1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCFrameLowering.h"
20 #include "PPCInstrInfo.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCPerfectShuffle.h"
23 #include "PPCRegisterInfo.h"
24 #include "PPCSubtarget.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/CodeGen/CallingConvLower.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineLoopInfo.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/MC/MCExpr.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Support/AtomicOrdering.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CodeGen.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/Format.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <list>
95 #include <utility>
96 #include <vector>
97 
98 using namespace llvm;
99 
100 #define DEBUG_TYPE "ppc-lowering"
101 
102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
104 
105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
107 
108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
110 
111 static cl::opt<bool> DisableSCO("disable-ppc-sco",
112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
113 
114 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
115 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
116 
117 STATISTIC(NumTailCalls, "Number of tail calls");
118 STATISTIC(NumSiblingCalls, "Number of sibling calls");
119 
120 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
121 
122 // FIXME: Remove this once the bug has been fixed!
123 extern cl::opt<bool> ANDIGlueBug;
124 
PPCTargetLowering(const PPCTargetMachine & TM,const PPCSubtarget & STI)125 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
126                                      const PPCSubtarget &STI)
127     : TargetLowering(TM), Subtarget(STI) {
128   // Use _setjmp/_longjmp instead of setjmp/longjmp.
129   setUseUnderscoreSetJmp(true);
130   setUseUnderscoreLongJmp(true);
131 
132   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
133   // arguments are at least 4/8 bytes aligned.
134   bool isPPC64 = Subtarget.isPPC64();
135   setMinStackArgumentAlignment(isPPC64 ? 8:4);
136 
137   // Set up the register classes.
138   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
139   if (!useSoftFloat()) {
140     if (hasSPE()) {
141       addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
142       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
143     } else {
144       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
145       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
146     }
147   }
148 
149   // Match BITREVERSE to customized fast code sequence in the td file.
150   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
151   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
152 
153   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
154   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
155 
156   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
157   for (MVT VT : MVT::integer_valuetypes()) {
158     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
159     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
160   }
161 
162   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
163 
164   // PowerPC has pre-inc load and store's.
165   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
166   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
167   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
168   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
169   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
170   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
171   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
172   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
173   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
174   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
175   if (!Subtarget.hasSPE()) {
176     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
177     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
178     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
179     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
180   }
181 
182   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
183   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
184   for (MVT VT : ScalarIntVTs) {
185     setOperationAction(ISD::ADDC, VT, Legal);
186     setOperationAction(ISD::ADDE, VT, Legal);
187     setOperationAction(ISD::SUBC, VT, Legal);
188     setOperationAction(ISD::SUBE, VT, Legal);
189   }
190 
191   if (Subtarget.useCRBits()) {
192     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193 
194     if (isPPC64 || Subtarget.hasFPCVT()) {
195       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
196       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
197                          isPPC64 ? MVT::i64 : MVT::i32);
198       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
199       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
200                         isPPC64 ? MVT::i64 : MVT::i32);
201     } else {
202       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
203       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
204     }
205 
206     // PowerPC does not support direct load/store of condition registers.
207     setOperationAction(ISD::LOAD, MVT::i1, Custom);
208     setOperationAction(ISD::STORE, MVT::i1, Custom);
209 
210     // FIXME: Remove this once the ANDI glue bug is fixed:
211     if (ANDIGlueBug)
212       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
213 
214     for (MVT VT : MVT::integer_valuetypes()) {
215       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
216       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
217       setTruncStoreAction(VT, MVT::i1, Expand);
218     }
219 
220     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
221   }
222 
223   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
224   // PPC (the libcall is not available).
225   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
226   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
227 
228   // We do not currently implement these libm ops for PowerPC.
229   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
230   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
231   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
232   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
233   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
234   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
235 
236   // PowerPC has no SREM/UREM instructions unless we are on P9
237   // On P9 we may use a hardware instruction to compute the remainder.
238   // The instructions are not legalized directly because in the cases where the
239   // result of both the remainder and the division is required it is more
240   // efficient to compute the remainder from the result of the division rather
241   // than use the remainder instruction.
242   if (Subtarget.isISA3_0()) {
243     setOperationAction(ISD::SREM, MVT::i32, Custom);
244     setOperationAction(ISD::UREM, MVT::i32, Custom);
245     setOperationAction(ISD::SREM, MVT::i64, Custom);
246     setOperationAction(ISD::UREM, MVT::i64, Custom);
247   } else {
248     setOperationAction(ISD::SREM, MVT::i32, Expand);
249     setOperationAction(ISD::UREM, MVT::i32, Expand);
250     setOperationAction(ISD::SREM, MVT::i64, Expand);
251     setOperationAction(ISD::UREM, MVT::i64, Expand);
252   }
253 
254   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
255   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
256   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
257   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
258   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
259   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
260   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
261   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
262   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
263 
264   // We don't support sin/cos/sqrt/fmod/pow
265   setOperationAction(ISD::FSIN , MVT::f64, Expand);
266   setOperationAction(ISD::FCOS , MVT::f64, Expand);
267   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
268   setOperationAction(ISD::FREM , MVT::f64, Expand);
269   setOperationAction(ISD::FPOW , MVT::f64, Expand);
270   setOperationAction(ISD::FSIN , MVT::f32, Expand);
271   setOperationAction(ISD::FCOS , MVT::f32, Expand);
272   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
273   setOperationAction(ISD::FREM , MVT::f32, Expand);
274   setOperationAction(ISD::FPOW , MVT::f32, Expand);
275   if (Subtarget.hasSPE()) {
276     setOperationAction(ISD::FMA  , MVT::f64, Expand);
277     setOperationAction(ISD::FMA  , MVT::f32, Expand);
278   } else {
279     setOperationAction(ISD::FMA  , MVT::f64, Legal);
280     setOperationAction(ISD::FMA  , MVT::f32, Legal);
281   }
282 
283   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
284 
285   // If we're enabling GP optimizations, use hardware square root
286   if (!Subtarget.hasFSQRT() &&
287       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
288         Subtarget.hasFRE()))
289     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
290 
291   if (!Subtarget.hasFSQRT() &&
292       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
293         Subtarget.hasFRES()))
294     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
295 
296   if (Subtarget.hasFCPSGN()) {
297     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
298     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
299   } else {
300     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
301     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
302   }
303 
304   if (Subtarget.hasFPRND()) {
305     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
306     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
307     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
308     setOperationAction(ISD::FROUND, MVT::f64, Legal);
309 
310     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
311     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
312     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
313     setOperationAction(ISD::FROUND, MVT::f32, Legal);
314   }
315 
316   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
317   // to speed up scalar BSWAP64.
318   // CTPOP or CTTZ were introduced in P8/P9 respectively
319   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
320   if (Subtarget.hasP9Vector())
321     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
322   else
323     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
324   if (Subtarget.isISA3_0()) {
325     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
326     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
327   } else {
328     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
329     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
330   }
331 
332   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
333     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
334     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
335   } else {
336     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
337     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
338   }
339 
340   // PowerPC does not have ROTR
341   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
342   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
343 
344   if (!Subtarget.useCRBits()) {
345     // PowerPC does not have Select
346     setOperationAction(ISD::SELECT, MVT::i32, Expand);
347     setOperationAction(ISD::SELECT, MVT::i64, Expand);
348     setOperationAction(ISD::SELECT, MVT::f32, Expand);
349     setOperationAction(ISD::SELECT, MVT::f64, Expand);
350   }
351 
352   // PowerPC wants to turn select_cc of FP into fsel when possible.
353   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
354   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
355 
356   // PowerPC wants to optimize integer setcc a bit
357   if (!Subtarget.useCRBits())
358     setOperationAction(ISD::SETCC, MVT::i32, Custom);
359 
360   // PowerPC does not have BRCOND which requires SetCC
361   if (!Subtarget.useCRBits())
362     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
363 
364   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
365 
366   if (Subtarget.hasSPE()) {
367     // SPE has built-in conversions
368     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
369     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
370     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
371   } else {
372     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
373     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
374 
375     // PowerPC does not have [U|S]INT_TO_FP
376     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
377     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
378   }
379 
380   if (Subtarget.hasDirectMove() && isPPC64) {
381     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
382     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
383     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
384     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
385   } else {
386     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
387     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
388     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
389     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
390   }
391 
392   // We cannot sextinreg(i1).  Expand to shifts.
393   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
394 
395   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
396   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
397   // support continuation, user-level threading, and etc.. As a result, no
398   // other SjLj exception interfaces are implemented and please don't build
399   // your own exception handling based on them.
400   // LLVM/Clang supports zero-cost DWARF exception handling.
401   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
402   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
403 
404   // We want to legalize GlobalAddress and ConstantPool nodes into the
405   // appropriate instructions to materialize the address.
406   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
407   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
408   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
409   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
410   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
411   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
412   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
413   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
414   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
415   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
416 
417   // TRAP is legal.
418   setOperationAction(ISD::TRAP, MVT::Other, Legal);
419 
420   // TRAMPOLINE is custom lowered.
421   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
422   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
423 
424   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
425   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
426 
427   if (Subtarget.isSVR4ABI()) {
428     if (isPPC64) {
429       // VAARG always uses double-word chunks, so promote anything smaller.
430       setOperationAction(ISD::VAARG, MVT::i1, Promote);
431       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
432       setOperationAction(ISD::VAARG, MVT::i8, Promote);
433       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
434       setOperationAction(ISD::VAARG, MVT::i16, Promote);
435       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
436       setOperationAction(ISD::VAARG, MVT::i32, Promote);
437       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
438       setOperationAction(ISD::VAARG, MVT::Other, Expand);
439     } else {
440       // VAARG is custom lowered with the 32-bit SVR4 ABI.
441       setOperationAction(ISD::VAARG, MVT::Other, Custom);
442       setOperationAction(ISD::VAARG, MVT::i64, Custom);
443     }
444   } else
445     setOperationAction(ISD::VAARG, MVT::Other, Expand);
446 
447   if (Subtarget.isSVR4ABI() && !isPPC64)
448     // VACOPY is custom lowered with the 32-bit SVR4 ABI.
449     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
450   else
451     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
452 
453   // Use the default implementation.
454   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
455   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
456   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
457   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
458   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
459   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
460   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
461   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
462   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
463 
464   // We want to custom lower some of our intrinsics.
465   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
466 
467   // To handle counter-based loop conditions.
468   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
469 
470   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
471   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
472   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
473   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
474 
475   // Comparisons that require checking two conditions.
476   if (Subtarget.hasSPE()) {
477     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
478     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
479     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
480     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
481   }
482   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
483   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
484   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
485   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
486   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
487   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
488   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
489   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
490   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
491   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
492   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
493   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
494 
495   if (Subtarget.has64BitSupport()) {
496     // They also have instructions for converting between i64 and fp.
497     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
498     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
499     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
500     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
501     // This is just the low 32 bits of a (signed) fp->i64 conversion.
502     // We cannot do this with Promote because i64 is not a legal type.
503     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
504 
505     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
506       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
507   } else {
508     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
509     if (Subtarget.hasSPE())
510       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
511     else
512       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
513   }
514 
515   // With the instructions enabled under FPCVT, we can do everything.
516   if (Subtarget.hasFPCVT()) {
517     if (Subtarget.has64BitSupport()) {
518       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
519       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
520       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
521       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
522     }
523 
524     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
525     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
526     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
527     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
528   }
529 
530   if (Subtarget.use64BitRegs()) {
531     // 64-bit PowerPC implementations can support i64 types directly
532     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
533     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
534     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
535     // 64-bit PowerPC wants to expand i128 shifts itself.
536     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
537     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
538     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
539   } else {
540     // 32-bit PowerPC wants to expand i64 shifts itself.
541     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
542     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
543     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
544   }
545 
546   if (Subtarget.hasAltivec()) {
547     // First set operation action for all vector types to expand. Then we
548     // will selectively turn on ones that can be effectively codegen'd.
549     for (MVT VT : MVT::vector_valuetypes()) {
550       // add/sub are legal for all supported vector VT's.
551       setOperationAction(ISD::ADD, VT, Legal);
552       setOperationAction(ISD::SUB, VT, Legal);
553       setOperationAction(ISD::ABS, VT, Custom);
554 
555       // Vector instructions introduced in P8
556       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
557         setOperationAction(ISD::CTPOP, VT, Legal);
558         setOperationAction(ISD::CTLZ, VT, Legal);
559       }
560       else {
561         setOperationAction(ISD::CTPOP, VT, Expand);
562         setOperationAction(ISD::CTLZ, VT, Expand);
563       }
564 
565       // Vector instructions introduced in P9
566       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
567         setOperationAction(ISD::CTTZ, VT, Legal);
568       else
569         setOperationAction(ISD::CTTZ, VT, Expand);
570 
571       // We promote all shuffles to v16i8.
572       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
573       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
574 
575       // We promote all non-typed operations to v4i32.
576       setOperationAction(ISD::AND   , VT, Promote);
577       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
578       setOperationAction(ISD::OR    , VT, Promote);
579       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
580       setOperationAction(ISD::XOR   , VT, Promote);
581       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
582       setOperationAction(ISD::LOAD  , VT, Promote);
583       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
584       setOperationAction(ISD::SELECT, VT, Promote);
585       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
586       setOperationAction(ISD::VSELECT, VT, Legal);
587       setOperationAction(ISD::SELECT_CC, VT, Promote);
588       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
589       setOperationAction(ISD::STORE, VT, Promote);
590       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
591 
592       // No other operations are legal.
593       setOperationAction(ISD::MUL , VT, Expand);
594       setOperationAction(ISD::SDIV, VT, Expand);
595       setOperationAction(ISD::SREM, VT, Expand);
596       setOperationAction(ISD::UDIV, VT, Expand);
597       setOperationAction(ISD::UREM, VT, Expand);
598       setOperationAction(ISD::FDIV, VT, Expand);
599       setOperationAction(ISD::FREM, VT, Expand);
600       setOperationAction(ISD::FNEG, VT, Expand);
601       setOperationAction(ISD::FSQRT, VT, Expand);
602       setOperationAction(ISD::FLOG, VT, Expand);
603       setOperationAction(ISD::FLOG10, VT, Expand);
604       setOperationAction(ISD::FLOG2, VT, Expand);
605       setOperationAction(ISD::FEXP, VT, Expand);
606       setOperationAction(ISD::FEXP2, VT, Expand);
607       setOperationAction(ISD::FSIN, VT, Expand);
608       setOperationAction(ISD::FCOS, VT, Expand);
609       setOperationAction(ISD::FABS, VT, Expand);
610       setOperationAction(ISD::FFLOOR, VT, Expand);
611       setOperationAction(ISD::FCEIL,  VT, Expand);
612       setOperationAction(ISD::FTRUNC, VT, Expand);
613       setOperationAction(ISD::FRINT,  VT, Expand);
614       setOperationAction(ISD::FNEARBYINT, VT, Expand);
615       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
616       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
617       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
618       setOperationAction(ISD::MULHU, VT, Expand);
619       setOperationAction(ISD::MULHS, VT, Expand);
620       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
621       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
622       setOperationAction(ISD::UDIVREM, VT, Expand);
623       setOperationAction(ISD::SDIVREM, VT, Expand);
624       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
625       setOperationAction(ISD::FPOW, VT, Expand);
626       setOperationAction(ISD::BSWAP, VT, Expand);
627       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
628       setOperationAction(ISD::ROTL, VT, Expand);
629       setOperationAction(ISD::ROTR, VT, Expand);
630 
631       for (MVT InnerVT : MVT::vector_valuetypes()) {
632         setTruncStoreAction(VT, InnerVT, Expand);
633         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
634         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
635         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
636       }
637     }
638 
639     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
640     // with merges, splats, etc.
641     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
642 
643     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
644     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
645     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
646     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
647     setOperationAction(ISD::SELECT, MVT::v4i32,
648                        Subtarget.useCRBits() ? Legal : Expand);
649     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
650     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
651     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
652     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
653     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
654     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
655     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
656     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
657     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
658 
659     // Without hasP8Altivec set, v2i64 SMAX isn't available.
660     // But ABS custom lowering requires SMAX support.
661     if (!Subtarget.hasP8Altivec())
662       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
663 
664     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
665     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
666     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
667     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
668 
669     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
670     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
671 
672     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
673       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
674       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
675     }
676 
677     if (Subtarget.hasP8Altivec())
678       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
679     else
680       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
681 
682     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
683     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
684 
685     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
686     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
687 
688     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
689     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
690     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
691     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
692 
693     // Altivec does not contain unordered floating-point compare instructions
694     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
695     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
696     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
697     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
698 
699     if (Subtarget.hasVSX()) {
700       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
701       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
702       if (Subtarget.hasP8Vector()) {
703         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
704         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
705       }
706       if (Subtarget.hasDirectMove() && isPPC64) {
707         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
708         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
709         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
710         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
711         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
712         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
713         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
714         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
715       }
716       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
717 
718       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
719       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
720       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
721       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
722       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
723 
724       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
725 
726       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
727       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
728 
729       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
730       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
731 
732       // Share the Altivec comparison restrictions.
733       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
734       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
735       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
736       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
737 
738       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
739       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
740 
741       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
742 
743       if (Subtarget.hasP8Vector())
744         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
745 
746       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
747 
748       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
749       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
750       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
751 
752       if (Subtarget.hasP8Altivec()) {
753         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
754         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
755         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
756 
757         // 128 bit shifts can be accomplished via 3 instructions for SHL and
758         // SRL, but not for SRA because of the instructions available:
759         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
760         // doing
761         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
762         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
763         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
764 
765         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
766       }
767       else {
768         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
769         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
770         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
771 
772         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
773 
774         // VSX v2i64 only supports non-arithmetic operations.
775         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
776         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
777       }
778 
779       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
780       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
781       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
782       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
783 
784       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
785 
786       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
787       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
788       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
789       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
790 
791       // Custom handling for partial vectors of integers converted to
792       // floating point. We already have optimal handling for v2i32 through
793       // the DAG combine, so those aren't necessary.
