1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "bitmap.h"
38 #include "tree-flow.h"
39 #include "tree-gimple.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "timevar.h"
43 #include "hashtab.h"
44 #include "tree-dump.h"
45 #include "tree-pass.h"
46 #include "cfgloop.h"
47 #include "domwalk.h"
48 #include "ggc.h"
49 #include "params.h"
50 #include "vecprim.h"
51
52 /* This file builds the SSA form for a function as described in:
53 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
54 Computing Static Single Assignment Form and the Control Dependence
55 Graph. ACM Transactions on Programming Languages and Systems,
56 13(4):451-490, October 1991. */
57
58 /* True if the code is in ssa form. */
59 bool in_ssa_p;
60
61 /* Structure to map a variable VAR to the set of blocks that contain
62 definitions for VAR. */
63 struct def_blocks_d
64 {
65 /* The variable. */
66 tree var;
67
68 /* Blocks that contain definitions of VAR. Bit I will be set if the
69 Ith block contains a definition of VAR. */
70 bitmap def_blocks;
71
72 /* Blocks that contain a PHI node for VAR. */
73 bitmap phi_blocks;
74
75 /* Blocks where VAR is live-on-entry. Similar semantics as
76 DEF_BLOCKS. */
77 bitmap livein_blocks;
78 };
79
80
81 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
82 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
83 basic blocks where VAR is defined (assigned a new value). It also
84 contains a bitmap of all the blocks where VAR is live-on-entry
85 (i.e., there is a use of VAR in block B without a preceding
86 definition in B). The live-on-entry information is used when
87 computing PHI pruning heuristics. */
88 static htab_t def_blocks;
89
90 /* Stack of trees used to restore the global currdefs to its original
91 state after completing rewriting of a block and its dominator
92 children. Its elements have the following properties:
93
94 - An SSA_NAME indicates that the current definition of the
95 underlying variable should be set to the given SSA_NAME.
96
97 - A _DECL node indicates that the underlying variable has no
98 current definition.
99
100 - A NULL node is used to mark the last node associated with the
101 current block.
102
103 - A NULL node at the top entry is used to mark the last node
104 associated with the current block. */
105 static VEC(tree,heap) *block_defs_stack;
106
107 /* Set of existing SSA names being replaced by update_ssa. */
108 static sbitmap old_ssa_names;
109
110 /* Set of new SSA names being added by update_ssa. Note that both
111 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
112 the operations done on them are presence tests. */
113 static sbitmap new_ssa_names;
114
115 /* Symbols whose SSA form needs to be updated or created for the first
116 time. */
117 static bitmap syms_to_rename;
118
119 /* Set of SSA names that have been marked to be released after they
120 were registered in the replacement table. They will be finally
121 released after we finish updating the SSA web. */
122 static bitmap names_to_release;
123
124 /* For each block, the phi nodes that need to be rewritten are stored into
125 these vectors. */
126
127 typedef VEC(tree, heap) *tree_vec;
128 DEF_VEC_P (tree_vec);
129 DEF_VEC_ALLOC_P (tree_vec, heap);
130
VEC(tree_vec,heap)131 static VEC(tree_vec, heap) *phis_to_rewrite;
132
133 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
134
135 static bitmap blocks_with_phis_to_rewrite;
136
137 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
138 to grow as the callers to register_new_name_mapping will typically
139 create new names on the fly. FIXME. Currently set to 1/3 to avoid
140 frequent reallocations but still need to find a reasonable growth
141 strategy. */
142 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
143
144 /* Tuple used to represent replacement mappings. */
145 struct repl_map_d
146 {
147 tree name;
148 bitmap set;
149 };
150
151 /* NEW -> OLD_SET replacement table. If we are replacing several
152 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
153 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
154 static htab_t repl_tbl;
155
156 /* true if register_new_name_mapping needs to initialize the data
157 structures needed by update_ssa. */
158 static bool need_to_initialize_update_ssa_p = true;
159
160 /* true if update_ssa needs to update virtual operands. */
161 static bool need_to_update_vops_p = false;
162
163 /* Statistics kept by update_ssa to use in the virtual mapping
164 heuristic. If the number of virtual mappings is beyond certain
165 threshold, the updater will switch from using the mappings into
166 renaming the virtual symbols from scratch. In some cases, the
167 large number of name mappings for virtual names causes significant
168 slowdowns in the PHI insertion code. */
169 struct update_ssa_stats_d
170 {
171 unsigned num_virtual_mappings;
172 unsigned num_total_mappings;
173 bitmap virtual_symbols;
174 unsigned num_virtual_symbols;
175 };
176 static struct update_ssa_stats_d update_ssa_stats;
177
178 /* Global data to attach to the main dominator walk structure. */
179 struct mark_def_sites_global_data
180 {
181 /* This bitmap contains the variables which are set before they
182 are used in a basic block. */
183 bitmap kills;
184
185 /* Bitmap of names to rename. */
186 sbitmap names_to_rename;
187
188 /* Set of blocks that mark_def_sites deems interesting for the
189 renamer to process. */
190 sbitmap interesting_blocks;
191 };
192
193
194 /* Information stored for SSA names. */
195 struct ssa_name_info
196 {
197 /* The actual definition of the ssa name. */
198 tree current_def;
199
200 /* This field indicates whether or not the variable may need PHI nodes.
201 See the enum's definition for more detailed information about the
202 states. */
203 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
204
205 /* Age of this record (so that info_for_ssa_name table can be cleared
206 quicky); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
207 are assumed to be null. */
208 unsigned age;
209 };
210
211 /* The information associated with names. */
212 typedef struct ssa_name_info *ssa_name_info_p;
213 DEF_VEC_P (ssa_name_info_p);
214 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
215
216 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
217 static unsigned current_info_for_ssa_name_age;
218
219 /* The set of blocks affected by update_ssa. */
220
221 static bitmap blocks_to_update;
222
223 /* The main entry point to the SSA renamer (rewrite_blocks) may be
224 called several times to do different, but related, tasks.
225 Initially, we need it to rename the whole program into SSA form.
226 At other times, we may need it to only rename into SSA newly
227 exposed symbols. Finally, we can also call it to incrementally fix
228 an already built SSA web. */
229 enum rewrite_mode {
230 /* Convert the whole function into SSA form. */
231 REWRITE_ALL,
232
233 /* Incrementally update the SSA web by replacing existing SSA
234 names with new ones. See update_ssa for details. */
235 REWRITE_UPDATE
236 };
237
238
239 /* Use TREE_VISITED to keep track of which statements we want to
240 rename. When renaming a subset of the variables, not all
241 statements will be processed. This is decided in mark_def_sites. */
242 #define REWRITE_THIS_STMT(T) TREE_VISITED (T)
243
244 /* Use the unsigned flag to keep track of which statements we want to
245 visit when marking new definition sites. This is slightly
246 different than REWRITE_THIS_STMT: it's used by update_ssa to
247 distinguish statements that need to have both uses and defs
248 processed from those that only need to have their defs processed.
249 Statements that define new SSA names only need to have their defs
250 registered, but they don't need to have their uses renamed. */
251 #define REGISTER_DEFS_IN_THIS_STMT(T) (T)->common.unsigned_flag
252
253
254 /* Prototypes for debugging functions. */
255 extern void dump_tree_ssa (FILE *);
256 extern void debug_tree_ssa (void);
257 extern void debug_def_blocks (void);
258 extern void dump_tree_ssa_stats (FILE *);
259 extern void debug_tree_ssa_stats (void);
260 void dump_update_ssa (FILE *);
261 void debug_update_ssa (void);
262 void dump_names_replaced_by (FILE *, tree);
263 void debug_names_replaced_by (tree);
264
265 /* Get the information associated with NAME. */
266
267 static inline struct ssa_name_info *
get_ssa_name_ann(tree name)268 get_ssa_name_ann (tree name)
269 {
270 unsigned ver = SSA_NAME_VERSION (name);
271 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
272 struct ssa_name_info *info;
273
274 if (ver >= len)
275 {
276 unsigned new_len = num_ssa_names;
277
278 VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
279 while (len++ < new_len)
280 {
281 struct ssa_name_info *info = XCNEW (struct ssa_name_info);
282 info->age = current_info_for_ssa_name_age;
283 VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
284 }
285 }
286
287 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
288 if (info->age < current_info_for_ssa_name_age)
289 {
290 info->need_phi_state = 0;
291 info->current_def = NULL_TREE;
292 info->age = current_info_for_ssa_name_age;
293 }
294
295 return info;
296 }
297
298 /* Clears info for ssa names. */
299
300 static void
clear_ssa_name_info(void)301 clear_ssa_name_info (void)
302 {
303 current_info_for_ssa_name_age++;
304 }
305
306 /* Gets phi_state field for VAR. */
307
308 static inline enum need_phi_state
get_phi_state(tree var)309 get_phi_state (tree var)
310 {
311 if (TREE_CODE (var) == SSA_NAME)
312 return get_ssa_name_ann (var)->need_phi_state;
313 else
314 return var_ann (var)->need_phi_state;
315 }
316
317
318 /* Sets phi_state field for VAR to STATE. */
319
320 static inline void
set_phi_state(tree var,enum need_phi_state state)321 set_phi_state (tree var, enum need_phi_state state)
322 {
323 if (TREE_CODE (var) == SSA_NAME)
324 get_ssa_name_ann (var)->need_phi_state = state;
325 else
326 var_ann (var)->need_phi_state = state;
327 }
328
329
330 /* Return the current definition for VAR. */
331
332 tree
get_current_def(tree var)333 get_current_def (tree var)
334 {
335 if (TREE_CODE (var) == SSA_NAME)
336 return get_ssa_name_ann (var)->current_def;
337 else
338 return var_ann (var)->current_def;
339 }
340
341
342 /* Sets current definition of VAR to DEF. */
343
344 void
set_current_def(tree var,tree def)345 set_current_def (tree var, tree def)
346 {
347 if (TREE_CODE (var) == SSA_NAME)
348 get_ssa_name_ann (var)->current_def = def;
349 else
350 var_ann (var)->current_def = def;
351 }
352
353
354 /* Compute global livein information given the set of blockx where
355 an object is locally live at the start of the block (LIVEIN)
356 and the set of blocks where the object is defined (DEF_BLOCKS).
357
358 Note: This routine augments the existing local livein information
359 to include global livein (i.e., it modifies the underlying bitmap
360 for LIVEIN). */
361
362 void
compute_global_livein(bitmap livein,bitmap def_blocks)363 compute_global_livein (bitmap livein, bitmap def_blocks)
364 {
365 basic_block bb, *worklist, *tos;
366 unsigned i;
367 bitmap_iterator bi;
368
369 tos = worklist
370 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
371
372 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
373 {
374 *tos++ = BASIC_BLOCK (i);
375 }
376
377 /* Iterate until the worklist is empty. */
378 while (tos != worklist)
379 {
380 edge e;
381 edge_iterator ei;
382
383 /* Pull a block off the worklist. */
384 bb = *--tos;
385
386 /* For each predecessor block. */
387 FOR_EACH_EDGE (e, ei, bb->preds)
388 {
389 basic_block pred = e->src;
390 int pred_index = pred->index;
391
392 /* None of this is necessary for the entry block. */
393 if (pred != ENTRY_BLOCK_PTR
394 && ! bitmap_bit_p (livein, pred_index)
395 && ! bitmap_bit_p (def_blocks, pred_index))
396 {
397 *tos++ = pred;
398 bitmap_set_bit (livein, pred_index);
399 }
400 }
401 }
402
403 free (worklist);
404 }
405
406
407 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
408 all statements in basic block BB. */
409
410 static void
initialize_flags_in_bb(basic_block bb)411 initialize_flags_in_bb (basic_block bb)
412 {
413 tree phi, stmt;
414 block_stmt_iterator bsi;
415
416 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
417 {
418 REWRITE_THIS_STMT (phi) = 0;
419 REGISTER_DEFS_IN_THIS_STMT (phi) = 0;
420 }
421
422 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
423 {
424 stmt = bsi_stmt (bsi);
425 /* We are going to use the operand cache API, such as
426 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
427 cache for each statement should be up-to-date. */
428 gcc_assert (!stmt_modified_p (stmt));
429 REWRITE_THIS_STMT (stmt) = 0;
430 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
431 }
432 }
433
434 /* Mark block BB as interesting for update_ssa. */
435
436 static void
mark_block_for_update(basic_block bb)437 mark_block_for_update (basic_block bb)
438 {
439 gcc_assert (blocks_to_update != NULL);
440 if (bitmap_bit_p (blocks_to_update, bb->index))
441 return;
442 bitmap_set_bit (blocks_to_update, bb->index);
443 initialize_flags_in_bb (bb);
444 }
445
446 /* Return the set of blocks where variable VAR is defined and the blocks
447 where VAR is live on entry (livein). If no entry is found in
448 DEF_BLOCKS, a new one is created and returned. */
449
450 static inline struct def_blocks_d *
get_def_blocks_for(tree var)451 get_def_blocks_for (tree var)
452 {
453 struct def_blocks_d db, *db_p;
454 void **slot;
455
456 db.var = var;
457 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
458 if (*slot == NULL)
459 {
460 db_p = XNEW (struct def_blocks_d);
461 db_p->var = var;
462 db_p->def_blocks = BITMAP_ALLOC (NULL);
463 db_p->phi_blocks = BITMAP_ALLOC (NULL);
464 db_p->livein_blocks = BITMAP_ALLOC (NULL);
465 *slot = (void *) db_p;
466 }
467 else
468 db_p = (struct def_blocks_d *) *slot;
469
470 return db_p;
471 }
472
473
474 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
475 VAR is defined by a PHI node. */
476
477 static void
set_def_block(tree var,basic_block bb,bool phi_p)478 set_def_block (tree var, basic_block bb, bool phi_p)
479 {
480 struct def_blocks_d *db_p;
481 enum need_phi_state state;
482
483 state = get_phi_state (var);
484 db_p = get_def_blocks_for (var);
485
486 /* Set the bit corresponding to the block where VAR is defined. */
487 bitmap_set_bit (db_p->def_blocks, bb->index);
488 if (phi_p)
489 bitmap_set_bit (db_p->phi_blocks, bb->index);
490
491 /* Keep track of whether or not we may need to insert PHI nodes.
