1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/reboot.c
4 *
5 * Copyright (C) 2013 Linus Torvalds
6 */
7
8 #define pr_fmt(fmt) "reboot: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/ctype.h>
12 #include <linux/export.h>
13 #include <linux/kexec.h>
14 #include <linux/kmod.h>
15 #include <linux/kmsg_dump.h>
16 #include <linux/reboot.h>
17 #include <linux/suspend.h>
18 #include <linux/syscalls.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/uaccess.h>
21
22 /*
23 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
24 */
25
26 static int C_A_D = 1;
27 struct pid *cad_pid;
28 EXPORT_SYMBOL(cad_pid);
29
30 #if defined(CONFIG_ARM)
31 #define DEFAULT_REBOOT_MODE = REBOOT_HARD
32 #else
33 #define DEFAULT_REBOOT_MODE
34 #endif
35 enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
36 EXPORT_SYMBOL_GPL(reboot_mode);
37 enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
38
39 /*
40 * This variable is used privately to keep track of whether or not
41 * reboot_type is still set to its default value (i.e., reboot= hasn't
42 * been set on the command line). This is needed so that we can
43 * suppress DMI scanning for reboot quirks. Without it, it's
44 * impossible to override a faulty reboot quirk without recompiling.
45 */
46 int reboot_default = 1;
47 int reboot_cpu;
48 enum reboot_type reboot_type = BOOT_ACPI;
49 int reboot_force;
50
51 struct sys_off_handler {
52 struct notifier_block nb;
53 int (*sys_off_cb)(struct sys_off_data *data);
54 void *cb_data;
55 enum sys_off_mode mode;
56 bool blocking;
57 void *list;
58 struct device *dev;
59 };
60
61 /*
62 * This variable is used to indicate if a halt was initiated instead of a
63 * reboot when the reboot call was invoked with LINUX_REBOOT_CMD_POWER_OFF, but
64 * the system cannot be powered off. This allowes kernel_halt() to notify users
65 * of that.
66 */
67 static bool poweroff_fallback_to_halt;
68
69 /*
70 * Temporary stub that prevents linkage failure while we're in process
71 * of removing all uses of legacy pm_power_off() around the kernel.
72 */
73 void __weak (*pm_power_off)(void);
74
75 /**
76 * emergency_restart - reboot the system
77 *
78 * Without shutting down any hardware or taking any locks
79 * reboot the system. This is called when we know we are in
80 * trouble so this is our best effort to reboot. This is
81 * safe to call in interrupt context.
82 */
emergency_restart(void)83 void emergency_restart(void)
84 {
85 kmsg_dump(KMSG_DUMP_EMERG);
86 system_state = SYSTEM_RESTART;
87 machine_emergency_restart();
88 }
89 EXPORT_SYMBOL_GPL(emergency_restart);
90
kernel_restart_prepare(char * cmd)91 void kernel_restart_prepare(char *cmd)
92 {
93 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
94 system_state = SYSTEM_RESTART;
95 usermodehelper_disable();
96 device_shutdown();
97 }
98
99 /**
100 * register_reboot_notifier - Register function to be called at reboot time
101 * @nb: Info about notifier function to be called
102 *
103 * Registers a function with the list of functions
104 * to be called at reboot time.
105 *
106 * Currently always returns zero, as blocking_notifier_chain_register()
107 * always returns zero.
108 */
register_reboot_notifier(struct notifier_block * nb)109 int register_reboot_notifier(struct notifier_block *nb)
110 {
111 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
112 }
113 EXPORT_SYMBOL(register_reboot_notifier);
114
115 /**
116 * unregister_reboot_notifier - Unregister previously registered reboot notifier
117 * @nb: Hook to be unregistered
118 *
119 * Unregisters a previously registered reboot
120 * notifier function.
121 *
122 * Returns zero on success, or %-ENOENT on failure.
123 */
unregister_reboot_notifier(struct notifier_block * nb)124 int unregister_reboot_notifier(struct notifier_block *nb)
125 {
126 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
127 }
128 EXPORT_SYMBOL(unregister_reboot_notifier);
129
devm_unregister_reboot_notifier(struct device * dev,void * res)130 static void devm_unregister_reboot_notifier(struct device *dev, void *res)
131 {
132 WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
133 }
134
devm_register_reboot_notifier(struct device * dev,struct notifier_block * nb)135 int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
136 {
137 struct notifier_block **rcnb;
138 int ret;
139
140 rcnb = devres_alloc(devm_unregister_reboot_notifier,
141 sizeof(*rcnb), GFP_KERNEL);
142 if (!rcnb)
143 return -ENOMEM;
144
145 ret = register_reboot_notifier(nb);
146 if (!ret) {
147 *rcnb = nb;
148 devres_add(dev, rcnb);
149 } else {
150 devres_free(rcnb);
151 }
152
153 return ret;
154 }
155 EXPORT_SYMBOL(devm_register_reboot_notifier);
156
157 /*
158 * Notifier list for kernel code which wants to be called
159 * to restart the system.
160 */
161 static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
162
163 /**
164 * register_restart_handler - Register function to be called to reset
165 * the system
166 * @nb: Info about handler function to be called
167 * @nb->priority: Handler priority. Handlers should follow the
168 * following guidelines for setting priorities.