794       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
795       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
796       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
797       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
798       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
799       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
800       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
801       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
802 
803       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
804       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
805       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
806       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
807 
808       if (Subtarget.hasDirectMove())
809         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
810       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
811 
812       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
813     }
814 
815     if (Subtarget.hasP8Altivec()) {
816       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
817       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
818     }
819 
820     if (Subtarget.hasP9Vector()) {
821       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
822       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
823 
824       // 128 bit shifts can be accomplished via 3 instructions for SHL and
825       // SRL, but not for SRA because of the instructions available:
826       // VS{RL} and VS{RL}O.
827       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
828       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
829       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
830 
831       if (EnableQuadPrecision) {
832         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
833         setOperationAction(ISD::FADD, MVT::f128, Legal);
834         setOperationAction(ISD::FSUB, MVT::f128, Legal);
835         setOperationAction(ISD::FDIV, MVT::f128, Legal);
836         setOperationAction(ISD::FMUL, MVT::f128, Legal);
837         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
838         // No extending loads to f128 on PPC.
839         for (MVT FPT : MVT::fp_valuetypes())
840           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
841         setOperationAction(ISD::FMA, MVT::f128, Legal);
842         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
843         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
844         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
845         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
846         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
847         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
848 
849         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
850         setOperationAction(ISD::FRINT, MVT::f128, Legal);
851         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
852         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
853         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
854         setOperationAction(ISD::FROUND, MVT::f128, Legal);
855 
856         setOperationAction(ISD::SELECT, MVT::f128, Expand);
857         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
858         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
859         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
860         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
861         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
862         // No implementation for these ops for PowerPC.
863         setOperationAction(ISD::FSIN , MVT::f128, Expand);
864         setOperationAction(ISD::FCOS , MVT::f128, Expand);
865         setOperationAction(ISD::FPOW, MVT::f128, Expand);
866         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
867         setOperationAction(ISD::FREM, MVT::f128, Expand);
868       }
869 
870     }
871 
872     if (Subtarget.hasP9Altivec()) {
873       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
874       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
875     }
876   }
877 
878   if (Subtarget.hasQPX()) {
879     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
880     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
881     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
882     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
883 
884     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
885     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
886 
887     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
888     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
889 
890     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
891     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
892 
893     if (!Subtarget.useCRBits())
894       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
895     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
896 
897     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
898     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
899     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
900     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
901     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
902     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
903     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
904 
905     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
906     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
907 
908     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
909     setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
910     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
911 
912     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
913     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
914     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
915     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
916     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
917     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
918     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
919     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
920     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
921     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
922 
923     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
924     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
925 
926     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
927     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
928 
929     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
930 
931     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
932     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
933     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
934     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
935 
936     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
937     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
938 
939     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
940     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
941 
942     if (!Subtarget.useCRBits())
943       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
944     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
945 
946     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
947     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
948     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
949     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
950     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
951     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
952     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
953 
954     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
955     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
956 
957     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
958     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
959     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
960     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
961     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
962     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
963     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
964     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
965     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
966     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
967 
968     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
969     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
970 
971     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
972     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
973 
974     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
975 
976     setOperationAction(ISD::AND , MVT::v4i1, Legal);
977     setOperationAction(ISD::OR , MVT::v4i1, Legal);
978     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
979 
980     if (!Subtarget.useCRBits())
981       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
982     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
983 
984     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
985     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
986 
987     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
988     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
989     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
990     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
991     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
992     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
993     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
994 
995     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
996     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
997 
998     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
999 
1000     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1001     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1002     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1003     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1004 
1005     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1006     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1007     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1008     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1009 
1010     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1011     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1012 
1013     // These need to set FE_INEXACT, and so cannot be vectorized here.
1014     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1015     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1016 
1017     if (TM.Options.UnsafeFPMath) {
1018       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1019       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1020 
1021       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1022       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1023     } else {
1024       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1025       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1026 
1027       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1028       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1029     }
1030   }
1031 
1032   if (Subtarget.has64BitSupport())
1033     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1034 
1035   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1036 
1037   if (!isPPC64) {
1038     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1039     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1040   }
1041 
1042   setBooleanContents(ZeroOrOneBooleanContent);
1043 
1044   if (Subtarget.hasAltivec()) {
1045     // Altivec instructions set fields to all zeros or all ones.
1046     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1047   }
1048 
1049   if (!isPPC64) {
1050     // These libcalls are not available in 32-bit.
1051     setLibcallName(RTLIB::SHL_I128, nullptr);
1052     setLibcallName(RTLIB::SRL_I128, nullptr);
1053     setLibcallName(RTLIB::SRA_I128, nullptr);
1054   }
1055 
1056   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1057 
1058   // We have target-specific dag combine patterns for the following nodes:
1059   setTargetDAGCombine(ISD::ADD);
1060   setTargetDAGCombine(ISD::SHL);
1061   setTargetDAGCombine(ISD::SRA);
1062   setTargetDAGCombine(ISD::SRL);
1063   setTargetDAGCombine(ISD::SINT_TO_FP);
1064   setTargetDAGCombine(ISD::BUILD_VECTOR);
1065   if (Subtarget.hasFPCVT())
1066     setTargetDAGCombine(ISD::UINT_TO_FP);
1067   setTargetDAGCombine(ISD::LOAD);
1068   setTargetDAGCombine(ISD::STORE);
1069   setTargetDAGCombine(ISD::BR_CC);
1070   if (Subtarget.useCRBits())
1071     setTargetDAGCombine(ISD::BRCOND);
1072   setTargetDAGCombine(ISD::BSWAP);
1073   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1074   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1075   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1076 
1077   setTargetDAGCombine(ISD::SIGN_EXTEND);
1078   setTargetDAGCombine(ISD::ZERO_EXTEND);
1079   setTargetDAGCombine(ISD::ANY_EXTEND);
1080 
1081   setTargetDAGCombine(ISD::TRUNCATE);
1082 
1083   if (Subtarget.useCRBits()) {
1084     setTargetDAGCombine(ISD::TRUNCATE);
1085     setTargetDAGCombine(ISD::SETCC);
1086     setTargetDAGCombine(ISD::SELECT_CC);
1087   }
1088 
1089   // Use reciprocal estimates.
1090   if (TM.Options.UnsafeFPMath) {
1091     setTargetDAGCombine(ISD::FDIV);
1092     setTargetDAGCombine(ISD::FSQRT);
1093   }
1094 
1095   if (Subtarget.hasP9Altivec()) {
1096     setTargetDAGCombine(ISD::ABS);
1097     setTargetDAGCombine(ISD::VSELECT);
1098   }
1099 
1100   // Darwin long double math library functions have $LDBL128 appended.
1101   if (Subtarget.isDarwin()) {
1102     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1103     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1104     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1105     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1106     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1107     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1108     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1109     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1110     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1111     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1112   }
1113 
1114   if (EnableQuadPrecision) {
1115     setLibcallName(RTLIB::LOG_F128, "logf128");
1116     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1117     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1118     setLibcallName(RTLIB::EXP_F128, "expf128");
1119     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1120     setLibcallName(RTLIB::SIN_F128, "sinf128");
1121     setLibcallName(RTLIB::COS_F128, "cosf128");
1122     setLibcallName(RTLIB::POW_F128, "powf128");
1123     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1124     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1125     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1126     setLibcallName(RTLIB::REM_F128, "fmodf128");
1127   }
1128 
1129   // With 32 condition bits, we don't need to sink (and duplicate) compares
1130   // aggressively in CodeGenPrep.
1131   if (Subtarget.useCRBits()) {
1132     setHasMultipleConditionRegisters();
1133     setJumpIsExpensive();
1134   }
1135 
1136   setMinFunctionAlignment(2);
1137   if (Subtarget.isDarwin())
1138     setPrefFunctionAlignment(4);
1139 
1140   switch (Subtarget.getDarwinDirective()) {
1141   default: break;
1142   case PPC::DIR_970:
1143   case PPC::DIR_A2:
1144   case PPC::DIR_E500:
1145   case PPC::DIR_E500mc:
1146   case PPC::DIR_E5500:
1147   case PPC::DIR_PWR4:
1148   case PPC::DIR_PWR5:
1149   case PPC::DIR_PWR5X:
1150   case PPC::DIR_PWR6:
1151   case PPC::DIR_PWR6X:
1152   case PPC::DIR_PWR7:
1153   case PPC::DIR_PWR8:
1154   case PPC::DIR_PWR9:
1155     setPrefFunctionAlignment(4);
1156     setPrefLoopAlignment(4);
1157     break;
1158   }
1159 
1160   if (Subtarget.enableMachineScheduler())
1161     setSchedulingPreference(Sched::Source);
1162   else
1163     setSchedulingPreference(Sched::Hybrid);
1164 
1165   computeRegisterProperties(STI.getRegisterInfo());
1166 
1167   // The Freescale cores do better with aggressive inlining of memcpy and
1168   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1169   if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1170       Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1171     MaxStoresPerMemset = 32;
1172     MaxStoresPerMemsetOptSize = 16;
1173     MaxStoresPerMemcpy = 32;
1174     MaxStoresPerMemcpyOptSize = 8;
1175     MaxStoresPerMemmove = 32;
1176     MaxStoresPerMemmoveOptSize = 8;
1177   } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1178     // The A2 also benefits from (very) aggressive inlining of memcpy and
1179     // friends. The overhead of a the function call, even when warm, can be
1180     // over one hundred cycles.
1181     MaxStoresPerMemset = 128;
1182     MaxStoresPerMemcpy = 128;
1183     MaxStoresPerMemmove = 128;
1184     MaxLoadsPerMemcmp = 128;
1185   } else {
1186     MaxLoadsPerMemcmp = 8;
1187     MaxLoadsPerMemcmpOptSize = 4;
1188   }
1189 }
1190 
1191 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1192 /// the desired ByVal argument alignment.
getMaxByValAlign(Type * Ty,unsigned & MaxAlign,unsigned MaxMaxAlign)1193 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1194                              unsigned MaxMaxAlign) {
1195   if (MaxAlign == MaxMaxAlign)
1196     return;
1197   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1198     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1199       MaxAlign = 32;
1200     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1201       MaxAlign = 16;
1202   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1203     unsigned EltAlign = 0;
1204     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1205     if (EltAlign > MaxAlign)
1206       MaxAlign = EltAlign;
1207   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1208     for (auto *EltTy : STy->elements()) {
1209       unsigned EltAlign = 0;
1210       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1211       if (EltAlign > MaxAlign)
1212         MaxAlign = EltAlign;
1213       if (MaxAlign == MaxMaxAlign)
1214         break;
1215     }
1216   }
1217 }
1218 
1219 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1220 /// function arguments in the caller parameter area.
getByValTypeAlignment(Type * Ty,const DataLayout & DL) const1221 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1222                                                   const DataLayout &DL) const {
1223   // Darwin passes everything on 4 byte boundary.
1224   if (Subtarget.isDarwin())
1225     return 4;
1226 
1227   // 16byte and wider vectors are passed on 16byte boundary.
1228   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1229   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1230   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1231     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1232   return Align;
1233 }
1234 
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const1235 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1236                                                           CallingConv:: ID CC,
1237                                                           EVT VT) const {
1238   if (Subtarget.hasSPE() && VT == MVT::f64)
1239     return 2;
1240   return PPCTargetLowering::getNumRegisters(Context, VT);
1241 }
1242 
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const1243 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1244                                                      CallingConv:: ID CC,
1245                                                      EVT VT) const {
1246   if (Subtarget.hasSPE() && VT == MVT::f64)
1247     return MVT::i32;
1248   return PPCTargetLowering::getRegisterType(Context, VT);
1249 }
1250 
useSoftFloat() const1251 bool PPCTargetLowering::useSoftFloat() const {
1252   return Subtarget.useSoftFloat();
1253 }
1254 
hasSPE() const1255 bool PPCTargetLowering::hasSPE() const {
1256   return Subtarget.hasSPE();
1257 }
1258 
getTargetNodeName(unsigned Opcode) const1259 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1260   switch ((PPCISD::NodeType)Opcode) {
1261   case PPCISD::FIRST_NUMBER:    break;
1262   case PPCISD::FSEL:            return "PPCISD::FSEL";
1263   case PPCISD::FCFID:           return "PPCISD::FCFID";
1264   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1265   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1266   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1267   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1268   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1269   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1270   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1271   case PPCISD::FP_TO_UINT_IN_VSR:
1272                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1273   case PPCISD::FP_TO_SINT_IN_VSR:
1274                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1275   case PPCISD::FRE:             return "PPCISD::FRE";
1276   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1277   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1278   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1279   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1280   case PPCISD::VPERM:           return "PPCISD::VPERM";
1281   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1282   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1283   case PPCISD::XXREVERSE:       return "PPCISD::XXREVERSE";
1284   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1285   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1286   case PPCISD::CMPB:            return "PPCISD::CMPB";
1287   case PPCISD::Hi:              return "PPCISD::Hi";
1288   case PPCISD::Lo:              return "PPCISD::Lo";
1289   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1290   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1291   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1292   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1293   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1294   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1295   case PPCISD::SRL:             return "PPCISD::SRL";
1296   case PPCISD::SRA:             return "PPCISD::SRA";
1297   case PPCISD::SHL:             return "PPCISD::SHL";
1298   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1299   case PPCISD::CALL:            return "PPCISD::CALL";
1300   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1301   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1302   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1303   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1304   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1305   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1306   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1307   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1308   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1309   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1310   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1311   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1312   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1313   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1314   case PPCISD::ANDIo_1_EQ_BIT:  return "PPCISD::ANDIo_1_EQ_BIT";
1315   case PPCISD::ANDIo_1_GT_BIT:  return "PPCISD::ANDIo_1_GT_BIT";
1316   case PPCISD::VCMP:            return "PPCISD::VCMP";
1317   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1318   case PPCISD::LBRX:            return "PPCISD::LBRX";
1319   case PPCISD::STBRX:           return "PPCISD::STBRX";
1320   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1321   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1322   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1323   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1324   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1325   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1326   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1327   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1328   case PPCISD::ST_VSR_SCAL_INT:
1329                                 return "PPCISD::ST_VSR_SCAL_INT";
1330   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1331   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1332   case PPCISD::BDZ:             return "PPCISD::BDZ";
1333   case PPCISD::MFFS:            return "PPCISD::MFFS";
1334   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1335   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1336   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1337   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1338   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1339   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1340   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1341   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1342   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1343   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1344   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1345   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1346   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1347   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1348   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1349   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1350   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1351   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1352   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1353   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1354   case PPCISD::SC:              return "PPCISD::SC";
1355   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1356   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1357   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1358   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1359   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1360   case PPCISD::VABSD:           return "PPCISD::VABSD";
1361   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1362   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1363   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1364   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1365   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1366   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1367   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1368   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1369   }
1370   return nullptr;
1371 }
1372 
getSetCCResultType(const DataLayout & DL,LLVMContext & C,EVT VT) const1373 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1374                                           EVT VT) const {
1375   if (!VT.isVector())
1376     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1377 
1378   if (Subtarget.hasQPX())
1379     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1380 
1381   return VT.changeVectorElementTypeToInteger();
1382 }
1383 
enableAggressiveFMAFusion(EVT VT) const1384 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1385   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1386   return true;
1387 }
1388 
1389 //===----------------------------------------------------------------------===//
1390 // Node matching predicates, for use by the tblgen matching code.
1391 //===----------------------------------------------------------------------===//
1392 
1393 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
isFloatingPointZero(SDValue Op)1394 static bool isFloatingPointZero(SDValue Op) {
1395   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1396     return CFP->getValueAPF().isZero();
1397   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1398     // Maybe this has already been legalized into the constant pool?
1399     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1400       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1401         return CFP->getValueAPF().isZero();
1402   }
1403   return false;
1404 }
1405 
1406 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1407 /// true if Op is undef or if it matches the specified value.
isConstantOrUndef(int Op,int Val)1408 static bool isConstantOrUndef(int Op, int Val) {
1409   return Op < 0 || Op == Val;
1410 }
1411 
1412 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1413 /// VPKUHUM instruction.
1414 /// The ShuffleKind distinguishes between big-endian operations with
1415 /// two different inputs (0), either-endian operations with two identical
1416 /// inputs (1), and little-endian operations with two different inputs (2).
1417 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUHUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1418 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1419                                SelectionDAG &DAG) {
1420   bool IsLE = DAG.getDataLayout().isLittleEndian();
1421   if (ShuffleKind == 0) {
1422     if (IsLE)
1423       return false;
1424     for (unsigned i = 0; i != 16; ++i)
1425       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1426         return false;
1427   } else if (ShuffleKind == 2) {
1428     if (!IsLE)
1429       return false;
1430     for (unsigned i = 0; i != 16; ++i)
1431       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1432         return false;
1433   } else if (ShuffleKind == 1) {
1434     unsigned j = IsLE ? 0 : 1;
1435     for (unsigned i = 0; i != 8; ++i)
1436       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1437           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1438         return false;
1439   }
1440   return true;
1441 }
1442 
1443 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1444 /// VPKUWUM instruction.
1445 /// The ShuffleKind distinguishes between big-endian operations with
1446 /// two different inputs (0), either-endian operations with two identical
1447 /// inputs (1), and little-endian operations with two different inputs (2).
1448 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUWUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1449 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1450                                SelectionDAG &DAG) {
1451   bool IsLE = DAG.getDataLayout().isLittleEndian();
1452   if (ShuffleKind == 0) {
1453     if (IsLE)
1454       return false;
1455     for (unsigned i = 0; i != 16; i += 2)
1456       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1457           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1458         return false;
1459   } else if (ShuffleKind == 2) {
1460     if (!IsLE)
1461       return false;
1462     for (unsigned i = 0; i != 16; i += 2)
1463       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1464           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1465         return false;
1466   } else if (ShuffleKind == 1) {
1467     unsigned j = IsLE ? 0 : 2;
1468     for (unsigned i = 0; i != 8; i += 2)
1469       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1470           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1471           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1472           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1473         return false;
1474   }
1475   return true;
1476 }
1477 
1478 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1479 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1480 /// current subtarget.