492
493 If we are in the UNKNOWN state, then this is the first definition
494 of VAR. Additionally, we have not seen any uses of VAR yet, so
495 we do not need a PHI node for this variable at this time (i.e.,
496 transition to NEED_PHI_STATE_NO).
497
498 If we are in any other state, then we either have multiple definitions
499 of this variable occurring in different blocks or we saw a use of the
500 variable which was not dominated by the block containing the
501 definition(s). In this case we may need a PHI node, so enter
502 state NEED_PHI_STATE_MAYBE. */
503 if (state == NEED_PHI_STATE_UNKNOWN)
504 set_phi_state (var, NEED_PHI_STATE_NO);
505 else
506 set_phi_state (var, NEED_PHI_STATE_MAYBE);
507 }
508
509
510 /* Mark block BB as having VAR live at the entry to BB. */
511
512 static void
set_livein_block(tree var,basic_block bb)513 set_livein_block (tree var, basic_block bb)
514 {
515 struct def_blocks_d *db_p;
516 enum need_phi_state state = get_phi_state (var);
517
518 db_p = get_def_blocks_for (var);
519
520 /* Set the bit corresponding to the block where VAR is live in. */
521 bitmap_set_bit (db_p->livein_blocks, bb->index);
522
523 /* Keep track of whether or not we may need to insert PHI nodes.
524
525 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
526 by the single block containing the definition(s) of this variable. If
527 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
528 NEED_PHI_STATE_MAYBE. */
529 if (state == NEED_PHI_STATE_NO)
530 {
531 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
532
533 if (def_block_index == -1
534 || ! dominated_by_p (CDI_DOMINATORS, bb,
535 BASIC_BLOCK (def_block_index)))
536 set_phi_state (var, NEED_PHI_STATE_MAYBE);
537 }
538 else
539 set_phi_state (var, NEED_PHI_STATE_MAYBE);
540 }
541
542
543 /* Return true if symbol SYM is marked for renaming. */
544
545 static inline bool
symbol_marked_for_renaming(tree sym)546 symbol_marked_for_renaming (tree sym)
547 {
548 gcc_assert (DECL_P (sym));
549 return bitmap_bit_p (syms_to_rename, DECL_UID (sym));
550 }
551
552
553 /* Return true if NAME is in OLD_SSA_NAMES. */
554
555 static inline bool
is_old_name(tree name)556 is_old_name (tree name)
557 {
558 unsigned ver = SSA_NAME_VERSION (name);
559 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
560 }
561
562
563 /* Return true if NAME is in NEW_SSA_NAMES. */
564
565 static inline bool
is_new_name(tree name)566 is_new_name (tree name)
567 {
568 unsigned ver = SSA_NAME_VERSION (name);
569 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
570 }
571
572
573 /* Hashing and equality functions for REPL_TBL. */
574
575 static hashval_t
repl_map_hash(const void * p)576 repl_map_hash (const void *p)
577 {
578 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
579 }
580
581 static int
repl_map_eq(const void * p1,const void * p2)582 repl_map_eq (const void *p1, const void *p2)
583 {
584 return ((const struct repl_map_d *)p1)->name
585 == ((const struct repl_map_d *)p2)->name;
586 }
587
588 static void
repl_map_free(void * p)589 repl_map_free (void *p)
590 {
591 BITMAP_FREE (((struct repl_map_d *)p)->set);
592 free (p);
593 }
594
595
596 /* Return the names replaced by NEW (i.e., REPL_TBL[NEW].SET). */
597
598 static inline bitmap
names_replaced_by(tree new)599 names_replaced_by (tree new)
600 {
601 struct repl_map_d m;
602 void **slot;
603
604 m.name = new;
605 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
606
607 /* If N was not registered in the replacement table, return NULL. */
608 if (slot == NULL || *slot == NULL)
609 return NULL;
610
611 return ((struct repl_map_d *) *slot)->set;
612 }
613
614
615 /* Add OLD to REPL_TBL[NEW].SET. */
616
617 static inline void
add_to_repl_tbl(tree new,tree old)618 add_to_repl_tbl (tree new, tree old)
619 {
620 struct repl_map_d m, *mp;
621 void **slot;
622
623 m.name = new;
624 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
625 if (*slot == NULL)
626 {
627 mp = XNEW (struct repl_map_d);
628 mp->name = new;
629 mp->set = BITMAP_ALLOC (NULL);
630 *slot = (void *) mp;
631 }
632 else
633 mp = (struct repl_map_d *) *slot;
634
635 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
636 }
637
638
639 /* Add a new mapping NEW -> OLD REPL_TBL. Every entry N_i in REPL_TBL
640 represents the set of names O_1 ... O_j replaced by N_i. This is
641 used by update_ssa and its helpers to introduce new SSA names in an
642 already formed SSA web. */
643
644 static void
add_new_name_mapping(tree new,tree old)645 add_new_name_mapping (tree new, tree old)
646 {
647 timevar_push (TV_TREE_SSA_INCREMENTAL);
648
649 /* OLD and NEW must be different SSA names for the same symbol. */
650 gcc_assert (new != old && SSA_NAME_VAR (new) == SSA_NAME_VAR (old));
651
652 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
653 caller may have created new names since the set was created. */
654 if (new_ssa_names->n_bits <= num_ssa_names - 1)
655 {
656 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
657 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
658 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
659 }
660
661 /* If this mapping is for virtual names, we will need to update
662 virtual operands. */
663 if (!is_gimple_reg (new))
664 {
665 tree sym;
666 size_t uid;
667
668 need_to_update_vops_p = true;
669
670 /* Keep counts of virtual mappings and symbols to use in the
671 virtual mapping heuristic. If we have large numbers of
672 virtual mappings for a relatively low number of symbols, it
673 will make more sense to rename the symbols from scratch.
674 Otherwise, the insertion of PHI nodes for each of the old
675 names in these mappings will be very slow. */
676 sym = SSA_NAME_VAR (new);
677 uid = DECL_UID (sym);
678 update_ssa_stats.num_virtual_mappings++;
679 if (!bitmap_bit_p (update_ssa_stats.virtual_symbols, uid))
680 {
681 bitmap_set_bit (update_ssa_stats.virtual_symbols, uid);
682 update_ssa_stats.num_virtual_symbols++;
683 }
684 }
685
686 /* Update the REPL_TBL table. */
687 add_to_repl_tbl (new, old);
688
689 /* If OLD had already been registered as a new name, then all the
690 names that OLD replaces should also be replaced by NEW. */
691 if (is_new_name (old))
692 bitmap_ior_into (names_replaced_by (new), names_replaced_by (old));
693
694 /* Register NEW and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
695 respectively. */
696 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new));
697 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
698
699 /* Update mapping counter to use in the virtual mapping heuristic. */
700 update_ssa_stats.num_total_mappings++;
701
702 timevar_pop (TV_TREE_SSA_INCREMENTAL);
703 }
704
705
706 /* Call back for walk_dominator_tree used to collect definition sites
707 for every variable in the function. For every statement S in block
708 BB:
709
710 1- Variables defined by S in the DEFS of S are marked in the bitmap
711 WALK_DATA->GLOBAL_DATA->KILLS.
712
713 2- If S uses a variable VAR and there is no preceding kill of VAR,
714 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
715
716 This information is used to determine which variables are live
717 across block boundaries to reduce the number of PHI nodes
718 we create. */
719
720 static void
mark_def_sites(struct dom_walk_data * walk_data,basic_block bb,block_stmt_iterator bsi)721 mark_def_sites (struct dom_walk_data *walk_data,
722 basic_block bb,
723 block_stmt_iterator bsi)
724 {
725 struct mark_def_sites_global_data *gd =
726 (struct mark_def_sites_global_data *) walk_data->global_data;
727 bitmap kills = gd->kills;
728 tree stmt, def;
729 use_operand_p use_p;
730 def_operand_p def_p;
731 ssa_op_iter iter;
732
733 stmt = bsi_stmt (bsi);
734 update_stmt_if_modified (stmt);
735
736 gcc_assert (blocks_to_update == NULL);
737 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
738 REWRITE_THIS_STMT (stmt) = 0;
739
740 /* If a variable is used before being set, then the variable is live
741 across a block boundary, so mark it live-on-entry to BB. */
742 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
743 SSA_OP_USE | SSA_OP_VUSE | SSA_OP_VMUSTKILL)
744 {
745 tree sym = USE_FROM_PTR (use_p);
746 gcc_assert (DECL_P (sym));
747 if (!bitmap_bit_p (kills, DECL_UID (sym)))
748 set_livein_block (sym, bb);
749 REWRITE_THIS_STMT (stmt) = 1;
750 }
751
752 /* Note that virtual definitions are irrelevant for computing KILLS
753 because a V_MAY_DEF does not constitute a killing definition of the
754 variable. However, the operand of a virtual definitions is a use
755 of the variable, so it may cause the variable to be considered
756 live-on-entry. */
757 FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
758 {
759 tree sym = USE_FROM_PTR (use_p);
760 gcc_assert (DECL_P (sym));
761 set_livein_block (sym, bb);
762 set_def_block (sym, bb, false);
763 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
764 REWRITE_THIS_STMT (stmt) = 1;
765 }
766
767 /* Now process the defs and must-defs made by this statement. */
768 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF | SSA_OP_VMUSTDEF)
769 {
770 gcc_assert (DECL_P (def));
771 set_def_block (def, bb, false);
772 bitmap_set_bit (kills, DECL_UID (def));
773 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
774 }
775
776 /* If we found the statement interesting then also mark the block BB
777 as interesting. */
778 if (REWRITE_THIS_STMT (stmt) || REGISTER_DEFS_IN_THIS_STMT (stmt))
779 SET_BIT (gd->interesting_blocks, bb->index);
780 }
781
782 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
783 in the dfs numbering of the dominance tree. */
784
785 struct dom_dfsnum
786 {
787 /* Basic block whose index this entry corresponds to. */
788 unsigned bb_index;
789
790 /* The dfs number of this node. */
791 unsigned dfs_num;
792 };
793
794 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
795 for qsort. */
796
797 static int
cmp_dfsnum(const void * a,const void * b)798 cmp_dfsnum (const void *a, const void *b)
799 {
800 const struct dom_dfsnum *da = a;
801 const struct dom_dfsnum *db = b;
802
803 return (int) da->dfs_num - (int) db->dfs_num;
804 }
805
806 /* Among the intervals starting at the N points specified in DEFS, find
807 the one that contains S, and return its bb_index. */
808
809 static unsigned
find_dfsnum_interval(struct dom_dfsnum * defs,unsigned n,unsigned s)810 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
811 {
812 unsigned f = 0, t = n, m;
813
814 while (t > f + 1)
815 {
816 m = (f + t) / 2;
817 if (defs[m].dfs_num <= s)
818 f = m;
819 else
820 t = m;
821 }
822
823 return defs[f].bb_index;
824 }
825
826 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
827 KILLS is a bitmap of blocks where the value is defined before any use. */
828
829 static void
prune_unused_phi_nodes(bitmap phis,bitmap kills,bitmap uses)830 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
831 {
832 VEC(int, heap) *worklist;
833 bitmap_iterator bi;
834 unsigned i, b, p, u, top;
835 bitmap live_phis;
836 basic_block def_bb, use_bb;
837 edge e;
838 edge_iterator ei;
839 bitmap to_remove;
840 struct dom_dfsnum *defs;
841 unsigned n_defs, adef;
842
843 if (bitmap_empty_p (uses))
844 {
845 bitmap_clear (phis);
846 return;
847 }
848
849 /* The phi must dominate a use, or an argument of a live phi. Also, we
850 do not create any phi nodes in def blocks, unless they are also livein. */
851 to_remove = BITMAP_ALLOC (NULL);
852 bitmap_and_compl (to_remove, kills, uses);
853 bitmap_and_compl_into (phis, to_remove);
854 if (bitmap_empty_p (phis))
855 {
856 BITMAP_FREE (to_remove);
857 return;
858 }
859
860 /* We want to remove the unnecessary phi nodes, but we do not want to compute
861 liveness information, as that may be linear in the size of CFG, and if
862 there are lot of different variables to rewrite, this may lead to quadratic
863 behavior.