169 * 0: Restart handler of last resort,
170 * with limited restart capabilities
171 * 128: Default restart handler; use if no other
172 * restart handler is expected to be available,
173 * and/or if restart functionality is
174 * sufficient to restart the entire system
175 * 255: Highest priority restart handler, will
176 * preempt all other restart handlers
177 *
178 * Registers a function with code to be called to restart the
179 * system.
180 *
181 * Registered functions will be called from machine_restart as last
182 * step of the restart sequence (if the architecture specific
183 * machine_restart function calls do_kernel_restart - see below
184 * for details).
185 * Registered functions are expected to restart the system immediately.
186 * If more than one function is registered, the restart handler priority
187 * selects which function will be called first.
188 *
189 * Restart handlers are expected to be registered from non-architecture
190 * code, typically from drivers. A typical use case would be a system
191 * where restart functionality is provided through a watchdog. Multiple
192 * restart handlers may exist; for example, one restart handler might
193 * restart the entire system, while another only restarts the CPU.
194 * In such cases, the restart handler which only restarts part of the
195 * hardware is expected to register with low priority to ensure that
196 * it only runs if no other means to restart the system is available.
197 *
198 * Currently always returns zero, as atomic_notifier_chain_register()
199 * always returns zero.
200 */
register_restart_handler(struct notifier_block * nb)201 int register_restart_handler(struct notifier_block *nb)
202 {
203 return atomic_notifier_chain_register(&restart_handler_list, nb);
204 }
205 EXPORT_SYMBOL(register_restart_handler);
206
207 /**
208 * unregister_restart_handler - Unregister previously registered
209 * restart handler
210 * @nb: Hook to be unregistered
211 *
212 * Unregisters a previously registered restart handler function.
213 *
214 * Returns zero on success, or %-ENOENT on failure.
215 */
unregister_restart_handler(struct notifier_block * nb)216 int unregister_restart_handler(struct notifier_block *nb)
217 {
218 return atomic_notifier_chain_unregister(&restart_handler_list, nb);
219 }
220 EXPORT_SYMBOL(unregister_restart_handler);
221
222 /**
223 * do_kernel_restart - Execute kernel restart handler call chain
224 *
225 * Calls functions registered with register_restart_handler.
226 *
227 * Expected to be called from machine_restart as last step of the restart
228 * sequence.
229 *
230 * Restarts the system immediately if a restart handler function has been
231 * registered. Otherwise does nothing.
232 */
do_kernel_restart(char * cmd)233 void do_kernel_restart(char *cmd)
234 {
235 atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
236 }
237
migrate_to_reboot_cpu(void)238 void migrate_to_reboot_cpu(void)
239 {
240 /* The boot cpu is always logical cpu 0 */
241 int cpu = reboot_cpu;
242
243 cpu_hotplug_disable();
244
245 /* Make certain the cpu I'm about to reboot on is online */
246 if (!cpu_online(cpu))
247 cpu = cpumask_first(cpu_online_mask);
248
249 /* Prevent races with other tasks migrating this task */
250 current->flags |= PF_NO_SETAFFINITY;
251
252 /* Make certain I only run on the appropriate processor */
253 set_cpus_allowed_ptr(current, cpumask_of(cpu));
254 }
255
256 /*
257 * Notifier list for kernel code which wants to be called
258 * to prepare system for restart.
259 */
260 static BLOCKING_NOTIFIER_HEAD(restart_prep_handler_list);
261
do_kernel_restart_prepare(void)262 static void do_kernel_restart_prepare(void)
263 {
264 blocking_notifier_call_chain(&restart_prep_handler_list, 0, NULL);
265 }
266
267 /**
268 * kernel_restart - reboot the system
269 * @cmd: pointer to buffer containing command to execute for restart
270 * or %NULL
271 *
272 * Shutdown everything and perform a clean reboot.
273 * This is not safe to call in interrupt context.
274 */
kernel_restart(char * cmd)275 void kernel_restart(char *cmd)
276 {
277 kernel_restart_prepare(cmd);
278 do_kernel_restart_prepare();
279 migrate_to_reboot_cpu();
280 syscore_shutdown();
281 if (!cmd)
282 pr_emerg("Restarting system\n");
283 else
284 pr_emerg("Restarting system with command '%s'\n", cmd);
285 kmsg_dump(KMSG_DUMP_SHUTDOWN);
286 machine_restart(cmd);
287 }
288 EXPORT_SYMBOL_GPL(kernel_restart);
289
kernel_shutdown_prepare(enum system_states state)290 static void kernel_shutdown_prepare(enum system_states state)
291 {
292 blocking_notifier_call_chain(&reboot_notifier_list,
293 (state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
294 system_state = state;
295 usermodehelper_disable();
296 device_shutdown();
297 }
298 /**
299 * kernel_halt - halt the system
300 *
301 * Shutdown everything and perform a clean system halt.
302 */
kernel_halt(void)303 void kernel_halt(void)
304 {
305 kernel_shutdown_prepare(SYSTEM_HALT);
306 migrate_to_reboot_cpu();
307 syscore_shutdown();
308 if (poweroff_fallback_to_halt)
309 pr_emerg("Power off not available: System halted instead\n");
310 else
311 pr_emerg("System halted\n");
312 kmsg_dump(KMSG_DUMP_SHUTDOWN);
313 machine_halt();
314 }
315 EXPORT_SYMBOL_GPL(kernel_halt);
316
317 /*
318 * Notifier list for kernel code which wants to be called
319 * to prepare system for power off.
