691
692 /* ... or already writable ones that just need to take a write fault */
693 if (vma->vm_flags & VM_WRITE)
694 return false;
695
696 /*
697 * See can_change_pte_writable(): we broke COW and could map the page
698 * writable if we have an exclusive anonymous page ...
699 */
700 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
701 return false;
702
703 /* ... and a write-fault isn't required for other reasons. */
704 if (pmd_needs_soft_dirty_wp(vma, pmd))
705 return false;
706 return !userfaultfd_huge_pmd_wp(vma, pmd);
707 }
708
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,struct follow_page_context * ctx)709 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
710 unsigned long addr, pmd_t *pmd,
711 unsigned int flags,
712 struct follow_page_context *ctx)
713 {
714 struct mm_struct *mm = vma->vm_mm;
715 pmd_t pmdval = *pmd;
716 struct page *page;
717 int ret;
718
719 assert_spin_locked(pmd_lockptr(mm, pmd));
720
721 page = pmd_page(pmdval);
722 if ((flags & FOLL_WRITE) &&
723 !can_follow_write_pmd(pmdval, page, vma, flags))
724 return NULL;
725
726 /* Avoid dumping huge zero page */
727 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
728 return ERR_PTR(-EFAULT);
729
730 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
731 return NULL;
732
733 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
734 return ERR_PTR(-EMLINK);
735
736 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
737 !PageAnonExclusive(page), page);
738
739 ret = try_grab_folio(page_folio(page), 1, flags);
740 if (ret)
741 return ERR_PTR(ret);
742
743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
745 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
746 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
747
748 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
749 ctx->page_mask = HPAGE_PMD_NR - 1;
750
751 return page;
752 }
753
754 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,struct follow_page_context * ctx)755 static struct page *follow_huge_pud(struct vm_area_struct *vma,
756 unsigned long addr, pud_t *pudp,
757 int flags, struct follow_page_context *ctx)
758 {
759 return NULL;
760 }
761
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,struct follow_page_context * ctx)762 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
763 unsigned long addr, pmd_t *pmd,
764 unsigned int flags,
765 struct follow_page_context *ctx)
766 {
767 return NULL;
768 }
769 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
770
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)771 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
772 pte_t *pte, unsigned int flags)
773 {
774 if (flags & FOLL_TOUCH) {
775 pte_t orig_entry = ptep_get(pte);
776 pte_t entry = orig_entry;
777
778 if (flags & FOLL_WRITE)
779 entry = pte_mkdirty(entry);
780 entry = pte_mkyoung(entry);
781
782 if (!pte_same(orig_entry, entry)) {
783 set_pte_at(vma->vm_mm, address, pte, entry);
784 update_mmu_cache(vma, address, pte);
785 }
786 }
787
788 /* Proper page table entry exists, but no corresponding struct page */
789 return -EEXIST;
790 }
791
792 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
can_follow_write_pte(pte_t pte,struct page * page,struct vm_area_struct * vma,unsigned int flags)793 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
794 struct vm_area_struct *vma,
795 unsigned int flags)
796 {
797 /* If the pte is writable, we can write to the page. */
798 if (pte_write(pte))
799 return true;
800
801 /* Maybe FOLL_FORCE is set to override it? */
802 if (!(flags & FOLL_FORCE))
803 return false;
804
805 /* But FOLL_FORCE has no effect on shared mappings */
806 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
807 return false;
808
809 /* ... or read-only private ones */
810 if (!(vma->vm_flags & VM_MAYWRITE))
811 return false;
812
813 /* ... or already writable ones that just need to take a write fault */
814 if (vma->vm_flags & VM_WRITE)
815 return false;
816
817 /*
818 * See can_change_pte_writable(): we broke COW and could map the page
819 * writable if we have an exclusive anonymous page ...
820 */
821 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
822 return false;
823
824 /* ... and a write-fault isn't required for other reasons. */
825 if (pte_needs_soft_dirty_wp(vma, pte))
826 return false;
827 return !userfaultfd_pte_wp(vma, pte);
828 }
829
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)830 static struct page *follow_page_pte(struct vm_area_struct *vma,
831 unsigned long address, pmd_t *pmd, unsigned int flags,
832 struct dev_pagemap **pgmap)
833 {
834 struct mm_struct *mm = vma->vm_mm;
835 struct folio *folio;
836 struct page *page;
837 spinlock_t *ptl;
838 pte_t *ptep, pte;
839 int ret;
840
841 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
842 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
843 (FOLL_PIN | FOLL_GET)))
844 return ERR_PTR(-EINVAL);
845
846 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
847 if (!ptep)
848 return no_page_table(vma, flags, address);
849 pte = ptep_get(ptep);
850 if (!pte_present(pte))
851 goto no_page;
852 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
853 goto no_page;
854
855 page = vm_normal_page(vma, address, pte);
856
857 /*
858 * We only care about anon pages in can_follow_write_pte() and don't
859 * have to worry about pte_devmap() because they are never anon.
860 */
861 if ((flags & FOLL_WRITE) &&
862 !can_follow_write_pte(pte, page, vma, flags)) {
863 page = NULL;
864 goto out;
865 }
866
867 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
868 /*
869 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
870 * case since they are only valid while holding the pgmap
871 * reference.
872 */
873 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
874 if (*pgmap)
875 page = pte_page(pte);
876 else
877 goto no_page;
878 } else if (unlikely(!page)) {
879 if (flags & FOLL_DUMP) {
880 /* Avoid special (like zero) pages in core dumps */
881 page = ERR_PTR(-EFAULT);
882 goto out;
883 }
884
885 if (is_zero_pfn(pte_pfn(pte))) {
886 page = pte_page(pte);
887 } else {
888 ret = follow_pfn_pte(vma, address, ptep, flags);
889 page = ERR_PTR(ret);
890 goto out;
891 }
892 }
893 folio = page_folio(page);
894
895 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
896 page = ERR_PTR(-EMLINK);
897 goto out;
898 }
899
900 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
901 !PageAnonExclusive(page), page);
902
903 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
904 ret = try_grab_folio(folio, 1, flags);
905 if (unlikely(ret)) {
906 page = ERR_PTR(ret);
907 goto out;
908 }
909
910 /*
911 * We need to make the page accessible if and only if we are going
912 * to access its content (the FOLL_PIN case). Please see
913 * Documentation/core-api/pin_user_pages.rst for details.
914 */
915 if (flags & FOLL_PIN) {
916 ret = arch_make_folio_accessible(folio);
917 if (ret) {
918 unpin_user_page(page);
919 page = ERR_PTR(ret);
920 goto out;
921 }
922 }
923 if (flags & FOLL_TOUCH) {
924 if ((flags & FOLL_WRITE) &&
925 !pte_dirty(pte) && !PageDirty(page))
926 set_page_dirty(page);
927 /*
928 * pte_mkyoung() would be more correct here, but atomic care
929 * is needed to avoid losing the dirty bit: it is easier to use
930 * mark_page_accessed().
931 */
932 mark_page_accessed(page);
933 }
934 out:
935 pte_unmap_unlock(ptep, ptl);
936 return page;
937 no_page:
938 pte_unmap_unlock(ptep, ptl);
939 if (!pte_none(pte))
940 return NULL;
941 return no_page_table(vma, flags, address);
942 }
943
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)944 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
945 unsigned long address, pud_t *pudp,
946 unsigned int flags,
947 struct follow_page_context *ctx)
948 {
949 pmd_t *pmd, pmdval;
950 spinlock_t *ptl;
951 struct page *page;
952 struct mm_struct *mm = vma->vm_mm;
953
954 pmd = pmd_offset(pudp, address);
955 pmdval = pmdp_get_lockless(pmd);
956 if (pmd_none(pmdval))
957 return no_page_table(vma, flags, address);
958 if (!pmd_present(pmdval))
959 return no_page_table(vma, flags, address);
960 if (pmd_devmap(pmdval)) {
961 ptl = pmd_lock(mm, pmd);
962 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
963 spin_unlock(ptl);
964 if (page)
965 return page;
966 return no_page_table(vma, flags, address);
967 }
968 if (likely(!pmd_leaf(pmdval)))
969 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
970
971 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
972 return no_page_table(vma, flags, address);
973
974 ptl = pmd_lock(mm, pmd);
975 pmdval = *pmd;
976 if (unlikely(!pmd_present(pmdval))) {
977 spin_unlock(ptl);
978 return no_page_table(vma, flags, address);
979 }
980 if (unlikely(!pmd_leaf(pmdval))) {
981 spin_unlock(ptl);
982 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
983 }
984 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
985 spin_unlock(ptl);
986 split_huge_pmd(vma, pmd, address);
987 /* If pmd was left empty, stuff a page table in there quickly */
988 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
989 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
990 }
991 page = follow_huge_pmd(vma, address, pmd, flags, ctx);
992 spin_unlock(ptl);
993 return page;
994 }
995
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)996 static struct page *follow_pud_mask(struct vm_area_struct *vma,
997 unsigned long address, p4d_t *p4dp,
998 unsigned int flags,
999 struct follow_page_context *ctx)
1000 {
1001 pud_t *pudp, pud;
1002 spinlock_t *ptl;
1003 struct page *page;
1004 struct mm_struct *mm = vma->vm_mm;
1005
1006 pudp = pud_offset(p4dp, address);
1007 pud = READ_ONCE(*pudp);
1008 if (!pud_present(pud))
1009 return no_page_table(vma, flags, address);
1010 if (pud_leaf(pud)) {
1011 ptl = pud_lock(mm, pudp);
1012 page = follow_huge_pud(vma, address, pudp, flags, ctx);
1013 spin_unlock(ptl);
1014 if (page)
1015 return page;
1016 return no_page_table(vma, flags, address);
1017 }
1018 if (unlikely(pud_bad(pud)))
1019 return no_page_table(vma, flags, address);
1020
1021 return follow_pmd_mask(vma, address, pudp, flags, ctx);
1022 }
1023
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)1024 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1025 unsigned long address, pgd_t *pgdp,
1026 unsigned int flags,
1027 struct follow_page_context *ctx)
1028 {
1029 p4d_t *p4dp, p4d;
1030
1031 p4dp = p4d_offset(pgdp, address);
1032 p4d = READ_ONCE(*p4dp);
1033 BUILD_BUG_ON(p4d_leaf(p4d));
1034
1035 if (!p4d_present(p4d) || p4d_bad(p4d))
1036 return no_page_table(vma, flags, address);
1037
1038 return follow_pud_mask(vma, address, p4dp, flags, ctx);
1039 }
1040
1041 /**
1042 * follow_page_mask - look up a page descriptor from a user-virtual address
1043 * @vma: vm_area_struct mapping @address
1044 * @address: virtual address to look up
1045 * @flags: flags modifying lookup behaviour
1046 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1047 * pointer to output page_mask
1048 *
1049 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1050 *
1051 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1052 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1053 *
1054 * When getting an anonymous page and the caller has to trigger unsharing
1055 * of a shared anonymous page first, -EMLINK is returned. The caller should
1056 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1057 * relevant with FOLL_PIN and !FOLL_WRITE.
1058 *
1059 * On output, the @ctx->page_mask is set according to the size of the page.
1060 *
1061 * Return: the mapped (struct page *), %NULL if no mapping exists, or
1062 * an error pointer if there is a mapping to something not represented
1063 * by a page descriptor (see also vm_normal_page()).