864
865 Instead, we basically emulate standard dce. We put all uses to worklist,
866 then for each of them find the nearest def that dominates them. If this
867 def is a phi node, we mark it live, and if it was not live before, we
868 add the predecessors of its basic block to the worklist.
869
870 To quickly locate the nearest def that dominates use, we use dfs numbering
871 of the dominance tree (that is already available in order to speed up
872 queries). For each def, we have the interval given by the dfs number on
873 entry to and on exit from the corresponding subtree in the dominance tree.
874 The nearest dominator for a given use is the smallest of these intervals
875 that contains entry and exit dfs numbers for the basic block with the use.
876 If we store the bounds for all the uses to an array and sort it, we can
877 locate the nearest dominating def in logarithmic time by binary search.*/
878 bitmap_ior (to_remove, kills, phis);
879 n_defs = bitmap_count_bits (to_remove);
880 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
881 defs[0].bb_index = 1;
882 defs[0].dfs_num = 0;
883 adef = 1;
884 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
885 {
886 def_bb = BASIC_BLOCK (i);
887 defs[adef].bb_index = i;
888 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
889 defs[adef + 1].bb_index = i;
890 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
891 adef += 2;
892 }
893 BITMAP_FREE (to_remove);
894 gcc_assert (adef == 2 * n_defs + 1);
895 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
896 gcc_assert (defs[0].bb_index == 1);
897
898 /* Now each DEFS entry contains the number of the basic block to that the
899 dfs number corresponds. Change them to the number of basic block that
900 corresponds to the interval following the dfs number. Also, for the
901 dfs_out numbers, increase the dfs number by one (so that it corresponds
902 to the start of the following interval, not to the end of the current
903 one). We use WORKLIST as a stack. */
904 worklist = VEC_alloc (int, heap, n_defs + 1);
905 VEC_quick_push (int, worklist, 1);
906 top = 1;
907 n_defs = 1;
908 for (i = 1; i < adef; i++)
909 {
910 b = defs[i].bb_index;
911 if (b == top)
912 {
913 /* This is a closing element. Interval corresponding to the top
914 of the stack after removing it follows. */
915 VEC_pop (int, worklist);
916 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
917 defs[n_defs].bb_index = top;
918 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
919 }
920 else
921 {
922 /* Opening element. Nothing to do, just push it to the stack and move
923 it to the correct position. */
924 defs[n_defs].bb_index = defs[i].bb_index;
925 defs[n_defs].dfs_num = defs[i].dfs_num;
926 VEC_quick_push (int, worklist, b);
927 top = b;
928 }
929
930 /* If this interval starts at the same point as the previous one, cancel
931 the previous one. */
932 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
933 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
934 else
935 n_defs++;
936 }
937 VEC_pop (int, worklist);
938 gcc_assert (VEC_empty (int, worklist));
939
940 /* Now process the uses. */
941 live_phis = BITMAP_ALLOC (NULL);
942 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
943 {
944 VEC_safe_push (int, heap, worklist, i);
945 }
946
947 while (!VEC_empty (int, worklist))
948 {
949 b = VEC_pop (int, worklist);
950 if (b == ENTRY_BLOCK)
951 continue;
952
953 /* If there is a phi node in USE_BB, it is made live. Otherwise,
954 find the def that dominates the immediate dominator of USE_BB
955 (the kill in USE_BB does not dominate the use). */
956 if (bitmap_bit_p (phis, b))
957 p = b;
958 else
959 {
960 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
961 p = find_dfsnum_interval (defs, n_defs,
962 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
963 if (!bitmap_bit_p (phis, p))
964 continue;
965 }
966
967 /* If the phi node is already live, there is nothing to do. */
968 if (bitmap_bit_p (live_phis, p))
969 continue;
970
971 /* Mark the phi as live, and add the new uses to the worklist. */
972 bitmap_set_bit (live_phis, p);
973 def_bb = BASIC_BLOCK (p);
974 FOR_EACH_EDGE (e, ei, def_bb->preds)
975 {
976 u = e->src->index;
977 if (bitmap_bit_p (uses, u))
978 continue;
979
980 /* In case there is a kill directly in the use block, do not record
981 the use (this is also necessary for correctness, as we assume that
982 uses dominated by a def directly in their block have been filtered
983 out before). */
984 if (bitmap_bit_p (kills, u))
985 continue;
986
987 bitmap_set_bit (uses, u);
988 VEC_safe_push (int, heap, worklist, u);
989 }
990 }
991
992 VEC_free (int, heap, worklist);
993 bitmap_copy (phis, live_phis);
994 BITMAP_FREE (live_phis);
995 free (defs);
996 }
997
998 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
999 return a bitmap with all the blocks in the iterated dominance
1000 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1001 frontier information as returned by compute_dominance_frontiers.
1002
1003 The resulting set of blocks are the potential sites where PHI nodes
1004 are needed. The caller is responsible from freeing the memory
1005 allocated for the return value. */
1006
1007 static bitmap
find_idf(bitmap def_blocks,bitmap * dfs)1008 find_idf (bitmap def_blocks, bitmap *dfs)
1009 {
1010 bitmap_iterator bi;
1011 unsigned bb_index;
1012 VEC(int,heap) *work_stack;
1013 bitmap phi_insertion_points;
1014
1015 work_stack = VEC_alloc (int, heap, n_basic_blocks);
1016 phi_insertion_points = BITMAP_ALLOC (NULL);
1017
1018 /* Seed the work list with all the blocks in DEF_BLOCKS. */
1019 EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
1020 /* We use VEC_quick_push here for speed. This is safe because we
1021 know that the number of definition blocks is no greater than
1022 the number of basic blocks, which is the initial capacity of
1023 WORK_STACK. */
1024 VEC_quick_push (int, work_stack, bb_index);
1025
1026 /* Pop a block off the worklist, add every block that appears in
1027 the original block's DF that we have not already processed to
1028 the worklist. Iterate until the worklist is empty. Blocks
1029 which are added to the worklist are potential sites for
1030 PHI nodes. */
1031 while (VEC_length (int, work_stack) > 0)
1032 {
1033 bb_index = VEC_pop (int, work_stack);
1034
1035 /* Since the registration of NEW -> OLD name mappings is done
1036 separately from the call to update_ssa, when updating the SSA
1037 form, the basic blocks where new and/or old names are defined
1038 may have disappeared by CFG cleanup calls. In this case,
1039 we may pull a non-existing block from the work stack. */
1040 gcc_assert (bb_index < (unsigned) last_basic_block);
1041
1042 EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
1043 0, bb_index, bi)
1044 {
1045 /* Use a safe push because if there is a definition of VAR
1046 in every basic block, then WORK_STACK may eventually have
1047 more than N_BASIC_BLOCK entries. */
1048 VEC_safe_push (int, heap, work_stack, bb_index);
1049 bitmap_set_bit (phi_insertion_points, bb_index);
1050 }
1051 }
1052
1053 VEC_free (int, heap, work_stack);
1054
1055 return phi_insertion_points;
1056 }
1057
1058
1059 /* Return the set of blocks where variable VAR is defined and the blocks
1060 where VAR is live on entry (livein). Return NULL, if no entry is
1061 found in DEF_BLOCKS. */
1062
1063 static inline struct def_blocks_d *
find_def_blocks_for(tree var)1064 find_def_blocks_for (tree var)
1065 {
1066 struct def_blocks_d dm;
1067 dm.var = var;
1068 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1069 }
1070
1071
1072 /* Retrieve or create a default definition for symbol SYM. */
1073
1074 static inline tree
get_default_def_for(tree sym)1075 get_default_def_for (tree sym)
1076 {
1077 tree ddef = default_def (sym);
1078
1079 if (ddef == NULL_TREE)
1080 {
1081 ddef = make_ssa_name (sym, build_empty_stmt ());
1082 set_default_def (sym, ddef);
1083 }
1084
1085 return ddef;
1086 }
1087
1088
1089 /* Marks phi node PHI in basic block BB for rewrite. */
1090
1091 static void
mark_phi_for_rewrite(basic_block bb,tree phi)1092 mark_phi_for_rewrite (basic_block bb, tree phi)
1093 {
1094 tree_vec phis;
1095 unsigned i, idx = bb->index;
1096
1097 if (REWRITE_THIS_STMT (phi))
1098 return;
1099 REWRITE_THIS_STMT (phi) = 1;
1100
1101 if (!blocks_with_phis_to_rewrite)
1102 return;
1103
1104 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1105 VEC_reserve (tree_vec, heap, phis_to_rewrite, last_basic_block + 1);
1106 for (i = VEC_length (tree_vec, phis_to_rewrite); i <= idx; i++)
1107 VEC_quick_push (tree_vec, phis_to_rewrite, NULL);
1108
1109 phis = VEC_index (tree_vec, phis_to_rewrite, idx);
1110 if (!phis)
1111 phis = VEC_alloc (tree, heap, 10);
1112
1113 VEC_safe_push (tree, heap, phis, phi);
1114 VEC_replace (tree_vec, phis_to_rewrite, idx, phis);
1115 }
1116
1117 /* Insert PHI nodes for variable VAR using the iterated dominance
1118 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
1119 function assumes that the caller is incrementally updating the SSA
1120 form, in which case (1) VAR is assumed to be an SSA name, (2) a new
1121 SSA name is created for VAR's symbol, and, (3) all the arguments
1122 for the newly created PHI node are set to VAR.
1123
1124 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1125 PHI node for VAR. On exit, only the nodes that received a PHI node
1126 for VAR will be present in PHI_INSERTION_POINTS. */
1127
1128 static void
insert_phi_nodes_for(tree var,bitmap phi_insertion_points,bool update_p)1129 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1130 {
1131 unsigned bb_index;
1132 edge e;
1133 tree phi;
1134 basic_block bb;
1135 bitmap_iterator bi;
1136 struct def_blocks_d *def_map;
1137
1138 def_map = find_def_blocks_for (var);
1139 gcc_assert (def_map);
1140
1141 /* Remove the blocks where we already have PHI nodes for VAR. */
1142 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1143
1144 /* Remove obviously useless phi nodes. */
1145 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1146 def_map->livein_blocks);
1147
1148 /* And insert the PHI nodes. */
1149 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1150 {
1151 bb = BASIC_BLOCK (bb_index);
1152 if (update_p)
1153 mark_block_for_update (bb);
1154
1155 if (update_p && TREE_CODE (var) == SSA_NAME)
1156 {
1157 /* If we are rewriting SSA names, create the LHS of the PHI
1158 node by duplicating VAR. This is useful in the case of
1159 pointers, to also duplicate pointer attributes (alias
1160 information, in particular). */
1161 edge_iterator ei;
1162 tree new_lhs;
1163
1164 phi = create_phi_node (var, bb);
1165 new_lhs = duplicate_ssa_name (var, phi);
1166 SET_PHI_RESULT (phi, new_lhs);
1167 add_new_name_mapping (new_lhs, var);
1168
1169 /* Add VAR to every argument slot of PHI. We need VAR in
1170 every argument so that rewrite_update_phi_arguments knows
1171 which name is this PHI node replacing. If VAR is a
1172 symbol marked for renaming, this is not necessary, the
1173 renamer will use the symbol on the LHS to get its
1174 reaching definition. */
1175 FOR_EACH_EDGE (e, ei, bb->preds)
1176 add_phi_arg (phi, var, e);
1177 }
1178 else
1179 {
1180 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1181 phi = create_phi_node (sym, bb);
1182 }
1183
1184 /* Mark this PHI node as interesting for update_ssa. */
1185 REGISTER_DEFS_IN_THIS_STMT (phi) = 1;
1186 mark_phi_for_rewrite (bb, phi);
1187 }
1188 }
1189
1190
1191 /* Insert PHI nodes at the dominance frontier of blocks with variable
1192 definitions. DFS contains the dominance frontier information for
1193 the flowgraph. PHI nodes will only be inserted at the dominance
1194 frontier of definition blocks for variables whose NEED_PHI_STATE
1195 annotation is marked as ``maybe'' or ``unknown'' (computed by
1196 mark_def_sites). */
1197
1198 static void
insert_phi_nodes(bitmap * dfs)1199 insert_phi_nodes (bitmap *dfs)
1200 {
1201 referenced_var_iterator rvi;
1202 tree var;
1203
1204 timevar_push (TV_TREE_INSERT_PHI_NODES);
1205
1206 FOR_EACH_REFERENCED_VAR (var, rvi)
1207 {
1208 struct def_blocks_d *def_map;
1209 bitmap idf;
1210
1211 def_map = find_def_blocks_for (var);
1212 if (def_map == NULL)
1213 continue;
1214
1215 if (get_phi_state (var) != NEED_PHI_STATE_NO)
1216 {
1217 idf = find_idf (def_map->def_blocks, dfs);
1218 insert_phi_nodes_for (var, idf, false);
1219 BITMAP_FREE (idf);
1220 }
1221 }
1222
1223 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1224 }
1225
1226
1227 /* Register DEF (an SSA_NAME) to be a new definition for its underlying
1228 variable (SSA_NAME_VAR (DEF)) and push VAR's current reaching definition
1229 into the stack pointed to by BLOCK_DEFS_P. */
1230
1231 void
register_new_def(tree def,VEC (tree,heap)** block_defs_p)1232 register_new_def (tree def, VEC(tree,heap) **block_defs_p)
1233 {
1234 tree var = SSA_NAME_VAR (def);
1235 tree currdef;
1236
1237 /* If this variable is set in a single basic block and all uses are
1238 dominated by the set(s) in that single basic block, then there is
1239 no reason to record anything for this variable in the block local
1240 definition stacks. Doing so just wastes time and memory.