320 */
321 static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
322
323 /*
324 * Notifier list for kernel code which wants to be called
325 * to power off system.
326 */
327 static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
328
sys_off_notify(struct notifier_block * nb,unsigned long mode,void * cmd)329 static int sys_off_notify(struct notifier_block *nb,
330 unsigned long mode, void *cmd)
331 {
332 struct sys_off_handler *handler;
333 struct sys_off_data data = {};
334
335 handler = container_of(nb, struct sys_off_handler, nb);
336 data.cb_data = handler->cb_data;
337 data.mode = mode;
338 data.cmd = cmd;
339 data.dev = handler->dev;
340
341 return handler->sys_off_cb(&data);
342 }
343
344 static struct sys_off_handler platform_sys_off_handler;
345
alloc_sys_off_handler(int priority)346 static struct sys_off_handler *alloc_sys_off_handler(int priority)
347 {
348 struct sys_off_handler *handler;
349 gfp_t flags;
350
351 /*
352 * Platforms like m68k can't allocate sys_off handler dynamically
353 * at the early boot time because memory allocator isn't available yet.
354 */
355 if (priority == SYS_OFF_PRIO_PLATFORM) {
356 handler = &platform_sys_off_handler;
357 if (handler->cb_data)
358 return ERR_PTR(-EBUSY);
359 } else {
360 if (system_state > SYSTEM_RUNNING)
361 flags = GFP_ATOMIC;
362 else
363 flags = GFP_KERNEL;
364
365 handler = kzalloc(sizeof(*handler), flags);
366 if (!handler)
367 return ERR_PTR(-ENOMEM);
368 }
369
370 return handler;
371 }
372
free_sys_off_handler(struct sys_off_handler * handler)373 static void free_sys_off_handler(struct sys_off_handler *handler)
374 {
375 if (handler == &platform_sys_off_handler)
376 memset(handler, 0, sizeof(*handler));
377 else
378 kfree(handler);
379 }
380
381 /**
382 * register_sys_off_handler - Register sys-off handler
383 * @mode: Sys-off mode
384 * @priority: Handler priority
385 * @callback: Callback function
386 * @cb_data: Callback argument
387 *
388 * Registers system power-off or restart handler that will be invoked
389 * at the step corresponding to the given sys-off mode. Handler's callback
390 * should return NOTIFY_DONE to permit execution of the next handler in
391 * the call chain or NOTIFY_STOP to break the chain (in error case for
392 * example).
393 *
394 * Multiple handlers can be registered at the default priority level.
395 *
396 * Only one handler can be registered at the non-default priority level,
397 * otherwise ERR_PTR(-EBUSY) is returned.
398 *
399 * Returns a new instance of struct sys_off_handler on success, or
400 * an ERR_PTR()-encoded error code otherwise.
401 */
402 struct sys_off_handler *
register_sys_off_handler(enum sys_off_mode mode,int priority,int (* callback)(struct sys_off_data * data),void * cb_data)403 register_sys_off_handler(enum sys_off_mode mode,
404 int priority,
405 int (*callback)(struct sys_off_data *data),
406 void *cb_data)
407 {
408 struct sys_off_handler *handler;
409 int err;
410
411 handler = alloc_sys_off_handler(priority);
412 if (IS_ERR(handler))
413 return handler;
414
415 switch (mode) {
416 case SYS_OFF_MODE_POWER_OFF_PREPARE:
417 handler->list = &power_off_prep_handler_list;
418 handler->blocking = true;
419 break;
420
421 case SYS_OFF_MODE_POWER_OFF:
422 handler->list = &power_off_handler_list;
423 break;
424
425 case SYS_OFF_MODE_RESTART_PREPARE:
426 handler->list = &restart_prep_handler_list;
427 handler->blocking = true;
428 break;
429
430 case SYS_OFF_MODE_RESTART:
431 handler->list = &restart_handler_list;
432 break;
433
434 default:
435 free_sys_off_handler(handler);
436 return ERR_PTR(-EINVAL);
437 }
438
439 handler->nb.notifier_call = sys_off_notify;
440 handler->nb.priority = priority;
441 handler->sys_off_cb = callback;
442 handler->cb_data = cb_data;
443 handler->mode = mode;
444
445 if (handler->blocking) {
446 if (priority == SYS_OFF_PRIO_DEFAULT)
447 err = blocking_notifier_chain_register(handler->list,
448 &handler->nb);
449 else
450 err = blocking_notifier_chain_register_unique_prio(handler->list,
451 &handler->nb);
452 } else {
453 if (priority == SYS_OFF_PRIO_DEFAULT)
454 err = atomic_notifier_chain_register(handler->list,
455 &handler->nb);
456 else
457 err = atomic_notifier_chain_register_unique_prio(handler->list,
458 &handler->nb);
459 }
460
461 if (err) {
462 free_sys_off_handler(handler);
463 return ERR_PTR(err);
464 }
465
466 return handler;
467 }
468 EXPORT_SYMBOL_GPL(register_sys_off_handler);
469
470 /**
471 * unregister_sys_off_handler - Unregister sys-off handler
472 * @handler: Sys-off handler
473 *
474 * Unregisters given sys-off handler.