1064 */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)1065 static struct page *follow_page_mask(struct vm_area_struct *vma,
1066 unsigned long address, unsigned int flags,
1067 struct follow_page_context *ctx)
1068 {
1069 pgd_t *pgd;
1070 struct mm_struct *mm = vma->vm_mm;
1071 struct page *page;
1072
1073 vma_pgtable_walk_begin(vma);
1074
1075 ctx->page_mask = 0;
1076 pgd = pgd_offset(mm, address);
1077
1078 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1079 page = no_page_table(vma, flags, address);
1080 else
1081 page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1082
1083 vma_pgtable_walk_end(vma);
1084
1085 return page;
1086 }
1087
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)1088 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1089 unsigned int gup_flags, struct vm_area_struct **vma,
1090 struct page **page)
1091 {
1092 pgd_t *pgd;
1093 p4d_t *p4d;
1094 pud_t *pud;
1095 pmd_t *pmd;
1096 pte_t *pte;
1097 pte_t entry;
1098 int ret = -EFAULT;
1099
1100 /* user gate pages are read-only */
1101 if (gup_flags & FOLL_WRITE)
1102 return -EFAULT;
1103 if (address > TASK_SIZE)
1104 pgd = pgd_offset_k(address);
1105 else
1106 pgd = pgd_offset_gate(mm, address);
1107 if (pgd_none(*pgd))
1108 return -EFAULT;
1109 p4d = p4d_offset(pgd, address);
1110 if (p4d_none(*p4d))
1111 return -EFAULT;
1112 pud = pud_offset(p4d, address);
1113 if (pud_none(*pud))
1114 return -EFAULT;
1115 pmd = pmd_offset(pud, address);
1116 if (!pmd_present(*pmd))
1117 return -EFAULT;
1118 pte = pte_offset_map(pmd, address);
1119 if (!pte)
1120 return -EFAULT;
1121 entry = ptep_get(pte);
1122 if (pte_none(entry))
1123 goto unmap;
1124 *vma = get_gate_vma(mm);
1125 if (!page)
1126 goto out;
1127 *page = vm_normal_page(*vma, address, entry);
1128 if (!*page) {
1129 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1130 goto unmap;
1131 *page = pte_page(entry);
1132 }
1133 ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1134 if (unlikely(ret))
1135 goto unmap;
1136 out:
1137 ret = 0;
1138 unmap:
1139 pte_unmap(pte);
1140 return ret;
1141 }
1142
1143 /*
1144 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not
1145 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set
1146 * to 0 and -EBUSY returned.
1147 */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int flags,bool unshare,int * locked)1148 static int faultin_page(struct vm_area_struct *vma,
1149 unsigned long address, unsigned int flags, bool unshare,
1150 int *locked)
1151 {
1152 unsigned int fault_flags = 0;
1153 vm_fault_t ret;
1154
1155 if (flags & FOLL_NOFAULT)
1156 return -EFAULT;
1157 if (flags & FOLL_WRITE)
1158 fault_flags |= FAULT_FLAG_WRITE;
1159 if (flags & FOLL_REMOTE)
1160 fault_flags |= FAULT_FLAG_REMOTE;
1161 if (flags & FOLL_UNLOCKABLE) {
1162 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1163 /*
1164 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1165 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1166 * That's because some callers may not be prepared to
1167 * handle early exits caused by non-fatal signals.
1168 */
1169 if (flags & FOLL_INTERRUPTIBLE)
1170 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1171 }
1172 if (flags & FOLL_NOWAIT)
1173 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1174 if (flags & FOLL_TRIED) {
1175 /*
1176 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1177 * can co-exist
1178 */
1179 fault_flags |= FAULT_FLAG_TRIED;
1180 }
1181 if (unshare) {
1182 fault_flags |= FAULT_FLAG_UNSHARE;
1183 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1184 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1185 }
1186
1187 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1188
1189 if (ret & VM_FAULT_COMPLETED) {
1190 /*
1191 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1192 * mmap lock in the page fault handler. Sanity check this.
1193 */
1194 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1195 *locked = 0;
1196
1197 /*
1198 * We should do the same as VM_FAULT_RETRY, but let's not
1199 * return -EBUSY since that's not reflecting the reality of
1200 * what has happened - we've just fully completed a page
1201 * fault, with the mmap lock released. Use -EAGAIN to show
1202 * that we want to take the mmap lock _again_.
1203 */
1204 return -EAGAIN;
1205 }
1206
1207 if (ret & VM_FAULT_ERROR) {
1208 int err = vm_fault_to_errno(ret, flags);
1209
1210 if (err)
1211 return err;
1212 BUG();
1213 }
1214
1215 if (ret & VM_FAULT_RETRY) {
1216 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1217 *locked = 0;
1218 return -EBUSY;
1219 }
1220
1221 return 0;
1222 }
1223
1224 /*
1225 * Writing to file-backed mappings which require folio dirty tracking using GUP
1226 * is a fundamentally broken operation, as kernel write access to GUP mappings
1227 * do not adhere to the semantics expected by a file system.
1228 *
1229 * Consider the following scenario:-
1230 *
1231 * 1. A folio is written to via GUP which write-faults the memory, notifying
1232 * the file system and dirtying the folio.
1233 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1234 * the PTE being marked read-only.
1235 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1236 * direct mapping.
1237 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1238 * (though it does not have to).
1239 *
1240 * This results in both data being written to a folio without writenotify, and
1241 * the folio being dirtied unexpectedly (if the caller decides to do so).
1242 */
writable_file_mapping_allowed(struct vm_area_struct * vma,unsigned long gup_flags)1243 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1244 unsigned long gup_flags)
1245 {
1246 /*
1247 * If we aren't pinning then no problematic write can occur. A long term
1248 * pin is the most egregious case so this is the case we disallow.
1249 */
1250 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1251 (FOLL_PIN | FOLL_LONGTERM))
1252 return true;
1253
1254 /*
1255 * If the VMA does not require dirty tracking then no problematic write
1256 * can occur either.
1257 */
1258 return !vma_needs_dirty_tracking(vma);
1259 }
1260
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)1261 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1262 {
1263 vm_flags_t vm_flags = vma->vm_flags;
1264 int write = (gup_flags & FOLL_WRITE);
1265 int foreign = (gup_flags & FOLL_REMOTE);
1266 bool vma_anon = vma_is_anonymous(vma);
1267
1268 if (vm_flags & (VM_IO | VM_PFNMAP))
1269 return -EFAULT;
1270
1271 if ((gup_flags & FOLL_ANON) && !vma_anon)
1272 return -EFAULT;
1273
1274 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1275 return -EOPNOTSUPP;
1276
1277 if (vma_is_secretmem(vma))
1278 return -EFAULT;
1279
1280 if (write) {
1281 if (!vma_anon &&
1282 !writable_file_mapping_allowed(vma, gup_flags))
1283 return -EFAULT;
1284
1285 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1286 if (!(gup_flags & FOLL_FORCE))
1287 return -EFAULT;
1288 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1289 if (is_vm_hugetlb_page(vma))
1290 return -EFAULT;
1291 /*
1292 * We used to let the write,force case do COW in a
1293 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1294 * set a breakpoint in a read-only mapping of an
1295 * executable, without corrupting the file (yet only
1296 * when that file had been opened for writing!).
1297 * Anon pages in shared mappings are surprising: now
1298 * just reject it.
1299 */
1300 if (!is_cow_mapping(vm_flags))
1301 return -EFAULT;
1302 }
1303 } else if (!(vm_flags & VM_READ)) {
1304 if (!(gup_flags & FOLL_FORCE))
1305 return -EFAULT;
1306 /*
1307 * Is there actually any vma we can reach here which does not
1308 * have VM_MAYREAD set?
1309 */
1310 if (!(vm_flags & VM_MAYREAD))
1311 return -EFAULT;
1312 }
1313 /*
1314 * gups are always data accesses, not instruction
1315 * fetches, so execute=false here
1316 */
1317 if (!arch_vma_access_permitted(vma, write, false, foreign))
1318 return -EFAULT;
1319 return 0;
1320 }
1321
1322 /*
1323 * This is "vma_lookup()", but with a warning if we would have
1324 * historically expanded the stack in the GUP code.
1325 */
gup_vma_lookup(struct mm_struct * mm,unsigned long addr)1326 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1327 unsigned long addr)
1328 {
1329 #ifdef CONFIG_STACK_GROWSUP
1330 return vma_lookup(mm, addr);
1331 #else
1332 static volatile unsigned long next_warn;
1333 struct vm_area_struct *vma;
1334 unsigned long now, next;
1335
1336 vma = find_vma(mm, addr);
1337 if (!vma || (addr >= vma->vm_start))
1338 return vma;
1339
1340 /* Only warn for half-way relevant accesses */
1341 if (!(vma->vm_flags & VM_GROWSDOWN))
1342 return NULL;
1343 if (vma->vm_start - addr > 65536)
1344 return NULL;
1345
1346 /* Let's not warn more than once an hour.. */
1347 now = jiffies; next = next_warn;
1348 if (next && time_before(now, next))
1349 return NULL;
1350 next_warn = now + 60*60*HZ;
1351
1352 /* Let people know things may have changed. */
1353 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1354 current->comm, task_pid_nr(current),
1355 vma->vm_start, vma->vm_end, addr);
1356 dump_stack();
1357 return NULL;
1358 #endif
1359 }
1360
1361 /**
1362 * __get_user_pages() - pin user pages in memory
1363 * @mm: mm_struct of target mm
1364 * @start: starting user address
1365 * @nr_pages: number of pages from start to pin
1366 * @gup_flags: flags modifying pin behaviour
1367 * @pages: array that receives pointers to the pages pinned.
1368 * Should be at least nr_pages long. Or NULL, if caller
1369 * only intends to ensure the pages are faulted in.
1370 * @locked: whether we're still with the mmap_lock held
1371 *
1372 * Returns either number of pages pinned (which may be less than the
1373 * number requested), or an error. Details about the return value:
1374 *
1375 * -- If nr_pages is 0, returns 0.
1376 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1377 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1378 * pages pinned. Again, this may be less than nr_pages.
1379 * -- 0 return value is possible when the fault would need to be retried.
1380 *
1381 * The caller is responsible for releasing returned @pages, via put_page().
1382 *
1383 * Must be called with mmap_lock held. It may be released. See below.
1384 *
1385 * __get_user_pages walks a process's page tables and takes a reference to
1386 * each struct page that each user address corresponds to at a given
1387 * instant. That is, it takes the page that would be accessed if a user
1388 * thread accesses the given user virtual address at that instant.
1389 *
1390 * This does not guarantee that the page exists in the user mappings when
1391 * __get_user_pages returns, and there may even be a completely different
1392 * page there in some cases (eg. if mmapped pagecache has been invalidated
1393 * and subsequently re-faulted). However it does guarantee that the page
1394 * won't be freed completely. And mostly callers simply care that the page
1395 * contains data that was valid *at some point in time*. Typically, an IO
1396 * or similar operation cannot guarantee anything stronger anyway because
1397 * locks can't be held over the syscall boundary.
1398 *
1399 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1400 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1401 * appropriate) must be called after the page is finished with, and
1402 * before put_page is called.
1403 *
1404 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1405 * be released. If this happens *@locked will be set to 0 on return.
1406 *
1407 * A caller using such a combination of @gup_flags must therefore hold the
1408 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1409 * it must be held for either reading or writing and will not be released.
1410 *
1411 * In most cases, get_user_pages or get_user_pages_fast should be used
1412 * instead of __get_user_pages. __get_user_pages should be used only if
1413 * you need some special @gup_flags.
1414 */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)1415 static long __get_user_pages(struct mm_struct *mm,
1416 unsigned long start, unsigned long nr_pages,
1417 unsigned int gup_flags, struct page **pages,
1418 int *locked)
1419 {
1420 long ret = 0, i = 0;
1421 struct vm_area_struct *vma = NULL;
1422 struct follow_page_context ctx = { NULL };
1423
1424 if (!nr_pages)
1425 return 0;
1426
1427 start = untagged_addr_remote(mm, start);
1428
1429 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1430
1431 do {
1432 struct page *page;
1433 unsigned int page_increm;
1434
1435 /* first iteration or cross vma bound */
1436 if (!vma || start >= vma->vm_end) {
1437 /*
1438 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1439 * lookups+error reporting differently.