1481 ///
1482 /// The ShuffleKind distinguishes between big-endian operations with
1483 /// two different inputs (0), either-endian operations with two identical
1484 /// inputs (1), and little-endian operations with two different inputs (2).
1485 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUDUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1486 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1487                                SelectionDAG &DAG) {
1488   const PPCSubtarget& Subtarget =
1489     static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1490   if (!Subtarget.hasP8Vector())
1491     return false;
1492 
1493   bool IsLE = DAG.getDataLayout().isLittleEndian();
1494   if (ShuffleKind == 0) {
1495     if (IsLE)
1496       return false;
1497     for (unsigned i = 0; i != 16; i += 4)
1498       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1499           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1500           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1501           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1502         return false;
1503   } else if (ShuffleKind == 2) {
1504     if (!IsLE)
1505       return false;
1506     for (unsigned i = 0; i != 16; i += 4)
1507       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1508           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1509           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1510           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1511         return false;
1512   } else if (ShuffleKind == 1) {
1513     unsigned j = IsLE ? 0 : 4;
1514     for (unsigned i = 0; i != 8; i += 4)
1515       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1516           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1517           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1518           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1519           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1520           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1521           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1522           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1523         return false;
1524   }
1525   return true;
1526 }
1527 
1528 /// isVMerge - Common function, used to match vmrg* shuffles.
1529 ///
isVMerge(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned LHSStart,unsigned RHSStart)1530 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1531                      unsigned LHSStart, unsigned RHSStart) {
1532   if (N->getValueType(0) != MVT::v16i8)
1533     return false;
1534   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1535          "Unsupported merge size!");
1536 
1537   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1538     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1539       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1540                              LHSStart+j+i*UnitSize) ||
1541           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1542                              RHSStart+j+i*UnitSize))
1543         return false;
1544     }
1545   return true;
1546 }
1547 
1548 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1549 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1550 /// The ShuffleKind distinguishes between big-endian merges with two
1551 /// different inputs (0), either-endian merges with two identical inputs (1),
1552 /// and little-endian merges with two different inputs (2).  For the latter,
1553 /// the input operands are swapped (see PPCInstrAltivec.td).
isVMRGLShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned ShuffleKind,SelectionDAG & DAG)1554 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1555                              unsigned ShuffleKind, SelectionDAG &DAG) {
1556   if (DAG.getDataLayout().isLittleEndian()) {
1557     if (ShuffleKind == 1) // unary
1558       return isVMerge(N, UnitSize, 0, 0);
1559     else if (ShuffleKind == 2) // swapped
1560       return isVMerge(N, UnitSize, 0, 16);
1561     else
1562       return false;
1563   } else {
1564     if (ShuffleKind == 1) // unary
1565       return isVMerge(N, UnitSize, 8, 8);
1566     else if (ShuffleKind == 0) // normal
1567       return isVMerge(N, UnitSize, 8, 24);
1568     else
1569       return false;
1570   }
1571 }
1572 
1573 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1574 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1575 /// The ShuffleKind distinguishes between big-endian merges with two
1576 /// different inputs (0), either-endian merges with two identical inputs (1),
1577 /// and little-endian merges with two different inputs (2).  For the latter,
1578 /// the input operands are swapped (see PPCInstrAltivec.td).
isVMRGHShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned ShuffleKind,SelectionDAG & DAG)1579 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1580                              unsigned ShuffleKind, SelectionDAG &DAG) {
1581   if (DAG.getDataLayout().isLittleEndian()) {
1582     if (ShuffleKind == 1) // unary
1583       return isVMerge(N, UnitSize, 8, 8);
1584     else if (ShuffleKind == 2) // swapped
1585       return isVMerge(N, UnitSize, 8, 24);
1586     else
1587       return false;
1588   } else {
1589     if (ShuffleKind == 1) // unary
1590       return isVMerge(N, UnitSize, 0, 0);
1591     else if (ShuffleKind == 0) // normal
1592       return isVMerge(N, UnitSize, 0, 16);
1593     else
1594       return false;
1595   }
1596 }
1597 
1598 /**
1599  * Common function used to match vmrgew and vmrgow shuffles
1600  *
1601  * The indexOffset determines whether to look for even or odd words in
1602  * the shuffle mask. This is based on the of the endianness of the target
1603  * machine.
1604  *   - Little Endian:
1605  *     - Use offset of 0 to check for odd elements
1606  *     - Use offset of 4 to check for even elements
1607  *   - Big Endian:
1608  *     - Use offset of 0 to check for even elements
1609  *     - Use offset of 4 to check for odd elements
1610  * A detailed description of the vector element ordering for little endian and
1611  * big endian can be found at
1612  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1613  * Targeting your applications - what little endian and big endian IBM XL C/C++
1614  * compiler differences mean to you
1615  *
1616  * The mask to the shuffle vector instruction specifies the indices of the
1617  * elements from the two input vectors to place in the result. The elements are
1618  * numbered in array-access order, starting with the first vector. These vectors
1619  * are always of type v16i8, thus each vector will contain 16 elements of size
1620  * 8. More info on the shuffle vector can be found in the
1621  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1622  * Language Reference.
1623  *
1624  * The RHSStartValue indicates whether the same input vectors are used (unary)
1625  * or two different input vectors are used, based on the following:
1626  *   - If the instruction uses the same vector for both inputs, the range of the
1627  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1628  *     be 0.
1629  *   - If the instruction has two different vectors then the range of the
1630  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1631  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1632  *     to 31 specify elements in the second vector).
1633  *
1634  * \param[in] N The shuffle vector SD Node to analyze
1635  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1636  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1637  * vector to the shuffle_vector instruction
1638  * \return true iff this shuffle vector represents an even or odd word merge
1639  */
isVMerge(ShuffleVectorSDNode * N,unsigned IndexOffset,unsigned RHSStartValue)1640 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1641                      unsigned RHSStartValue) {
1642   if (N->getValueType(0) != MVT::v16i8)
1643     return false;
1644 
1645   for (unsigned i = 0; i < 2; ++i)
1646     for (unsigned j = 0; j < 4; ++j)
1647       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1648                              i*RHSStartValue+j+IndexOffset) ||
1649           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1650                              i*RHSStartValue+j+IndexOffset+8))
1651         return false;
1652   return true;
1653 }
1654 
1655 /**
1656  * Determine if the specified shuffle mask is suitable for the vmrgew or
1657  * vmrgow instructions.
1658  *
1659  * \param[in] N The shuffle vector SD Node to analyze
1660  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1661  * \param[in] ShuffleKind Identify the type of merge:
1662  *   - 0 = big-endian merge with two different inputs;
1663  *   - 1 = either-endian merge with two identical inputs;
1664  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1665  *     little-endian merges).
1666  * \param[in] DAG The current SelectionDAG
1667  * \return true iff this shuffle mask
1668  */
isVMRGEOShuffleMask(ShuffleVectorSDNode * N,bool CheckEven,unsigned ShuffleKind,SelectionDAG & DAG)1669 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1670                               unsigned ShuffleKind, SelectionDAG &DAG) {
1671   if (DAG.getDataLayout().isLittleEndian()) {
1672     unsigned indexOffset = CheckEven ? 4 : 0;
1673     if (ShuffleKind == 1) // Unary
1674       return isVMerge(N, indexOffset, 0);
1675     else if (ShuffleKind == 2) // swapped
1676       return isVMerge(N, indexOffset, 16);
1677     else
1678       return false;
1679   }
1680   else {
1681     unsigned indexOffset = CheckEven ? 0 : 4;
1682     if (ShuffleKind == 1) // Unary
1683       return isVMerge(N, indexOffset, 0);
1684     else if (ShuffleKind == 0) // Normal
1685       return isVMerge(N, indexOffset, 16);
1686     else
1687       return false;
1688   }
1689   return false;
1690 }
1691 
1692 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1693 /// amount, otherwise return -1.
1694 /// The ShuffleKind distinguishes between big-endian operations with two
1695 /// different inputs (0), either-endian operations with two identical inputs
1696 /// (1), and little-endian operations with two different inputs (2).  For the
1697 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
isVSLDOIShuffleMask(SDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1698 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1699                              SelectionDAG &DAG) {
1700   if (N->getValueType(0) != MVT::v16i8)
1701     return -1;
1702 
1703   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1704 
1705   // Find the first non-undef value in the shuffle mask.
1706   unsigned i;
1707   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1708     /*search*/;
1709 
1710   if (i == 16) return -1;  // all undef.
1711 
1712   // Otherwise, check to see if the rest of the elements are consecutively
1713   // numbered from this value.
1714   unsigned ShiftAmt = SVOp->getMaskElt(i);
1715   if (ShiftAmt < i) return -1;
1716 
1717   ShiftAmt -= i;
1718   bool isLE = DAG.getDataLayout().isLittleEndian();
1719 
1720   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1721     // Check the rest of the elements to see if they are consecutive.
1722     for (++i; i != 16; ++i)
1723       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1724         return -1;
1725   } else if (ShuffleKind == 1) {
1726     // Check the rest of the elements to see if they are consecutive.
1727     for (++i; i != 16; ++i)
1728       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1729         return -1;
1730   } else
1731     return -1;
1732 
1733   if (isLE)
1734     ShiftAmt = 16 - ShiftAmt;
1735 
1736   return ShiftAmt;
1737 }
1738 
1739 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1740 /// specifies a splat of a single element that is suitable for input to
1741 /// VSPLTB/VSPLTH/VSPLTW.
isSplatShuffleMask(ShuffleVectorSDNode * N,unsigned EltSize)1742 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1743   assert(N->getValueType(0) == MVT::v16i8 &&
1744          (EltSize == 1 || EltSize == 2 || EltSize == 4));
1745 
1746   // The consecutive indices need to specify an element, not part of two
1747   // different elements.  So abandon ship early if this isn't the case.
1748   if (N->getMaskElt(0) % EltSize != 0)
1749     return false;
1750 
1751   // This is a splat operation if each element of the permute is the same, and
1752   // if the value doesn't reference the second vector.
1753   unsigned ElementBase = N->getMaskElt(0);
1754 
1755   // FIXME: Handle UNDEF elements too!
1756   if (ElementBase >= 16)
1757     return false;
1758 
1759   // Check that the indices are consecutive, in the case of a multi-byte element
1760   // splatted with a v16i8 mask.
1761   for (unsigned i = 1; i != EltSize; ++i)
1762     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1763       return false;
1764 
1765   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1766     if (N->getMaskElt(i) < 0) continue;
1767     for (unsigned j = 0; j != EltSize; ++j)
1768       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1769         return false;
1770   }
1771   return true;
1772 }
1773 
1774 /// Check that the mask is shuffling N byte elements. Within each N byte
1775 /// element of the mask, the indices could be either in increasing or
1776 /// decreasing order as long as they are consecutive.
1777 /// \param[in] N the shuffle vector SD Node to analyze
1778 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1779 /// Word/DoubleWord/QuadWord).
1780 /// \param[in] StepLen the delta indices number among the N byte element, if
1781 /// the mask is in increasing/decreasing order then it is 1/-1.
1782 /// \return true iff the mask is shuffling N byte elements.
isNByteElemShuffleMask(ShuffleVectorSDNode * N,unsigned Width,int StepLen)1783 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1784                                    int StepLen) {
1785   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1786          "Unexpected element width.");
1787   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1788 
1789   unsigned NumOfElem = 16 / Width;
1790   unsigned MaskVal[16]; //  Width is never greater than 16
1791   for (unsigned i = 0; i < NumOfElem; ++i) {
1792     MaskVal[0] = N->getMaskElt(i * Width);
1793     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1794       return false;
1795     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1796       return false;
1797     }
1798 
1799     for (unsigned int j = 1; j < Width; ++j) {
1800       MaskVal[j] = N->getMaskElt(i * Width + j);
1801       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1802         return false;
1803       }
1804     }
1805   }
1806 
1807   return true;
1808 }
1809 
isXXINSERTWMask(ShuffleVectorSDNode * N,unsigned & ShiftElts,unsigned & InsertAtByte,bool & Swap,bool IsLE)1810 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1811                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1812   if (!isNByteElemShuffleMask(N, 4, 1))
1813     return false;
1814 
1815   // Now we look at mask elements 0,4,8,12
1816   unsigned M0 = N->getMaskElt(0) / 4;
1817   unsigned M1 = N->getMaskElt(4) / 4;
1818   unsigned M2 = N->getMaskElt(8) / 4;
1819   unsigned M3 = N->getMaskElt(12) / 4;
1820   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1821   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1822 
1823   // Below, let H and L be arbitrary elements of the shuffle mask
1824   // where H is in the range [4,7] and L is in the range [0,3].
1825   // H, 1, 2, 3 or L, 5, 6, 7
1826   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1827       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1828     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1829     InsertAtByte = IsLE ? 12 : 0;
1830     Swap = M0 < 4;
1831     return true;
1832   }
1833   // 0, H, 2, 3 or 4, L, 6, 7
1834   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1835       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1836     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1837     InsertAtByte = IsLE ? 8 : 4;
1838     Swap = M1 < 4;
1839     return true;
1840   }
1841   // 0, 1, H, 3 or 4, 5, L, 7
1842   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1843       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1844     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1845     InsertAtByte = IsLE ? 4 : 8;
1846     Swap = M2 < 4;
1847     return true;
1848   }
1849   // 0, 1, 2, H or 4, 5, 6, L
1850   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1851       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1852     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1853     InsertAtByte = IsLE ? 0 : 12;
1854     Swap = M3 < 4;
1855     return true;
1856   }
1857 
1858   // If both vector operands for the shuffle are the same vector, the mask will
1859   // contain only elements from the first one and the second one will be undef.
1860   if (N->getOperand(1).isUndef()) {
1861     ShiftElts = 0;
1862     Swap = true;
1863     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1864     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1865       InsertAtByte = IsLE ? 12 : 0;
1866       return true;
1867     }
1868     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1869       InsertAtByte = IsLE ? 8 : 4;
1870       return true;
1871     }
1872     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1873       InsertAtByte = IsLE ? 4 : 8;
1874       return true;
1875     }
1876     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1877       InsertAtByte = IsLE ? 0 : 12;
1878       return true;
1879     }
1880   }
1881 
1882   return false;
1883 }
1884 
isXXSLDWIShuffleMask(ShuffleVectorSDNode * N,unsigned & ShiftElts,bool & Swap,bool IsLE)1885 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1886                                bool &Swap, bool IsLE) {
1887   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1888   // Ensure each byte index of the word is consecutive.
1889   if (!isNByteElemShuffleMask(N, 4, 1))
1890     return false;
1891 
1892   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1893   unsigned M0 = N->getMaskElt(0) / 4;
1894   unsigned M1 = N->getMaskElt(4) / 4;
1895   unsigned M2 = N->getMaskElt(8) / 4;
1896   unsigned M3 = N->getMaskElt(12) / 4;
1897 
1898   // If both vector operands for the shuffle are the same vector, the mask will
1899   // contain only elements from the first one and the second one will be undef.
1900   if (N->getOperand(1).isUndef()) {
1901     assert(M0 < 4 && "Indexing into an undef vector?");
1902     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1903       return false;
1904 
1905     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1906     Swap = false;
1907     return true;
1908   }
1909 
1910   // Ensure each word index of the ShuffleVector Mask is consecutive.
1911   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1912     return false;
1913 
1914   if (IsLE) {
1915     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1916       // Input vectors don't need to be swapped if the leading element
1917       // of the result is one of the 3 left elements of the second vector
1918       // (or if there is no shift to be done at all).
1919       Swap = false;
1920       ShiftElts = (8 - M0) % 8;
1921     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1922       // Input vectors need to be swapped if the leading element
1923       // of the result is one of the 3 left elements of the first vector
1924       // (or if we're shifting by 4 - thereby simply swapping the vectors).
1925       Swap = true;
1926       ShiftElts = (4 - M0) % 4;
1927     }
1928 
1929     return true;
1930   } else {                                          // BE
1931     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1932       // Input vectors don't need to be swapped if the leading element
1933       // of the result is one of the 4 elements of the first vector.
1934       Swap = false;
1935       ShiftElts = M0;
1936     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1937       // Input vectors need to be swapped if the leading element
1938       // of the result is one of the 4 elements of the right vector.
1939       Swap = true;
1940       ShiftElts = M0 - 4;
1941     }
1942 
1943     return true;
1944   }
1945 }
1946 
isXXBRShuffleMaskHelper(ShuffleVectorSDNode * N,int Width)1947 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1948   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1949 
1950   if (!isNByteElemShuffleMask(N, Width, -1))
1951     return false;
1952 
1953   for (int i = 0; i < 16; i += Width)
1954     if (N->getMaskElt(i) != i + Width - 1)
1955       return false;
1956 
1957   return true;
1958 }
1959 
isXXBRHShuffleMask(ShuffleVectorSDNode * N)1960 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1961   return isXXBRShuffleMaskHelper(N, 2);
1962 }
1963 
isXXBRWShuffleMask(ShuffleVectorSDNode * N)1964 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1965   return isXXBRShuffleMaskHelper(N, 4);
1966 }
1967 
isXXBRDShuffleMask(ShuffleVectorSDNode * N)1968 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1969   return isXXBRShuffleMaskHelper(N, 8);
1970 }
1971 
isXXBRQShuffleMask(ShuffleVectorSDNode * N)1972 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1973   return isXXBRShuffleMaskHelper(N, 16);
1974 }
1975 
1976 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1977 /// if the inputs to the instruction should be swapped and set \p DM to the
1978 /// value for the immediate.