1241
1242 This is the same test to prune the set of variables which may
1243 need PHI nodes. So we just use that information since it's already
1244 computed and available for us to use. */
1245 if (get_phi_state (var) == NEED_PHI_STATE_NO)
1246 {
1247 set_current_def (var, def);
1248 return;
1249 }
1250
1251 currdef = get_current_def (var);
1252
1253 /* Push the current reaching definition into *BLOCK_DEFS_P. This stack is
1254 later used by the dominator tree callbacks to restore the reaching
1255 definitions for all the variables defined in the block after a recursive
1256 visit to all its immediately dominated blocks. If there is no current
1257 reaching definition, then just record the underlying _DECL node. */
1258 VEC_safe_push (tree, heap, *block_defs_p, currdef ? currdef : var);
1259
1260 /* Set the current reaching definition for VAR to be DEF. */
1261 set_current_def (var, def);
1262 }
1263
1264
1265 /* Perform a depth-first traversal of the dominator tree looking for
1266 variables to rename. BB is the block where to start searching.
1267 Renaming is a five step process:
1268
1269 1- Every definition made by PHI nodes at the start of the blocks is
1270 registered as the current definition for the corresponding variable.
1271
1272 2- Every statement in BB is rewritten. USE and VUSE operands are
1273 rewritten with their corresponding reaching definition. DEF and
1274 VDEF targets are registered as new definitions.
1275
1276 3- All the PHI nodes in successor blocks of BB are visited. The
1277 argument corresponding to BB is replaced with its current reaching
1278 definition.
1279
1280 4- Recursively rewrite every dominator child block of BB.
1281
1282 5- Restore (in reverse order) the current reaching definition for every
1283 new definition introduced in this block. This is done so that when
1284 we return from the recursive call, all the current reaching
1285 definitions are restored to the names that were valid in the
1286 dominator parent of BB. */
1287
1288 /* SSA Rewriting Step 1. Initialization, create a block local stack
1289 of reaching definitions for new SSA names produced in this block
1290 (BLOCK_DEFS). Register new definitions for every PHI node in the
1291 block. */
1292
1293 static void
rewrite_initialize_block(struct dom_walk_data * walk_data ATTRIBUTE_UNUSED,basic_block bb)1294 rewrite_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1295 basic_block bb)
1296 {
1297 tree phi;
1298
1299 if (dump_file && (dump_flags & TDF_DETAILS))
1300 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1301
1302 /* Mark the unwind point for this block. */
1303 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1304
1305 /* Step 1. Register new definitions for every PHI node in the block.
1306 Conceptually, all the PHI nodes are executed in parallel and each PHI
1307 node introduces a new version for the associated variable. */
1308 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1309 {
1310 tree result = PHI_RESULT (phi);
1311 register_new_def (result, &block_defs_stack);
1312 }
1313 }
1314
1315
1316 /* Return the current definition for variable VAR. If none is found,
1317 create a new SSA name to act as the zeroth definition for VAR. If VAR
1318 is call clobbered and there exists a more recent definition of
1319 GLOBAL_VAR, return the definition for GLOBAL_VAR. This means that VAR
1320 has been clobbered by a function call since its last assignment. */
1321
1322 static tree
get_reaching_def(tree var)1323 get_reaching_def (tree var)
1324 {
1325 tree currdef_var, avar;
1326
1327 /* Lookup the current reaching definition for VAR. */
1328 currdef_var = get_current_def (var);
1329
1330 /* If there is no reaching definition for VAR, create and register a
1331 default definition for it (if needed). */
1332 if (currdef_var == NULL_TREE)
1333 {
1334 avar = DECL_P (var) ? var : SSA_NAME_VAR (var);
1335 currdef_var = get_default_def_for (avar);
1336 set_current_def (var, currdef_var);
1337 }
1338
1339 /* Return the current reaching definition for VAR, or the default
1340 definition, if we had to create one. */
1341 return currdef_var;
1342 }
1343
1344
1345 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1346 the block with its immediate reaching definitions. Update the current
1347 definition of a variable when a new real or virtual definition is found. */
1348
1349 static void
rewrite_stmt(struct dom_walk_data * walk_data ATTRIBUTE_UNUSED,basic_block bb ATTRIBUTE_UNUSED,block_stmt_iterator si)1350 rewrite_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1351 basic_block bb ATTRIBUTE_UNUSED,
1352 block_stmt_iterator si)
1353 {
1354 tree stmt;
1355 use_operand_p use_p;
1356 def_operand_p def_p;
1357 ssa_op_iter iter;
1358
1359 stmt = bsi_stmt (si);
1360
1361 /* If mark_def_sites decided that we don't need to rewrite this
1362 statement, ignore it. */
1363 gcc_assert (blocks_to_update == NULL);
1364 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1365 return;
1366
1367 if (dump_file && (dump_flags & TDF_DETAILS))
1368 {
1369 fprintf (dump_file, "Renaming statement ");
1370 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1371 fprintf (dump_file, "\n");
1372 }
1373
1374 /* Step 1. Rewrite USES and VUSES in the statement. */
1375 if (REWRITE_THIS_STMT (stmt))
1376 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1377 SSA_OP_ALL_USES|SSA_OP_ALL_KILLS)
1378 {
1379 tree var = USE_FROM_PTR (use_p);
1380 gcc_assert (DECL_P (var));
1381 SET_USE (use_p, get_reaching_def (var));
1382 }
1383
1384 /* Step 2. Register the statement's DEF and VDEF operands. */
1385 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1386 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1387 {
1388 tree var = DEF_FROM_PTR (def_p);
1389 gcc_assert (DECL_P (var));
1390 SET_DEF (def_p, make_ssa_name (var, stmt));
1391 register_new_def (DEF_FROM_PTR (def_p), &block_defs_stack);
1392 }
1393 }
1394
1395
1396 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1397 PHI nodes. For every PHI node found, add a new argument containing the
1398 current reaching definition for the variable and the edge through which
1399 that definition is reaching the PHI node. */
1400
1401 static void
rewrite_add_phi_arguments(struct dom_walk_data * walk_data ATTRIBUTE_UNUSED,basic_block bb)1402 rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1403 basic_block bb)
1404 {
1405 edge e;
1406 edge_iterator ei;
1407
1408 FOR_EACH_EDGE (e, ei, bb->succs)
1409 {
1410 tree phi;
1411
1412 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1413 {
1414 tree currdef;
1415 currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi)));
1416 add_phi_arg (phi, currdef, e);
1417 }
1418 }
1419 }
1420
1421
1422 /* Called after visiting basic block BB. Restore CURRDEFS to its
1423 original value. */
1424
1425 static void
rewrite_finalize_block(struct dom_walk_data * walk_data ATTRIBUTE_UNUSED,basic_block bb ATTRIBUTE_UNUSED)1426 rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1427 basic_block bb ATTRIBUTE_UNUSED)
1428 {
1429 /* Restore CURRDEFS to its original state. */
1430 while (VEC_length (tree, block_defs_stack) > 0)
1431 {
1432 tree tmp = VEC_pop (tree, block_defs_stack);
1433 tree saved_def, var;
1434
1435 if (tmp == NULL_TREE)
1436 break;
1437
1438 /* If we recorded an SSA_NAME, then make the SSA_NAME the current
1439 definition of its underlying variable. If we recorded anything
1440 else, it must have been an _DECL node and its current reaching
1441 definition must have been NULL. */
1442 if (TREE_CODE (tmp) == SSA_NAME)
1443 {
1444 saved_def = tmp;
1445 var = SSA_NAME_VAR (saved_def);
1446 }
1447 else
1448 {
1449 saved_def = NULL;
1450 var = tmp;
1451 }
1452
1453 set_current_def (var, saved_def);
1454 }
1455 }
1456
1457
1458 /* Dump SSA information to FILE. */
1459
1460 void
dump_tree_ssa(FILE * file)1461 dump_tree_ssa (FILE *file)
1462 {
1463 basic_block bb;
1464 const char *funcname
1465 = lang_hooks.decl_printable_name (current_function_decl, 2);
1466
1467 fprintf (file, "SSA information for %s\n\n", funcname);
1468
1469 FOR_EACH_BB (bb)
1470 {
1471 dump_bb (bb, file, 0);
1472 fputs (" ", file);
1473 print_generic_stmt (file, phi_nodes (bb), dump_flags);
1474 fputs ("\n\n", file);
1475 }
1476 }
1477
1478
1479 /* Dump SSA information to stderr. */
1480
1481 void
debug_tree_ssa(void)1482 debug_tree_ssa (void)
1483 {
1484 dump_tree_ssa (stderr);
1485 }
1486
1487
1488 /* Dump statistics for the hash table HTAB. */
1489
1490 static void
htab_statistics(FILE * file,htab_t htab)1491 htab_statistics (FILE *file, htab_t htab)
1492 {
1493 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1494 (long) htab_size (htab),
1495 (long) htab_elements (htab),
1496 htab_collisions (htab));
1497 }
1498
1499
1500 /* Dump SSA statistics on FILE. */
1501
1502 void
dump_tree_ssa_stats(FILE * file)1503 dump_tree_ssa_stats (FILE *file)
1504 {
1505 fprintf (file, "\nHash table statistics:\n");
1506
1507 fprintf (file, " def_blocks: ");
1508 htab_statistics (file, def_blocks);
1509
1510 fprintf (file, "\n");
1511 }
1512
1513
1514 /* Dump SSA statistics on stderr. */
1515
1516 void
debug_tree_ssa_stats(void)1517 debug_tree_ssa_stats (void)
1518 {
1519 dump_tree_ssa_stats (stderr);
1520 }
1521
1522
1523 /* Hashing and equality functions for DEF_BLOCKS. */
1524
1525 static hashval_t
def_blocks_hash(const void * p)1526 def_blocks_hash (const void *p)
1527 {
1528 return htab_hash_pointer
1529 ((const void *)((const struct def_blocks_d *)p)->var);
1530 }
1531
1532 static int
def_blocks_eq(const void * p1,const void * p2)1533 def_blocks_eq (const void *p1, const void *p2)
1534 {
1535 return ((const struct def_blocks_d *)p1)->var
1536 == ((const struct def_blocks_d *)p2)->var;
1537 }
1538
1539
1540 /* Free memory allocated by one entry in DEF_BLOCKS. */
1541
1542 static void
def_blocks_free(void * p)1543 def_blocks_free (void *p)
1544 {
1545 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1546 BITMAP_FREE (entry->def_blocks);
1547 BITMAP_FREE (entry->phi_blocks);
1548 BITMAP_FREE (entry->livein_blocks);
1549 free (entry);
1550 }
1551
1552
1553 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1554
1555 static int
debug_def_blocks_r(void ** slot,void * data ATTRIBUTE_UNUSED)1556 debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED)
1557 {
1558 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1559
1560 fprintf (stderr, "VAR: ");
1561 print_generic_expr (stderr, db_p->var, dump_flags);
1562 bitmap_print (stderr, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1563 bitmap_print (stderr, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}\n");
1564
1565 return 1;
1566 }
1567
1568
1569 /* Dump the DEF_BLOCKS hash table on stderr. */
1570
1571 void
debug_def_blocks(void)1572 debug_def_blocks (void)
1573 {
1574 htab_traverse (def_blocks, debug_def_blocks_r, NULL);
1575 }
1576
1577
1578 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1579
1580 static inline void
register_new_update_single(tree new_name,tree old_name)1581 register_new_update_single (tree new_name, tree old_name)
1582 {
1583 tree currdef = get_current_def (old_name);
1584
1585 /* Push the current reaching definition into *BLOCK_DEFS_P.