1440 */
1441 if (gup_flags & FOLL_MADV_POPULATE) {
1442 vma = vma_lookup(mm, start);
1443 if (!vma) {
1444 ret = -ENOMEM;
1445 goto out;
1446 }
1447 if (check_vma_flags(vma, gup_flags)) {
1448 ret = -EINVAL;
1449 goto out;
1450 }
1451 goto retry;
1452 }
1453 vma = gup_vma_lookup(mm, start);
1454 if (!vma && in_gate_area(mm, start)) {
1455 ret = get_gate_page(mm, start & PAGE_MASK,
1456 gup_flags, &vma,
1457 pages ? &page : NULL);
1458 if (ret)
1459 goto out;
1460 ctx.page_mask = 0;
1461 goto next_page;
1462 }
1463
1464 if (!vma) {
1465 ret = -EFAULT;
1466 goto out;
1467 }
1468 ret = check_vma_flags(vma, gup_flags);
1469 if (ret)
1470 goto out;
1471 }
1472 retry:
1473 /*
1474 * If we have a pending SIGKILL, don't keep faulting pages and
1475 * potentially allocating memory.
1476 */
1477 if (fatal_signal_pending(current)) {
1478 ret = -EINTR;
1479 goto out;
1480 }
1481 cond_resched();
1482
1483 page = follow_page_mask(vma, start, gup_flags, &ctx);
1484 if (!page || PTR_ERR(page) == -EMLINK) {
1485 ret = faultin_page(vma, start, gup_flags,
1486 PTR_ERR(page) == -EMLINK, locked);
1487 switch (ret) {
1488 case 0:
1489 goto retry;
1490 case -EBUSY:
1491 case -EAGAIN:
1492 ret = 0;
1493 fallthrough;
1494 case -EFAULT:
1495 case -ENOMEM:
1496 case -EHWPOISON:
1497 goto out;
1498 }
1499 BUG();
1500 } else if (PTR_ERR(page) == -EEXIST) {
1501 /*
1502 * Proper page table entry exists, but no corresponding
1503 * struct page. If the caller expects **pages to be
1504 * filled in, bail out now, because that can't be done
1505 * for this page.
1506 */
1507 if (pages) {
1508 ret = PTR_ERR(page);
1509 goto out;
1510 }
1511 } else if (IS_ERR(page)) {
1512 ret = PTR_ERR(page);
1513 goto out;
1514 }
1515 next_page:
1516 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1517 if (page_increm > nr_pages)
1518 page_increm = nr_pages;
1519
1520 if (pages) {
1521 struct page *subpage;
1522 unsigned int j;
1523
1524 /*
1525 * This must be a large folio (and doesn't need to
1526 * be the whole folio; it can be part of it), do
1527 * the refcount work for all the subpages too.
1528 *
1529 * NOTE: here the page may not be the head page
1530 * e.g. when start addr is not thp-size aligned.
1531 * try_grab_folio() should have taken care of tail
1532 * pages.
1533 */
1534 if (page_increm > 1) {
1535 struct folio *folio = page_folio(page);
1536
1537 /*
1538 * Since we already hold refcount on the
1539 * large folio, this should never fail.
1540 */
1541 if (try_grab_folio(folio, page_increm - 1,
1542 gup_flags)) {
1543 /*
1544 * Release the 1st page ref if the
1545 * folio is problematic, fail hard.
1546 */
1547 gup_put_folio(folio, 1, gup_flags);
1548 ret = -EFAULT;
1549 goto out;
1550 }
1551 }
1552
1553 for (j = 0; j < page_increm; j++) {
1554 subpage = nth_page(page, j);
1555 pages[i + j] = subpage;
1556 flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1557 flush_dcache_page(subpage);
1558 }
1559 }
1560
1561 i += page_increm;
1562 start += page_increm * PAGE_SIZE;
1563 nr_pages -= page_increm;
1564 } while (nr_pages);
1565 out:
1566 if (ctx.pgmap)
1567 put_dev_pagemap(ctx.pgmap);
1568 return i ? i : ret;
1569 }
1570
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1571 static bool vma_permits_fault(struct vm_area_struct *vma,
1572 unsigned int fault_flags)
1573 {
1574 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1575 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1576 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1577
1578 if (!(vm_flags & vma->vm_flags))
1579 return false;
1580
1581 /*
1582 * The architecture might have a hardware protection
1583 * mechanism other than read/write that can deny access.
1584 *
1585 * gup always represents data access, not instruction
1586 * fetches, so execute=false here:
1587 */
1588 if (!arch_vma_access_permitted(vma, write, false, foreign))
1589 return false;
1590
1591 return true;
1592 }
1593
1594 /**
1595 * fixup_user_fault() - manually resolve a user page fault
1596 * @mm: mm_struct of target mm
1597 * @address: user address
1598 * @fault_flags:flags to pass down to handle_mm_fault()
1599 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1600 * does not allow retry. If NULL, the caller must guarantee
1601 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1602 *
1603 * This is meant to be called in the specific scenario where for locking reasons
1604 * we try to access user memory in atomic context (within a pagefault_disable()
1605 * section), this returns -EFAULT, and we want to resolve the user fault before
1606 * trying again.
1607 *
1608 * Typically this is meant to be used by the futex code.
1609 *
1610 * The main difference with get_user_pages() is that this function will
1611 * unconditionally call handle_mm_fault() which will in turn perform all the
1612 * necessary SW fixup of the dirty and young bits in the PTE, while
1613 * get_user_pages() only guarantees to update these in the struct page.
1614 *
1615 * This is important for some architectures where those bits also gate the
1616 * access permission to the page because they are maintained in software. On
1617 * such architectures, gup() will not be enough to make a subsequent access
1618 * succeed.
1619 *
1620 * This function will not return with an unlocked mmap_lock. So it has not the
1621 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1622 */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1623 int fixup_user_fault(struct mm_struct *mm,
1624 unsigned long address, unsigned int fault_flags,
1625 bool *unlocked)
1626 {
1627 struct vm_area_struct *vma;
1628 vm_fault_t ret;
1629
1630 address = untagged_addr_remote(mm, address);
1631
1632 if (unlocked)
1633 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1634
1635 retry:
1636 vma = gup_vma_lookup(mm, address);
1637 if (!vma)
1638 return -EFAULT;
1639
1640 if (!vma_permits_fault(vma, fault_flags))
1641 return -EFAULT;
1642
1643 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1644 fatal_signal_pending(current))
1645 return -EINTR;
1646
1647 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1648
1649 if (ret & VM_FAULT_COMPLETED) {
1650 /*
1651 * NOTE: it's a pity that we need to retake the lock here
1652 * to pair with the unlock() in the callers. Ideally we
1653 * could tell the callers so they do not need to unlock.
1654 */
1655 mmap_read_lock(mm);
1656 *unlocked = true;
1657 return 0;
1658 }
1659
1660 if (ret & VM_FAULT_ERROR) {
1661 int err = vm_fault_to_errno(ret, 0);
1662
1663 if (err)
1664 return err;
1665 BUG();
1666 }
1667
1668 if (ret & VM_FAULT_RETRY) {
1669 mmap_read_lock(mm);
1670 *unlocked = true;
1671 fault_flags |= FAULT_FLAG_TRIED;
1672 goto retry;
1673 }
1674
1675 return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(fixup_user_fault);
1678
1679 /*
1680 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is
1681 * specified, it'll also respond to generic signals. The caller of GUP
1682 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1683 */
gup_signal_pending(unsigned int flags)1684 static bool gup_signal_pending(unsigned int flags)
1685 {
1686 if (fatal_signal_pending(current))
1687 return true;
1688
1689 if (!(flags & FOLL_INTERRUPTIBLE))
1690 return false;
1691
1692 return signal_pending(current);
1693 }
1694
1695 /*
1696 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1697 * the caller. This function may drop the mmap_lock. If it does so, then it will
1698 * set (*locked = 0).
1699 *
1700 * (*locked == 0) means that the caller expects this function to acquire and
1701 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1702 * the function returns, even though it may have changed temporarily during
1703 * function execution.
1704 *
1705 * Please note that this function, unlike __get_user_pages(), will not return 0
1706 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1707 */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int flags)1708 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1709 unsigned long start,
1710 unsigned long nr_pages,
1711 struct page **pages,
1712 int *locked,
1713 unsigned int flags)
1714 {
1715 long ret, pages_done;
1716 bool must_unlock = false;
1717
1718 if (!nr_pages)
1719 return 0;
1720
1721 /*
1722 * The internal caller expects GUP to manage the lock internally and the
1723 * lock must be released when this returns.
1724 */
1725 if (!*locked) {
1726 if (mmap_read_lock_killable(mm))
1727 return -EAGAIN;
1728 must_unlock = true;
1729 *locked = 1;
1730 }
1731 else
1732 mmap_assert_locked(mm);
1733
1734 if (flags & FOLL_PIN)
1735 mm_set_has_pinned_flag(&mm->flags);
1736
1737 /*
1738 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1739 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1740 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1741 * for FOLL_GET, not for the newer FOLL_PIN.
1742 *
1743 * FOLL_PIN always expects pages to be non-null, but no need to assert
1744 * that here, as any failures will be obvious enough.
1745 */
1746 if (pages && !(flags & FOLL_PIN))
1747 flags |= FOLL_GET;
1748
1749 pages_done = 0;
1750 for (;;) {
1751 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1752 locked);
1753 if (!(flags & FOLL_UNLOCKABLE)) {
1754 /* VM_FAULT_RETRY couldn't trigger, bypass */
1755 pages_done = ret;
1756 break;
1757 }
1758
1759 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1760 if (!*locked) {
1761 BUG_ON(ret < 0);
1762 BUG_ON(ret >= nr_pages);
1763 }
1764
1765 if (ret > 0) {
1766 nr_pages -= ret;
1767 pages_done += ret;
1768 if (!nr_pages)
1769 break;
1770 }
1771 if (*locked) {
1772 /*
1773 * VM_FAULT_RETRY didn't trigger or it was a
1774 * FOLL_NOWAIT.
1775 */
1776 if (!pages_done)
1777 pages_done = ret;
1778 break;
1779 }
1780 /*
1781 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1782 * For the prefault case (!pages) we only update counts.
1783 */
1784 if (likely(pages))
1785 pages += ret;
1786 start += ret << PAGE_SHIFT;
1787
1788 /* The lock was temporarily dropped, so we must unlock later */
1789 must_unlock = true;
1790
1791 retry:
1792 /*
1793 * Repeat on the address that fired VM_FAULT_RETRY
1794 * with both FAULT_FLAG_ALLOW_RETRY and
1795 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1796 * by fatal signals of even common signals, depending on
1797 * the caller's request. So we need to check it before we
1798 * start trying again otherwise it can loop forever.
1799 */
1800 if (gup_signal_pending(flags)) {
1801 if (!pages_done)
1802 pages_done = -EINTR;
1803 break;
1804 }
1805
1806 ret = mmap_read_lock_killable(mm);
1807 if (ret) {
1808 BUG_ON(ret > 0);
1809 if (!pages_done)
1810 pages_done = ret;
1811 break;
1812 }
1813
1814 *locked = 1;
1815 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1816 pages, locked);
1817 if (!*locked) {
1818 /* Continue to retry until we succeeded */
1819 BUG_ON(ret != 0);
1820 goto retry;
1821 }
1822 if (ret != 1) {
1823 BUG_ON(ret > 1);
1824 if (!pages_done)
1825 pages_done = ret;
1826 break;
1827 }
1828 nr_pages--;
1829 pages_done++;
1830 if (!nr_pages)
1831 break;
1832 if (likely(pages))
1833 pages++;
1834 start += PAGE_SIZE;
1835 }
1836 if (must_unlock && *locked) {
1837 /*
1838 * We either temporarily dropped the lock, or the caller
1839 * requested that we both acquire and drop the lock. Either way,
1840 * we must now unlock, and notify the caller of that state.