1979 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1980 /// AND element 0 of the result comes from the first input (LE) or second input
1981 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1982 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1983 /// mask.
isXXPERMDIShuffleMask(ShuffleVectorSDNode * N,unsigned & DM,bool & Swap,bool IsLE)1984 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1985                                bool &Swap, bool IsLE) {
1986   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1987 
1988   // Ensure each byte index of the double word is consecutive.
1989   if (!isNByteElemShuffleMask(N, 8, 1))
1990     return false;
1991 
1992   unsigned M0 = N->getMaskElt(0) / 8;
1993   unsigned M1 = N->getMaskElt(8) / 8;
1994   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
1995 
1996   // If both vector operands for the shuffle are the same vector, the mask will
1997   // contain only elements from the first one and the second one will be undef.
1998   if (N->getOperand(1).isUndef()) {
1999     if ((M0 | M1) < 2) {
2000       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2001       Swap = false;
2002       return true;
2003     } else
2004       return false;
2005   }
2006 
2007   if (IsLE) {
2008     if (M0 > 1 && M1 < 2) {
2009       Swap = false;
2010     } else if (M0 < 2 && M1 > 1) {
2011       M0 = (M0 + 2) % 4;
2012       M1 = (M1 + 2) % 4;
2013       Swap = true;
2014     } else
2015       return false;
2016 
2017     // Note: if control flow comes here that means Swap is already set above
2018     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2019     return true;
2020   } else { // BE
2021     if (M0 < 2 && M1 > 1) {
2022       Swap = false;
2023     } else if (M0 > 1 && M1 < 2) {
2024       M0 = (M0 + 2) % 4;
2025       M1 = (M1 + 2) % 4;
2026       Swap = true;
2027     } else
2028       return false;
2029 
2030     // Note: if control flow comes here that means Swap is already set above
2031     DM = (M0 << 1) + (M1 & 1);
2032     return true;
2033   }
2034 }
2035 
2036 
2037 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2038 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
getVSPLTImmediate(SDNode * N,unsigned EltSize,SelectionDAG & DAG)2039 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
2040                                 SelectionDAG &DAG) {
2041   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2042   assert(isSplatShuffleMask(SVOp, EltSize));
2043   if (DAG.getDataLayout().isLittleEndian())
2044     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2045   else
2046     return SVOp->getMaskElt(0) / EltSize;
2047 }
2048 
2049 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2050 /// by using a vspltis[bhw] instruction of the specified element size, return
2051 /// the constant being splatted.  The ByteSize field indicates the number of
2052 /// bytes of each element [124] -> [bhw].
get_VSPLTI_elt(SDNode * N,unsigned ByteSize,SelectionDAG & DAG)2053 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2054   SDValue OpVal(nullptr, 0);
2055 
2056   // If ByteSize of the splat is bigger than the element size of the
2057   // build_vector, then we have a case where we are checking for a splat where
2058   // multiple elements of the buildvector are folded together into a single
2059   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2060   unsigned EltSize = 16/N->getNumOperands();
2061   if (EltSize < ByteSize) {
2062     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2063     SDValue UniquedVals[4];
2064     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2065 
2066     // See if all of the elements in the buildvector agree across.
2067     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2068       if (N->getOperand(i).isUndef()) continue;
2069       // If the element isn't a constant, bail fully out.
2070       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2071 
2072       if (!UniquedVals[i&(Multiple-1)].getNode())
2073         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2074       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2075         return SDValue();  // no match.
2076     }
2077 
2078     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2079     // either constant or undef values that are identical for each chunk.  See
2080     // if these chunks can form into a larger vspltis*.
2081 
2082     // Check to see if all of the leading entries are either 0 or -1.  If
2083     // neither, then this won't fit into the immediate field.
2084     bool LeadingZero = true;
2085     bool LeadingOnes = true;
2086     for (unsigned i = 0; i != Multiple-1; ++i) {
2087       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2088 
2089       LeadingZero &= isNullConstant(UniquedVals[i]);
2090       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2091     }
2092     // Finally, check the least significant entry.
2093     if (LeadingZero) {
2094       if (!UniquedVals[Multiple-1].getNode())
2095         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2096       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2097       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2098         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2099     }
2100     if (LeadingOnes) {
2101       if (!UniquedVals[Multiple-1].getNode())
2102         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2103       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2104       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2105         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2106     }
2107 
2108     return SDValue();
2109   }
2110 
2111   // Check to see if this buildvec has a single non-undef value in its elements.
2112   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2113     if (N->getOperand(i).isUndef()) continue;
2114     if (!OpVal.getNode())
2115       OpVal = N->getOperand(i);
2116     else if (OpVal != N->getOperand(i))
2117       return SDValue();
2118   }
2119 
2120   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2121 
2122   unsigned ValSizeInBytes = EltSize;
2123   uint64_t Value = 0;
2124   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2125     Value = CN->getZExtValue();
2126   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2127     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2128     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2129   }
2130 
2131   // If the splat value is larger than the element value, then we can never do
2132   // this splat.  The only case that we could fit the replicated bits into our
2133   // immediate field for would be zero, and we prefer to use vxor for it.
2134   if (ValSizeInBytes < ByteSize) return SDValue();
2135 
2136   // If the element value is larger than the splat value, check if it consists
2137   // of a repeated bit pattern of size ByteSize.
2138   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2139     return SDValue();
2140 
2141   // Properly sign extend the value.
2142   int MaskVal = SignExtend32(Value, ByteSize * 8);
2143 
2144   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2145   if (MaskVal == 0) return SDValue();
2146 
2147   // Finally, if this value fits in a 5 bit sext field, return it
2148   if (SignExtend32<5>(MaskVal) == MaskVal)
2149     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2150   return SDValue();
2151 }
2152 
2153 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2154 /// amount, otherwise return -1.
isQVALIGNIShuffleMask(SDNode * N)2155 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2156   EVT VT = N->getValueType(0);
2157   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2158     return -1;
2159 
2160   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2161 
2162   // Find the first non-undef value in the shuffle mask.
2163   unsigned i;
2164   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2165     /*search*/;
2166 
2167   if (i == 4) return -1;  // all undef.
2168 
2169   // Otherwise, check to see if the rest of the elements are consecutively
2170   // numbered from this value.
2171   unsigned ShiftAmt = SVOp->getMaskElt(i);
2172   if (ShiftAmt < i) return -1;
2173   ShiftAmt -= i;
2174 
2175   // Check the rest of the elements to see if they are consecutive.
2176   for (++i; i != 4; ++i)
2177     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2178       return -1;
2179 
2180   return ShiftAmt;
2181 }
2182 
2183 //===----------------------------------------------------------------------===//
2184 //  Addressing Mode Selection
2185 //===----------------------------------------------------------------------===//
2186 
2187 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2188 /// or 64-bit immediate, and if the value can be accurately represented as a
2189 /// sign extension from a 16-bit value.  If so, this returns true and the
2190 /// immediate.
isIntS16Immediate(SDNode * N,int16_t & Imm)2191 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2192   if (!isa<ConstantSDNode>(N))
2193     return false;
2194 
2195   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2196   if (N->getValueType(0) == MVT::i32)
2197     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2198   else
2199     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2200 }
isIntS16Immediate(SDValue Op,int16_t & Imm)2201 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2202   return isIntS16Immediate(Op.getNode(), Imm);
2203 }
2204 
2205 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2206 /// can be represented as an indexed [r+r] operation.  Returns false if it
2207 /// can be more efficiently represented with [r+imm].
SelectAddressRegReg(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const2208 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2209                                             SDValue &Index,
2210                                             SelectionDAG &DAG) const {
2211   int16_t imm = 0;
2212   if (N.getOpcode() == ISD::ADD) {
2213     if (isIntS16Immediate(N.getOperand(1), imm))
2214       return false;    // r+i
2215     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2216       return false;    // r+i
2217 
2218     Base = N.getOperand(0);
2219     Index = N.getOperand(1);
2220     return true;
2221   } else if (N.getOpcode() == ISD::OR) {
2222     if (isIntS16Immediate(N.getOperand(1), imm))
2223       return false;    // r+i can fold it if we can.
2224 
2225     // If this is an or of disjoint bitfields, we can codegen this as an add
2226     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2227     // disjoint.
2228     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2229 
2230     if (LHSKnown.Zero.getBoolValue()) {
2231       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2232       // If all of the bits are known zero on the LHS or RHS, the add won't
2233       // carry.
2234       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2235         Base = N.getOperand(0);
2236         Index = N.getOperand(1);
2237         return true;
2238       }
2239     }
2240   }
2241 
2242   return false;
2243 }
2244 
2245 // If we happen to be doing an i64 load or store into a stack slot that has
2246 // less than a 4-byte alignment, then the frame-index elimination may need to
2247 // use an indexed load or store instruction (because the offset may not be a
2248 // multiple of 4). The extra register needed to hold the offset comes from the
2249 // register scavenger, and it is possible that the scavenger will need to use
2250 // an emergency spill slot. As a result, we need to make sure that a spill slot
2251 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2252 // stack slot.
fixupFuncForFI(SelectionDAG & DAG,int FrameIdx,EVT VT)2253 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2254   // FIXME: This does not handle the LWA case.
2255   if (VT != MVT::i64)
2256     return;
2257 
2258   // NOTE: We'll exclude negative FIs here, which come from argument
2259   // lowering, because there are no known test cases triggering this problem
2260   // using packed structures (or similar). We can remove this exclusion if
2261   // we find such a test case. The reason why this is so test-case driven is
2262   // because this entire 'fixup' is only to prevent crashes (from the
2263   // register scavenger) on not-really-valid inputs. For example, if we have:
2264   //   %a = alloca i1
2265   //   %b = bitcast i1* %a to i64*
2266   //   store i64* a, i64 b
2267   // then the store should really be marked as 'align 1', but is not. If it
2268   // were marked as 'align 1' then the indexed form would have been
2269   // instruction-selected initially, and the problem this 'fixup' is preventing
2270   // won't happen regardless.
2271   if (FrameIdx < 0)
2272     return;
2273 
2274   MachineFunction &MF = DAG.getMachineFunction();
2275   MachineFrameInfo &MFI = MF.getFrameInfo();
2276 
2277   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2278   if (Align >= 4)
2279     return;
2280 
2281   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2282   FuncInfo->setHasNonRISpills();
2283 }
2284 
2285 /// Returns true if the address N can be represented by a base register plus
2286 /// a signed 16-bit displacement [r+imm], and if it is not better
2287 /// represented as reg+reg.  If \p Alignment is non-zero, only accept
2288 /// displacements that are multiples of that value.
SelectAddressRegImm(SDValue N,SDValue & Disp,SDValue & Base,SelectionDAG & DAG,unsigned Alignment) const2289 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2290                                             SDValue &Base,
2291                                             SelectionDAG &DAG,
2292                                             unsigned Alignment) const {
2293   // FIXME dl should come from parent load or store, not from address
2294   SDLoc dl(N);
2295   // If this can be more profitably realized as r+r, fail.
2296   if (SelectAddressRegReg(N, Disp, Base, DAG))
2297     return false;
2298 
2299   if (N.getOpcode() == ISD::ADD) {
2300     int16_t imm = 0;
2301     if (isIntS16Immediate(N.getOperand(1), imm) &&
2302         (!Alignment || (imm % Alignment) == 0)) {
2303       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2304       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2305         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2306         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2307       } else {
2308         Base = N.getOperand(0);
2309       }
2310       return true; // [r+i]
2311     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2312       // Match LOAD (ADD (X, Lo(G))).
2313       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2314              && "Cannot handle constant offsets yet!");
2315       Disp = N.getOperand(1).getOperand(0);  // The global address.
2316       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2317              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2318              Disp.getOpcode() == ISD::TargetConstantPool ||
2319              Disp.getOpcode() == ISD::TargetJumpTable);
2320       Base = N.getOperand(0);
2321       return true;  // [&g+r]
2322     }
2323   } else if (N.getOpcode() == ISD::OR) {
2324     int16_t imm = 0;
2325     if (isIntS16Immediate(N.getOperand(1), imm) &&
2326         (!Alignment || (imm % Alignment) == 0)) {
2327       // If this is an or of disjoint bitfields, we can codegen this as an add
2328       // (for better address arithmetic) if the LHS and RHS of the OR are
2329       // provably disjoint.
2330       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2331 
2332       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2333         // If all of the bits are known zero on the LHS or RHS, the add won't
2334         // carry.
2335         if (FrameIndexSDNode *FI =
2336               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2337           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2338           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2339         } else {
2340           Base = N.getOperand(0);
2341         }
2342         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2343         return true;
2344       }
2345     }
2346   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2347     // Loading from a constant address.
2348 
2349     // If this address fits entirely in a 16-bit sext immediate field, codegen
2350     // this as "d, 0"
2351     int16_t Imm;
2352     if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2353       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2354       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2355                              CN->getValueType(0));
2356       return true;
2357     }
2358 
2359     // Handle 32-bit sext immediates with LIS + addr mode.
2360     if ((CN->getValueType(0) == MVT::i32 ||
2361          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2362         (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2363       int Addr = (int)CN->getZExtValue();
2364 
2365       // Otherwise, break this down into an LIS + disp.
2366       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2367 
2368       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2369                                    MVT::i32);
2370       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2371       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2372       return true;
2373     }
2374   }
2375 
2376   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2377   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2378     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2379     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2380   } else
2381     Base = N;
2382   return true;      // [r+0]
2383 }
2384 
2385 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2386 /// represented as an indexed [r+r] operation.
SelectAddressRegRegOnly(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const2387 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2388                                                 SDValue &Index,
2389                                                 SelectionDAG &DAG) const {
2390   // Check to see if we can easily represent this as an [r+r] address.  This
2391   // will fail if it thinks that the address is more profitably represented as
2392   // reg+imm, e.g. where imm = 0.
2393   if (SelectAddressRegReg(N, Base, Index, DAG))
2394     return true;
2395 
2396   // If the address is the result of an add, we will utilize the fact that the
2397   // address calculation includes an implicit add.  However, we can reduce
2398   // register pressure if we do not materialize a constant just for use as the
2399   // index register.  We only get rid of the add if it is not an add of a
2400   // value and a 16-bit signed constant and both have a single use.
2401   int16_t imm = 0;
2402   if (N.getOpcode() == ISD::ADD &&
2403       (!isIntS16Immediate(N.getOperand(1), imm) ||
2404        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2405     Base = N.getOperand(0);
2406     Index = N.getOperand(1);
2407     return true;
2408   }
2409 
2410   // Otherwise, do it the hard way, using R0 as the base register.
2411   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2412                          N.getValueType());
2413   Index = N;
2414   return true;
2415 }
2416 
2417 /// Returns true if we should use a direct load into vector instruction
2418 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
usePartialVectorLoads(SDNode * N)2419 static bool usePartialVectorLoads(SDNode *N) {
2420   if (!N->hasOneUse())
2421     return false;
2422 
2423   // If there are any other uses other than scalar to vector, then we should
2424   // keep it as a scalar load -> direct move pattern to prevent multiple
2425   // loads.  Currently, only check for i64 since we have lxsd/lfd to do this
2426   // efficiently, but no update equivalent.
2427   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2428     EVT MemVT = LD->getMemoryVT();
2429     if (MemVT.isSimple() && MemVT.getSimpleVT().SimpleTy == MVT::i64) {
2430       SDNode *User = *(LD->use_begin());
2431       if (User->getOpcode() == ISD::SCALAR_TO_VECTOR)
2432         return true;
2433     }
2434   }
2435 
2436   return false;
2437 }
2438 
2439 /// getPreIndexedAddressParts - returns true by value, base pointer and
2440 /// offset pointer and addressing mode by reference if the node's address
2441 /// can be legally represented as pre-indexed load / store address.
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const2442 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2443                                                   SDValue &Offset,
2444                                                   ISD::MemIndexedMode &AM,
2445                                                   SelectionDAG &DAG) const {
2446   if (DisablePPCPreinc) return false;
2447 
2448   bool isLoad = true;
2449   SDValue Ptr;
2450   EVT VT;
2451   unsigned Alignment;
2452   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2453     Ptr = LD->getBasePtr();
2454     VT = LD->getMemoryVT();
2455     Alignment = LD->getAlignment();
2456   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2457     Ptr = ST->getBasePtr();
2458     VT  = ST->getMemoryVT();
2459     Alignment = ST->getAlignment();
2460     isLoad = false;
2461   } else
2462     return false;
2463 
2464   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2465   // instructions because we can fold these into a more efficient instruction
2466   // instead, (such as LXSD).
2467   if (isLoad && usePartialVectorLoads(N)) {
2468     return false;
2469   }
2470 
2471   // PowerPC doesn't have preinc load/store instructions for vectors (except
2472   // for QPX, which does have preinc r+r forms).
2473   if (VT.isVector()) {
2474     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2475       return false;
2476     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2477       AM = ISD::PRE_INC;
2478       return true;
2479     }
2480   }
2481 
2482   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2483     // Common code will reject creating a pre-inc form if the base pointer
2484     // is a frame index, or if N is a store and the base pointer is either
2485     // the same as or a predecessor of the value being stored.  Check for
2486     // those situations here, and try with swapped Base/Offset instead.
2487     bool Swap = false;
2488 
2489     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2490       Swap = true;
2491     else if (!isLoad) {
2492       SDValue Val = cast<StoreSDNode>(N)->getValue();
2493       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2494         Swap = true;
2495     }
2496 
2497     if (Swap)
2498       std::swap(Base, Offset);
2499 
2500     AM = ISD::PRE_INC;
2501     return true;
2502   }
2503 
2504   // LDU/STU can only handle immediates that are a multiple of 4.
2505   if (VT != MVT::i64) {
2506     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2507       return false;
2508   } else {
2509     // LDU/STU need an address with at least 4-byte alignment.