1586 This stack is later used by the dominator tree callbacks to
1587 restore the reaching definitions for all the variables
1588 defined in the block after a recursive visit to all its
1589 immediately dominated blocks. */
1590 VEC_reserve (tree, heap, block_defs_stack, 2);
1591 VEC_quick_push (tree, block_defs_stack, currdef);
1592 VEC_quick_push (tree, block_defs_stack, old_name);
1593
1594 /* Set the current reaching definition for OLD_NAME to be
1595 NEW_NAME. */
1596 set_current_def (old_name, new_name);
1597 }
1598
1599
1600 /* Register NEW_NAME to be the new reaching definition for all the
1601 names in OLD_NAMES. Used by the incremental SSA update routines to
1602 replace old SSA names with new ones. */
1603
1604 static inline void
register_new_update_set(tree new_name,bitmap old_names)1605 register_new_update_set (tree new_name, bitmap old_names)
1606 {
1607 bitmap_iterator bi;
1608 unsigned i;
1609
1610 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1611 register_new_update_single (new_name, ssa_name (i));
1612 }
1613
1614
1615 /* Initialization of block data structures for the incremental SSA
1616 update pass. Create a block local stack of reaching definitions
1617 for new SSA names produced in this block (BLOCK_DEFS). Register
1618 new definitions for every PHI node in the block. */
1619
1620 static void
rewrite_update_init_block(struct dom_walk_data * walk_data ATTRIBUTE_UNUSED,basic_block bb)1621 rewrite_update_init_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1622 basic_block bb)
1623 {
1624 edge e;
1625 edge_iterator ei;
1626 tree phi;
1627 bool is_abnormal_phi;
1628
1629 if (dump_file && (dump_flags & TDF_DETAILS))
1630 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
1631 bb->index);
1632
1633 /* Mark the unwind point for this block. */
1634 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1635
1636 if (!bitmap_bit_p (blocks_to_update, bb->index))
1637 return;
1638
1639 /* Mark the LHS if any of the arguments flows through an abnormal
1640 edge. */
1641 is_abnormal_phi = false;
1642 FOR_EACH_EDGE (e, ei, bb->preds)
1643 if (e->flags & EDGE_ABNORMAL)
1644 {
1645 is_abnormal_phi = true;
1646 break;
1647 }
1648
1649 /* If any of the PHI nodes is a replacement for a name in
1650 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
1651 register it as a new definition for its corresponding name. Also
1652 register definitions for names whose underlying symbols are
1653 marked for renaming. */
1654
1655 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1656 {
1657 tree lhs, lhs_sym;
1658
1659 if (!REGISTER_DEFS_IN_THIS_STMT (phi))
1660 continue;
1661
1662 lhs = PHI_RESULT (phi);
1663 lhs_sym = SSA_NAME_VAR (lhs);
1664
1665 if (symbol_marked_for_renaming (lhs_sym))
1666 register_new_update_single (lhs, lhs_sym);
1667 else
1668 {
1669 /* If LHS is a new name, register a new definition for all
1670 the names replaced by LHS. */
1671 if (is_new_name (lhs))
1672 register_new_update_set (lhs, names_replaced_by (lhs));
1673
1674 /* If LHS is an OLD name, register it as a new definition
1675 for itself. */
1676 if (is_old_name (lhs))
1677 register_new_update_single (lhs, lhs);
1678 }
1679
1680 if (is_abnormal_phi)
1681 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
1682 }
1683 }
1684
1685
1686 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
1687 the current reaching definition of every name re-written in BB to
1688 the original reaching definition before visiting BB. This
1689 unwinding must be done in the opposite order to what is done in
1690 register_new_update_set. */
1691
1692 static void
rewrite_update_fini_block(struct dom_walk_data * walk_data ATTRIBUTE_UNUSED,basic_block bb ATTRIBUTE_UNUSED)1693 rewrite_update_fini_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1694 basic_block bb ATTRIBUTE_UNUSED)
1695 {
1696 while (VEC_length (tree, block_defs_stack) > 0)
1697 {
1698 tree var = VEC_pop (tree, block_defs_stack);
1699 tree saved_def;
1700
1701 /* NULL indicates the unwind stop point for this block (see
1702 rewrite_update_init_block). */
1703 if (var == NULL)
1704 return;
1705
1706 saved_def = VEC_pop (tree, block_defs_stack);
1707 set_current_def (var, saved_def);
1708 }
1709 }
1710
1711
1712 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1713 it is a symbol marked for renaming, replace it with USE_P's current
1714 reaching definition. */
1715
1716 static inline void
maybe_replace_use(use_operand_p use_p)1717 maybe_replace_use (use_operand_p use_p)
1718 {
1719 tree rdef = NULL_TREE;
1720 tree use = USE_FROM_PTR (use_p);
1721 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1722
1723 if (symbol_marked_for_renaming (sym))
1724 rdef = get_reaching_def (sym);
1725 else if (is_old_name (use))
1726 rdef = get_reaching_def (use);
1727
1728 if (rdef && rdef != use)
1729 SET_USE (use_p, rdef);
1730 }
1731
1732
1733 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1734 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1735 register it as the current definition for the names replaced by
1736 DEF_P. */
1737
1738 static inline void
maybe_register_def(def_operand_p def_p,tree stmt)1739 maybe_register_def (def_operand_p def_p, tree stmt)
1740 {
1741 tree def = DEF_FROM_PTR (def_p);
1742 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1743
1744 /* If DEF is a naked symbol that needs renaming, create a
1745 new name for it. */
1746 if (symbol_marked_for_renaming (sym))
1747 {
1748 if (DECL_P (def))
1749 {
1750 def = make_ssa_name (def, stmt);
1751 SET_DEF (def_p, def);
1752 }
1753
1754 register_new_update_single (def, sym);
1755 }
1756 else
1757 {
1758 /* If DEF is a new name, register it as a new definition
1759 for all the names replaced by DEF. */
1760 if (is_new_name (def))
1761 register_new_update_set (def, names_replaced_by (def));
1762
1763 /* If DEF is an old name, register DEF as a new
1764 definition for itself. */
1765 if (is_old_name (def))
1766 register_new_update_single (def, def);
1767 }
1768 }
1769
1770
1771 /* Update every variable used in the statement pointed-to by SI. The
1772 statement is assumed to be in SSA form already. Names in
1773 OLD_SSA_NAMES used by SI will be updated to their current reaching
1774 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1775 will be registered as a new definition for their corresponding name
1776 in OLD_SSA_NAMES. */
1777
1778 static void
rewrite_update_stmt(struct dom_walk_data * walk_data ATTRIBUTE_UNUSED,basic_block bb ATTRIBUTE_UNUSED,block_stmt_iterator si)1779 rewrite_update_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1780 basic_block bb ATTRIBUTE_UNUSED,
1781 block_stmt_iterator si)
1782 {
1783 stmt_ann_t ann;
1784 tree stmt;
1785 use_operand_p use_p;
1786 def_operand_p def_p;
1787 ssa_op_iter iter;
1788
1789 stmt = bsi_stmt (si);
1790 ann = stmt_ann (stmt);
1791
1792 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
1793
1794 /* Only update marked statements. */
1795 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1796 return;
1797
1798 if (dump_file && (dump_flags & TDF_DETAILS))
1799 {
1800 fprintf (dump_file, "Updating SSA information for statement ");
1801 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1802 fprintf (dump_file, "\n");
1803 }
1804
1805 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1806 symbol is marked for renaming. */
1807 if (REWRITE_THIS_STMT (stmt))
1808 {
1809 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1810 maybe_replace_use (use_p);
1811
1812 if (need_to_update_vops_p)
1813 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1814 SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
1815 maybe_replace_use (use_p);
1816 }
1817
1818 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1819 Also register definitions for names whose underlying symbol is
1820 marked for renaming. */
1821 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1822 {
1823 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1824 maybe_register_def (def_p, stmt);
1825
1826 if (need_to_update_vops_p)
1827 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_VIRTUAL_DEFS)
1828 maybe_register_def (def_p, stmt);
1829 }
1830 }
1831
1832
1833 /* Replace the operand pointed to by USE_P with USE's current reaching
1834 definition. */
1835
1836 static inline void
replace_use(use_operand_p use_p,tree use)1837 replace_use (use_operand_p use_p, tree use)
1838 {
1839 tree rdef = get_reaching_def (use);
1840 if (rdef != use)
1841 SET_USE (use_p, rdef);
1842 }
1843
1844
1845 /* Visit all the successor blocks of BB looking for PHI nodes. For
1846 every PHI node found, check if any of its arguments is in
1847 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1848 definition, replace it. */
1849
1850 static void
rewrite_update_phi_arguments(struct dom_walk_data * walk_data ATTRIBUTE_UNUSED,basic_block bb)1851 rewrite_update_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1852 basic_block bb)
1853 {
1854 edge e;
1855 edge_iterator ei;
1856 unsigned i;
1857
1858 FOR_EACH_EDGE (e, ei, bb->succs)
1859 {
1860 tree phi;
1861 tree_vec phis;
1862
1863 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1864 continue;
1865
1866 phis = VEC_index (tree_vec, phis_to_rewrite, e->dest->index);
1867 for (i = 0; VEC_iterate (tree, phis, i, phi); i++)
1868 {
1869 tree arg;
1870 use_operand_p arg_p;
1871
1872 gcc_assert (REWRITE_THIS_STMT (phi));
1873
1874 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
1875 arg = USE_FROM_PTR (arg_p);
1876
1877 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
1878 continue;
1879
1880 if (arg == NULL_TREE)
1881 {
1882 /* When updating a PHI node for a recently introduced
1883 symbol we may find NULL arguments. That's why we
1884 take the symbol from the LHS of the PHI node. */
1885 replace_use (arg_p, SSA_NAME_VAR (PHI_RESULT (phi)));
1886 }
1887 else
1888 {
1889 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
1890
1891 if (symbol_marked_for_renaming (sym))
1892 replace_use (arg_p, sym);
1893 else if (is_old_name (arg))
1894 replace_use (arg_p, arg);
1895 }
1896
1897 if (e->flags & EDGE_ABNORMAL)
1898 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
1899 }
1900 }
1901 }
1902
1903
1904 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
1905 form.
1906
1907 ENTRY indicates the block where to start. Every block dominated by
1908 ENTRY will be rewritten.
1909
1910 WHAT indicates what actions will be taken by the renamer (see enum
1911 rewrite_mode).
1912
1913 BLOCKS are the set of interesting blocks for the dominator walker
1914 to process. If this set is NULL, then all the nodes dominated
1915 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
1916 are not present in BLOCKS are ignored. */
1917
1918 static void
rewrite_blocks(basic_block entry,enum rewrite_mode what,sbitmap blocks)1919 rewrite_blocks (basic_block entry, enum rewrite_mode what, sbitmap blocks)
1920 {
1921 struct dom_walk_data walk_data;
1922
1923 /* Rewrite all the basic blocks in the program. */
1924 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
1925
1926 /* Setup callbacks for the generic dominator tree walker. */
1927 memset (&walk_data, 0, sizeof (walk_data));
1928
1929 walk_data.dom_direction = CDI_DOMINATORS;
1930 walk_data.interesting_blocks = blocks;
1931
1932 if (what == REWRITE_UPDATE)
1933 walk_data.before_dom_children_before_stmts = rewrite_update_init_block;
1934 else
1935 walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
1936
1937 if (what == REWRITE_ALL)
1938 walk_data.before_dom_children_walk_stmts = rewrite_stmt;
1939 else if (what == REWRITE_UPDATE)
1940 walk_data.before_dom_children_walk_stmts = rewrite_update_stmt;
1941 else
1942 gcc_unreachable ();
1943
1944 if (what == REWRITE_ALL)
1945 walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
1946 else if (what == REWRITE_UPDATE)
1947 walk_data.before_dom_children_after_stmts = rewrite_update_phi_arguments;
1948 else
1949 gcc_unreachable ();
1950
1951 if (what == REWRITE_ALL)
1952 walk_data.after_dom_children_after_stmts = rewrite_finalize_block;
1953 else if (what == REWRITE_UPDATE)
1954 walk_data.after_dom_children_after_stmts = rewrite_update_fini_block;
1955 else
1956 gcc_unreachable ();
1957
1958 block_defs_stack = VEC_alloc (tree, heap, 10);
1959
1960 /* Initialize the dominator walker. */
1961 init_walk_dominator_tree (&walk_data);
1962
1963 /* Recursively walk the dominator tree rewriting each statement in
1964 each basic block. */
1965 walk_dominator_tree (&walk_data, entry);
1966
1967 /* Finalize the dominator walker. */
1968 fini_walk_dominator_tree (&walk_data);
1969
1970 /* Debugging dumps. */
1971 if (dump_file && (dump_flags & TDF_STATS))
1972 {
1973 dump_dfa_stats (dump_file);
1974 if (def_blocks)
1975 dump_tree_ssa_stats (dump_file);
1976 }
1977
1978 if (def_blocks)
1979 {
1980 htab_delete (def_blocks);
1981 def_blocks = NULL;
1982 }
1983
1984 VEC_free (tree, heap, block_defs_stack);
1985
1986 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
1987 }
1988
1989
1990 /* Block initialization routine for mark_def_sites. Clear the
1991 KILLS bitmap at the start of each block. */
1992
1993 static void
mark_def_sites_initialize_block(struct dom_walk_data * walk_data,basic_block bb ATTRIBUTE_UNUSED)1994 mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
1995 basic_block bb ATTRIBUTE_UNUSED)
1996 {
1997 struct mark_def_sites_global_data *gd =
1998 (struct mark_def_sites_global_data *) walk_data->global_data;
1999 bitmap kills = gd->kills;
2000 bitmap_clear (kills);
2001 }
2002
2003
2004 /* Mark the definition site blocks for each variable, so that we know
2005 where the variable is actually live.