1841 */
1842 mmap_read_unlock(mm);
1843 *locked = 0;
1844 }
1845
1846 /*
1847 * Failing to pin anything implies something has gone wrong (except when
1848 * FOLL_NOWAIT is specified).
1849 */
1850 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1851 return -EFAULT;
1852
1853 return pages_done;
1854 }
1855
1856 /**
1857 * populate_vma_page_range() - populate a range of pages in the vma.
1858 * @vma: target vma
1859 * @start: start address
1860 * @end: end address
1861 * @locked: whether the mmap_lock is still held
1862 *
1863 * This takes care of mlocking the pages too if VM_LOCKED is set.
1864 *
1865 * Return either number of pages pinned in the vma, or a negative error
1866 * code on error.
1867 *
1868 * vma->vm_mm->mmap_lock must be held.
1869 *
1870 * If @locked is NULL, it may be held for read or write and will
1871 * be unperturbed.
1872 *
1873 * If @locked is non-NULL, it must held for read only and may be
1874 * released. If it's released, *@locked will be set to 0.
1875 */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1876 long populate_vma_page_range(struct vm_area_struct *vma,
1877 unsigned long start, unsigned long end, int *locked)
1878 {
1879 struct mm_struct *mm = vma->vm_mm;
1880 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1881 int local_locked = 1;
1882 int gup_flags;
1883 long ret;
1884
1885 VM_BUG_ON(!PAGE_ALIGNED(start));
1886 VM_BUG_ON(!PAGE_ALIGNED(end));
1887 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1888 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1889 mmap_assert_locked(mm);
1890
1891 /*
1892 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1893 * faultin_page() to break COW, so it has no work to do here.
1894 */
1895 if (vma->vm_flags & VM_LOCKONFAULT)
1896 return nr_pages;
1897
1898 /* ... similarly, we've never faulted in PROT_NONE pages */
1899 if (!vma_is_accessible(vma))
1900 return -EFAULT;
1901
1902 gup_flags = FOLL_TOUCH;
1903 /*
1904 * We want to touch writable mappings with a write fault in order
1905 * to break COW, except for shared mappings because these don't COW
1906 * and we would not want to dirty them for nothing.
1907 *
1908 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1909 * readable (ie write-only or executable).
1910 */
1911 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1912 gup_flags |= FOLL_WRITE;
1913 else
1914 gup_flags |= FOLL_FORCE;
1915
1916 if (locked)
1917 gup_flags |= FOLL_UNLOCKABLE;
1918
1919 /*
1920 * We made sure addr is within a VMA, so the following will
1921 * not result in a stack expansion that recurses back here.
1922 */
1923 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1924 NULL, locked ? locked : &local_locked);
1925 lru_add_drain();
1926 return ret;
1927 }
1928
1929 /*
1930 * faultin_page_range() - populate (prefault) page tables inside the
1931 * given range readable/writable
1932 *
1933 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1934 *
1935 * @mm: the mm to populate page tables in
1936 * @start: start address
1937 * @end: end address
1938 * @write: whether to prefault readable or writable
1939 * @locked: whether the mmap_lock is still held
1940 *
1941 * Returns either number of processed pages in the MM, or a negative error
1942 * code on error (see __get_user_pages()). Note that this function reports
1943 * errors related to VMAs, such as incompatible mappings, as expected by
1944 * MADV_POPULATE_(READ|WRITE).
1945 *
1946 * The range must be page-aligned.
1947 *
1948 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1949 */
faultin_page_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool write,int * locked)1950 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1951 unsigned long end, bool write, int *locked)
1952 {
1953 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1954 int gup_flags;
1955 long ret;
1956
1957 VM_BUG_ON(!PAGE_ALIGNED(start));
1958 VM_BUG_ON(!PAGE_ALIGNED(end));
1959 mmap_assert_locked(mm);
1960
1961 /*
1962 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1963 * the page dirty with FOLL_WRITE -- which doesn't make a
1964 * difference with !FOLL_FORCE, because the page is writable
1965 * in the page table.
1966 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1967 * a poisoned page.
1968 * !FOLL_FORCE: Require proper access permissions.
1969 */
1970 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1971 FOLL_MADV_POPULATE;
1972 if (write)
1973 gup_flags |= FOLL_WRITE;
1974
1975 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1976 gup_flags);
1977 lru_add_drain();
1978 return ret;
1979 }
1980
1981 /*
1982 * __mm_populate - populate and/or mlock pages within a range of address space.
1983 *
1984 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1985 * flags. VMAs must be already marked with the desired vm_flags, and
1986 * mmap_lock must not be held.
1987 */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1988 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1989 {
1990 struct mm_struct *mm = current->mm;
1991 unsigned long end, nstart, nend;
1992 struct vm_area_struct *vma = NULL;
1993 int locked = 0;
1994 long ret = 0;
1995
1996 end = start + len;
1997
1998 for (nstart = start; nstart < end; nstart = nend) {
1999 /*
2000 * We want to fault in pages for [nstart; end) address range.
2001 * Find first corresponding VMA.
2002 */
2003 if (!locked) {
2004 locked = 1;
2005 mmap_read_lock(mm);
2006 vma = find_vma_intersection(mm, nstart, end);
2007 } else if (nstart >= vma->vm_end)
2008 vma = find_vma_intersection(mm, vma->vm_end, end);
2009
2010 if (!vma)
2011 break;
2012 /*
2013 * Set [nstart; nend) to intersection of desired address
2014 * range with the first VMA. Also, skip undesirable VMA types.
2015 */
2016 nend = min(end, vma->vm_end);
2017 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2018 continue;
2019 if (nstart < vma->vm_start)
2020 nstart = vma->vm_start;
2021 /*
2022 * Now fault in a range of pages. populate_vma_page_range()
2023 * double checks the vma flags, so that it won't mlock pages
2024 * if the vma was already munlocked.
2025 */
2026 ret = populate_vma_page_range(vma, nstart, nend, &locked);
2027 if (ret < 0) {
2028 if (ignore_errors) {
2029 ret = 0;
2030 continue; /* continue at next VMA */
2031 }
2032 break;
2033 }
2034 nend = nstart + ret * PAGE_SIZE;
2035 ret = 0;
2036 }
2037 if (locked)
2038 mmap_read_unlock(mm);
2039 return ret; /* 0 or negative error code */
2040 }
2041 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int foll_flags)2042 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2043 unsigned long nr_pages, struct page **pages,
2044 int *locked, unsigned int foll_flags)
2045 {
2046 struct vm_area_struct *vma;
2047 bool must_unlock = false;
2048 unsigned long vm_flags;
2049 long i;
2050
2051 if (!nr_pages)
2052 return 0;
2053
2054 /*
2055 * The internal caller expects GUP to manage the lock internally and the
2056 * lock must be released when this returns.
2057 */
2058 if (!*locked) {
2059 if (mmap_read_lock_killable(mm))
2060 return -EAGAIN;
2061 must_unlock = true;
2062 *locked = 1;
2063 }
2064
2065 /* calculate required read or write permissions.
2066 * If FOLL_FORCE is set, we only require the "MAY" flags.
2067 */
2068 vm_flags = (foll_flags & FOLL_WRITE) ?
2069 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2070 vm_flags &= (foll_flags & FOLL_FORCE) ?
2071 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2072
2073 for (i = 0; i < nr_pages; i++) {
2074 vma = find_vma(mm, start);
2075 if (!vma)
2076 break;
2077
2078 /* protect what we can, including chardevs */
2079 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2080 !(vm_flags & vma->vm_flags))
2081 break;
2082
2083 if (pages) {
2084 pages[i] = virt_to_page((void *)start);
2085 if (pages[i])
2086 get_page(pages[i]);
2087 }
2088
2089 start = (start + PAGE_SIZE) & PAGE_MASK;
2090 }
2091
2092 if (must_unlock && *locked) {
2093 mmap_read_unlock(mm);
2094 *locked = 0;
2095 }
2096
2097 return i ? : -EFAULT;
2098 }
2099 #endif /* !CONFIG_MMU */
2100
2101 /**
2102 * fault_in_writeable - fault in userspace address range for writing
2103 * @uaddr: start of address range
2104 * @size: size of address range
2105 *
2106 * Returns the number of bytes not faulted in (like copy_to_user() and
2107 * copy_from_user()).
2108 */
fault_in_writeable(char __user * uaddr,size_t size)2109 size_t fault_in_writeable(char __user *uaddr, size_t size)
2110 {
2111 char __user *start = uaddr, *end;
2112
2113 if (unlikely(size == 0))
2114 return 0;
2115 if (!user_write_access_begin(uaddr, size))
2116 return size;
2117 if (!PAGE_ALIGNED(uaddr)) {
2118 unsafe_put_user(0, uaddr, out);
2119 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2120 }
2121 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2122 if (unlikely(end < start))
2123 end = NULL;
2124 while (uaddr != end) {
2125 unsafe_put_user(0, uaddr, out);
2126 uaddr += PAGE_SIZE;
2127 }
2128
2129 out:
2130 user_write_access_end();
2131 if (size > uaddr - start)
2132 return size - (uaddr - start);
2133 return 0;
2134 }
2135 EXPORT_SYMBOL(fault_in_writeable);
2136
2137 /**
2138 * fault_in_subpage_writeable - fault in an address range for writing
2139 * @uaddr: start of address range
2140 * @size: size of address range
2141 *
2142 * Fault in a user address range for writing while checking for permissions at
2143 * sub-page granularity (e.g. arm64 MTE). This function should be used when
2144 * the caller cannot guarantee forward progress of a copy_to_user() loop.
2145 *
2146 * Returns the number of bytes not faulted in (like copy_to_user() and
2147 * copy_from_user()).
2148 */
fault_in_subpage_writeable(char __user * uaddr,size_t size)2149 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2150 {
2151 size_t faulted_in;
2152
2153 /*
2154 * Attempt faulting in at page granularity first for page table
2155 * permission checking. The arch-specific probe_subpage_writeable()
2156 * functions may not check for this.
2157 */
2158 faulted_in = size - fault_in_writeable(uaddr, size);
2159 if (faulted_in)
2160 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2161
2162 return size - faulted_in;
2163 }
2164 EXPORT_SYMBOL(fault_in_subpage_writeable);
2165
2166 /*
2167 * fault_in_safe_writeable - fault in an address range for writing
2168 * @uaddr: start of address range
2169 * @size: length of address range
2170 *
2171 * Faults in an address range for writing. This is primarily useful when we
2172 * already know that some or all of the pages in the address range aren't in
2173 * memory.
2174 *
2175 * Unlike fault_in_writeable(), this function is non-destructive.
2176 *
2177 * Note that we don't pin or otherwise hold the pages referenced that we fault
2178 * in. There's no guarantee that they'll stay in memory for any duration of
2179 * time.
2180 *
2181 * Returns the number of bytes not faulted in, like copy_to_user() and
2182 * copy_from_user().
2183 */
fault_in_safe_writeable(const char __user * uaddr,size_t size)2184 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2185 {
2186 unsigned long start = (unsigned long)uaddr, end;
2187 struct mm_struct *mm = current->mm;
2188 bool unlocked = false;
2189
2190 if (unlikely(size == 0))
2191 return 0;
2192 end = PAGE_ALIGN(start + size);
2193 if (end < start)
2194 end = 0;
2195
2196 mmap_read_lock(mm);
2197 do {
2198 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2199 break;
2200 start = (start + PAGE_SIZE) & PAGE_MASK;
2201 } while (start != end);
2202 mmap_read_unlock(mm);
2203
2204 if (size > (unsigned long)uaddr - start)
2205 return size - ((unsigned long)uaddr - start);
2206 return 0;
2207 }
2208 EXPORT_SYMBOL(fault_in_safe_writeable);
2209
2210 /**
2211 * fault_in_readable - fault in userspace address range for reading
2212 * @uaddr: start of user address range
2213 * @size: size of user address range
2214 *
2215 * Returns the number of bytes not faulted in (like copy_to_user() and
2216 * copy_from_user()).