475 */
unregister_sys_off_handler(struct sys_off_handler * handler)476 void unregister_sys_off_handler(struct sys_off_handler *handler)
477 {
478 int err;
479
480 if (IS_ERR_OR_NULL(handler))
481 return;
482
483 if (handler->blocking)
484 err = blocking_notifier_chain_unregister(handler->list,
485 &handler->nb);
486 else
487 err = atomic_notifier_chain_unregister(handler->list,
488 &handler->nb);
489
490 /* sanity check, shall never happen */
491 WARN_ON(err);
492
493 free_sys_off_handler(handler);
494 }
495 EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
496
devm_unregister_sys_off_handler(void * data)497 static void devm_unregister_sys_off_handler(void *data)
498 {
499 struct sys_off_handler *handler = data;
500
501 unregister_sys_off_handler(handler);
502 }
503
504 /**
505 * devm_register_sys_off_handler - Register sys-off handler
506 * @dev: Device that registers handler
507 * @mode: Sys-off mode
508 * @priority: Handler priority
509 * @callback: Callback function
510 * @cb_data: Callback argument
511 *
512 * Registers resource-managed sys-off handler.
513 *
514 * Returns zero on success, or error code on failure.
515 */
devm_register_sys_off_handler(struct device * dev,enum sys_off_mode mode,int priority,int (* callback)(struct sys_off_data * data),void * cb_data)516 int devm_register_sys_off_handler(struct device *dev,
517 enum sys_off_mode mode,
518 int priority,
519 int (*callback)(struct sys_off_data *data),
520 void *cb_data)
521 {
522 struct sys_off_handler *handler;
523
524 handler = register_sys_off_handler(mode, priority, callback, cb_data);
525 if (IS_ERR(handler))
526 return PTR_ERR(handler);
527 handler->dev = dev;
528
529 return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
530 handler);
531 }
532 EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
533
534 /**
535 * devm_register_power_off_handler - Register power-off handler
536 * @dev: Device that registers callback
537 * @callback: Callback function
538 * @cb_data: Callback's argument
539 *
540 * Registers resource-managed sys-off handler with a default priority
541 * and using power-off mode.
542 *
543 * Returns zero on success, or error code on failure.
544 */
devm_register_power_off_handler(struct device * dev,int (* callback)(struct sys_off_data * data),void * cb_data)545 int devm_register_power_off_handler(struct device *dev,
546 int (*callback)(struct sys_off_data *data),
547 void *cb_data)
548 {
549 return devm_register_sys_off_handler(dev,
550 SYS_OFF_MODE_POWER_OFF,
551 SYS_OFF_PRIO_DEFAULT,
552 callback, cb_data);
553 }
554 EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
555
556 /**
557 * devm_register_restart_handler - Register restart handler
558 * @dev: Device that registers callback
559 * @callback: Callback function
560 * @cb_data: Callback's argument
561 *
562 * Registers resource-managed sys-off handler with a default priority
563 * and using restart mode.
564 *
565 * Returns zero on success, or error code on failure.
566 */
devm_register_restart_handler(struct device * dev,int (* callback)(struct sys_off_data * data),void * cb_data)567 int devm_register_restart_handler(struct device *dev,
568 int (*callback)(struct sys_off_data *data),
569 void *cb_data)
570 {
571 return devm_register_sys_off_handler(dev,
572 SYS_OFF_MODE_RESTART,
573 SYS_OFF_PRIO_DEFAULT,
574 callback, cb_data);
575 }
576 EXPORT_SYMBOL_GPL(devm_register_restart_handler);
577
578 static struct sys_off_handler *platform_power_off_handler;
579
platform_power_off_notify(struct sys_off_data * data)580 static int platform_power_off_notify(struct sys_off_data *data)
581 {
582 void (*platform_power_power_off_cb)(void) = data->cb_data;
583
584 platform_power_power_off_cb();
585
586 return NOTIFY_DONE;
587 }
588
589 /**
590 * register_platform_power_off - Register platform-level power-off callback
591 * @power_off: Power-off callback
592 *
593 * Registers power-off callback that will be called as last step
594 * of the power-off sequence. This callback is expected to be invoked
595 * for the last resort. Only one platform power-off callback is allowed
596 * to be registered at a time.
597 *
598 * Returns zero on success, or error code on failure.
599 */
register_platform_power_off(void (* power_off)(void))600 int register_platform_power_off(void (*power_off)(void))
601 {
602 struct sys_off_handler *handler;
603
604 handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
605 SYS_OFF_PRIO_PLATFORM,
606 platform_power_off_notify,
607 power_off);
608 if (IS_ERR(handler))
609 return PTR_ERR(handler);
610
611 platform_power_off_handler = handler;
612
613 return 0;
614 }
615 EXPORT_SYMBOL_GPL(register_platform_power_off);
616
617 /**
618 * unregister_platform_power_off - Unregister platform-level power-off callback
619 * @power_off: Power-off callback
620 *
621 * Unregisters previously registered platform power-off callback.
622 */
unregister_platform_power_off(void (* power_off)(void))623 void unregister_platform_power_off(void (*power_off)(void))
624 {
625 if (platform_power_off_handler &&
626 platform_power_off_handler->cb_data == power_off) {
627 unregister_sys_off_handler(platform_power_off_handler);
628 platform_power_off_handler = NULL;
629 }
630 }
631 EXPORT_SYMBOL_GPL(unregister_platform_power_off);
632
legacy_pm_power_off(struct sys_off_data * data)633 static int legacy_pm_power_off(struct sys_off_data *data)
634 {
635 if (pm_power_off)
636 pm_power_off();
637
638 return NOTIFY_DONE;
639 }
640
do_kernel_power_off_prepare(void)641 static void do_kernel_power_off_prepare(void)
642 {
643 blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
644 }
645
646 /**
647 * do_kernel_power_off - Execute kernel power-off handler call chain
648 *
649 * Expected to be called as last step of the power-off sequence.