2510     if (Alignment < 4)
2511       return false;
2512 
2513     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2514       return false;
2515   }
2516 
2517   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2518     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2519     // sext i32 to i64 when addr mode is r+i.
2520     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2521         LD->getExtensionType() == ISD::SEXTLOAD &&
2522         isa<ConstantSDNode>(Offset))
2523       return false;
2524   }
2525 
2526   AM = ISD::PRE_INC;
2527   return true;
2528 }
2529 
2530 //===----------------------------------------------------------------------===//
2531 //  LowerOperation implementation
2532 //===----------------------------------------------------------------------===//
2533 
2534 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2535 /// and LoOpFlags to the target MO flags.
getLabelAccessInfo(bool IsPIC,const PPCSubtarget & Subtarget,unsigned & HiOpFlags,unsigned & LoOpFlags,const GlobalValue * GV=nullptr)2536 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2537                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2538                                const GlobalValue *GV = nullptr) {
2539   HiOpFlags = PPCII::MO_HA;
2540   LoOpFlags = PPCII::MO_LO;
2541 
2542   // Don't use the pic base if not in PIC relocation model.
2543   if (IsPIC) {
2544     HiOpFlags |= PPCII::MO_PIC_FLAG;
2545     LoOpFlags |= PPCII::MO_PIC_FLAG;
2546   }
2547 
2548   // If this is a reference to a global value that requires a non-lazy-ptr, make
2549   // sure that instruction lowering adds it.
2550   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2551     HiOpFlags |= PPCII::MO_NLP_FLAG;
2552     LoOpFlags |= PPCII::MO_NLP_FLAG;
2553 
2554     if (GV->hasHiddenVisibility()) {
2555       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2556       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2557     }
2558   }
2559 }
2560 
LowerLabelRef(SDValue HiPart,SDValue LoPart,bool isPIC,SelectionDAG & DAG)2561 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2562                              SelectionDAG &DAG) {
2563   SDLoc DL(HiPart);
2564   EVT PtrVT = HiPart.getValueType();
2565   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2566 
2567   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2568   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2569 
2570   // With PIC, the first instruction is actually "GR+hi(&G)".
2571   if (isPIC)
2572     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2573                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2574 
2575   // Generate non-pic code that has direct accesses to the constant pool.
2576   // The address of the global is just (hi(&g)+lo(&g)).
2577   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2578 }
2579 
setUsesTOCBasePtr(MachineFunction & MF)2580 static void setUsesTOCBasePtr(MachineFunction &MF) {
2581   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2582   FuncInfo->setUsesTOCBasePtr();
2583 }
2584 
setUsesTOCBasePtr(SelectionDAG & DAG)2585 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2586   setUsesTOCBasePtr(DAG.getMachineFunction());
2587 }
2588 
getTOCEntry(SelectionDAG & DAG,const SDLoc & dl,bool Is64Bit,SDValue GA)2589 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2590                            SDValue GA) {
2591   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2592   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2593                 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2594 
2595   SDValue Ops[] = { GA, Reg };
2596   return DAG.getMemIntrinsicNode(
2597       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2598       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2599       MachineMemOperand::MOLoad);
2600 }
2601 
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const2602 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2603                                              SelectionDAG &DAG) const {
2604   EVT PtrVT = Op.getValueType();
2605   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2606   const Constant *C = CP->getConstVal();
2607 
2608   // 64-bit SVR4 ABI code is always position-independent.
2609   // The actual address of the GlobalValue is stored in the TOC.
2610   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2611     setUsesTOCBasePtr(DAG);
2612     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2613     return getTOCEntry(DAG, SDLoc(CP), true, GA);
2614   }
2615 
2616   unsigned MOHiFlag, MOLoFlag;
2617   bool IsPIC = isPositionIndependent();
2618   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2619 
2620   if (IsPIC && Subtarget.isSVR4ABI()) {
2621     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2622                                            PPCII::MO_PIC_FLAG);
2623     return getTOCEntry(DAG, SDLoc(CP), false, GA);
2624   }
2625 
2626   SDValue CPIHi =
2627     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2628   SDValue CPILo =
2629     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2630   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2631 }
2632 
2633 // For 64-bit PowerPC, prefer the more compact relative encodings.
2634 // This trades 32 bits per jump table entry for one or two instructions
2635 // on the jump site.
getJumpTableEncoding() const2636 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2637   if (isJumpTableRelative())
2638     return MachineJumpTableInfo::EK_LabelDifference32;
2639 
2640   return TargetLowering::getJumpTableEncoding();
2641 }
2642 
isJumpTableRelative() const2643 bool PPCTargetLowering::isJumpTableRelative() const {
2644   if (Subtarget.isPPC64())
2645     return true;
2646   return TargetLowering::isJumpTableRelative();
2647 }
2648 
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const2649 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2650                                                     SelectionDAG &DAG) const {
2651   if (!Subtarget.isPPC64())
2652     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2653 
2654   switch (getTargetMachine().getCodeModel()) {
2655   case CodeModel::Small:
2656   case CodeModel::Medium:
2657     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2658   default:
2659     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2660                        getPointerTy(DAG.getDataLayout()));
2661   }
2662 }
2663 
2664 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const2665 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2666                                                 unsigned JTI,
2667                                                 MCContext &Ctx) const {
2668   if (!Subtarget.isPPC64())
2669     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2670 
2671   switch (getTargetMachine().getCodeModel()) {
2672   case CodeModel::Small:
2673   case CodeModel::Medium:
2674     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2675   default:
2676     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2677   }
2678 }
2679 
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const2680 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2681   EVT PtrVT = Op.getValueType();
2682   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2683 
2684   // 64-bit SVR4 ABI code is always position-independent.
2685   // The actual address of the GlobalValue is stored in the TOC.
2686   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2687     setUsesTOCBasePtr(DAG);
2688     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2689     return getTOCEntry(DAG, SDLoc(JT), true, GA);
2690   }
2691 
2692   unsigned MOHiFlag, MOLoFlag;
2693   bool IsPIC = isPositionIndependent();
2694   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2695 
2696   if (IsPIC && Subtarget.isSVR4ABI()) {
2697     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2698                                         PPCII::MO_PIC_FLAG);
2699     return getTOCEntry(DAG, SDLoc(GA), false, GA);
2700   }
2701 
2702   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2703   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2704   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2705 }
2706 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2707 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2708                                              SelectionDAG &DAG) const {
2709   EVT PtrVT = Op.getValueType();
2710   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2711   const BlockAddress *BA = BASDN->getBlockAddress();
2712 
2713   // 64-bit SVR4 ABI code is always position-independent.
2714   // The actual BlockAddress is stored in the TOC.
2715   if (Subtarget.isSVR4ABI() &&
2716       (Subtarget.isPPC64() || isPositionIndependent())) {
2717     if (Subtarget.isPPC64())
2718       setUsesTOCBasePtr(DAG);
2719     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2720     return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
2721   }
2722 
2723   unsigned MOHiFlag, MOLoFlag;
2724   bool IsPIC = isPositionIndependent();
2725   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2726   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2727   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2728   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2729 }
2730 
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2731 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2732                                               SelectionDAG &DAG) const {
2733   // FIXME: TLS addresses currently use medium model code sequences,
2734   // which is the most useful form.  Eventually support for small and
2735   // large models could be added if users need it, at the cost of
2736   // additional complexity.
2737   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2738   if (DAG.getTarget().useEmulatedTLS())
2739     return LowerToTLSEmulatedModel(GA, DAG);
2740 
2741   SDLoc dl(GA);
2742   const GlobalValue *GV = GA->getGlobal();
2743   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2744   bool is64bit = Subtarget.isPPC64();
2745   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2746   PICLevel::Level picLevel = M->getPICLevel();
2747 
2748   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2749 
2750   if (Model == TLSModel::LocalExec) {
2751     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2752                                                PPCII::MO_TPREL_HA);
2753     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2754                                                PPCII::MO_TPREL_LO);
2755     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2756                              : DAG.getRegister(PPC::R2, MVT::i32);
2757 
2758     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2759     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2760   }
2761 
2762   if (Model == TLSModel::InitialExec) {
2763     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2764     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2765                                                 PPCII::MO_TLS);
2766     SDValue GOTPtr;
2767     if (is64bit) {
2768       setUsesTOCBasePtr(DAG);
2769       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2770       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2771                            PtrVT, GOTReg, TGA);
2772     } else
2773       GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2774     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2775                                    PtrVT, TGA, GOTPtr);
2776     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2777   }
2778 
2779   if (Model == TLSModel::GeneralDynamic) {
2780     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2781     SDValue GOTPtr;
2782     if (is64bit) {
2783       setUsesTOCBasePtr(DAG);
2784       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2785       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2786                                    GOTReg, TGA);
2787     } else {
2788       if (picLevel == PICLevel::SmallPIC)
2789         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2790       else
2791         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2792     }
2793     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2794                        GOTPtr, TGA, TGA);
2795   }
2796 
2797   if (Model == TLSModel::LocalDynamic) {
2798     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2799     SDValue GOTPtr;
2800     if (is64bit) {
2801       setUsesTOCBasePtr(DAG);
2802       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2803       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2804                            GOTReg, TGA);
2805     } else {
2806       if (picLevel == PICLevel::SmallPIC)
2807         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2808       else
2809         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2810     }
2811     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2812                                   PtrVT, GOTPtr, TGA, TGA);
2813     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2814                                       PtrVT, TLSAddr, TGA);
2815     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2816   }
2817 
2818   llvm_unreachable("Unknown TLS model!");
2819 }
2820 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const2821 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2822                                               SelectionDAG &DAG) const {
2823   EVT PtrVT = Op.getValueType();
2824   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2825   SDLoc DL(GSDN);
2826   const GlobalValue *GV = GSDN->getGlobal();
2827 
2828   // 64-bit SVR4 ABI code is always position-independent.
2829   // The actual address of the GlobalValue is stored in the TOC.
2830   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2831     setUsesTOCBasePtr(DAG);
2832     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2833     return getTOCEntry(DAG, DL, true, GA);
2834   }
2835 
2836   unsigned MOHiFlag, MOLoFlag;
2837   bool IsPIC = isPositionIndependent();
2838   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2839 
2840   if (IsPIC && Subtarget.isSVR4ABI()) {
2841     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2842                                             GSDN->getOffset(),
2843                                             PPCII::MO_PIC_FLAG);
2844     return getTOCEntry(DAG, DL, false, GA);
2845   }
2846 
2847   SDValue GAHi =
2848     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2849   SDValue GALo =
2850     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2851 
2852   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2853 
2854   // If the global reference is actually to a non-lazy-pointer, we have to do an
2855   // extra load to get the address of the global.
2856   if (MOHiFlag & PPCII::MO_NLP_FLAG)
2857     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2858   return Ptr;
2859 }
2860 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const2861 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2862   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2863   SDLoc dl(Op);
2864 
2865   if (Op.getValueType() == MVT::v2i64) {
2866     // When the operands themselves are v2i64 values, we need to do something
2867     // special because VSX has no underlying comparison operations for these.
2868     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2869       // Equality can be handled by casting to the legal type for Altivec
2870       // comparisons, everything else needs to be expanded.
2871       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2872         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2873                  DAG.getSetCC(dl, MVT::v4i32,
2874                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2875                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2876                    CC));
2877       }
2878 
2879       return SDValue();
2880     }
2881 
2882     // We handle most of these in the usual way.
2883     return Op;
2884   }
2885 
2886   // If we're comparing for equality to zero, expose the fact that this is
2887   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2888   // fold the new nodes.
2889   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2890     return V;
2891 
2892   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2893     // Leave comparisons against 0 and -1 alone for now, since they're usually
2894     // optimized.  FIXME: revisit this when we can custom lower all setcc
2895     // optimizations.
2896     if (C->isAllOnesValue() || C->isNullValue())
2897       return SDValue();
2898   }
2899 
2900   // If we have an integer seteq/setne, turn it into a compare against zero
2901   // by xor'ing the rhs with the lhs, which is faster than setting a
2902   // condition register, reading it back out, and masking the correct bit.  The
2903   // normal approach here uses sub to do this instead of xor.  Using xor exposes
2904   // the result to other bit-twiddling opportunities.
2905   EVT LHSVT = Op.getOperand(0).getValueType();
2906   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2907     EVT VT = Op.getValueType();
2908     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2909                                 Op.getOperand(1));
2910     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2911   }
2912   return SDValue();
2913 }
2914 
LowerVAARG(SDValue Op,SelectionDAG & DAG) const2915 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2916   SDNode *Node = Op.getNode();
2917   EVT VT = Node->getValueType(0);
2918   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2919   SDValue InChain = Node->getOperand(0);
2920   SDValue VAListPtr = Node->getOperand(1);
2921   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2922   SDLoc dl(Node);
2923 
2924   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2925 
2926   // gpr_index
2927   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2928                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
2929   InChain = GprIndex.getValue(1);
2930 
2931   if (VT == MVT::i64) {
2932     // Check if GprIndex is even
2933     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2934                                  DAG.getConstant(1, dl, MVT::i32));
2935     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2936                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2937     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2938                                           DAG.getConstant(1, dl, MVT::i32));
2939     // Align GprIndex to be even if it isn't
2940     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2941                            GprIndex);
2942   }
2943 
2944   // fpr index is 1 byte after gpr
2945   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2946                                DAG.getConstant(1, dl, MVT::i32));
2947 
2948   // fpr
2949   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2950                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
2951   InChain = FprIndex.getValue(1);
2952 
2953   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2954                                        DAG.getConstant(8, dl, MVT::i32));
2955 
2956   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2957                                         DAG.getConstant(4, dl, MVT::i32));
2958 
2959   // areas
2960   SDValue OverflowArea =
2961       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2962   InChain = OverflowArea.getValue(1);
2963 
2964   SDValue RegSaveArea =
2965       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2966   InChain = RegSaveArea.getValue(1);
2967 
2968   // select overflow_area if index > 8
2969   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2970                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2971 
2972   // adjustment constant gpr_index * 4/8
2973   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2974                                     VT.isInteger() ? GprIndex : FprIndex,
2975                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2976                                                     MVT::i32));
2977 
2978   // OurReg = RegSaveArea + RegConstant
2979   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2980                                RegConstant);
2981 
2982   // Floating types are 32 bytes into RegSaveArea
2983   if (VT.isFloatingPoint())
2984     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2985                          DAG.getConstant(32, dl, MVT::i32));
2986 
2987   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2988   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2989                                    VT.isInteger() ? GprIndex : FprIndex,
2990                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2991                                                    MVT::i32));
2992 
2993   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2994                               VT.isInteger() ? VAListPtr : FprPtr,
2995                               MachinePointerInfo(SV), MVT::i8);
2996 
2997   // determine if we should load from reg_save_area or overflow_area
2998   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2999 
3000   // increase overflow_area by 4/8 if gpr/fpr > 8
3001   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3002                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3003                                           dl, MVT::i32));
3004 
3005   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3006                              OverflowAreaPlusN);
3007 
3008   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3009                               MachinePointerInfo(), MVT::i32);
3010 
3011   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3012 }
3013 
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const3014 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3015   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3016 
3017   // We have to copy the entire va_list struct:
3018   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3019   return DAG.getMemcpy(Op.getOperand(0), Op,
3020                        Op.getOperand(1), Op.getOperand(2),
3021                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3022                        false, MachinePointerInfo(), MachinePointerInfo());
3023 }
3024 
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const3025 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3026                                                   SelectionDAG &DAG) const {
3027   return Op.getOperand(0);
3028 }
3029 
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const3030 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3031                                                 SelectionDAG &DAG) const {
3032   SDValue Chain = Op.getOperand(0);
3033   SDValue Trmp = Op.getOperand(1); // trampoline
3034   SDValue FPtr = Op.getOperand(2); // nested function
3035   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3036   SDLoc dl(Op);
3037 
3038   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3039   bool isPPC64 = (PtrVT == MVT::i64);
3040   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3041 
3042   TargetLowering::ArgListTy Args;
3043   TargetLowering::ArgListEntry Entry;
3044 
3045   Entry.Ty = IntPtrTy;
3046   Entry.Node = Trmp; Args.push_back(Entry);
3047 
3048   // TrampSize == (isPPC64 ? 48 : 40);
3049   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3050                                isPPC64 ? MVT::i64 : MVT::i32);
3051   Args.push_back(Entry);
3052 
3053   Entry.Node = FPtr; Args.push_back(Entry);
3054   Entry.Node = Nest; Args.push_back(Entry);
3055 
3056   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3057   TargetLowering::CallLoweringInfo CLI(DAG);
3058   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3059       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3060       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3061 
3062   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3063   return CallResult.second;
3064 }
3065 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const3066 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3067   MachineFunction &MF = DAG.getMachineFunction();
3068   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3069   EVT PtrVT = getPointerTy(MF.getDataLayout());
3070 
3071   SDLoc dl(Op);
3072 
3073   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3074     // vastart just stores the address of the VarArgsFrameIndex slot into the
3075     // memory location argument.
3076     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3077     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3078     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3079                         MachinePointerInfo(SV));
3080   }
3081 
3082   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3083   // We suppose the given va_list is already allocated.
3084   //
3085   // typedef struct {
3086   //  char gpr;     /* index into the array of 8 GPRs
3087   //                 * stored in the register save area
3088   //                 * gpr=0 corresponds to r3,
3089   //                 * gpr=1 to r4, etc.
3090   //                 */
3091   //  char fpr;     /* index into the array of 8 FPRs
3092   //                 * stored in the register save area
3093   //                 * fpr=0 corresponds to f1,
3094   //                 * fpr=1 to f2, etc.