2217 */
fault_in_readable(const char __user * uaddr,size_t size)2218 size_t fault_in_readable(const char __user *uaddr, size_t size)
2219 {
2220 const char __user *start = uaddr, *end;
2221 volatile char c;
2222
2223 if (unlikely(size == 0))
2224 return 0;
2225 if (!user_read_access_begin(uaddr, size))
2226 return size;
2227 if (!PAGE_ALIGNED(uaddr)) {
2228 unsafe_get_user(c, uaddr, out);
2229 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2230 }
2231 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2232 if (unlikely(end < start))
2233 end = NULL;
2234 while (uaddr != end) {
2235 unsafe_get_user(c, uaddr, out);
2236 uaddr += PAGE_SIZE;
2237 }
2238
2239 out:
2240 user_read_access_end();
2241 (void)c;
2242 if (size > uaddr - start)
2243 return size - (uaddr - start);
2244 return 0;
2245 }
2246 EXPORT_SYMBOL(fault_in_readable);
2247
2248 /**
2249 * get_dump_page() - pin user page in memory while writing it to core dump
2250 * @addr: user address
2251 *
2252 * Returns struct page pointer of user page pinned for dump,
2253 * to be freed afterwards by put_page().
2254 *
2255 * Returns NULL on any kind of failure - a hole must then be inserted into
2256 * the corefile, to preserve alignment with its headers; and also returns
2257 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2258 * allowing a hole to be left in the corefile to save disk space.
2259 *
2260 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2261 */
2262 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)2263 struct page *get_dump_page(unsigned long addr)
2264 {
2265 struct page *page;
2266 int locked = 0;
2267 int ret;
2268
2269 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2270 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2271 return (ret == 1) ? page : NULL;
2272 }
2273 #endif /* CONFIG_ELF_CORE */
2274
2275 #ifdef CONFIG_MIGRATION
2276 /*
2277 * Returns the number of collected folios. Return value is always >= 0.
2278 */
collect_longterm_unpinnable_folios(struct list_head * movable_folio_list,unsigned long nr_folios,struct folio ** folios)2279 static unsigned long collect_longterm_unpinnable_folios(
2280 struct list_head *movable_folio_list,
2281 unsigned long nr_folios,
2282 struct folio **folios)
2283 {
2284 unsigned long i, collected = 0;
2285 struct folio *prev_folio = NULL;
2286 bool drain_allow = true;
2287
2288 for (i = 0; i < nr_folios; i++) {
2289 struct folio *folio = folios[i];
2290
2291 if (folio == prev_folio)
2292 continue;
2293 prev_folio = folio;
2294
2295 if (folio_is_longterm_pinnable(folio))
2296 continue;
2297
2298 collected++;
2299
2300 if (folio_is_device_coherent(folio))
2301 continue;
2302
2303 if (folio_test_hugetlb(folio)) {
2304 isolate_hugetlb(folio, movable_folio_list);
2305 continue;
2306 }
2307
2308 if (!folio_test_lru(folio) && drain_allow) {
2309 lru_add_drain_all();
2310 drain_allow = false;
2311 }
2312
2313 if (!folio_isolate_lru(folio))
2314 continue;
2315
2316 list_add_tail(&folio->lru, movable_folio_list);
2317 node_stat_mod_folio(folio,
2318 NR_ISOLATED_ANON + folio_is_file_lru(folio),
2319 folio_nr_pages(folio));
2320 }
2321
2322 return collected;
2323 }
2324
2325 /*
2326 * Unpins all folios and migrates device coherent folios and movable_folio_list.
2327 * Returns -EAGAIN if all folios were successfully migrated or -errno for
2328 * failure (or partial success).
2329 */
migrate_longterm_unpinnable_folios(struct list_head * movable_folio_list,unsigned long nr_folios,struct folio ** folios)2330 static int migrate_longterm_unpinnable_folios(
2331 struct list_head *movable_folio_list,
2332 unsigned long nr_folios,
2333 struct folio **folios)
2334 {
2335 int ret;
2336 unsigned long i;
2337
2338 for (i = 0; i < nr_folios; i++) {
2339 struct folio *folio = folios[i];
2340
2341 if (folio_is_device_coherent(folio)) {
2342 /*
2343 * Migration will fail if the folio is pinned, so
2344 * convert the pin on the source folio to a normal
2345 * reference.
2346 */
2347 folios[i] = NULL;
2348 folio_get(folio);
2349 gup_put_folio(folio, 1, FOLL_PIN);
2350
2351 if (migrate_device_coherent_folio(folio)) {
2352 ret = -EBUSY;
2353 goto err;
2354 }
2355
2356 continue;
2357 }
2358
2359 /*
2360 * We can't migrate folios with unexpected references, so drop
2361 * the reference obtained by __get_user_pages_locked().
2362 * Migrating folios have been added to movable_folio_list after
2363 * calling folio_isolate_lru() which takes a reference so the
2364 * folio won't be freed if it's migrating.
2365 */
2366 unpin_folio(folios[i]);
2367 folios[i] = NULL;
2368 }
2369
2370 if (!list_empty(movable_folio_list)) {
2371 struct migration_target_control mtc = {
2372 .nid = NUMA_NO_NODE,
2373 .gfp_mask = GFP_USER | __GFP_NOWARN,
2374 .reason = MR_LONGTERM_PIN,
2375 };
2376
2377 if (migrate_pages(movable_folio_list, alloc_migration_target,
2378 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2379 MR_LONGTERM_PIN, NULL)) {
2380 ret = -ENOMEM;
2381 goto err;
2382 }
2383 }
2384
2385 putback_movable_pages(movable_folio_list);
2386
2387 return -EAGAIN;
2388
2389 err:
2390 unpin_folios(folios, nr_folios);
2391 putback_movable_pages(movable_folio_list);
2392
2393 return ret;
2394 }
2395
2396 /*
2397 * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2398 * Rather confusingly, all folios in the range are required to be pinned via
2399 * FOLL_PIN, before calling this routine.
2400 *
2401 * Return values:
2402 *
2403 * 0: if everything is OK and all folios in the range are allowed to be pinned,
2404 * then this routine leaves all folios pinned and returns zero for success.
2405 *
2406 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2407 * routine will migrate those folios away, unpin all the folios in the range. If
2408 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2409 * caller should re-pin the entire range with FOLL_PIN and then call this
2410 * routine again.
2411 *
2412 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2413 * indicates a migration failure. The caller should give up, and propagate the
2414 * error back up the call stack. The caller does not need to unpin any folios in
2415 * that case, because this routine will do the unpinning.
2416 */
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2417 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2418 struct folio **folios)
2419 {
2420 unsigned long collected;
2421 LIST_HEAD(movable_folio_list);
2422
2423 collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2424 nr_folios, folios);
2425 if (!collected)
2426 return 0;
2427
2428 return migrate_longterm_unpinnable_folios(&movable_folio_list,
2429 nr_folios, folios);
2430 }
2431
2432 /*
2433 * Return values and behavior are the same as those for
2434 * check_and_migrate_movable_folios().
2435 */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2436 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2437 struct page **pages)
2438 {
2439 struct folio **folios;
2440 long i, ret;
2441
2442 folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL);
2443 if (!folios) {
2444 unpin_user_pages(pages, nr_pages);
2445 return -ENOMEM;
2446 }
2447
2448 for (i = 0; i < nr_pages; i++)
2449 folios[i] = page_folio(pages[i]);
2450
2451 ret = check_and_migrate_movable_folios(nr_pages, folios);
2452
2453 kfree(folios);
2454 return ret;
2455 }
2456 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2457 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2458 struct page **pages)
2459 {
2460 return 0;
2461 }
2462
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2463 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2464 struct folio **folios)
2465 {
2466 return 0;
2467 }
2468 #endif /* CONFIG_MIGRATION */
2469
2470 /*
2471 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2472 * allows us to process the FOLL_LONGTERM flag.
2473 */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int gup_flags)2474 static long __gup_longterm_locked(struct mm_struct *mm,
2475 unsigned long start,
2476 unsigned long nr_pages,
2477 struct page **pages,
2478 int *locked,
2479 unsigned int gup_flags)
2480 {
2481 unsigned int flags;
2482 long rc, nr_pinned_pages;
2483
2484 if (!(gup_flags & FOLL_LONGTERM))
2485 return __get_user_pages_locked(mm, start, nr_pages, pages,
2486 locked, gup_flags);
2487
2488 flags = memalloc_pin_save();
2489 do {
2490 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2491 pages, locked,
2492 gup_flags);
2493 if (nr_pinned_pages <= 0) {
2494 rc = nr_pinned_pages;
2495 break;
2496 }
2497
2498 /* FOLL_LONGTERM implies FOLL_PIN */
2499 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2500 } while (rc == -EAGAIN);
2501 memalloc_pin_restore(flags);
2502 return rc ? rc : nr_pinned_pages;
2503 }
2504
2505 /*
2506 * Check that the given flags are valid for the exported gup/pup interface, and
2507 * update them with the required flags that the caller must have set.
2508 */
is_valid_gup_args(struct page ** pages,int * locked,unsigned int * gup_flags_p,unsigned int to_set)2509 static bool is_valid_gup_args(struct page **pages, int *locked,
2510 unsigned int *gup_flags_p, unsigned int to_set)
2511 {
2512 unsigned int gup_flags = *gup_flags_p;
2513
2514 /*
2515 * These flags not allowed to be specified externally to the gup
2516 * interfaces:
2517 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2518 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2519 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2520 */
2521 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2522 return false;
2523
2524 gup_flags |= to_set;
2525 if (locked) {
2526 /* At the external interface locked must be set */
2527 if (WARN_ON_ONCE(*locked != 1))
2528 return false;
2529
2530 gup_flags |= FOLL_UNLOCKABLE;
2531 }
2532
2533 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2534 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2535 (FOLL_PIN | FOLL_GET)))
2536 return false;
2537
2538 /* LONGTERM can only be specified when pinning */
2539 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2540 return false;
2541
2542 /* Pages input must be given if using GET/PIN */
2543 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2544 return false;
2545
2546 /* We want to allow the pgmap to be hot-unplugged at all times */
2547 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2548 (gup_flags & FOLL_PCI_P2PDMA)))
2549 return false;
2550
2551 *gup_flags_p = gup_flags;
2552 return true;
2553 }
2554
2555 #ifdef CONFIG_MMU
2556 /**
2557 * get_user_pages_remote() - pin user pages in memory
2558 * @mm: mm_struct of target mm
2559 * @start: starting user address
2560 * @nr_pages: number of pages from start to pin
2561 * @gup_flags: flags modifying lookup behaviour
2562 * @pages: array that receives pointers to the pages pinned.
2563 * Should be at least nr_pages long. Or NULL, if caller
2564 * only intends to ensure the pages are faulted in.
2565 * @locked: pointer to lock flag indicating whether lock is held and
2566 * subsequently whether VM_FAULT_RETRY functionality can be
2567 * utilised. Lock must initially be held.
2568 *
2569 * Returns either number of pages pinned (which may be less than the
2570 * number requested), or an error. Details about the return value:
2571 *
2572 * -- If nr_pages is 0, returns 0.
2573 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2574 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2575 * pages pinned. Again, this may be less than nr_pages.
2576 *
2577 * The caller is responsible for releasing returned @pages, via put_page().
2578 *
2579 * Must be called with mmap_lock held for read or write.