650 *
651 * Powers off the system immediately if a power-off handler function has
652 * been registered. Otherwise does nothing.
653 */
do_kernel_power_off(void)654 void do_kernel_power_off(void)
655 {
656 struct sys_off_handler *sys_off = NULL;
657
658 /*
659 * Register sys-off handlers for legacy PM callback. This allows
660 * legacy PM callbacks temporary co-exist with the new sys-off API.
661 *
662 * TODO: Remove legacy handlers once all legacy PM users will be
663 * switched to the sys-off based APIs.
664 */
665 if (pm_power_off)
666 sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
667 SYS_OFF_PRIO_DEFAULT,
668 legacy_pm_power_off, NULL);
669
670 atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
671
672 unregister_sys_off_handler(sys_off);
673 }
674
675 /**
676 * kernel_can_power_off - check whether system can be powered off
677 *
678 * Returns true if power-off handler is registered and system can be
679 * powered off, false otherwise.
680 */
kernel_can_power_off(void)681 bool kernel_can_power_off(void)
682 {
683 return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
684 pm_power_off;
685 }
686 EXPORT_SYMBOL_GPL(kernel_can_power_off);
687
688 /**
689 * kernel_power_off - power_off the system
690 *
691 * Shutdown everything and perform a clean system power_off.
692 */
kernel_power_off(void)693 void kernel_power_off(void)
694 {
695 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
696 do_kernel_power_off_prepare();
697 migrate_to_reboot_cpu();
698 syscore_shutdown();
699 pr_emerg("Power down\n");
700 kmsg_dump(KMSG_DUMP_SHUTDOWN);
701 machine_power_off();
702 }
703 EXPORT_SYMBOL_GPL(kernel_power_off);
704
705 DEFINE_MUTEX(system_transition_mutex);
706
707 /*
708 * Reboot system call: for obvious reasons only root may call it,
709 * and even root needs to set up some magic numbers in the registers
710 * so that some mistake won't make this reboot the whole machine.
711 * You can also set the meaning of the ctrl-alt-del-key here.
712 *
713 * reboot doesn't sync: do that yourself before calling this.
714 */
SYSCALL_DEFINE4(reboot,int,magic1,int,magic2,unsigned int,cmd,void __user *,arg)715 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
716 void __user *, arg)
717 {
718 struct pid_namespace *pid_ns = task_active_pid_ns(current);
719 char buffer[256];
720 int ret = 0;
721
722 /* We only trust the superuser with rebooting the system. */
723 if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
724 return -EPERM;
725
726 /* For safety, we require "magic" arguments. */
727 if (magic1 != LINUX_REBOOT_MAGIC1 ||
728 (magic2 != LINUX_REBOOT_MAGIC2 &&
729 magic2 != LINUX_REBOOT_MAGIC2A &&
730 magic2 != LINUX_REBOOT_MAGIC2B &&
731 magic2 != LINUX_REBOOT_MAGIC2C))
732 return -EINVAL;
733
734 /*
735 * If pid namespaces are enabled and the current task is in a child
736 * pid_namespace, the command is handled by reboot_pid_ns() which will
737 * call do_exit().
738 */
739 ret = reboot_pid_ns(pid_ns, cmd);
740 if (ret)
741 return ret;
742
743 /* Instead of trying to make the power_off code look like
744 * halt when pm_power_off is not set do it the easy way.
745 */
746 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off()) {
747 poweroff_fallback_to_halt = true;
748 cmd = LINUX_REBOOT_CMD_HALT;
749 }
750
751 mutex_lock(&system_transition_mutex);
752 switch (cmd) {
753 case LINUX_REBOOT_CMD_RESTART:
754 kernel_restart(NULL);
755 break;
756
757 case LINUX_REBOOT_CMD_CAD_ON:
758 C_A_D = 1;
759 break;
760
761 case LINUX_REBOOT_CMD_CAD_OFF:
762 C_A_D = 0;
763 break;
764
765 case LINUX_REBOOT_CMD_HALT:
766 kernel_halt();
767 do_exit(0);
768
769 case LINUX_REBOOT_CMD_POWER_OFF:
770 kernel_power_off();
771 do_exit(0);
772 break;
773
774 case LINUX_REBOOT_CMD_RESTART2:
775 ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
776 if (ret < 0) {
777 ret = -EFAULT;
778 break;
779 }
780 buffer[sizeof(buffer) - 1] = '\0';
781
782 kernel_restart(buffer);
783 break;
784
785 #ifdef CONFIG_KEXEC_CORE
786 case LINUX_REBOOT_CMD_KEXEC:
787 ret = kernel_kexec();
788 break;
789 #endif
790
791 #ifdef CONFIG_HIBERNATION
792 case LINUX_REBOOT_CMD_SW_SUSPEND:
793 ret = hibernate();
794 break;
795 #endif
796
797 default:
798 ret = -EINVAL;
799 break;
800 }
801 mutex_unlock(&system_transition_mutex);
802 return ret;
803 }
804
deferred_cad(struct work_struct * dummy)805 static void deferred_cad(struct work_struct *dummy)
806 {
807 kernel_restart(NULL);
808 }
809
810 /*
811 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
812 * As it's called within an interrupt, it may NOT sync: the only choice
813 * is whether to reboot at once, or just ignore the ctrl-alt-del.