2006
2007 INTERESTING_BLOCKS will be filled in with all the blocks that
2008 should be processed by the renamer. It is assumed to be
2009 initialized and zeroed by the caller. */
2010
2011 static void
mark_def_site_blocks(sbitmap interesting_blocks)2012 mark_def_site_blocks (sbitmap interesting_blocks)
2013 {
2014 struct dom_walk_data walk_data;
2015 struct mark_def_sites_global_data mark_def_sites_global_data;
2016 referenced_var_iterator rvi;
2017 tree var;
2018
2019 /* Allocate memory for the DEF_BLOCKS hash table. */
2020 def_blocks = htab_create (num_referenced_vars,
2021 def_blocks_hash, def_blocks_eq, def_blocks_free);
2022 FOR_EACH_REFERENCED_VAR(var, rvi)
2023 set_current_def (var, NULL_TREE);
2024
2025 /* Setup callbacks for the generic dominator tree walker to find and
2026 mark definition sites. */
2027 walk_data.walk_stmts_backward = false;
2028 walk_data.dom_direction = CDI_DOMINATORS;
2029 walk_data.initialize_block_local_data = NULL;
2030 walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
2031 walk_data.before_dom_children_walk_stmts = mark_def_sites;
2032 walk_data.before_dom_children_after_stmts = NULL;
2033 walk_data.after_dom_children_before_stmts = NULL;
2034 walk_data.after_dom_children_walk_stmts = NULL;
2035 walk_data.after_dom_children_after_stmts = NULL;
2036 walk_data.interesting_blocks = NULL;
2037
2038 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2039 large enough to accommodate all the variables referenced in the
2040 function, not just the ones we are renaming. */
2041 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2042
2043 /* Create the set of interesting blocks that will be filled by
2044 mark_def_sites. */
2045 mark_def_sites_global_data.interesting_blocks = interesting_blocks;
2046 walk_data.global_data = &mark_def_sites_global_data;
2047
2048 /* We do not have any local data. */
2049 walk_data.block_local_data_size = 0;
2050
2051 /* Initialize the dominator walker. */
2052 init_walk_dominator_tree (&walk_data);
2053
2054 /* Recursively walk the dominator tree. */
2055 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2056
2057 /* Finalize the dominator walker. */
2058 fini_walk_dominator_tree (&walk_data);
2059
2060 /* We no longer need this bitmap, clear and free it. */
2061 BITMAP_FREE (mark_def_sites_global_data.kills);
2062 }
2063
2064
2065 /* Main entry point into the SSA builder. The renaming process
2066 proceeds in four main phases:
2067
2068 1- Compute dominance frontier and immediate dominators, needed to
2069 insert PHI nodes and rename the function in dominator tree
2070 order.
2071
2072 2- Find and mark all the blocks that define variables
2073 (mark_def_site_blocks).
2074
2075 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2076
2077 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2078
2079 Steps 3 and 4 are done using the dominator tree walker
2080 (walk_dominator_tree). */
2081
2082 static unsigned int
rewrite_into_ssa(void)2083 rewrite_into_ssa (void)
2084 {
2085 bitmap *dfs;
2086 basic_block bb;
2087 sbitmap interesting_blocks;
2088
2089 timevar_push (TV_TREE_SSA_OTHER);
2090
2091 /* Initialize operand data structures. */
2092 init_ssa_operands ();
2093
2094 /* Initialize the set of interesting blocks. The callback
2095 mark_def_sites will add to this set those blocks that the renamer
2096 should process. */
2097 interesting_blocks = sbitmap_alloc (last_basic_block);
2098 sbitmap_zero (interesting_blocks);
2099
2100 /* Initialize dominance frontier. */
2101 dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap));
2102 FOR_EACH_BB (bb)
2103 dfs[bb->index] = BITMAP_ALLOC (NULL);
2104
2105 /* 1- Compute dominance frontiers. */
2106 calculate_dominance_info (CDI_DOMINATORS);
2107 compute_dominance_frontiers (dfs);
2108
2109 /* 2- Find and mark definition sites. */
2110 mark_def_site_blocks (interesting_blocks);
2111
2112 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2113 insert_phi_nodes (dfs);
2114
2115 /* 4- Rename all the blocks. */
2116 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL, interesting_blocks);
2117
2118 /* Free allocated memory. */
2119 FOR_EACH_BB (bb)
2120 BITMAP_FREE (dfs[bb->index]);
2121 free (dfs);
2122 sbitmap_free (interesting_blocks);
2123
2124 timevar_pop (TV_TREE_SSA_OTHER);
2125 in_ssa_p = true;
2126 return 0;
2127 }
2128
2129
2130 struct tree_opt_pass pass_build_ssa =
2131 {
2132 "ssa", /* name */
2133 NULL, /* gate */
2134 rewrite_into_ssa, /* execute */
2135 NULL, /* sub */
2136 NULL, /* next */
2137 0, /* static_pass_number */
2138 0, /* tv_id */
2139 PROP_cfg | PROP_referenced_vars, /* properties_required */
2140 PROP_ssa, /* properties_provided */
2141 0, /* properties_destroyed */
2142 0, /* todo_flags_start */
2143 TODO_dump_func
2144 | TODO_verify_ssa
2145 | TODO_remove_unused_locals, /* todo_flags_finish */
2146 0 /* letter */
2147 };
2148
2149
2150 /* Mark the definition of VAR at STMT and BB as interesting for the
2151 renamer. BLOCKS is the set of blocks that need updating. */
2152
2153 static void
mark_def_interesting(tree var,tree stmt,basic_block bb,bool insert_phi_p)2154 mark_def_interesting (tree var, tree stmt, basic_block bb, bool insert_phi_p)
2155 {
2156 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2157 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
2158
2159 if (insert_phi_p)
2160 {
2161 bool is_phi_p = TREE_CODE (stmt) == PHI_NODE;
2162
2163 set_def_block (var, bb, is_phi_p);
2164
2165 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2166 site for both itself and all the old names replaced by it. */
2167 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2168 {
2169 bitmap_iterator bi;
2170 unsigned i;
2171 bitmap set = names_replaced_by (var);
2172 if (set)
2173 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2174 set_def_block (ssa_name (i), bb, is_phi_p);
2175 }
2176 }
2177 }
2178
2179
2180 /* Mark the use of VAR at STMT and BB as interesting for the
2181 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2182 nodes. */
2183
2184 static inline void
mark_use_interesting(tree var,tree stmt,basic_block bb,bool insert_phi_p)2185 mark_use_interesting (tree var, tree stmt, basic_block bb, bool insert_phi_p)
2186 {
2187 basic_block def_bb = bb_for_stmt (stmt);
2188
2189 mark_block_for_update (def_bb);
2190 mark_block_for_update (bb);
2191
2192 if (TREE_CODE (stmt) == PHI_NODE)
2193 mark_phi_for_rewrite (def_bb, stmt);
2194 else
2195 REWRITE_THIS_STMT (stmt) = 1;
2196
2197 /* If VAR has not been defined in BB, then it is live-on-entry
2198 to BB. Note that we cannot just use the block holding VAR's
2199 definition because if VAR is one of the names in OLD_SSA_NAMES,
2200 it will have several definitions (itself and all the names that
2201 replace it). */
2202 if (insert_phi_p)
2203 {
2204 struct def_blocks_d *db_p = get_def_blocks_for (var);
2205 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2206 set_livein_block (var, bb);
2207 }
2208 }
2209
2210
2211 /* Do a dominator walk starting at BB processing statements that
2212 reference symbols in SYMS_TO_RENAME. This is very similar to
2213 mark_def_sites, but the scan handles statements whose operands may
2214 already be SSA names.
2215
2216 If INSERT_PHI_P is true, mark those uses as live in the
2217 corresponding block. This is later used by the PHI placement
2218 algorithm to make PHI pruning decisions. */
2219
2220 static void
prepare_block_for_update(basic_block bb,bool insert_phi_p)2221 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2222 {
2223 basic_block son;
2224 block_stmt_iterator si;
2225 tree phi;
2226 edge e;
2227 edge_iterator ei;
2228
2229 mark_block_for_update (bb);
2230
2231 /* Process PHI nodes marking interesting those that define or use
2232 the symbols that we are interested in. */
2233 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2234 {
2235 tree lhs_sym, lhs = PHI_RESULT (phi);
2236
2237 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2238
2239 if (!symbol_marked_for_renaming (lhs_sym))
2240 continue;
2241 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2242
2243 /* Mark the uses in phi nodes as interesting. It would be more correct
2244 to process the arguments of the phi nodes of the successor edges of
2245 BB at the end of prepare_block_for_update, however, that turns out
2246 to be significantly more expensive. Doing it here is conservatively
2247 correct -- it may only cause us to believe a value to be live in a
2248 block that also contains its definition, and thus insert a few more
2249 phi nodes for it. */
2250 FOR_EACH_EDGE (e, ei, bb->preds)
2251 {
2252 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2253 }
2254 }
2255
2256 /* Process the statements. */
2257 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2258 {
2259 tree stmt;
2260 ssa_op_iter i;
2261 use_operand_p use_p;
2262 def_operand_p def_p;
2263
2264 stmt = bsi_stmt (si);
2265
2266 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2267 {
2268 tree use = USE_FROM_PTR (use_p);
2269 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2270 if (symbol_marked_for_renaming (sym))
2271 mark_use_interesting (use, stmt, bb, insert_phi_p);
2272 }
2273
2274 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2275 {
2276 tree def = DEF_FROM_PTR (def_p);
2277 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2278
2279 if (symbol_marked_for_renaming (sym))
2280 mark_def_interesting (def, stmt, bb, insert_phi_p);
2281 }
2282
2283 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_VIRTUAL_DEFS)
2284 {
2285 tree def = DEF_FROM_PTR (def_p);
2286 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2287
2288 if (symbol_marked_for_renaming (sym))
2289 {
2290 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2291 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2292 }
2293 }
2294
2295 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_VUSE)
2296 {
2297 tree use = USE_FROM_PTR (use_p);
2298 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2299
2300 if (symbol_marked_for_renaming (sym))
2301 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2302 }
2303 }
2304
2305 /* Now visit all the blocks dominated by BB. */
2306 for (son = first_dom_son (CDI_DOMINATORS, bb);
2307 son;
2308 son = next_dom_son (CDI_DOMINATORS, son))
2309 prepare_block_for_update (son, insert_phi_p);
2310 }
2311
2312
2313 /* Helper for prepare_names_to_update. Mark all the use sites for
2314 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2315 prepare_names_to_update. */
2316
2317 static void
prepare_use_sites_for(tree name,bool insert_phi_p)2318 prepare_use_sites_for (tree name, bool insert_phi_p)
2319 {
2320 use_operand_p use_p;
2321 imm_use_iterator iter;
2322
2323 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2324 {
2325 tree stmt = USE_STMT (use_p);
2326 basic_block bb = bb_for_stmt (stmt);
2327
2328 if (TREE_CODE (stmt) == PHI_NODE)
2329 {
2330 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2331 edge e = PHI_ARG_EDGE (stmt, ix);
2332 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2333 }
2334 else
2335 {
2336 /* For regular statements, mark this as an interesting use
2337 for NAME. */
2338 mark_use_interesting (name, stmt, bb, insert_phi_p);
2339 }
2340 }
2341 }
2342
2343
2344 /* Helper for prepare_names_to_update. Mark the definition site for
2345 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2346 prepare_names_to_update. */
2347
2348 static void
prepare_def_site_for(tree name,bool insert_phi_p)2349 prepare_def_site_for (tree name, bool insert_phi_p)
2350 {
2351 tree stmt;
2352 basic_block bb;
2353
2354 gcc_assert (names_to_release == NULL
2355 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2356
2357 stmt = SSA_NAME_DEF_STMT (name);
2358 bb = bb_for_stmt (stmt);
2359 if (bb)
2360 {
2361 gcc_assert (bb->index < last_basic_block);
2362 mark_block_for_update (bb);
2363 mark_def_interesting (name, stmt, bb, insert_phi_p);
2364 }
2365 }
2366
2367
2368 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2369 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2370 PHI nodes for newly created names. */
2371
2372 static void
prepare_names_to_update(bool insert_phi_p)2373 prepare_names_to_update (bool insert_phi_p)
2374 {
2375 unsigned i = 0;
2376 bitmap_iterator bi;
2377 sbitmap_iterator sbi;
2378
2379 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2380 remove it from NEW_SSA_NAMES so that we don't try to visit its
2381 defining basic block (which most likely doesn't exist). Notice
2382 that we cannot do the same with names in OLD_SSA_NAMES because we
2383 want to replace existing instances. */
2384 if (names_to_release)
2385 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2386 RESET_BIT (new_ssa_names, i);
2387
2388 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2389 names may be considered to be live-in on blocks that contain