2580 *
2581 * get_user_pages_remote walks a process's page tables and takes a reference
2582 * to each struct page that each user address corresponds to at a given
2583 * instant. That is, it takes the page that would be accessed if a user
2584 * thread accesses the given user virtual address at that instant.
2585 *
2586 * This does not guarantee that the page exists in the user mappings when
2587 * get_user_pages_remote returns, and there may even be a completely different
2588 * page there in some cases (eg. if mmapped pagecache has been invalidated
2589 * and subsequently re-faulted). However it does guarantee that the page
2590 * won't be freed completely. And mostly callers simply care that the page
2591 * contains data that was valid *at some point in time*. Typically, an IO
2592 * or similar operation cannot guarantee anything stronger anyway because
2593 * locks can't be held over the syscall boundary.
2594 *
2595 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2596 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2597 * be called after the page is finished with, and before put_page is called.
2598 *
2599 * get_user_pages_remote is typically used for fewer-copy IO operations,
2600 * to get a handle on the memory by some means other than accesses
2601 * via the user virtual addresses. The pages may be submitted for
2602 * DMA to devices or accessed via their kernel linear mapping (via the
2603 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2604 *
2605 * See also get_user_pages_fast, for performance critical applications.
2606 *
2607 * get_user_pages_remote should be phased out in favor of
2608 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2609 * should use get_user_pages_remote because it cannot pass
2610 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2611 */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2612 long get_user_pages_remote(struct mm_struct *mm,
2613 unsigned long start, unsigned long nr_pages,
2614 unsigned int gup_flags, struct page **pages,
2615 int *locked)
2616 {
2617 int local_locked = 1;
2618
2619 if (!is_valid_gup_args(pages, locked, &gup_flags,
2620 FOLL_TOUCH | FOLL_REMOTE))
2621 return -EINVAL;
2622
2623 return __get_user_pages_locked(mm, start, nr_pages, pages,
2624 locked ? locked : &local_locked,
2625 gup_flags);
2626 }
2627 EXPORT_SYMBOL(get_user_pages_remote);
2628
2629 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2630 long get_user_pages_remote(struct mm_struct *mm,
2631 unsigned long start, unsigned long nr_pages,
2632 unsigned int gup_flags, struct page **pages,
2633 int *locked)
2634 {
2635 return 0;
2636 }
2637 #endif /* !CONFIG_MMU */
2638
2639 /**
2640 * get_user_pages() - pin user pages in memory
2641 * @start: starting user address
2642 * @nr_pages: number of pages from start to pin
2643 * @gup_flags: flags modifying lookup behaviour
2644 * @pages: array that receives pointers to the pages pinned.
2645 * Should be at least nr_pages long. Or NULL, if caller
2646 * only intends to ensure the pages are faulted in.
2647 *
2648 * This is the same as get_user_pages_remote(), just with a less-flexible
2649 * calling convention where we assume that the mm being operated on belongs to
2650 * the current task, and doesn't allow passing of a locked parameter. We also
2651 * obviously don't pass FOLL_REMOTE in here.
2652 */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2653 long get_user_pages(unsigned long start, unsigned long nr_pages,
2654 unsigned int gup_flags, struct page **pages)
2655 {
2656 int locked = 1;
2657
2658 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2659 return -EINVAL;
2660
2661 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2662 &locked, gup_flags);
2663 }
2664 EXPORT_SYMBOL(get_user_pages);
2665
2666 /*
2667 * get_user_pages_unlocked() is suitable to replace the form:
2668 *
2669 * mmap_read_lock(mm);
2670 * get_user_pages(mm, ..., pages, NULL);
2671 * mmap_read_unlock(mm);
2672 *
2673 * with:
2674 *
2675 * get_user_pages_unlocked(mm, ..., pages);
2676 *
2677 * It is functionally equivalent to get_user_pages_fast so
2678 * get_user_pages_fast should be used instead if specific gup_flags
2679 * (e.g. FOLL_FORCE) are not required.
2680 */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2681 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2682 struct page **pages, unsigned int gup_flags)
2683 {
2684 int locked = 0;
2685
2686 if (!is_valid_gup_args(pages, NULL, &gup_flags,
2687 FOLL_TOUCH | FOLL_UNLOCKABLE))
2688 return -EINVAL;
2689
2690 return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2691 &locked, gup_flags);
2692 }
2693 EXPORT_SYMBOL(get_user_pages_unlocked);
2694
2695 /*
2696 * GUP-fast
2697 *
2698 * get_user_pages_fast attempts to pin user pages by walking the page
2699 * tables directly and avoids taking locks. Thus the walker needs to be
2700 * protected from page table pages being freed from under it, and should
2701 * block any THP splits.
2702 *
2703 * One way to achieve this is to have the walker disable interrupts, and
2704 * rely on IPIs from the TLB flushing code blocking before the page table
2705 * pages are freed. This is unsuitable for architectures that do not need
2706 * to broadcast an IPI when invalidating TLBs.
2707 *
2708 * Another way to achieve this is to batch up page table containing pages
2709 * belonging to more than one mm_user, then rcu_sched a callback to free those
2710 * pages. Disabling interrupts will allow the gup_fast() walker to both block
2711 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2712 * (which is a relatively rare event). The code below adopts this strategy.
2713 *
2714 * Before activating this code, please be aware that the following assumptions
2715 * are currently made:
2716 *
2717 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2718 * free pages containing page tables or TLB flushing requires IPI broadcast.
2719 *
2720 * *) ptes can be read atomically by the architecture.
2721 *
2722 * *) access_ok is sufficient to validate userspace address ranges.
2723 *
2724 * The last two assumptions can be relaxed by the addition of helper functions.
2725 *
2726 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2727 */
2728 #ifdef CONFIG_HAVE_GUP_FAST
2729 /*
2730 * Used in the GUP-fast path to determine whether GUP is permitted to work on
2731 * a specific folio.
2732 *
2733 * This call assumes the caller has pinned the folio, that the lowest page table
2734 * level still points to this folio, and that interrupts have been disabled.
2735 *
2736 * GUP-fast must reject all secretmem folios.
2737 *
2738 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2739 * (see comment describing the writable_file_mapping_allowed() function). We
2740 * therefore try to avoid the most egregious case of a long-term mapping doing
2741 * so.
2742 *
2743 * This function cannot be as thorough as that one as the VMA is not available
2744 * in the fast path, so instead we whitelist known good cases and if in doubt,
2745 * fall back to the slow path.
2746 */
gup_fast_folio_allowed(struct folio * folio,unsigned int flags)2747 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2748 {
2749 bool reject_file_backed = false;
2750 struct address_space *mapping;
2751 bool check_secretmem = false;
2752 unsigned long mapping_flags;
2753
2754 /*
2755 * If we aren't pinning then no problematic write can occur. A long term
2756 * pin is the most egregious case so this is the one we disallow.
2757 */
2758 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2759 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2760 reject_file_backed = true;
2761
2762 /* We hold a folio reference, so we can safely access folio fields. */
2763
2764 /* secretmem folios are always order-0 folios. */
2765 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2766 check_secretmem = true;
2767
2768 if (!reject_file_backed && !check_secretmem)
2769 return true;
2770
2771 if (WARN_ON_ONCE(folio_test_slab(folio)))
2772 return false;
2773
2774 /* hugetlb neither requires dirty-tracking nor can be secretmem. */
2775 if (folio_test_hugetlb(folio))
2776 return true;
2777
2778 /*
2779 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2780 * cannot proceed, which means no actions performed under RCU can
2781 * proceed either.
2782 *
2783 * inodes and thus their mappings are freed under RCU, which means the
2784 * mapping cannot be freed beneath us and thus we can safely dereference
2785 * it.
2786 */
2787 lockdep_assert_irqs_disabled();
2788
2789 /*
2790 * However, there may be operations which _alter_ the mapping, so ensure
2791 * we read it once and only once.
2792 */
2793 mapping = READ_ONCE(folio->mapping);
2794
2795 /*
2796 * The mapping may have been truncated, in any case we cannot determine
2797 * if this mapping is safe - fall back to slow path to determine how to
2798 * proceed.
2799 */
2800 if (!mapping)
2801 return false;
2802
2803 /* Anonymous folios pose no problem. */
2804 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2805 if (mapping_flags)
2806 return mapping_flags & PAGE_MAPPING_ANON;
2807
2808 /*
2809 * At this point, we know the mapping is non-null and points to an
2810 * address_space object.
2811 */
2812 if (check_secretmem && secretmem_mapping(mapping))
2813 return false;
2814 /* The only remaining allowed file system is shmem. */
2815 return !reject_file_backed || shmem_mapping(mapping);
2816 }
2817
gup_fast_undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2818 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2819 unsigned int flags, struct page **pages)
2820 {
2821 while ((*nr) - nr_start) {
2822 struct folio *folio = page_folio(pages[--(*nr)]);
2823
2824 folio_clear_referenced(folio);
2825 gup_put_folio(folio, 1, flags);
2826 }
2827 }
2828
2829 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2830 /*
2831 * GUP-fast relies on pte change detection to avoid concurrent pgtable
2832 * operations.
2833 *
2834 * To pin the page, GUP-fast needs to do below in order:
2835 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2836 *
2837 * For the rest of pgtable operations where pgtable updates can be racy
2838 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2839 * is pinned.
2840 *
2841 * Above will work for all pte-level operations, including THP split.
2842 *
2843 * For THP collapse, it's a bit more complicated because GUP-fast may be
2844 * walking a pgtable page that is being freed (pte is still valid but pmd
2845 * can be cleared already). To avoid race in such condition, we need to
2846 * also check pmd here to make sure pmd doesn't change (corresponds to
2847 * pmdp_collapse_flush() in the THP collapse code path).
2848 */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2849 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2850 unsigned long end, unsigned int flags, struct page **pages,
2851 int *nr)
2852 {
2853 struct dev_pagemap *pgmap = NULL;
2854 int nr_start = *nr, ret = 0;
2855 pte_t *ptep, *ptem;
2856
2857 ptem = ptep = pte_offset_map(&pmd, addr);
2858 if (!ptep)
2859 return 0;
2860 do {
2861 pte_t pte = ptep_get_lockless(ptep);
2862 struct page *page;
2863 struct folio *folio;
2864
2865 /*
2866 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2867 * pte_access_permitted() better should reject these pages
2868 * either way: otherwise, GUP-fast might succeed in
2869 * cases where ordinary GUP would fail due to VMA access
2870 * permissions.
2871 */
2872 if (pte_protnone(pte))
2873 goto pte_unmap;
2874
2875 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2876 goto pte_unmap;
2877
2878 if (pte_devmap(pte)) {
2879 if (unlikely(flags & FOLL_LONGTERM))
2880 goto pte_unmap;
2881
2882 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2883 if (unlikely(!pgmap)) {
2884 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2885 goto pte_unmap;
2886 }
2887 } else if (pte_special(pte))
2888 goto pte_unmap;
2889
2890 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2891 page = pte_page(pte);
2892
2893 folio = try_grab_folio_fast(page, 1, flags);
2894 if (!folio)
2895 goto pte_unmap;
2896
2897 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2898 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2899 gup_put_folio(folio, 1, flags);
2900 goto pte_unmap;
2901 }
2902
2903 if (!gup_fast_folio_allowed(folio, flags)) {
2904 gup_put_folio(folio, 1, flags);
2905 goto pte_unmap;
2906 }
2907
2908 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2909 gup_put_folio(folio, 1, flags);
2910 goto pte_unmap;
2911 }
2912
2913 /*
2914 * We need to make the page accessible if and only if we are
2915 * going to access its content (the FOLL_PIN case). Please
2916 * see Documentation/core-api/pin_user_pages.rst for
2917 * details.