814 */
ctrl_alt_del(void)815 void ctrl_alt_del(void)
816 {
817 static DECLARE_WORK(cad_work, deferred_cad);
818
819 if (C_A_D)
820 schedule_work(&cad_work);
821 else
822 kill_cad_pid(SIGINT, 1);
823 }
824
825 #define POWEROFF_CMD_PATH_LEN 256
826 static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
827 static const char reboot_cmd[] = "/sbin/reboot";
828
run_cmd(const char * cmd)829 static int run_cmd(const char *cmd)
830 {
831 char **argv;
832 static char *envp[] = {
833 "HOME=/",
834 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
835 NULL
836 };
837 int ret;
838 argv = argv_split(GFP_KERNEL, cmd, NULL);
839 if (argv) {
840 ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
841 argv_free(argv);
842 } else {
843 ret = -ENOMEM;
844 }
845
846 return ret;
847 }
848
__orderly_reboot(void)849 static int __orderly_reboot(void)
850 {
851 int ret;
852
853 ret = run_cmd(reboot_cmd);
854
855 if (ret) {
856 pr_warn("Failed to start orderly reboot: forcing the issue\n");
857 emergency_sync();
858 kernel_restart(NULL);
859 }
860
861 return ret;
862 }
863
__orderly_poweroff(bool force)864 static int __orderly_poweroff(bool force)
865 {
866 int ret;
867
868 ret = run_cmd(poweroff_cmd);
869
870 if (ret && force) {
871 pr_warn("Failed to start orderly shutdown: forcing the issue\n");
872
873 /*
874 * I guess this should try to kick off some daemon to sync and
875 * poweroff asap. Or not even bother syncing if we're doing an
876 * emergency shutdown?
877 */
878 emergency_sync();
879 kernel_power_off();
880 }
881
882 return ret;
883 }
884
885 static bool poweroff_force;
886
poweroff_work_func(struct work_struct * work)887 static void poweroff_work_func(struct work_struct *work)
888 {
889 __orderly_poweroff(poweroff_force);
890 }
891
892 static DECLARE_WORK(poweroff_work, poweroff_work_func);
893
894 /**
895 * orderly_poweroff - Trigger an orderly system poweroff
896 * @force: force poweroff if command execution fails
897 *
898 * This may be called from any context to trigger a system shutdown.
899 * If the orderly shutdown fails, it will force an immediate shutdown.
900 */
orderly_poweroff(bool force)901 void orderly_poweroff(bool force)
902 {
903 if (force) /* do not override the pending "true" */
904 poweroff_force = true;
905 schedule_work(&poweroff_work);
906 }
907 EXPORT_SYMBOL_GPL(orderly_poweroff);
908
reboot_work_func(struct work_struct * work)909 static void reboot_work_func(struct work_struct *work)
910 {
911 __orderly_reboot();
912 }
913
914 static DECLARE_WORK(reboot_work, reboot_work_func);
915
916 /**
917 * orderly_reboot - Trigger an orderly system reboot
918 *
919 * This may be called from any context to trigger a system reboot.
920 * If the orderly reboot fails, it will force an immediate reboot.
921 */
orderly_reboot(void)922 void orderly_reboot(void)
923 {
924 schedule_work(&reboot_work);
925 }
926 EXPORT_SYMBOL_GPL(orderly_reboot);
927
928 /**
929 * hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay
930 * @work: work_struct associated with the emergency poweroff function
931 *
932 * This function is called in very critical situations to force
933 * a kernel poweroff after a configurable timeout value.
934 */
hw_failure_emergency_poweroff_func(struct work_struct * work)935 static void hw_failure_emergency_poweroff_func(struct work_struct *work)
936 {
937 /*
938 * We have reached here after the emergency shutdown waiting period has
939 * expired. This means orderly_poweroff has not been able to shut off
940 * the system for some reason.
941 *
942 * Try to shut down the system immediately using kernel_power_off
943 * if populated
944 */
945 pr_emerg("Hardware protection timed-out. Trying forced poweroff\n");
946 kernel_power_off();
947
948 /*
949 * Worst of the worst case trigger emergency restart
950 */
951 pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n");
952 emergency_restart();
953 }
954
955 static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work,
956 hw_failure_emergency_poweroff_func);
957
958 /**
959 * hw_failure_emergency_poweroff - Trigger an emergency system poweroff
960 *
961 * This may be called from any critical situation to trigger a system shutdown
962 * after a given period of time. If time is negative this is not scheduled.
963 */
hw_failure_emergency_poweroff(int poweroff_delay_ms)964 static void hw_failure_emergency_poweroff(int poweroff_delay_ms)
965 {
966 if (poweroff_delay_ms <= 0)
967 return;
968 schedule_delayed_work(&hw_failure_emergency_poweroff_work,
969 msecs_to_jiffies(poweroff_delay_ms));
970 }
971
972 /**
973 * __hw_protection_shutdown - Trigger an emergency system shutdown or reboot
974 *
975 * @reason: Reason of emergency shutdown or reboot to be printed.