2390 definitions for their replacements. */
2391 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2392 prepare_def_site_for (ssa_name (i), insert_phi_p);
2393
2394 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2395 OLD_SSA_NAMES, but we have to ignore its definition site. */
2396 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2397 {
2398 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2399 prepare_def_site_for (ssa_name (i), insert_phi_p);
2400 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2401 }
2402 }
2403
2404
2405 /* Dump all the names replaced by NAME to FILE. */
2406
2407 void
dump_names_replaced_by(FILE * file,tree name)2408 dump_names_replaced_by (FILE *file, tree name)
2409 {
2410 unsigned i;
2411 bitmap old_set;
2412 bitmap_iterator bi;
2413
2414 print_generic_expr (file, name, 0);
2415 fprintf (file, " -> { ");
2416
2417 old_set = names_replaced_by (name);
2418 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2419 {
2420 print_generic_expr (file, ssa_name (i), 0);
2421 fprintf (file, " ");
2422 }
2423
2424 fprintf (file, "}\n");
2425 }
2426
2427
2428 /* Dump all the names replaced by NAME to stderr. */
2429
2430 void
debug_names_replaced_by(tree name)2431 debug_names_replaced_by (tree name)
2432 {
2433 dump_names_replaced_by (stderr, name);
2434 }
2435
2436
2437 /* Dump SSA update information to FILE. */
2438
2439 void
dump_update_ssa(FILE * file)2440 dump_update_ssa (FILE *file)
2441 {
2442 unsigned i = 0;
2443 bitmap_iterator bi;
2444
2445 if (!need_ssa_update_p ())
2446 return;
2447
2448 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2449 {
2450 sbitmap_iterator sbi;
2451
2452 fprintf (file, "\nSSA replacement table\n");
2453 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2454 "O_1, ..., O_j\n\n");
2455
2456 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2457 dump_names_replaced_by (file, ssa_name (i));
2458
2459 fprintf (file, "\n");
2460 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2461 update_ssa_stats.num_virtual_mappings);
2462 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2463 update_ssa_stats.num_total_mappings
2464 - update_ssa_stats.num_virtual_mappings);
2465 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2466 update_ssa_stats.num_total_mappings);
2467
2468 fprintf (file, "\nNumber of virtual symbols: %u\n",
2469 update_ssa_stats.num_virtual_symbols);
2470 }
2471
2472 if (syms_to_rename && !bitmap_empty_p (syms_to_rename))
2473 {
2474 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2475 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2476 {
2477 print_generic_expr (file, referenced_var (i), 0);
2478 fprintf (file, " ");
2479 }
2480 }
2481
2482 if (names_to_release && !bitmap_empty_p (names_to_release))
2483 {
2484 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2485 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2486 {
2487 print_generic_expr (file, ssa_name (i), 0);
2488 fprintf (file, " ");
2489 }
2490 }
2491
2492 fprintf (file, "\n\n");
2493 }
2494
2495
2496 /* Dump SSA update information to stderr. */
2497
2498 void
debug_update_ssa(void)2499 debug_update_ssa (void)
2500 {
2501 dump_update_ssa (stderr);
2502 }
2503
2504
2505 /* Initialize data structures used for incremental SSA updates. */
2506
2507 static void
init_update_ssa(void)2508 init_update_ssa (void)
2509 {
2510 /* Reserve more space than the current number of names. The calls to
2511 add_new_name_mapping are typically done after creating new SSA
2512 names, so we'll need to reallocate these arrays. */
2513 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2514 sbitmap_zero (old_ssa_names);
2515
2516 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2517 sbitmap_zero (new_ssa_names);
2518
2519 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2520 need_to_initialize_update_ssa_p = false;
2521 need_to_update_vops_p = false;
2522 syms_to_rename = BITMAP_ALLOC (NULL);
2523 names_to_release = NULL;
2524 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2525 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2526 }
2527
2528
2529 /* Deallocate data structures used for incremental SSA updates. */
2530
2531 void
delete_update_ssa(void)2532 delete_update_ssa (void)
2533 {
2534 unsigned i;
2535 bitmap_iterator bi;
2536
2537 sbitmap_free (old_ssa_names);
2538 old_ssa_names = NULL;
2539
2540 sbitmap_free (new_ssa_names);
2541 new_ssa_names = NULL;
2542
2543 htab_delete (repl_tbl);
2544 repl_tbl = NULL;
2545
2546 need_to_initialize_update_ssa_p = true;
2547 need_to_update_vops_p = false;
2548 BITMAP_FREE (syms_to_rename);
2549 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2550
2551 if (names_to_release)
2552 {
2553 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2554 release_ssa_name (ssa_name (i));
2555 BITMAP_FREE (names_to_release);
2556 }
2557
2558 clear_ssa_name_info ();
2559 }
2560
2561
2562 /* Create a new name for OLD_NAME in statement STMT and replace the
2563 operand pointed to by DEF_P with the newly created name. Return
2564 the new name and register the replacement mapping <NEW, OLD> in
2565 update_ssa's tables. */
2566
2567 tree
create_new_def_for(tree old_name,tree stmt,def_operand_p def)2568 create_new_def_for (tree old_name, tree stmt, def_operand_p def)
2569 {
2570 tree new_name = duplicate_ssa_name (old_name, stmt);
2571
2572 SET_DEF (def, new_name);
2573
2574 if (TREE_CODE (stmt) == PHI_NODE)
2575 {
2576 edge e;
2577 edge_iterator ei;
2578 basic_block bb = bb_for_stmt (stmt);
2579
2580 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2581 FOR_EACH_EDGE (e, ei, bb->preds)
2582 if (e->flags & EDGE_ABNORMAL)
2583 {
2584 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2585 break;
2586 }
2587 }
2588
2589 register_new_name_mapping (new_name, old_name);
2590
2591 /* For the benefit of passes that will be updating the SSA form on
2592 their own, set the current reaching definition of OLD_NAME to be
2593 NEW_NAME. */
2594 set_current_def (old_name, new_name);
2595
2596 return new_name;
2597 }
2598
2599
2600 /* Register name NEW to be a replacement for name OLD. This function
2601 must be called for every replacement that should be performed by
2602 update_ssa. */
2603
2604 void
register_new_name_mapping(tree new,tree old)2605 register_new_name_mapping (tree new, tree old)
2606 {
2607 if (need_to_initialize_update_ssa_p)
2608 init_update_ssa ();
2609
2610 add_new_name_mapping (new, old);
2611 }
2612
2613
2614 /* Register symbol SYM to be renamed by update_ssa. */
2615
2616 void
mark_sym_for_renaming(tree sym)2617 mark_sym_for_renaming (tree sym)
2618 {
2619 if (need_to_initialize_update_ssa_p)
2620 init_update_ssa ();
2621
2622 bitmap_set_bit (syms_to_rename, DECL_UID (sym));
2623
2624 if (!is_gimple_reg (sym))
2625 need_to_update_vops_p = true;
2626 }
2627
2628
2629 /* Register all the symbols in SET to be renamed by update_ssa. */
2630
2631 void
mark_set_for_renaming(bitmap set)2632 mark_set_for_renaming (bitmap set)
2633 {
2634 bitmap_iterator bi;
2635 unsigned i;
2636
2637 if (bitmap_empty_p (set))
2638 return;
2639
2640 if (need_to_initialize_update_ssa_p)
2641 init_update_ssa ();
2642
2643 bitmap_ior_into (syms_to_rename, set);
2644
2645 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2646 if (!is_gimple_reg (referenced_var (i)))
2647 {
2648 need_to_update_vops_p = true;
2649 break;
2650 }
2651 }
2652
2653
2654 /* Return true if there is any work to be done by update_ssa. */
2655
2656 bool
need_ssa_update_p(void)2657 need_ssa_update_p (void)
2658 {
2659 return syms_to_rename || old_ssa_names || new_ssa_names;
2660 }
2661
2662
2663 /* Return true if name N has been registered in the replacement table. */
2664
2665 bool
name_registered_for_update_p(tree n)2666 name_registered_for_update_p (tree n)
2667 {
2668 if (!need_ssa_update_p ())
2669 return false;
2670
2671 return is_new_name (n)
2672 || is_old_name (n)
2673 || symbol_marked_for_renaming (SSA_NAME_VAR (n));
2674 }
2675
2676
2677 /* Return the set of all the SSA names marked to be replaced. */
2678
2679 bitmap
ssa_names_to_replace(void)2680 ssa_names_to_replace (void)
2681 {
2682 unsigned i = 0;
2683 bitmap ret;
2684 sbitmap_iterator sbi;
2685
2686 ret = BITMAP_ALLOC (NULL);
2687 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2688 bitmap_set_bit (ret, i);
2689
2690 return ret;
2691 }
2692
2693
2694 /* Mark NAME to be released after update_ssa has finished. */
2695
2696 void
release_ssa_name_after_update_ssa(tree name)2697 release_ssa_name_after_update_ssa (tree name)
2698 {
2699 gcc_assert (!need_to_initialize_update_ssa_p);
2700
2701 if (names_to_release == NULL)
2702 names_to_release = BITMAP_ALLOC (NULL);
2703
2704 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2705 }
2706
2707
2708 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2709 frontier information. BLOCKS is the set of blocks to be updated.
2710
2711 This is slightly different than the regular PHI insertion
2712 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2713 real names (i.e., GIMPLE registers) are inserted:
2714
2715 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2716 nodes inside the region affected by the block that defines VAR
2717 and the blocks that define all its replacements. All these
2718 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2719
2720 First, we compute the entry point to the region (ENTRY). This is
2721 given by the nearest common dominator to all the definition
2722 blocks. When computing the iterated dominance frontier (IDF), any
2723 block not strictly dominated by ENTRY is ignored.
2724
2725 We then call the standard PHI insertion algorithm with the pruned
2726 IDF.
2727
2728 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2729 names is not pruned. PHI nodes are inserted at every IDF block. */
2730
2731 static void
insert_updated_phi_nodes_for(tree var,bitmap * dfs,bitmap blocks,unsigned update_flags)2732 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
2733 unsigned update_flags)
2734 {
2735 basic_block entry;
2736 struct def_blocks_d *db;
2737 bitmap idf, pruned_idf;
2738 bitmap_iterator bi;
2739 unsigned i;
2740
2741 #if defined ENABLE_CHECKING
2742 if (TREE_CODE (var) == SSA_NAME)
2743 gcc_assert (is_old_name (var));
2744 else
2745 gcc_assert (symbol_marked_for_renaming (var));
2746 #endif
2747
2748 /* Get all the definition sites for VAR. */
2749 db = find_def_blocks_for (var);
2750
2751 /* No need to do anything if there were no definitions to VAR. */
2752 if (db == NULL || bitmap_empty_p (db->def_blocks))
2753 return;
2754
2755 /* Compute the initial iterated dominance frontier. */
2756 idf = find_idf (db->def_blocks, dfs);
2757 pruned_idf = BITMAP_ALLOC (NULL);
2758
2759 if (TREE_CODE (var) == SSA_NAME)
2760 {
2761 if (update_flags == TODO_update_ssa)
2762 {
2763 /* If doing regular SSA updates for GIMPLE registers, we are
2764 only interested in IDF blocks dominated by the nearest
2765 common dominator of all the definition blocks. */
2766 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2767 db->def_blocks);
2768
2769 if (entry != ENTRY_BLOCK_PTR)
2770 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2771 if (BASIC_BLOCK (i) != entry
2772 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2773 bitmap_set_bit (pruned_idf, i);
2774 }
2775 else
2776 {
2777 /* Otherwise, do not prune the IDF for VAR. */
2778 gcc_assert (update_flags == TODO_update_ssa_full_phi);
2779 bitmap_copy (pruned_idf, idf);
2780 }
2781 }
2782 else
2783 {
2784 /* Otherwise, VAR is a symbol that needs to be put into SSA form
2785 for the first time, so we need to compute the full IDF for
2786 it. */
2787 bitmap_copy (pruned_idf, idf);
2788 }
2789
2790 if (!bitmap_empty_p (pruned_idf))
2791 {
2792 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
2793 are included in the region to be updated. The feeding blocks
2794 are important to guarantee that the PHI arguments are renamed
2795 properly. */
2796 bitmap_ior_into (blocks, pruned_idf);
2797 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
2798 {
2799 edge e;
2800 edge_iterator ei;
2801 basic_block bb = BASIC_BLOCK (i);
2802
2803 FOR_EACH_EDGE (e, ei, bb->preds)
2804 if (e->src->index >= 0)
2805 bitmap_set_bit (blocks, e->src->index);
2806 }
2807
2808 insert_phi_nodes_for (var, pruned_idf, true);
2809 }
2810
2811 BITMAP_FREE (pruned_idf);
2812 BITMAP_FREE (idf);
2813 }
2814
2815
2816 /* Heuristic to determine whether SSA name mappings for virtual names
2817 should be discarded and their symbols rewritten from scratch. When
2818 there is a large number of mappings for virtual names, the
2819 insertion of PHI nodes for the old names in the mappings takes
2820 considerable more time than if we inserted PHI nodes for the
2821 symbols instead.