2918 */
2919 if (flags & FOLL_PIN) {
2920 ret = arch_make_folio_accessible(folio);
2921 if (ret) {
2922 gup_put_folio(folio, 1, flags);
2923 goto pte_unmap;
2924 }
2925 }
2926 folio_set_referenced(folio);
2927 pages[*nr] = page;
2928 (*nr)++;
2929 } while (ptep++, addr += PAGE_SIZE, addr != end);
2930
2931 ret = 1;
2932
2933 pte_unmap:
2934 if (pgmap)
2935 put_dev_pagemap(pgmap);
2936 pte_unmap(ptem);
2937 return ret;
2938 }
2939 #else
2940
2941 /*
2942 * If we can't determine whether or not a pte is special, then fail immediately
2943 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2944 * to be special.
2945 *
2946 * For a futex to be placed on a THP tail page, get_futex_key requires a
2947 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2948 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2949 */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2950 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2951 unsigned long end, unsigned int flags, struct page **pages,
2952 int *nr)
2953 {
2954 return 0;
2955 }
2956 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2957
2958 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
gup_fast_devmap_leaf(unsigned long pfn,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2959 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2960 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2961 {
2962 int nr_start = *nr;
2963 struct dev_pagemap *pgmap = NULL;
2964
2965 do {
2966 struct folio *folio;
2967 struct page *page = pfn_to_page(pfn);
2968
2969 pgmap = get_dev_pagemap(pfn, pgmap);
2970 if (unlikely(!pgmap)) {
2971 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2972 break;
2973 }
2974
2975 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2976 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2977 break;
2978 }
2979
2980 folio = try_grab_folio_fast(page, 1, flags);
2981 if (!folio) {
2982 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2983 break;
2984 }
2985 folio_set_referenced(folio);
2986 pages[*nr] = page;
2987 (*nr)++;
2988 pfn++;
2989 } while (addr += PAGE_SIZE, addr != end);
2990
2991 put_dev_pagemap(pgmap);
2992 return addr == end;
2993 }
2994
gup_fast_devmap_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2995 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2996 unsigned long end, unsigned int flags, struct page **pages,
2997 int *nr)
2998 {
2999 unsigned long fault_pfn;
3000 int nr_start = *nr;
3001
3002 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3003 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3004 return 0;
3005
3006 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3007 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3008 return 0;
3009 }
3010 return 1;
3011 }
3012
gup_fast_devmap_pud_leaf(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3013 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3014 unsigned long end, unsigned int flags, struct page **pages,
3015 int *nr)
3016 {
3017 unsigned long fault_pfn;
3018 int nr_start = *nr;
3019
3020 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3021 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3022 return 0;
3023
3024 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3025 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3026 return 0;
3027 }
3028 return 1;
3029 }
3030 #else
gup_fast_devmap_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3031 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3032 unsigned long end, unsigned int flags, struct page **pages,
3033 int *nr)
3034 {
3035 BUILD_BUG();
3036 return 0;
3037 }
3038
gup_fast_devmap_pud_leaf(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3039 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3040 unsigned long end, unsigned int flags, struct page **pages,
3041 int *nr)
3042 {
3043 BUILD_BUG();
3044 return 0;
3045 }
3046 #endif
3047
gup_fast_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3048 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3049 unsigned long end, unsigned int flags, struct page **pages,
3050 int *nr)
3051 {
3052 struct page *page;
3053 struct folio *folio;
3054 int refs;
3055
3056 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3057 return 0;
3058
3059 if (pmd_special(orig))
3060 return 0;
3061
3062 if (pmd_devmap(orig)) {
3063 if (unlikely(flags & FOLL_LONGTERM))
3064 return 0;
3065 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3066 pages, nr);
3067 }
3068
3069 page = pmd_page(orig);
3070 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3071
3072 folio = try_grab_folio_fast(page, refs, flags);
3073 if (!folio)
3074 return 0;
3075
3076 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3077 gup_put_folio(folio, refs, flags);
3078 return 0;
3079 }
3080
3081 if (!gup_fast_folio_allowed(folio, flags)) {
3082 gup_put_folio(folio, refs, flags);
3083 return 0;
3084 }
3085 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3086 gup_put_folio(folio, refs, flags);
3087 return 0;
3088 }
3089
3090 *nr += refs;
3091 folio_set_referenced(folio);
3092 return 1;
3093 }
3094
gup_fast_pud_leaf(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3095 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3096 unsigned long end, unsigned int flags, struct page **pages,
3097 int *nr)
3098 {
3099 struct page *page;
3100 struct folio *folio;
3101 int refs;
3102
3103 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3104 return 0;
3105
3106 if (pud_special(orig))
3107 return 0;
3108
3109 if (pud_devmap(orig)) {
3110 if (unlikely(flags & FOLL_LONGTERM))
3111 return 0;
3112 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3113 pages, nr);
3114 }
3115
3116 page = pud_page(orig);
3117 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3118
3119 folio = try_grab_folio_fast(page, refs, flags);
3120 if (!folio)
3121 return 0;
3122
3123 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3124 gup_put_folio(folio, refs, flags);
3125 return 0;
3126 }
3127
3128 if (!gup_fast_folio_allowed(folio, flags)) {
3129 gup_put_folio(folio, refs, flags);
3130 return 0;
3131 }
3132
3133 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3134 gup_put_folio(folio, refs, flags);
3135 return 0;
3136 }
3137
3138 *nr += refs;
3139 folio_set_referenced(folio);
3140 return 1;
3141 }
3142
gup_fast_pgd_leaf(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3143 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3144 unsigned long end, unsigned int flags, struct page **pages,
3145 int *nr)
3146 {
3147 int refs;
3148 struct page *page;
3149 struct folio *folio;
3150
3151 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3152 return 0;
3153
3154 BUILD_BUG_ON(pgd_devmap(orig));
3155
3156 page = pgd_page(orig);
3157 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3158
3159 folio = try_grab_folio_fast(page, refs, flags);
3160 if (!folio)
3161 return 0;
3162
3163 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3164 gup_put_folio(folio, refs, flags);
3165 return 0;
3166 }
3167
3168 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3169 gup_put_folio(folio, refs, flags);
3170 return 0;
3171 }
3172
3173 if (!gup_fast_folio_allowed(folio, flags)) {
3174 gup_put_folio(folio, refs, flags);
3175 return 0;
3176 }
3177
3178 *nr += refs;
3179 folio_set_referenced(folio);
3180 return 1;
3181 }
3182
gup_fast_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3183 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3184 unsigned long end, unsigned int flags, struct page **pages,
3185 int *nr)
3186 {
3187 unsigned long next;
3188 pmd_t *pmdp;
3189
3190 pmdp = pmd_offset_lockless(pudp, pud, addr);
3191 do {
3192 pmd_t pmd = pmdp_get_lockless(pmdp);
3193
3194 next = pmd_addr_end(addr, end);
3195 if (!pmd_present(pmd))
3196 return 0;
3197
3198 if (unlikely(pmd_leaf(pmd))) {
3199 /* See gup_fast_pte_range() */
3200 if (pmd_protnone(pmd))
3201 return 0;
3202
3203 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3204 pages, nr))
3205 return 0;
3206
3207 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3208 pages, nr))
3209 return 0;
3210 } while (pmdp++, addr = next, addr != end);
3211
3212 return 1;
3213 }
3214
gup_fast_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3215 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3216 unsigned long end, unsigned int flags, struct page **pages,
3217 int *nr)
3218 {
3219 unsigned long next;
3220 pud_t *pudp;
3221
3222 pudp = pud_offset_lockless(p4dp, p4d, addr);
3223 do {
3224 pud_t pud = READ_ONCE(*pudp);
3225
3226 next = pud_addr_end(addr, end);
3227 if (unlikely(!pud_present(pud)))
3228 return 0;
3229 if (unlikely(pud_leaf(pud))) {
3230 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3231 pages, nr))
3232 return 0;
3233 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3234 pages, nr))
3235 return 0;
3236 } while (pudp++, addr = next, addr != end);
3237
3238 return 1;
3239 }
3240
gup_fast_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3241 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3242 unsigned long end, unsigned int flags, struct page **pages,
3243 int *nr)
3244 {
3245 unsigned long next;
3246 p4d_t *p4dp;
3247
3248 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3249 do {
3250 p4d_t p4d = READ_ONCE(*p4dp);
3251
3252 next = p4d_addr_end(addr, end);
3253 if (!p4d_present(p4d))
3254 return 0;
3255 BUILD_BUG_ON(p4d_leaf(p4d));
3256 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3257 pages, nr))
3258 return 0;
3259 } while (p4dp++, addr = next, addr != end);
3260
3261 return 1;
3262 }
3263
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3264 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3265 unsigned int flags, struct page **pages, int *nr)
3266 {
3267 unsigned long next;
3268 pgd_t *pgdp;
3269
3270 pgdp = pgd_offset(current->mm, addr);
3271 do {
3272 pgd_t pgd = READ_ONCE(*pgdp);
3273
3274 next = pgd_addr_end(addr, end);
3275 if (pgd_none(pgd))
3276 return;
3277 if (unlikely(pgd_leaf(pgd))) {
3278 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3279 pages, nr))
3280 return;
3281 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3282 pages, nr))
3283 return;
3284 } while (pgdp++, addr = next, addr != end);
3285 }
3286 #else
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3287 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3288 unsigned int flags, struct page **pages, int *nr)
3289 {
3290 }
3291 #endif /* CONFIG_HAVE_GUP_FAST */
3292
3293 #ifndef gup_fast_permitted
3294 /*
3295 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3296 * we need to fall back to the slow version:
3297 */
gup_fast_permitted(unsigned long start,unsigned long end)3298 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3299 {
3300 return true;
3301 }
3302 #endif
3303
gup_fast(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)3304 static unsigned long gup_fast(unsigned long start, unsigned long end,
3305 unsigned int gup_flags, struct page **pages)
3306 {
3307 unsigned long flags;
3308 int nr_pinned = 0;
3309 unsigned seq;
3310
3311 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3312 !gup_fast_permitted(start, end))
3313 return 0;
3314
3315 if (gup_flags & FOLL_PIN) {
3316 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
3317 if (seq & 1)
3318 return 0;
3319 }
3320
3321 /*
3322 * Disable interrupts. The nested form is used, in order to allow full,
3323 * general purpose use of this routine.
3324 *
3325 * With interrupts disabled, we block page table pages from being freed
3326 * from under us. See struct mmu_table_batch comments in
3327 * include/asm-generic/tlb.h for more details.
3328 *
3329 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3330 * that come from THPs splitting.
3331 */
3332 local_irq_save(flags);
3333 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3334 local_irq_restore(flags);
3335
3336 /*
3337 * When pinning pages for DMA there could be a concurrent write protect
3338 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3339 */
3340 if (gup_flags & FOLL_PIN) {
3341 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
3342 gup_fast_unpin_user_pages(pages, nr_pinned);
3343 return 0;
3344 } else {
3345 sanity_check_pinned_pages(pages, nr_pinned);
3346 }
3347 }
3348 return nr_pinned;
3349 }
3350
gup_fast_fallback(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3351 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3352 unsigned int gup_flags, struct page **pages)
3353 {
3354 unsigned long len, end;
3355 unsigned long nr_pinned;
3356 int locked = 0;
3357 int ret;
3358
3359 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3360 FOLL_FORCE | FOLL_PIN | FOLL_GET |
3361 FOLL_FAST_ONLY | FOLL_NOFAULT |
3362 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3363 return -EINVAL;
3364
3365 if (gup_flags & FOLL_PIN)
3366 mm_set_has_pinned_flag(¤t->mm->flags);
3367
3368 if (!(gup_flags & FOLL_FAST_ONLY))
3369 might_lock_read(¤t->mm->mmap_lock);
3370
3371 start = untagged_addr(start) & PAGE_MASK;
3372 len = nr_pages << PAGE_SHIFT;
3373 if (check_add_overflow(start, len, &end))
3374 return -EOVERFLOW;
3375 if (end > TASK_SIZE_MAX)
3376 return -EFAULT;
3377 if (unlikely(!access_ok((void __user *)start, len)))
3378 return -EFAULT;
3379
3380 nr_pinned = gup_fast(start, end, gup_flags, pages);
3381 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3382 return nr_pinned;
3383
3384 /* Slow path: try to get the remaining pages with get_user_pages */
3385 start += nr_pinned << PAGE_SHIFT;
3386 pages += nr_pinned;
3387 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3388 pages, &locked,
3389 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3390 if (ret < 0) {
3391 /*
3392 * The caller has to unpin the pages we already pinned so
3393 * returning -errno is not an option
3394 */
3395 if (nr_pinned)
3396 return nr_pinned;
3397 return ret;
3398 }
3399 return ret + nr_pinned;
3400 }
3401
3402 /**
3403 * get_user_pages_fast_only() - pin user pages in memory
3404 * @start: starting user address
3405 * @nr_pages: number of pages from start to pin
3406 * @gup_flags: flags modifying pin behaviour
3407 * @pages: array that receives pointers to the pages pinned.