976 * @ms_until_forced: Time to wait for orderly shutdown or reboot before
977 * triggering it. Negative value disables the forced
978 * shutdown or reboot.
979 * @shutdown: If true, indicates that a shutdown will happen
980 * after the critical tempeature is reached.
981 * If false, indicates that a reboot will happen
982 * after the critical tempeature is reached.
983 *
984 * Initiate an emergency system shutdown or reboot in order to protect
985 * hardware from further damage. Usage examples include a thermal protection.
986 * NOTE: The request is ignored if protection shutdown or reboot is already
987 * pending even if the previous request has given a large timeout for forced
988 * shutdown/reboot.
989 */
__hw_protection_shutdown(const char * reason,int ms_until_forced,bool shutdown)990 void __hw_protection_shutdown(const char *reason, int ms_until_forced, bool shutdown)
991 {
992 static atomic_t allow_proceed = ATOMIC_INIT(1);
993
994 pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason);
995
996 /* Shutdown should be initiated only once. */
997 if (!atomic_dec_and_test(&allow_proceed))
998 return;
999
1000 /*
1001 * Queue a backup emergency shutdown in the event of
1002 * orderly_poweroff failure
1003 */
1004 hw_failure_emergency_poweroff(ms_until_forced);
1005 if (shutdown)
1006 orderly_poweroff(true);
1007 else
1008 orderly_reboot();
1009 }
1010 EXPORT_SYMBOL_GPL(__hw_protection_shutdown);
1011
reboot_setup(char * str)1012 static int __init reboot_setup(char *str)
1013 {
1014 for (;;) {
1015 enum reboot_mode *mode;
1016
1017 /*
1018 * Having anything passed on the command line via
1019 * reboot= will cause us to disable DMI checking
1020 * below.
1021 */
1022 reboot_default = 0;
1023
1024 if (!strncmp(str, "panic_", 6)) {
1025 mode = &panic_reboot_mode;
1026 str += 6;
1027 } else {
1028 mode = &reboot_mode;
1029 }
1030
1031 switch (*str) {
1032 case 'w':
1033 *mode = REBOOT_WARM;
1034 break;
1035
1036 case 'c':
1037 *mode = REBOOT_COLD;
1038 break;
1039
1040 case 'h':
1041 *mode = REBOOT_HARD;
1042 break;
1043
1044 case 's':
1045 /*
1046 * reboot_cpu is s[mp]#### with #### being the processor
1047 * to be used for rebooting. Skip 's' or 'smp' prefix.
1048 */
1049 str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
1050
1051 if (isdigit(str[0])) {
1052 int cpu = simple_strtoul(str, NULL, 0);
1053
1054 if (cpu >= num_possible_cpus()) {
1055 pr_err("Ignoring the CPU number in reboot= option. "
1056 "CPU %d exceeds possible cpu number %d\n",
1057 cpu, num_possible_cpus());
1058 break;
1059 }
1060 reboot_cpu = cpu;
1061 } else
1062 *mode = REBOOT_SOFT;
1063 break;
1064
1065 case 'g':
1066 *mode = REBOOT_GPIO;
1067 break;
1068
1069 case 'b':
1070 case 'a':
1071 case 'k':
1072 case 't':
1073 case 'e':
1074 case 'p':
1075 reboot_type = *str;
1076 break;
1077
1078 case 'f':
1079 reboot_force = 1;
1080 break;
1081 }
1082
1083 str = strchr(str, ',');
1084 if (str)
1085 str++;
1086 else
1087 break;
1088 }
1089 return 1;
1090 }
1091 __setup("reboot=", reboot_setup);
1092
1093 #ifdef CONFIG_SYSFS
1094
1095 #define REBOOT_COLD_STR "cold"
1096 #define REBOOT_WARM_STR "warm"
1097 #define REBOOT_HARD_STR "hard"
1098 #define REBOOT_SOFT_STR "soft"
1099 #define REBOOT_GPIO_STR "gpio"
1100 #define REBOOT_UNDEFINED_STR "undefined"
1101
1102 #define BOOT_TRIPLE_STR "triple"
1103 #define BOOT_KBD_STR "kbd"
1104 #define BOOT_BIOS_STR "bios"
1105 #define BOOT_ACPI_STR "acpi"
1106 #define BOOT_EFI_STR "efi"
1107 #define BOOT_PCI_STR "pci"
1108
mode_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1109 static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1110 {
1111 const char *val;
1112
1113 switch (reboot_mode) {
1114 case REBOOT_COLD:
1115 val = REBOOT_COLD_STR;
1116 break;
1117 case REBOOT_WARM:
1118 val = REBOOT_WARM_STR;
1119 break;
1120 case REBOOT_HARD:
1121 val = REBOOT_HARD_STR;
1122 break;
1123 case REBOOT_SOFT:
1124 val = REBOOT_SOFT_STR;
1125 break;
1126 case REBOOT_GPIO:
1127 val = REBOOT_GPIO_STR;
1128 break;
1129 default:
1130 val = REBOOT_UNDEFINED_STR;
1131 }
1132
1133 return sprintf(buf, "%s\n", val);
1134 }
mode_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1135 static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
1136 const char *buf, size_t count)
1137 {
1138 if (!capable(CAP_SYS_BOOT))
1139 return -EPERM;
1140
1141 if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
1142 reboot_mode = REBOOT_COLD;
1143 else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
1144 reboot_mode = REBOOT_WARM;
1145 else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
1146 reboot_mode = REBOOT_HARD;
1147 else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
1148 reboot_mode = REBOOT_SOFT;
1149 else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