2822
2823 Currently the heuristic takes these stats into account:
2824
2825 - Number of mappings for virtual SSA names.
2826 - Number of distinct virtual symbols involved in those mappings.
2827
2828 If the number of virtual mappings is much larger than the number of
2829 virtual symbols, then it will be faster to compute PHI insertion
2830 spots for the symbols. Even if this involves traversing the whole
2831 CFG, which is what happens when symbols are renamed from scratch. */
2832
2833 static bool
switch_virtuals_to_full_rewrite_p(void)2834 switch_virtuals_to_full_rewrite_p (void)
2835 {
2836 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
2837 return false;
2838
2839 if (update_ssa_stats.num_virtual_mappings
2840 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
2841 * update_ssa_stats.num_virtual_symbols)
2842 return true;
2843
2844 return false;
2845 }
2846
2847
2848 /* Remove every virtual mapping and mark all the affected virtual
2849 symbols for renaming. */
2850
2851 static void
switch_virtuals_to_full_rewrite(void)2852 switch_virtuals_to_full_rewrite (void)
2853 {
2854 unsigned i = 0;
2855 sbitmap_iterator sbi;
2856
2857 if (dump_file)
2858 {
2859 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
2860 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
2861 update_ssa_stats.num_virtual_mappings);
2862 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
2863 update_ssa_stats.num_virtual_symbols);
2864 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
2865 "faster than processing\nthe name mappings.\n\n");
2866 }
2867
2868 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
2869 Note that it is not really necessary to remove the mappings from
2870 REPL_TBL, that would only waste time. */
2871 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2872 if (!is_gimple_reg (ssa_name (i)))
2873 RESET_BIT (new_ssa_names, i);
2874
2875 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2876 if (!is_gimple_reg (ssa_name (i)))
2877 RESET_BIT (old_ssa_names, i);
2878
2879 bitmap_ior_into (syms_to_rename, update_ssa_stats.virtual_symbols);
2880 }
2881
2882
2883 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
2884 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
2885
2886 1- The names in OLD_SSA_NAMES dominated by the definitions of
2887 NEW_SSA_NAMES are all re-written to be reached by the
2888 appropriate definition from NEW_SSA_NAMES.
2889
2890 2- If needed, new PHI nodes are added to the iterated dominance
2891 frontier of the blocks where each of NEW_SSA_NAMES are defined.
2892
2893 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
2894 calling register_new_name_mapping for every pair of names that the
2895 caller wants to replace.
2896
2897 The caller identifies the new names that have been inserted and the
2898 names that need to be replaced by calling register_new_name_mapping
2899 for every pair <NEW, OLD>. Note that the function assumes that the
2900 new names have already been inserted in the IL.
2901
2902 For instance, given the following code:
2903
2904 1 L0:
2905 2 x_1 = PHI (0, x_5)
2906 3 if (x_1 < 10)
2907 4 if (x_1 > 7)
2908 5 y_2 = 0
2909 6 else
2910 7 y_3 = x_1 + x_7
2911 8 endif
2912 9 x_5 = x_1 + 1
2913 10 goto L0;
2914 11 endif
2915
2916 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
2917
2918 1 L0:
2919 2 x_1 = PHI (0, x_5)
2920 3 if (x_1 < 10)
2921 4 x_10 = ...
2922 5 if (x_1 > 7)
2923 6 y_2 = 0
2924 7 else
2925 8 x_11 = ...
2926 9 y_3 = x_1 + x_7
2927 10 endif
2928 11 x_5 = x_1 + 1
2929 12 goto L0;
2930 13 endif
2931
2932 We want to replace all the uses of x_1 with the new definitions of
2933 x_10 and x_11. Note that the only uses that should be replaced are
2934 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
2935 *not* be replaced (this is why we cannot just mark symbol 'x' for
2936 renaming).
2937
2938 Additionally, we may need to insert a PHI node at line 11 because
2939 that is a merge point for x_10 and x_11. So the use of x_1 at line
2940 11 will be replaced with the new PHI node. The insertion of PHI
2941 nodes is optional. They are not strictly necessary to preserve the
2942 SSA form, and depending on what the caller inserted, they may not
2943 even be useful for the optimizers. UPDATE_FLAGS controls various
2944 aspects of how update_ssa operates, see the documentation for
2945 TODO_update_ssa*. */
2946
2947 void
update_ssa(unsigned update_flags)2948 update_ssa (unsigned update_flags)
2949 {
2950 basic_block bb, start_bb;
2951 bitmap_iterator bi;
2952 unsigned i = 0;
2953 sbitmap tmp;
2954 bool insert_phi_p;
2955 sbitmap_iterator sbi;
2956
2957 if (!need_ssa_update_p ())
2958 return;
2959
2960 timevar_push (TV_TREE_SSA_INCREMENTAL);
2961
2962 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
2963 if (!phis_to_rewrite)
2964 phis_to_rewrite = VEC_alloc (tree_vec, heap, last_basic_block);
2965 blocks_to_update = BITMAP_ALLOC (NULL);
2966
2967 /* Ensure that the dominance information is up-to-date. */
2968 calculate_dominance_info (CDI_DOMINATORS);
2969
2970 /* Only one update flag should be set. */
2971 gcc_assert (update_flags == TODO_update_ssa
2972 || update_flags == TODO_update_ssa_no_phi
2973 || update_flags == TODO_update_ssa_full_phi
2974 || update_flags == TODO_update_ssa_only_virtuals);
2975
2976 /* If we only need to update virtuals, remove all the mappings for
2977 real names before proceeding. The caller is responsible for
2978 having dealt with the name mappings before calling update_ssa. */
2979 if (update_flags == TODO_update_ssa_only_virtuals)
2980 {
2981 sbitmap_zero (old_ssa_names);
2982 sbitmap_zero (new_ssa_names);
2983 htab_empty (repl_tbl);
2984 }
2985
2986 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
2987
2988 if (insert_phi_p)
2989 {
2990 /* If the caller requested PHI nodes to be added, initialize
2991 live-in information data structures (DEF_BLOCKS). */
2992
2993 /* For each SSA name N, the DEF_BLOCKS table describes where the
2994 name is defined, which blocks have PHI nodes for N, and which
2995 blocks have uses of N (i.e., N is live-on-entry in those
2996 blocks). */
2997 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
2998 def_blocks_eq, def_blocks_free);
2999 }
3000 else
3001 {
3002 def_blocks = NULL;
3003 }
3004
3005 /* Heuristic to avoid massive slow downs when the replacement
3006 mappings include lots of virtual names. */
3007 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3008 switch_virtuals_to_full_rewrite ();
3009
3010 /* If there are names defined in the replacement table, prepare
3011 definition and use sites for all the names in NEW_SSA_NAMES and
3012 OLD_SSA_NAMES. */
3013 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3014 {
3015 prepare_names_to_update (insert_phi_p);
3016
3017 /* If all the names in NEW_SSA_NAMES had been marked for
3018 removal, and there are no symbols to rename, then there's
3019 nothing else to do. */
3020 if (sbitmap_first_set_bit (new_ssa_names) < 0
3021 && bitmap_empty_p (syms_to_rename))
3022 goto done;
3023 }
3024
3025 /* Next, determine the block at which to start the renaming process. */
3026 if (!bitmap_empty_p (syms_to_rename))
3027 {
3028 /* If we have to rename some symbols from scratch, we need to
3029 start the process at the root of the CFG. FIXME, it should
3030 be possible to determine the nearest block that had a
3031 definition for each of the symbols that are marked for
3032 updating. For now this seems more work than it's worth. */
3033 start_bb = ENTRY_BLOCK_PTR;
3034
3035 /* Traverse the CFG looking for definitions and uses of symbols
3036 in SYMS_TO_RENAME. Mark interesting blocks and statements
3037 and set local live-in information for the PHI placement
3038 heuristics. */
3039 prepare_block_for_update (start_bb, insert_phi_p);
3040 }
3041 else
3042 {
3043 /* Otherwise, the entry block to the region is the nearest
3044 common dominator for the blocks in BLOCKS. */
3045 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3046 blocks_to_update);
3047 }
3048
3049 /* If requested, insert PHI nodes at the iterated dominance frontier
3050 of every block, creating new definitions for names in OLD_SSA_NAMES
3051 and for symbols in SYMS_TO_RENAME. */
3052 if (insert_phi_p)
3053 {
3054 bitmap *dfs;
3055
3056 /* If the caller requested PHI nodes to be added, compute
3057 dominance frontiers. */
3058 dfs = XNEWVEC (bitmap, last_basic_block);
3059 FOR_EACH_BB (bb)
3060 dfs[bb->index] = BITMAP_ALLOC (NULL);
3061 compute_dominance_frontiers (dfs);
3062
3063 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3064 {
3065 sbitmap_iterator sbi;
3066
3067 /* insert_update_phi_nodes_for will call add_new_name_mapping
3068 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3069 will grow while we are traversing it (but it will not
3070 gain any new members). Copy OLD_SSA_NAMES to a temporary
3071 for traversal. */
3072 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3073 sbitmap_copy (tmp, old_ssa_names);
3074 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3075 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3076 update_flags);
3077 sbitmap_free (tmp);
3078 }
3079
3080 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
3081 insert_updated_phi_nodes_for (referenced_var (i), dfs,
3082 blocks_to_update, update_flags);
3083
3084 FOR_EACH_BB (bb)
3085 BITMAP_FREE (dfs[bb->index]);
3086 free (dfs);
3087
3088 /* Insertion of PHI nodes may have added blocks to the region.
3089 We need to re-compute START_BB to include the newly added
3090 blocks. */
3091 if (start_bb != ENTRY_BLOCK_PTR)
3092 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3093 blocks_to_update);
3094 }
3095
3096 /* Reset the current definition for name and symbol before renaming
3097 the sub-graph. */
3098 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3099 set_current_def (ssa_name (i), NULL_TREE);
3100
3101 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
3102 set_current_def (referenced_var (i), NULL_TREE);
3103
3104 /* Now start the renaming process at START_BB. */
3105 tmp = sbitmap_alloc (last_basic_block);
3106 sbitmap_zero (tmp);
3107 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3108 SET_BIT (tmp, i);
3109
3110 rewrite_blocks (start_bb, REWRITE_UPDATE, tmp);
3111
3112 sbitmap_free (tmp);
3113
3114 /* Debugging dumps. */
3115 if (dump_file)
3116 {
3117 int c;
3118 unsigned i;
3119
3120 dump_update_ssa (dump_file);
3121
3122 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
3123 start_bb->index);
3124
3125 c = 0;
3126 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3127 c++;
3128 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3129 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
3130 c, PERCENT (c, last_basic_block));
3131
3132 if (dump_flags & TDF_DETAILS)
3133 {
3134 fprintf (dump_file, "Affected blocks: ");
3135 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3136 fprintf (dump_file, "%u ", i);
3137 fprintf (dump_file, "\n");
3138 }
3139
3140 fprintf (dump_file, "\n\n");
3141 }
3142
3143 /* Free allocated memory. */
3144 done:
3145 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
3146 {
3147 tree_vec phis = VEC_index (tree_vec, phis_to_rewrite, i);
3148
3149 VEC_free (tree, heap, phis);
3150 VEC_replace (tree_vec, phis_to_rewrite, i, NULL);
3151 }
3152 BITMAP_FREE (blocks_with_phis_to_rewrite);
3153 BITMAP_FREE (blocks_to_update);
3154 delete_update_ssa ();
3155
3156 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3157 }
3158