3095   //                 */
3096   //  char *overflow_arg_area;
3097   //                /* location on stack that holds
3098   //                 * the next overflow argument
3099   //                 */
3100   //  char *reg_save_area;
3101   //               /* where r3:r10 and f1:f8 (if saved)
3102   //                * are stored
3103   //                */
3104   // } va_list[1];
3105 
3106   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3107   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3108   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3109                                             PtrVT);
3110   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3111                                  PtrVT);
3112 
3113   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3114   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3115 
3116   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3117   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3118 
3119   uint64_t FPROffset = 1;
3120   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3121 
3122   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3123 
3124   // Store first byte : number of int regs
3125   SDValue firstStore =
3126       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3127                         MachinePointerInfo(SV), MVT::i8);
3128   uint64_t nextOffset = FPROffset;
3129   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3130                                   ConstFPROffset);
3131 
3132   // Store second byte : number of float regs
3133   SDValue secondStore =
3134       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3135                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3136   nextOffset += StackOffset;
3137   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3138 
3139   // Store second word : arguments given on stack
3140   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3141                                     MachinePointerInfo(SV, nextOffset));
3142   nextOffset += FrameOffset;
3143   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3144 
3145   // Store third word : arguments given in registers
3146   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3147                       MachinePointerInfo(SV, nextOffset));
3148 }
3149 
3150 #include "PPCGenCallingConv.inc"
3151 
3152 // Function whose sole purpose is to kill compiler warnings
3153 // stemming from unused functions included from PPCGenCallingConv.inc.
useFastISelCCs(unsigned Flag) const3154 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
3155   return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
3156 }
3157 
CC_PPC32_SVR4_Custom_Dummy(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)3158 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
3159                                       CCValAssign::LocInfo &LocInfo,
3160                                       ISD::ArgFlagsTy &ArgFlags,
3161                                       CCState &State) {
3162   return true;
3163 }
3164 
CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)3165 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
3166                                              MVT &LocVT,
3167                                              CCValAssign::LocInfo &LocInfo,
3168                                              ISD::ArgFlagsTy &ArgFlags,
3169                                              CCState &State) {
3170   static const MCPhysReg ArgRegs[] = {
3171     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3172     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3173   };
3174   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3175 
3176   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3177 
3178   // Skip one register if the first unallocated register has an even register
3179   // number and there are still argument registers available which have not been
3180   // allocated yet. RegNum is actually an index into ArgRegs, which means we
3181   // need to skip a register if RegNum is odd.
3182   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
3183     State.AllocateReg(ArgRegs[RegNum]);
3184   }
3185 
3186   // Always return false here, as this function only makes sure that the first
3187   // unallocated register has an odd register number and does not actually
3188   // allocate a register for the current argument.
3189   return false;
3190 }
3191 
3192 bool
CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)3193 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
3194                                                   MVT &LocVT,
3195                                                   CCValAssign::LocInfo &LocInfo,
3196                                                   ISD::ArgFlagsTy &ArgFlags,
3197                                                   CCState &State) {
3198   static const MCPhysReg ArgRegs[] = {
3199     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3200     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3201   };
3202   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3203 
3204   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3205   int RegsLeft = NumArgRegs - RegNum;
3206 
3207   // Skip if there is not enough registers left for long double type (4 gpr regs
3208   // in soft float mode) and put long double argument on the stack.
3209   if (RegNum != NumArgRegs && RegsLeft < 4) {
3210     for (int i = 0; i < RegsLeft; i++) {
3211       State.AllocateReg(ArgRegs[RegNum + i]);
3212     }
3213   }
3214 
3215   return false;
3216 }
3217 
CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)3218 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
3219                                                MVT &LocVT,
3220                                                CCValAssign::LocInfo &LocInfo,
3221                                                ISD::ArgFlagsTy &ArgFlags,
3222                                                CCState &State) {
3223   static const MCPhysReg ArgRegs[] = {
3224     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3225     PPC::F8
3226   };
3227 
3228   const unsigned NumArgRegs = array_lengthof(ArgRegs);
3229 
3230   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3231 
3232   // If there is only one Floating-point register left we need to put both f64
3233   // values of a split ppc_fp128 value on the stack.
3234   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
3235     State.AllocateReg(ArgRegs[RegNum]);
3236   }
3237 
3238   // Always return false here, as this function only makes sure that the two f64
3239   // values a ppc_fp128 value is split into are both passed in registers or both
3240   // passed on the stack and does not actually allocate a register for the
3241   // current argument.
3242   return false;
3243 }
3244 
3245 /// FPR - The set of FP registers that should be allocated for arguments,
3246 /// on Darwin.
3247 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3248                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3249                                 PPC::F11, PPC::F12, PPC::F13};
3250 
3251 /// QFPR - The set of QPX registers that should be allocated for arguments.
3252 static const MCPhysReg QFPR[] = {
3253     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3254     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3255 
3256 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3257 /// the stack.
CalculateStackSlotSize(EVT ArgVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)3258 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3259                                        unsigned PtrByteSize) {
3260   unsigned ArgSize = ArgVT.getStoreSize();
3261   if (Flags.isByVal())
3262     ArgSize = Flags.getByValSize();
3263 
3264   // Round up to multiples of the pointer size, except for array members,
3265   // which are always packed.
3266   if (!Flags.isInConsecutiveRegs())
3267     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3268 
3269   return ArgSize;
3270 }
3271 
3272 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3273 /// on the stack.
CalculateStackSlotAlignment(EVT ArgVT,EVT OrigVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)3274 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3275                                             ISD::ArgFlagsTy Flags,
3276                                             unsigned PtrByteSize) {
3277   unsigned Align = PtrByteSize;
3278 
3279   // Altivec parameters are padded to a 16 byte boundary.
3280   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3281       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3282       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3283       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3284     Align = 16;
3285   // QPX vector types stored in double-precision are padded to a 32 byte
3286   // boundary.
3287   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3288     Align = 32;
3289 
3290   // ByVal parameters are aligned as requested.
3291   if (Flags.isByVal()) {
3292     unsigned BVAlign = Flags.getByValAlign();
3293     if (BVAlign > PtrByteSize) {
3294       if (BVAlign % PtrByteSize != 0)
3295           llvm_unreachable(
3296             "ByVal alignment is not a multiple of the pointer size");
3297 
3298       Align = BVAlign;
3299     }
3300   }
3301 
3302   // Array members are always packed to their original alignment.
3303   if (Flags.isInConsecutiveRegs()) {
3304     // If the array member was split into multiple registers, the first
3305     // needs to be aligned to the size of the full type.  (Except for
3306     // ppcf128, which is only aligned as its f64 components.)
3307     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3308       Align = OrigVT.getStoreSize();
3309     else
3310       Align = ArgVT.getStoreSize();
3311   }
3312 
3313   return Align;
3314 }
3315 
3316 /// CalculateStackSlotUsed - Return whether this argument will use its
3317 /// stack slot (instead of being passed in registers).  ArgOffset,
3318 /// AvailableFPRs, and AvailableVRs must hold the current argument
3319 /// position, and will be updated to account for this argument.
CalculateStackSlotUsed(EVT ArgVT,EVT OrigVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize,unsigned LinkageSize,unsigned ParamAreaSize,unsigned & ArgOffset,unsigned & AvailableFPRs,unsigned & AvailableVRs,bool HasQPX)3320 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3321                                    ISD::ArgFlagsTy Flags,
3322                                    unsigned PtrByteSize,
3323                                    unsigned LinkageSize,
3324                                    unsigned ParamAreaSize,
3325                                    unsigned &ArgOffset,
3326                                    unsigned &AvailableFPRs,
3327                                    unsigned &AvailableVRs, bool HasQPX) {
3328   bool UseMemory = false;
3329 
3330   // Respect alignment of argument on the stack.
3331   unsigned Align =
3332     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3333   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3334   // If there's no space left in the argument save area, we must
3335   // use memory (this check also catches zero-sized arguments).
3336   if (ArgOffset >= LinkageSize + ParamAreaSize)
3337     UseMemory = true;
3338 
3339   // Allocate argument on the stack.
3340   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3341   if (Flags.isInConsecutiveRegsLast())
3342     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3343   // If we overran the argument save area, we must use memory
3344   // (this check catches arguments passed partially in memory)
3345   if (ArgOffset > LinkageSize + ParamAreaSize)
3346     UseMemory = true;
3347 
3348   // However, if the argument is actually passed in an FPR or a VR,
3349   // we don't use memory after all.
3350   if (!Flags.isByVal()) {
3351     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3352         // QPX registers overlap with the scalar FP registers.
3353         (HasQPX && (ArgVT == MVT::v4f32 ||
3354                     ArgVT == MVT::v4f64 ||
3355                     ArgVT == MVT::v4i1)))
3356       if (AvailableFPRs > 0) {
3357         --AvailableFPRs;
3358         return false;
3359       }
3360     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3361         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3362         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3363         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3364       if (AvailableVRs > 0) {
3365         --AvailableVRs;
3366         return false;
3367       }
3368   }
3369 
3370   return UseMemory;
3371 }
3372 
3373 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3374 /// ensure minimum alignment required for target.
EnsureStackAlignment(const PPCFrameLowering * Lowering,unsigned NumBytes)3375 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3376                                      unsigned NumBytes) {
3377   unsigned TargetAlign = Lowering->getStackAlignment();
3378   unsigned AlignMask = TargetAlign - 1;
3379   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3380   return NumBytes;
3381 }
3382 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3383 SDValue PPCTargetLowering::LowerFormalArguments(
3384     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3385     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3386     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3387   if (Subtarget.isSVR4ABI()) {
3388     if (Subtarget.isPPC64())
3389       return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3390                                          dl, DAG, InVals);
3391     else
3392       return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3393                                          dl, DAG, InVals);
3394   } else {
3395     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3396                                        dl, DAG, InVals);
3397   }
3398 }
3399 
LowerFormalArguments_32SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3400 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3401     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3402     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3403     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3404 
3405   // 32-bit SVR4 ABI Stack Frame Layout:
3406   //              +-----------------------------------+
3407   //        +-->  |            Back chain             |
3408   //        |     +-----------------------------------+
3409   //        |     | Floating-point register save area |
3410   //        |     +-----------------------------------+
3411   //        |     |    General register save area     |
3412   //        |     +-----------------------------------+
3413   //        |     |          CR save word             |
3414   //        |     +-----------------------------------+
3415   //        |     |         VRSAVE save word          |
3416   //        |     +-----------------------------------+
3417   //        |     |         Alignment padding         |
3418   //        |     +-----------------------------------+
3419   //        |     |     Vector register save area     |
3420   //        |     +-----------------------------------+
3421   //        |     |       Local variable space        |
3422   //        |     +-----------------------------------+
3423   //        |     |        Parameter list area        |
3424   //        |     +-----------------------------------+
3425   //        |     |           LR save word            |
3426   //        |     +-----------------------------------+
3427   // SP-->  +---  |            Back chain             |
3428   //              +-----------------------------------+
3429   //
3430   // Specifications:
3431   //   System V Application Binary Interface PowerPC Processor Supplement
3432   //   AltiVec Technology Programming Interface Manual
3433 
3434   MachineFunction &MF = DAG.getMachineFunction();
3435   MachineFrameInfo &MFI = MF.getFrameInfo();
3436   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3437 
3438   EVT PtrVT = getPointerTy(MF.getDataLayout());
3439   // Potential tail calls could cause overwriting of argument stack slots.
3440   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3441                        (CallConv == CallingConv::Fast));
3442   unsigned PtrByteSize = 4;
3443 
3444   // Assign locations to all of the incoming arguments.
3445   SmallVector<CCValAssign, 16> ArgLocs;
3446   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3447                  *DAG.getContext());
3448 
3449   // Reserve space for the linkage area on the stack.
3450   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3451   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3452   if (useSoftFloat() || hasSPE())
3453     CCInfo.PreAnalyzeFormalArguments(Ins);
3454 
3455   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3456   CCInfo.clearWasPPCF128();
3457 
3458   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3459     CCValAssign &VA = ArgLocs[i];
3460 
3461     // Arguments stored in registers.
3462     if (VA.isRegLoc()) {
3463       const TargetRegisterClass *RC;
3464       EVT ValVT = VA.getValVT();
3465 
3466       switch (ValVT.getSimpleVT().SimpleTy) {
3467         default:
3468           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3469         case MVT::i1:
3470         case MVT::i32:
3471           RC = &PPC::GPRCRegClass;
3472           break;
3473         case MVT::f32:
3474           if (Subtarget.hasP8Vector())
3475             RC = &PPC::VSSRCRegClass;
3476           else if (Subtarget.hasSPE())
3477             RC = &PPC::SPE4RCRegClass;
3478           else
3479             RC = &PPC::F4RCRegClass;
3480           break;
3481         case MVT::f64:
3482           if (Subtarget.hasVSX())
3483             RC = &PPC::VSFRCRegClass;
3484           else if (Subtarget.hasSPE())
3485             RC = &PPC::SPERCRegClass;
3486           else
3487             RC = &PPC::F8RCRegClass;
3488           break;
3489         case MVT::v16i8:
3490         case MVT::v8i16:
3491         case MVT::v4i32:
3492           RC = &PPC::VRRCRegClass;
3493           break;
3494         case MVT::v4f32:
3495           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3496           break;
3497         case MVT::v2f64:
3498         case MVT::v2i64:
3499           RC = &PPC::VRRCRegClass;
3500           break;
3501         case MVT::v4f64:
3502           RC = &PPC::QFRCRegClass;
3503           break;
3504         case MVT::v4i1:
3505           RC = &PPC::QBRCRegClass;
3506           break;
3507       }
3508 
3509       // Transform the arguments stored in physical registers into virtual ones.
3510       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3511       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3512                                             ValVT == MVT::i1 ? MVT::i32 : ValVT);
3513 
3514       if (ValVT == MVT::i1)
3515         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3516 
3517       InVals.push_back(ArgValue);
3518     } else {
3519       // Argument stored in memory.
3520       assert(VA.isMemLoc());
3521 
3522       // Get the extended size of the argument type in stack
3523       unsigned ArgSize = VA.getLocVT().getStoreSize();
3524       // Get the actual size of the argument type
3525       unsigned ObjSize = VA.getValVT().getStoreSize();
3526       unsigned ArgOffset = VA.getLocMemOffset();
3527       // Stack objects in PPC32 are right justified.
3528       ArgOffset += ArgSize - ObjSize;
3529       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3530 
3531       // Create load nodes to retrieve arguments from the stack.
3532       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3533       InVals.push_back(
3534           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3535     }
3536   }
3537 
3538   // Assign locations to all of the incoming aggregate by value arguments.
3539   // Aggregates passed by value are stored in the local variable space of the
3540   // caller's stack frame, right above the parameter list area.
3541   SmallVector<CCValAssign, 16> ByValArgLocs;
3542   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3543                       ByValArgLocs, *DAG.getContext());
3544 
3545   // Reserve stack space for the allocations in CCInfo.
3546   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3547 
3548   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3549 
3550   // Area that is at least reserved in the caller of this function.
3551   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3552   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3553 
3554   // Set the size that is at least reserved in caller of this function.  Tail
3555   // call optimized function's reserved stack space needs to be aligned so that
3556   // taking the difference between two stack areas will result in an aligned
3557   // stack.
3558   MinReservedArea =
3559       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3560   FuncInfo->setMinReservedArea(MinReservedArea);
3561 
3562   SmallVector<SDValue, 8> MemOps;
3563 
3564   // If the function takes variable number of arguments, make a frame index for
3565   // the start of the first vararg value... for expansion of llvm.va_start.
3566   if (isVarArg) {
3567     static const MCPhysReg GPArgRegs[] = {
3568       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3569       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3570     };
3571     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3572 
3573     static const MCPhysReg FPArgRegs[] = {
3574       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3575       PPC::F8
3576     };
3577     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3578 
3579     if (useSoftFloat() || hasSPE())
3580        NumFPArgRegs = 0;
3581 
3582     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3583     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3584 
3585     // Make room for NumGPArgRegs and NumFPArgRegs.
3586     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3587                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3588 
3589     FuncInfo->setVarArgsStackOffset(
3590       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3591                             CCInfo.getNextStackOffset(), true));
3592 
3593     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3594     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3595 
3596     // The fixed integer arguments of a variadic function are stored to the
3597     // VarArgsFrameIndex on the stack so that they may be loaded by
3598     // dereferencing the result of va_next.
3599     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3600       // Get an existing live-in vreg, or add a new one.
3601       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3602       if (!VReg)
3603         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3604 
3605       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3606       SDValue Store =
3607           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3608       MemOps.push_back(Store);
3609       // Increment the address by four for the next argument to store
3610       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3611       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3612     }
3613 
3614     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3615     // is set.
3616     // The double arguments are stored to the VarArgsFrameIndex
3617     // on the stack.
3618     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3619       // Get an existing live-in vreg, or add a new one.
3620       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3621       if (!VReg)
3622         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3623 
3624       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3625       SDValue Store =
3626           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3627       MemOps.push_back(Store);
3628       // Increment the address by eight for the next argument to store
3629       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3630                                          PtrVT);
3631       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3632     }
3633   }
3634 
3635   if (!MemOps.empty())
3636     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3637 
3638   return Chain;
3639 }
3640 
3641 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3642 // value to MVT::i64 and then truncate to the correct register size.
extendArgForPPC64(ISD::ArgFlagsTy Flags,EVT ObjectVT,SelectionDAG & DAG,SDValue ArgVal,const SDLoc & dl) const3643 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3644                                              EVT ObjectVT, SelectionDAG &DAG,
3645                                              SDValue ArgVal,
3646                                              const SDLoc &dl) const {
3647   if (Flags.isSExt())
3648     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3649                          DAG.getValueType(ObjectVT));
3650   else if (Flags.isZExt())
3651     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3652                          DAG.getValueType(ObjectVT));
3653 
3654   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3655 }
3656 
LowerFormalArguments_64SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3657 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3658     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3659     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3660     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3661   // TODO: add description of PPC stack frame format, or at least some docs.