1150 reboot_mode = REBOOT_GPIO;
1151 else
1152 return -EINVAL;
1153
1154 reboot_default = 0;
1155
1156 return count;
1157 }
1158 static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
1159
1160 #ifdef CONFIG_X86
force_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1161 static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1162 {
1163 return sprintf(buf, "%d\n", reboot_force);
1164 }
force_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1165 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
1166 const char *buf, size_t count)
1167 {
1168 bool res;
1169
1170 if (!capable(CAP_SYS_BOOT))
1171 return -EPERM;
1172
1173 if (kstrtobool(buf, &res))
1174 return -EINVAL;
1175
1176 reboot_default = 0;
1177 reboot_force = res;
1178
1179 return count;
1180 }
1181 static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
1182
type_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1183 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1184 {
1185 const char *val;
1186
1187 switch (reboot_type) {
1188 case BOOT_TRIPLE:
1189 val = BOOT_TRIPLE_STR;
1190 break;
1191 case BOOT_KBD:
1192 val = BOOT_KBD_STR;
1193 break;
1194 case BOOT_BIOS:
1195 val = BOOT_BIOS_STR;
1196 break;
1197 case BOOT_ACPI:
1198 val = BOOT_ACPI_STR;
1199 break;
1200 case BOOT_EFI:
1201 val = BOOT_EFI_STR;
1202 break;
1203 case BOOT_CF9_FORCE:
1204 val = BOOT_PCI_STR;
1205 break;
1206 default:
1207 val = REBOOT_UNDEFINED_STR;
1208 }
1209
1210 return sprintf(buf, "%s\n", val);
1211 }
type_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1212 static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
1213 const char *buf, size_t count)
1214 {
1215 if (!capable(CAP_SYS_BOOT))
1216 return -EPERM;
1217
1218 if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
1219 reboot_type = BOOT_TRIPLE;
1220 else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
1221 reboot_type = BOOT_KBD;
1222 else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
1223 reboot_type = BOOT_BIOS;
1224 else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
1225 reboot_type = BOOT_ACPI;
1226 else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
1227 reboot_type = BOOT_EFI;
1228 else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
1229 reboot_type = BOOT_CF9_FORCE;
1230 else
1231 return -EINVAL;
1232
1233 reboot_default = 0;
1234
1235 return count;
1236 }
1237 static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
1238 #endif
1239
1240 #ifdef CONFIG_SMP
cpu_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1241 static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1242 {
1243 return sprintf(buf, "%d\n", reboot_cpu);
1244 }
cpu_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1245 static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
1246 const char *buf, size_t count)
1247 {
1248 unsigned int cpunum;
1249 int rc;
1250
1251 if (!capable(CAP_SYS_BOOT))
1252 return -EPERM;
1253
1254 rc = kstrtouint(buf, 0, &cpunum);
1255
1256 if (rc)
1257 return rc;
1258
1259 if (cpunum >= num_possible_cpus())
1260 return -ERANGE;
1261
1262 reboot_default = 0;
1263 reboot_cpu = cpunum;
1264
1265 return count;
1266 }
1267 static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
1268 #endif
1269
1270 static struct attribute *reboot_attrs[] = {
1271 &reboot_mode_attr.attr,
1272 #ifdef CONFIG_X86
1273 &reboot_force_attr.attr,
1274 &reboot_type_attr.attr,
1275 #endif
1276 #ifdef CONFIG_SMP
1277 &reboot_cpu_attr.attr,
1278 #endif
1279 NULL,
1280 };
1281
1282 #ifdef CONFIG_SYSCTL
1283 static struct ctl_table kern_reboot_table[] = {
1284 {
1285 .procname = "poweroff_cmd",
1286 .data = &poweroff_cmd,
1287 .maxlen = POWEROFF_CMD_PATH_LEN,
1288 .mode = 0644,
1289 .proc_handler = proc_dostring,
1290 },
1291 {
1292 .procname = "ctrl-alt-del",
1293 .data = &C_A_D,
1294 .maxlen = sizeof(int),
1295 .mode = 0644,
1296 .proc_handler = proc_dointvec,
1297 },
1298 };
1299
kernel_reboot_sysctls_init(void)1300 static void __init kernel_reboot_sysctls_init(void)
1301 {
1302 register_sysctl_init("kernel", kern_reboot_table);
1303 }
1304 #else
1305 #define kernel_reboot_sysctls_init() do { } while (0)
1306 #endif /* CONFIG_SYSCTL */
1307
1308 static const struct attribute_group reboot_attr_group = {
1309 .attrs = reboot_attrs,
1310 };
1311
reboot_ksysfs_init(void)1312 static int __init reboot_ksysfs_init(void)
1313 {
1314 struct kobject *reboot_kobj;
1315 int ret;
1316
1317 reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
1318 if (!reboot_kobj)
1319 return -ENOMEM;
1320
1321 ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
1322 if (ret) {
1323 kobject_put(reboot_kobj);
1324 return ret;
1325 }
1326
1327 kernel_reboot_sysctls_init();
1328
1329 return 0;
1330 }
1331 late_initcall(reboot_ksysfs_init);
1332
1333 #endif
1334