3408 * Should be at least nr_pages long.
3409 *
3410 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3411 * the regular GUP.
3412 *
3413 * If the architecture does not support this function, simply return with no
3414 * pages pinned.
3415 *
3416 * Careful, careful! COW breaking can go either way, so a non-write
3417 * access can get ambiguous page results. If you call this function without
3418 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3419 */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3420 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3421 unsigned int gup_flags, struct page **pages)
3422 {
3423 /*
3424 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3425 * because gup fast is always a "pin with a +1 page refcount" request.
3426 *
3427 * FOLL_FAST_ONLY is required in order to match the API description of
3428 * this routine: no fall back to regular ("slow") GUP.
3429 */
3430 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3431 FOLL_GET | FOLL_FAST_ONLY))
3432 return -EINVAL;
3433
3434 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3435 }
3436 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3437
3438 /**
3439 * get_user_pages_fast() - pin user pages in memory
3440 * @start: starting user address
3441 * @nr_pages: number of pages from start to pin
3442 * @gup_flags: flags modifying pin behaviour
3443 * @pages: array that receives pointers to the pages pinned.
3444 * Should be at least nr_pages long.
3445 *
3446 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3447 * If not successful, it will fall back to taking the lock and
3448 * calling get_user_pages().
3449 *
3450 * Returns number of pages pinned. This may be fewer than the number requested.
3451 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3452 * -errno.
3453 */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3454 int get_user_pages_fast(unsigned long start, int nr_pages,
3455 unsigned int gup_flags, struct page **pages)
3456 {
3457 /*
3458 * The caller may or may not have explicitly set FOLL_GET; either way is
3459 * OK. However, internally (within mm/gup.c), gup fast variants must set
3460 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3461 * request.
3462 */
3463 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3464 return -EINVAL;
3465 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3466 }
3467 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3468
3469 /**
3470 * pin_user_pages_fast() - pin user pages in memory without taking locks
3471 *
3472 * @start: starting user address
3473 * @nr_pages: number of pages from start to pin
3474 * @gup_flags: flags modifying pin behaviour
3475 * @pages: array that receives pointers to the pages pinned.
3476 * Should be at least nr_pages long.
3477 *
3478 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3479 * get_user_pages_fast() for documentation on the function arguments, because
3480 * the arguments here are identical.
3481 *
3482 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3483 * see Documentation/core-api/pin_user_pages.rst for further details.
3484 *
3485 * Note that if a zero_page is amongst the returned pages, it will not have
3486 * pins in it and unpin_user_page() will not remove pins from it.
3487 */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3488 int pin_user_pages_fast(unsigned long start, int nr_pages,
3489 unsigned int gup_flags, struct page **pages)
3490 {
3491 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3492 return -EINVAL;
3493 return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3494 }
3495 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3496
3497 /**
3498 * pin_user_pages_remote() - pin pages of a remote process
3499 *
3500 * @mm: mm_struct of target mm
3501 * @start: starting user address
3502 * @nr_pages: number of pages from start to pin
3503 * @gup_flags: flags modifying lookup behaviour
3504 * @pages: array that receives pointers to the pages pinned.
3505 * Should be at least nr_pages long.
3506 * @locked: pointer to lock flag indicating whether lock is held and
3507 * subsequently whether VM_FAULT_RETRY functionality can be
3508 * utilised. Lock must initially be held.
3509 *
3510 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3511 * get_user_pages_remote() for documentation on the function arguments, because
3512 * the arguments here are identical.
3513 *
3514 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3515 * see Documentation/core-api/pin_user_pages.rst for details.
3516 *
3517 * Note that if a zero_page is amongst the returned pages, it will not have
3518 * pins in it and unpin_user_page*() will not remove pins from it.
3519 */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)3520 long pin_user_pages_remote(struct mm_struct *mm,
3521 unsigned long start, unsigned long nr_pages,
3522 unsigned int gup_flags, struct page **pages,
3523 int *locked)
3524 {
3525 int local_locked = 1;
3526
3527 if (!is_valid_gup_args(pages, locked, &gup_flags,
3528 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3529 return 0;
3530 return __gup_longterm_locked(mm, start, nr_pages, pages,
3531 locked ? locked : &local_locked,
3532 gup_flags);
3533 }
3534 EXPORT_SYMBOL(pin_user_pages_remote);
3535
3536 /**
3537 * pin_user_pages() - pin user pages in memory for use by other devices
3538 *
3539 * @start: starting user address
3540 * @nr_pages: number of pages from start to pin
3541 * @gup_flags: flags modifying lookup behaviour
3542 * @pages: array that receives pointers to the pages pinned.
3543 * Should be at least nr_pages long.
3544 *
3545 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3546 * FOLL_PIN is set.
3547 *
3548 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3549 * see Documentation/core-api/pin_user_pages.rst for details.
3550 *
3551 * Note that if a zero_page is amongst the returned pages, it will not have
3552 * pins in it and unpin_user_page*() will not remove pins from it.
3553 */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3554 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3555 unsigned int gup_flags, struct page **pages)
3556 {
3557 int locked = 1;
3558
3559 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3560 return 0;
3561 return __gup_longterm_locked(current->mm, start, nr_pages,
3562 pages, &locked, gup_flags);
3563 }
3564 EXPORT_SYMBOL(pin_user_pages);
3565
3566 /*
3567 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3568 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3569 * FOLL_PIN and rejects FOLL_GET.
3570 *
3571 * Note that if a zero_page is amongst the returned pages, it will not have
3572 * pins in it and unpin_user_page*() will not remove pins from it.
3573 */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3574 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3575 struct page **pages, unsigned int gup_flags)
3576 {
3577 int locked = 0;
3578
3579 if (!is_valid_gup_args(pages, NULL, &gup_flags,
3580 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3581 return 0;
3582
3583 return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3584 &locked, gup_flags);
3585 }
3586 EXPORT_SYMBOL(pin_user_pages_unlocked);
3587
3588 /**
3589 * memfd_pin_folios() - pin folios associated with a memfd
3590 * @memfd: the memfd whose folios are to be pinned
3591 * @start: the first memfd offset
3592 * @end: the last memfd offset (inclusive)
3593 * @folios: array that receives pointers to the folios pinned
3594 * @max_folios: maximum number of entries in @folios
3595 * @offset: the offset into the first folio
3596 *
3597 * Attempt to pin folios associated with a memfd in the contiguous range
3598 * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3599 * the folios can either be found in the page cache or need to be allocated
3600 * if necessary. Once the folios are located, they are all pinned via
3601 * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3602 * And, eventually, these pinned folios must be released either using
3603 * unpin_folios() or unpin_folio().
3604 *
3605 * It must be noted that the folios may be pinned for an indefinite amount
3606 * of time. And, in most cases, the duration of time they may stay pinned
3607 * would be controlled by the userspace. This behavior is effectively the
3608 * same as using FOLL_LONGTERM with other GUP APIs.
3609 *
3610 * Returns number of folios pinned, which could be less than @max_folios
3611 * as it depends on the folio sizes that cover the range [start, end].
3612 * If no folios were pinned, it returns -errno.
3613 */
memfd_pin_folios(struct file * memfd,loff_t start,loff_t end,struct folio ** folios,unsigned int max_folios,pgoff_t * offset)3614 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3615 struct folio **folios, unsigned int max_folios,
3616 pgoff_t *offset)
3617 {
3618 unsigned int flags, nr_folios, nr_found;
3619 unsigned int i, pgshift = PAGE_SHIFT;
3620 pgoff_t start_idx, end_idx, next_idx;
3621 struct folio *folio = NULL;
3622 struct folio_batch fbatch;
3623 struct hstate *h;
3624 long ret = -EINVAL;
3625
3626 if (start < 0 || start > end || !max_folios)
3627 return -EINVAL;
3628
3629 if (!memfd)
3630 return -EINVAL;
3631
3632 if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3633 return -EINVAL;
3634
3635 if (end >= i_size_read(file_inode(memfd)))
3636 return -EINVAL;
3637
3638 if (is_file_hugepages(memfd)) {
3639 h = hstate_file(memfd);
3640 pgshift = huge_page_shift(h);
3641 }
3642
3643 flags = memalloc_pin_save();
3644 do {
3645 nr_folios = 0;
3646 start_idx = start >> pgshift;
3647 end_idx = end >> pgshift;
3648 if (is_file_hugepages(memfd)) {
3649 start_idx <<= huge_page_order(h);
3650 end_idx <<= huge_page_order(h);
3651 }
3652
3653 folio_batch_init(&fbatch);
3654 while (start_idx <= end_idx && nr_folios < max_folios) {
3655 /*
3656 * In most cases, we should be able to find the folios
3657 * in the page cache. If we cannot find them for some
3658 * reason, we try to allocate them and add them to the
3659 * page cache.
3660 */
3661 nr_found = filemap_get_folios_contig(memfd->f_mapping,
3662 &start_idx,
3663 end_idx,
3664 &fbatch);
3665 if (folio) {
3666 folio_put(folio);
3667 folio = NULL;
3668 }
3669
3670 next_idx = 0;
3671 for (i = 0; i < nr_found; i++) {
3672 /*
3673 * As there can be multiple entries for a
3674 * given folio in the batch returned by
3675 * filemap_get_folios_contig(), the below
3676 * check is to ensure that we pin and return a
3677 * unique set of folios between start and end.
3678 */
3679 if (next_idx &&
3680 next_idx != folio_index(fbatch.folios[i]))
3681 continue;
3682
3683 folio = page_folio(&fbatch.folios[i]->page);
3684
3685 if (try_grab_folio(folio, 1, FOLL_PIN)) {
3686 folio_batch_release(&fbatch);
3687 ret = -EINVAL;
3688 goto err;
3689 }
3690
3691 if (nr_folios == 0)
3692 *offset = offset_in_folio(folio, start);
3693
3694 folios[nr_folios] = folio;
3695 next_idx = folio_next_index(folio);
3696 if (++nr_folios == max_folios)
3697 break;
3698 }
3699
3700 folio = NULL;
3701 folio_batch_release(&fbatch);
3702 if (!nr_found) {
3703 folio = memfd_alloc_folio(memfd, start_idx);
3704 if (IS_ERR(folio)) {
3705 ret = PTR_ERR(folio);
3706 if (ret != -EEXIST)
3707 goto err;
3708 folio = NULL;
3709 }
3710 }
3711 }
3712
3713 ret = check_and_migrate_movable_folios(nr_folios, folios);
3714 } while (ret == -EAGAIN);
3715
3716 memalloc_pin_restore(flags);
3717 return ret ? ret : nr_folios;
3718 err:
3719 memalloc_pin_restore(flags);
3720 unpin_folios(folios, nr_folios);
3721
3722 return ret;
3723 }
3724 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3725