3662   //
3663   bool isELFv2ABI = Subtarget.isELFv2ABI();
3664   bool isLittleEndian = Subtarget.isLittleEndian();
3665   MachineFunction &MF = DAG.getMachineFunction();
3666   MachineFrameInfo &MFI = MF.getFrameInfo();
3667   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3668 
3669   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3670          "fastcc not supported on varargs functions");
3671 
3672   EVT PtrVT = getPointerTy(MF.getDataLayout());
3673   // Potential tail calls could cause overwriting of argument stack slots.
3674   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3675                        (CallConv == CallingConv::Fast));
3676   unsigned PtrByteSize = 8;
3677   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3678 
3679   static const MCPhysReg GPR[] = {
3680     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3681     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3682   };
3683   static const MCPhysReg VR[] = {
3684     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3685     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3686   };
3687 
3688   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3689   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3690   const unsigned Num_VR_Regs  = array_lengthof(VR);
3691   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3692 
3693   // Do a first pass over the arguments to determine whether the ABI
3694   // guarantees that our caller has allocated the parameter save area
3695   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3696   // in the ELFv2 ABI, it is true if this is a vararg function or if
3697   // any parameter is located in a stack slot.
3698 
3699   bool HasParameterArea = !isELFv2ABI || isVarArg;
3700   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3701   unsigned NumBytes = LinkageSize;
3702   unsigned AvailableFPRs = Num_FPR_Regs;
3703   unsigned AvailableVRs = Num_VR_Regs;
3704   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3705     if (Ins[i].Flags.isNest())
3706       continue;
3707 
3708     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3709                                PtrByteSize, LinkageSize, ParamAreaSize,
3710                                NumBytes, AvailableFPRs, AvailableVRs,
3711                                Subtarget.hasQPX()))
3712       HasParameterArea = true;
3713   }
3714 
3715   // Add DAG nodes to load the arguments or copy them out of registers.  On
3716   // entry to a function on PPC, the arguments start after the linkage area,
3717   // although the first ones are often in registers.
3718 
3719   unsigned ArgOffset = LinkageSize;
3720   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3721   unsigned &QFPR_idx = FPR_idx;
3722   SmallVector<SDValue, 8> MemOps;
3723   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3724   unsigned CurArgIdx = 0;
3725   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3726     SDValue ArgVal;
3727     bool needsLoad = false;
3728     EVT ObjectVT = Ins[ArgNo].VT;
3729     EVT OrigVT = Ins[ArgNo].ArgVT;
3730     unsigned ObjSize = ObjectVT.getStoreSize();
3731     unsigned ArgSize = ObjSize;
3732     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3733     if (Ins[ArgNo].isOrigArg()) {
3734       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3735       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3736     }
3737     // We re-align the argument offset for each argument, except when using the
3738     // fast calling convention, when we need to make sure we do that only when
3739     // we'll actually use a stack slot.
3740     unsigned CurArgOffset, Align;
3741     auto ComputeArgOffset = [&]() {
3742       /* Respect alignment of argument on the stack.  */
3743       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3744       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3745       CurArgOffset = ArgOffset;
3746     };
3747 
3748     if (CallConv != CallingConv::Fast) {
3749       ComputeArgOffset();
3750 
3751       /* Compute GPR index associated with argument offset.  */
3752       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3753       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3754     }
3755 
3756     // FIXME the codegen can be much improved in some cases.
3757     // We do not have to keep everything in memory.
3758     if (Flags.isByVal()) {
3759       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3760 
3761       if (CallConv == CallingConv::Fast)
3762         ComputeArgOffset();
3763 
3764       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3765       ObjSize = Flags.getByValSize();
3766       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3767       // Empty aggregate parameters do not take up registers.  Examples:
3768       //   struct { } a;
3769       //   union  { } b;
3770       //   int c[0];
3771       // etc.  However, we have to provide a place-holder in InVals, so
3772       // pretend we have an 8-byte item at the current address for that
3773       // purpose.
3774       if (!ObjSize) {
3775         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3776         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3777         InVals.push_back(FIN);
3778         continue;
3779       }
3780 
3781       // Create a stack object covering all stack doublewords occupied
3782       // by the argument.  If the argument is (fully or partially) on
3783       // the stack, or if the argument is fully in registers but the
3784       // caller has allocated the parameter save anyway, we can refer
3785       // directly to the caller's stack frame.  Otherwise, create a
3786       // local copy in our own frame.
3787       int FI;
3788       if (HasParameterArea ||
3789           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3790         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3791       else
3792         FI = MFI.CreateStackObject(ArgSize, Align, false);
3793       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3794 
3795       // Handle aggregates smaller than 8 bytes.
3796       if (ObjSize < PtrByteSize) {
3797         // The value of the object is its address, which differs from the
3798         // address of the enclosing doubleword on big-endian systems.
3799         SDValue Arg = FIN;
3800         if (!isLittleEndian) {
3801           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3802           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3803         }
3804         InVals.push_back(Arg);
3805 
3806         if (GPR_idx != Num_GPR_Regs) {
3807           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3808           FuncInfo->addLiveInAttr(VReg, Flags);
3809           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3810           SDValue Store;
3811 
3812           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3813             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3814                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3815             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3816                                       MachinePointerInfo(&*FuncArg), ObjType);
3817           } else {
3818             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3819             // store the whole register as-is to the parameter save area
3820             // slot.
3821             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3822                                  MachinePointerInfo(&*FuncArg));
3823           }
3824 
3825           MemOps.push_back(Store);
3826         }
3827         // Whether we copied from a register or not, advance the offset
3828         // into the parameter save area by a full doubleword.
3829         ArgOffset += PtrByteSize;
3830         continue;
3831       }
3832 
3833       // The value of the object is its address, which is the address of
3834       // its first stack doubleword.
3835       InVals.push_back(FIN);
3836 
3837       // Store whatever pieces of the object are in registers to memory.
3838       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3839         if (GPR_idx == Num_GPR_Regs)
3840           break;
3841 
3842         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3843         FuncInfo->addLiveInAttr(VReg, Flags);
3844         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3845         SDValue Addr = FIN;
3846         if (j) {
3847           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3848           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3849         }
3850         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3851                                      MachinePointerInfo(&*FuncArg, j));
3852         MemOps.push_back(Store);
3853         ++GPR_idx;
3854       }
3855       ArgOffset += ArgSize;
3856       continue;
3857     }
3858 
3859     switch (ObjectVT.getSimpleVT().SimpleTy) {
3860     default: llvm_unreachable("Unhandled argument type!");
3861     case MVT::i1:
3862     case MVT::i32:
3863     case MVT::i64:
3864       if (Flags.isNest()) {
3865         // The 'nest' parameter, if any, is passed in R11.
3866         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3867         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3868 
3869         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3870           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3871 
3872         break;
3873       }
3874 
3875       // These can be scalar arguments or elements of an integer array type
3876       // passed directly.  Clang may use those instead of "byval" aggregate
3877       // types to avoid forcing arguments to memory unnecessarily.
3878       if (GPR_idx != Num_GPR_Regs) {
3879         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3880         FuncInfo->addLiveInAttr(VReg, Flags);
3881         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3882 
3883         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3884           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3885           // value to MVT::i64 and then truncate to the correct register size.
3886           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3887       } else {
3888         if (CallConv == CallingConv::Fast)
3889           ComputeArgOffset();
3890 
3891         needsLoad = true;
3892         ArgSize = PtrByteSize;
3893       }
3894       if (CallConv != CallingConv::Fast || needsLoad)
3895         ArgOffset += 8;
3896       break;
3897 
3898     case MVT::f32:
3899     case MVT::f64:
3900       // These can be scalar arguments or elements of a float array type
3901       // passed directly.  The latter are used to implement ELFv2 homogenous
3902       // float aggregates.
3903       if (FPR_idx != Num_FPR_Regs) {
3904         unsigned VReg;
3905 
3906         if (ObjectVT == MVT::f32)
3907           VReg = MF.addLiveIn(FPR[FPR_idx],
3908                               Subtarget.hasP8Vector()
3909                                   ? &PPC::VSSRCRegClass
3910                                   : &PPC::F4RCRegClass);
3911         else
3912           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3913                                                 ? &PPC::VSFRCRegClass
3914                                                 : &PPC::F8RCRegClass);
3915 
3916         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3917         ++FPR_idx;
3918       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3919         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3920         // once we support fp <-> gpr moves.
3921 
3922         // This can only ever happen in the presence of f32 array types,
3923         // since otherwise we never run out of FPRs before running out
3924         // of GPRs.
3925         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3926         FuncInfo->addLiveInAttr(VReg, Flags);
3927         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3928 
3929         if (ObjectVT == MVT::f32) {
3930           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3931             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3932                                  DAG.getConstant(32, dl, MVT::i32));
3933           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3934         }
3935 
3936         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3937       } else {
3938         if (CallConv == CallingConv::Fast)
3939           ComputeArgOffset();
3940 
3941         needsLoad = true;
3942       }
3943 
3944       // When passing an array of floats, the array occupies consecutive
3945       // space in the argument area; only round up to the next doubleword
3946       // at the end of the array.  Otherwise, each float takes 8 bytes.
3947       if (CallConv != CallingConv::Fast || needsLoad) {
3948         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3949         ArgOffset += ArgSize;
3950         if (Flags.isInConsecutiveRegsLast())
3951           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3952       }
3953       break;
3954     case MVT::v4f32:
3955     case MVT::v4i32:
3956     case MVT::v8i16:
3957     case MVT::v16i8:
3958     case MVT::v2f64:
3959     case MVT::v2i64:
3960     case MVT::v1i128:
3961     case MVT::f128:
3962       if (!Subtarget.hasQPX()) {
3963         // These can be scalar arguments or elements of a vector array type
3964         // passed directly.  The latter are used to implement ELFv2 homogenous
3965         // vector aggregates.
3966         if (VR_idx != Num_VR_Regs) {
3967           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3968           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3969           ++VR_idx;
3970         } else {
3971           if (CallConv == CallingConv::Fast)
3972             ComputeArgOffset();
3973           needsLoad = true;
3974         }
3975         if (CallConv != CallingConv::Fast || needsLoad)
3976           ArgOffset += 16;
3977         break;
3978       } // not QPX
3979 
3980       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3981              "Invalid QPX parameter type");
3982       LLVM_FALLTHROUGH;
3983 
3984     case MVT::v4f64:
3985     case MVT::v4i1:
3986       // QPX vectors are treated like their scalar floating-point subregisters
3987       // (except that they're larger).
3988       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3989       if (QFPR_idx != Num_QFPR_Regs) {
3990         const TargetRegisterClass *RC;
3991         switch (ObjectVT.getSimpleVT().SimpleTy) {
3992         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3993         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3994         default:         RC = &PPC::QBRCRegClass; break;
3995         }
3996 
3997         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3998         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3999         ++QFPR_idx;
4000       } else {
4001         if (CallConv == CallingConv::Fast)
4002           ComputeArgOffset();
4003         needsLoad = true;
4004       }
4005       if (CallConv != CallingConv::Fast || needsLoad)
4006         ArgOffset += Sz;
4007       break;
4008     }
4009 
4010     // We need to load the argument to a virtual register if we determined
4011     // above that we ran out of physical registers of the appropriate type.
4012     if (needsLoad) {
4013       if (ObjSize < ArgSize && !isLittleEndian)
4014         CurArgOffset += ArgSize - ObjSize;
4015       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4016       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4017       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4018     }
4019 
4020     InVals.push_back(ArgVal);
4021   }
4022 
4023   // Area that is at least reserved in the caller of this function.
4024   unsigned MinReservedArea;
4025   if (HasParameterArea)
4026     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4027   else
4028     MinReservedArea = LinkageSize;
4029 
4030   // Set the size that is at least reserved in caller of this function.  Tail
4031   // call optimized functions' reserved stack space needs to be aligned so that
4032   // taking the difference between two stack areas will result in an aligned
4033   // stack.
4034   MinReservedArea =
4035       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4036   FuncInfo->setMinReservedArea(MinReservedArea);
4037 
4038   // If the function takes variable number of arguments, make a frame index for
4039   // the start of the first vararg value... for expansion of llvm.va_start.
4040   if (isVarArg) {
4041     int Depth = ArgOffset;
4042 
4043     FuncInfo->setVarArgsFrameIndex(
4044       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4045     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4046 
4047     // If this function is vararg, store any remaining integer argument regs
4048     // to their spots on the stack so that they may be loaded by dereferencing
4049     // the result of va_next.
4050     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4051          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4052       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4053       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4054       SDValue Store =
4055           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4056       MemOps.push_back(Store);
4057       // Increment the address by four for the next argument to store
4058       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4059       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4060     }
4061   }
4062 
4063   if (!MemOps.empty())
4064     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4065 
4066   return Chain;
4067 }
4068 
LowerFormalArguments_Darwin(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4069 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4070     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4071     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4072     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4073   // TODO: add description of PPC stack frame format, or at least some docs.
4074   //
4075   MachineFunction &MF = DAG.getMachineFunction();
4076   MachineFrameInfo &MFI = MF.getFrameInfo();
4077   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4078 
4079   EVT PtrVT = getPointerTy(MF.getDataLayout());
4080   bool isPPC64 = PtrVT == MVT::i64;
4081   // Potential tail calls could cause overwriting of argument stack slots.
4082   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4083                        (CallConv == CallingConv::Fast));
4084   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4085   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4086   unsigned ArgOffset = LinkageSize;
4087   // Area that is at least reserved in caller of this function.
4088   unsigned MinReservedArea = ArgOffset;
4089 
4090   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4091     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4092     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4093   };
4094   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4095     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4096     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4097   };
4098   static const MCPhysReg VR[] = {
4099     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4100     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4101   };
4102 
4103   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4104   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4105   const unsigned Num_VR_Regs  = array_lengthof( VR);
4106 
4107   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4108 
4109   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4110 
4111   // In 32-bit non-varargs functions, the stack space for vectors is after the
4112   // stack space for non-vectors.  We do not use this space unless we have
4113   // too many vectors to fit in registers, something that only occurs in
4114   // constructed examples:), but we have to walk the arglist to figure
4115   // that out...for the pathological case, compute VecArgOffset as the
4116   // start of the vector parameter area.  Computing VecArgOffset is the
4117   // entire point of the following loop.
4118   unsigned VecArgOffset = ArgOffset;
4119   if (!isVarArg && !isPPC64) {
4120     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4121          ++ArgNo) {
4122       EVT ObjectVT = Ins[ArgNo].VT;
4123       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4124 
4125       if (Flags.isByVal()) {
4126         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4127         unsigned ObjSize = Flags.getByValSize();
4128         unsigned ArgSize =
4129                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4130         VecArgOffset += ArgSize;
4131         continue;
4132       }
4133 
4134       switch(ObjectVT.getSimpleVT().SimpleTy) {
4135       default: llvm_unreachable("Unhandled argument type!");
4136       case MVT::i1:
4137       case MVT::i32:
4138       case MVT::f32:
4139         VecArgOffset += 4;
4140         break;
4141       case MVT::i64:  // PPC64
4142       case MVT::f64:
4143         // FIXME: We are guaranteed to be !isPPC64 at this point.
4144         // Does MVT::i64 apply?
4145         VecArgOffset += 8;
4146         break;
4147       case MVT::v4f32:
4148       case MVT::v4i32:
4149       case MVT::v8i16:
4150       case MVT::v16i8:
4151         // Nothing to do, we're only looking at Nonvector args here.
4152         break;
4153       }
4154     }
4155   }
4156   // We've found where the vector parameter area in memory is.  Skip the
4157   // first 12 parameters; these don't use that memory.
4158   VecArgOffset = ((VecArgOffset+15)/16)*16;
4159   VecArgOffset += 12*16;
4160 
4161   // Add DAG nodes to load the arguments or copy them out of registers.  On
4162   // entry to a function on PPC, the arguments start after the linkage area,
4163   // although the first ones are often in registers.
4164 
4165   SmallVector<SDValue, 8> MemOps;
4166   unsigned nAltivecParamsAtEnd = 0;
4167   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4168   unsigned CurArgIdx = 0;
4169   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4170     SDValue ArgVal;
4171     bool needsLoad = false;
4172     EVT ObjectVT = Ins[ArgNo].VT;
4173     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4174     unsigned ArgSize = ObjSize;
4175     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4176     if (Ins[ArgNo].isOrigArg()) {
4177       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4178       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4179     }
4180     unsigned CurArgOffset = ArgOffset;
4181 
4182     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4183     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4184         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4185       if (isVarArg || isPPC64) {
4186         MinReservedArea = ((MinReservedArea+15)/16)*16;
4187         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4188                                                   Flags,
4189                                                   PtrByteSize);
4190       } else  nAltivecParamsAtEnd++;
4191     } else
4192       // Calculate min reserved area.
4193       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4194                                                 Flags,
4195                                                 PtrByteSize);
4196 
4197     // FIXME the codegen can be much improved in some cases.
4198     // We do not have to keep everything in memory.
4199     if (Flags.isByVal()) {
4200       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4201 
4202       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4203       ObjSize = Flags.getByValSize();
4204       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4205       // Objects of size 1 and 2 are right justified, everything else is
4206       // left justified.  This means the memory address is adjusted forwards.
4207       if (ObjSize==1 || ObjSize==2) {
4208         CurArgOffset = CurArgOffset + (4 - ObjSize);
4209       }
4210       // The value of the object is its address.
4211       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4212       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4213       InVals.push_back(FIN);
4214       if (ObjSize==1 || ObjSize==2) {
4215         if (GPR_idx != Num_GPR_Regs) {
4216           unsigned VReg;
4217           if (isPPC64)
4218             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4219           else
4220             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4221           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4222           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4223           SDValue Store =
4224               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4225                                 MachinePointerInfo(&*FuncArg), ObjType);
4226           MemOps.push_back(Store);
4227           ++GPR_idx;
4228         }
4229 
4230         ArgOffset += PtrByteSize;
4231 
4232         continue;
4233       }
4234       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4235         // Store whatever pieces of the object are in registers
4236         // to memory.  ArgOffset will be the address of the beginning
4237         // of the object.
4238         if (GPR_idx != Num_GPR_Regs) {
4239           unsigned VReg;
4240           if (isPPC64)
4241             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4242           else
4243             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4244           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4245           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4246           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4247           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4248                                        MachinePointerInfo(&*FuncArg, j));
4249           MemOps.push_back(Store);
4250           ++GPR_idx;
4251           ArgOffset += PtrByteSize;
4252         } else {
4253           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4254           break;
4255         }
4256       }
4257       continue;
4258     }
4259 
4260     switch (ObjectVT.getSimpleVT().SimpleTy) {
4261     default: llvm_unreachable("Unhandled argument type!");
4262     case MVT::i1:
4263     case MVT::i32:
4264       if (!isPPC64) {
4265         if (GPR_idx != Num_GPR_Regs) {
4266           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4267           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4268 
4269           if (ObjectVT == MVT::i1)
4270             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4271 
4272           ++GPR_idx;
4273         } else {
4274           needsLoad = true;
4275           ArgSize = PtrByteSize;
4276         }
4277         // All int arguments reserve stack space in the Darwin ABI.
4278         ArgOffset += PtrByteSize;
4279         break;
4280       }
4281       LLVM_FALLTHROUGH;
4282     case MVT::i64:  // PPC64
4283       if (GPR_idx != Num_GPR_Regs) {
4284         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4285         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4286 
4287         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4288           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4289           // value to MVT::i64 and then truncate to the correct register size.
4290           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4291 
4292         ++GPR_idx;
4293       } else {
4294         needsLoad = true;
4295         ArgSize = PtrByteSize;
4296       }
4297       // All int arguments reserve stack space in the Darwin ABI.
4298       ArgOffset += 8;
4299       break;
4300 
4301     case MVT::f32:
4302     case MVT::f64:
4303       // Every 4 bytes of argument space consumes one of the GPRs available for
4304       // argument passing.
4305       if (GPR_idx != Num_GPR_Regs) {
4306         ++GPR_idx;
4307         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4308           ++GPR_idx;
4309       }
4310       if (FPR_idx != Num_FPR_Regs) {
4311         unsigned VReg;
4312 
4313         if (ObjectVT == MVT::f32)
4314           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4315         else
4316           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4317 
4318         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4319         ++FPR_idx;
4320       } else {
4321         needsLoad = true;
4322       }
4323 
4324       // All FP arguments reserve stack space in the Darwin ABI.
4325       ArgOffset += isPPC64 ? 8 : ObjSize;
4326       break;
4327     case MVT::v4f32:
4328     case MVT::v4i32:
4329     case MVT::v8i16:
4330     case MVT::v16i8:
4331       // Note that vector arguments in registers don't reserve stack space,
4332       // except in varargs functions.
4333       if (VR_idx != Num_VR_Regs) {
4334         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4335         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4336         if (isVarArg) {
4337           while ((ArgOffset % 16) != 0) {
4338             ArgOffset += PtrByteSize;
4339             if (GPR_idx != Num_GPR_Regs)
4340               GPR_idx++;
4341           }
4342           ArgOffset += 16;
4343           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4344         }
4345         ++VR_idx;
4346       } else {
4347         if (!isVarArg && !isPPC64) {
4348           // Vectors go after all the nonvectors.
4349           CurArgOffset = VecArgOffset;
4350           VecArgOffset += 16;
4351         } else {
4352           // Vectors are aligned.
4353           ArgOffset = ((ArgOffset+15)/16)*16;
4354           CurArgOffset = ArgOffset;
4355           ArgOffset += 16;
4356         }
4357         needsLoad = true;
4358       }
4359       break;
4360     }
4361 
4362     // We need to load the argument to a virtual register if we determined above
4363     // that we ran out of physical registers of the appropriate type.
4364     if (needsLoad) {
4365       int FI = MFI.CreateFixedObject(ObjSize,
4366                                      CurArgOffset + (ArgSize - ObjSize),
4367                                      isImmutable);
4368       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4369       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4370     }
4371 
4372     InVals.push_back(ArgVal);
4373   }
4374 
4375   // Allow for Altivec parameters at the end, if needed.
4376   if (nAltivecParamsAtEnd) {
4377     MinReservedArea = ((MinReservedArea+15)/16)*16;
4378     MinReservedArea += 16*nAltivecParamsAtEnd;
4379   }
4380 
4381   // Area that is at least reserved in the caller of this function.
4382   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4383 
4384   // Set the size that is at least reserved in caller of this function.  Tail
4385   // call optimized functions' reserved stack space needs to be aligned so that
4386   // taking the difference between two stack areas will result in an aligned
4387   // stack.
4388   MinReservedArea =
4389       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4390   FuncInfo->setMinReservedArea(MinReservedArea);
4391 
4392   // If the function takes variable number of arguments, make a frame index for
4393   // the start of the first vararg value... for expansion of llvm.va_start.
4394   if (isVarArg) {
4395     int Depth = ArgOffset;
4396 
4397     FuncInfo->setVarArgsFrameIndex(
4398       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4399                             Depth, true));
4400     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4401 
4402     // If this function is vararg, store any remaining integer argument regs
4403     // to their spots on the stack so that they may be loaded by dereferencing
4404     // the result of va_next.
4405     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4406       unsigned VReg;
4407 
4408       if (isPPC64)
4409         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4410       else
4411         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4412 
4413       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4414       SDValue Store =
4415           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4416       MemOps.push_back(Store);
4417       // Increment the address by four for the next argument to store
4418       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4419       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4420     }
4421   }
4422 
4423   if (!MemOps.empty())
4424     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4425 
4426   return Chain;
4427 }
4428 
4429 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4430 /// adjusted to accommodate the arguments for the tailcall.
CalculateTailCallSPDiff(SelectionDAG & DAG,bool isTailCall,unsigned ParamSize)4431 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4432                                    unsigned ParamSize) {
4433 
4434   if (!isTailCall) return 0;
4435 
4436   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4437   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4438   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4439   // Remember only if the new adjustment is bigger.
4440   if (SPDiff < FI->getTailCallSPDelta())
4441     FI->setTailCallSPDelta(SPDiff);
4442 
4443   return SPDiff;
4444 }
4445 
4446 static bool isFunctionGlobalAddress(SDValue Callee);
4447 
4448 static bool
callsShareTOCBase(const Function * Caller,SDValue Callee,const TargetMachine & TM)4449 callsShareTOCBase(const Function *Caller, SDValue Callee,
4450                     const TargetMachine &TM) {
4451   // If !G, Callee can be an external symbol.
4452   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4453   if (!G)
4454     return false;
4455 
4456   // The medium and large code models are expected to provide a sufficiently
4457   // large TOC to provide all data addressing needs of a module with a
4458   // single TOC. Since each module will be addressed with a single TOC then we
4459   // only need to check that caller and callee don't cross dso boundaries.
4460   if (CodeModel::Medium == TM.getCodeModel() ||
4461       CodeModel::Large == TM.getCodeModel())
4462     return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4463 
4464   // Otherwise we need to ensure callee and caller are in the same section,
4465   // since the linker may allocate multiple TOCs, and we don't know which
4466   // sections will belong to the same TOC base.
4467 
4468   const GlobalValue *GV = G->getGlobal();
4469   if (!GV->isStrongDefinitionForLinker())
4470     return false;
4471 
4472   // Any explicitly-specified sections and section prefixes must also match.
4473   // Also, if we're using -ffunction-sections, then each function is always in
4474   // a different section (the same is true for COMDAT functions).
4475   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4476       GV->getSection() != Caller->getSection())
4477     return false;
4478   if (const auto *F = dyn_cast<Function>(GV)) {
4479     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4480       return false;
4481   }
4482 
4483   // If the callee might be interposed, then we can't assume the ultimate call
4484   // target will be in the same section. Even in cases where we can assume that
4485   // interposition won't happen, in any case where the linker might insert a
4486   // stub to allow for interposition, we must generate code as though
4487   // interposition might occur. To understand why this matters, consider a
4488   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4489   // in the same section, but a is in a different module (i.e. has a different
4490   // TOC base pointer). If the linker allows for interposition between b and c,
4491   // then it will generate a stub for the call edge between b and c which will
4492   // save the TOC pointer into the designated stack slot allocated by b. If we
4493   // return true here, and therefore allow a tail call between b and c, that
4494   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4495   // pointer into the stack slot allocated by a (where the a -> b stub saved
4496   // a's TOC base pointer). If we're not considering a tail call, but rather,
4497   // whether a nop is needed after the call instruction in b, because the linker
4498   // will insert a stub, it might complain about a missing nop if we omit it
4499   // (although many don't complain in this case).
4500   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4501     return false;
4502 
4503   return true;
4504 }
4505 
4506 static bool
needStackSlotPassParameters(const PPCSubtarget & Subtarget,const SmallVectorImpl<ISD::OutputArg> & Outs)4507 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4508                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4509   assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4510 
4511   const unsigned PtrByteSize = 8;
4512   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4513 
4514   static const MCPhysReg GPR[] = {
4515     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4516     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4517   };
4518   static const MCPhysReg VR[] = {
4519     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4520     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4521   };
4522 
4523   const unsigned NumGPRs = array_lengthof(GPR);
4524   const unsigned NumFPRs = 13;
4525   const unsigned NumVRs = array_lengthof(VR);
4526   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4527 
4528   unsigned NumBytes = LinkageSize;
4529   unsigned AvailableFPRs = NumFPRs;
4530   unsigned AvailableVRs = NumVRs;
4531 
4532   for (const ISD::OutputArg& Param : Outs) {
4533     if (Param.Flags.isNest()) continue;
4534 
4535     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4536                                PtrByteSize, LinkageSize, ParamAreaSize,
4537                                NumBytes, AvailableFPRs, AvailableVRs,
4538                                Subtarget.hasQPX()))
4539       return true;
4540   }
4541   return false;
4542 }
4543 
4544 static bool
hasSameArgumentList(const Function * CallerFn,ImmutableCallSite CS)4545 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4546   if (CS.arg_size() != CallerFn->arg_size())
4547     return false;
4548 
4549   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4550   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4551   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4552 
4553   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4554     const Value* CalleeArg = *CalleeArgIter;
4555     const Value* CallerArg = &(*CallerArgIter);
4556     if (CalleeArg == CallerArg)
4557       continue;
4558 
4559     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4560     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4561     //      }
4562     // 1st argument of callee is undef and has the same type as caller.
4563     if (CalleeArg->getType() == CallerArg->getType() &&
4564         isa<UndefValue>(CalleeArg))
4565       continue;
4566 
4567     return false;
4568   }
4569 
4570   return true;
4571 }
4572 
4573 // Returns true if TCO is possible between the callers and callees
4574 // calling conventions.
4575 static bool
areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,CallingConv::ID CalleeCC)4576 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4577                                     CallingConv::ID CalleeCC) {
4578   // Tail calls are possible with fastcc and ccc.
4579   auto isTailCallableCC  = [] (CallingConv::ID CC){
4580       return  CC == CallingConv::C || CC == CallingConv::Fast;
4581   };
4582   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4583     return false;
4584 
4585   // We can safely tail call both fastcc and ccc callees from a c calling
4586   // convention caller. If the caller is fastcc, we may have less stack space
4587   // than a non-fastcc caller with the same signature so disable tail-calls in
4588   // that case.
4589   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4590 }
4591 
4592 bool
IsEligibleForTailCallOptimization_64SVR4(SDValue Callee,CallingConv::ID CalleeCC,ImmutableCallSite CS,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const4593 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4594                                     SDValue Callee,
4595                                     CallingConv::ID CalleeCC,
4596                                     ImmutableCallSite CS,
4597                                     bool isVarArg,
4598                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4599                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4600                                     SelectionDAG& DAG) const {
4601   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4602 
4603   if (DisableSCO && !TailCallOpt) return false;
4604 
4605   // Variadic argument functions are not supported.
4606   if (isVarArg) return false;
4607 
4608   auto &Caller = DAG.getMachineFunction().getFunction();
4609   // Check that the calling conventions are compatible for tco.
4610   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4611     return false;
4612 
4613   // Caller contains any byval parameter is not supported.
4614   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4615     return false;
4616 
4617   // Callee contains any byval parameter is not supported, too.
4618   // Note: This is a quick work around, because in some cases, e.g.
4619   // caller's stack size > callee's stack size, we are still able to apply
4620   // sibling call optimization. For example, gcc is able to do SCO for caller1
4621   // in the following example, but not for caller2.
4622   //   struct test {
4623   //     long int a;
4624   //     char ary[56];
4625   //   } gTest;
4626   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4627   //     b->a = v.a;
4628   //     return 0;
4629   //   }
4630   //   void caller1(struct test a, struct test c, struct test *b) {
4631   //     callee(gTest, b); }
4632   //   void caller2(struct test *b) { callee(gTest, b); }
4633   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4634     return false;
4635 
4636   // If callee and caller use different calling conventions, we cannot pass
4637   // parameters on stack since offsets for the parameter area may be different.
4638   if (Caller.getCallingConv() != CalleeCC &&
4639       needStackSlotPassParameters(Subtarget, Outs))
4640     return false;
4641 
4642   // No TCO/SCO on indirect call because Caller have to restore its TOC
4643   if (!isFunctionGlobalAddress(Callee) &&
4644       !isa<ExternalSymbolSDNode>(Callee))
4645     return false;
4646 
4647   // If the caller and callee potentially have different TOC bases then we
4648   // cannot tail call since we need to restore the TOC pointer after the call.
4649   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4650   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4651     return false;
4652 
4653   // TCO allows altering callee ABI, so we don't have to check further.
4654   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4655     return true;
4656 
4657   if (DisableSCO) return false;
4658 
4659   // If callee use the same argument list that caller is using, then we can
4660   // apply SCO on this case. If it is not, then we need to check if callee needs
4661   // stack for passing arguments.
4662   if (!hasSameArgumentList(&Caller, CS) &&
4663       needStackSlotPassParameters(Subtarget, Outs)) {
4664     return false;
4665   }
4666 
4667   return true;
4668 }
4669 
4670 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4671 /// for tail call optimization. Targets which want to do tail call
4672 /// optimization should implement this function.
4673 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const4674 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4675                                                      CallingConv::ID CalleeCC,
4676                                                      bool isVarArg,
4677                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4678                                                      SelectionDAG& DAG) const {
4679   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4680     return false;
4681 
4682   // Variable argument functions are not supported.
4683   if (isVarArg)
4684     return false;
4685 
4686   MachineFunction &MF = DAG.getMachineFunction();
4687   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4688   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4689     // Functions containing by val parameters are not supported.
4690     for (unsigned i = 0; i != Ins.size(); i++) {
4691        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4692        if (Flags.isByVal()) return false;
4693     }
4694 
4695     // Non-PIC/GOT tail calls are supported.
4696     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4697       return true;
4698 
4699     // At the moment we can only do local tail calls (in same module, hidden
4700     // or protected) if we are generating PIC.
4701     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4702       return G->getGlobal()->hasHiddenVisibility()
4703           || G->getGlobal()->hasProtectedVisibility();
4704   }
4705 
4706   return false;
4707 }
4708 
4709 /// isCallCompatibleAddress - Return the immediate to use if the specified
4710 /// 32-bit value is representable in the immediate field of a BxA instruction.
isBLACompatibleAddress(SDValue Op,SelectionDAG & DAG)4711 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4712   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4713   if (!C) return nullptr;
4714 
4715   int Addr = C->getZExtValue();
4716   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4717       SignExtend32<26>(Addr) != Addr)
4718     return nullptr;  // Top 6 bits have to be sext of immediate.
4719 
4720   return DAG
4721       .getConstant(
4722           (int)C->getZExtValue() >> 2, SDLoc(Op),
4723           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4724       .getNode();
4725 }
4726 
4727 namespace {
4728 
4729 struct TailCallArgumentInfo {
4730   SDValue Arg;
4731   SDValue FrameIdxOp;
4732   int FrameIdx = 0;
4733 
4734   TailCallArgumentInfo() = default;
4735 };
4736 
4737 } // end anonymous namespace
4738 
4739 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
StoreTailCallArgumentsToStackSlot(SelectionDAG & DAG,SDValue Chain,const SmallVectorImpl<TailCallArgumentInfo> & TailCallArgs,SmallVectorImpl<SDValue> & MemOpChains,const SDLoc & dl)4740 static void StoreTailCallArgumentsToStackSlot(
4741     SelectionDAG &DAG, SDValue Chain,
4742     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4743     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4744   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4745     SDValue Arg = TailCallArgs[i].Arg;
4746     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4747     int FI = TailCallArgs[i].FrameIdx;
4748     // Store relative to framepointer.
4749     MemOpChains.push_back(DAG.getStore(
4750         Chain, dl, Arg, FIN,
4751         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4752   }
4753 }
4754 
4755 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4756 /// the appropriate stack slot for the tail call optimized function call.
EmitTailCallStoreFPAndRetAddr(SelectionDAG & DAG,SDValue Chain,SDValue OldRetAddr,SDValue OldFP,int SPDiff,const SDLoc & dl)4757 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4758                                              SDValue OldRetAddr, SDValue OldFP,
4759                                              int SPDiff, const SDLoc &dl) {
4760   if (SPDiff) {
4761     // Calculate the new stack slot for the return address.
4762     MachineFunction &MF = DAG.getMachineFunction();
4763     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4764     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4765     bool isPPC64 = Subtarget.isPPC64();
4766     int SlotSize = isPPC64 ? 8 : 4;
4767     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4768     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4769                                                          NewRetAddrLoc, true);
4770     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4771     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4772     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4773                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4774 
4775     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4776     // slot as the FP is never overwritten.
4777     if (Subtarget.isDarwinABI()) {
4778       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4779       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4780                                                          true);
4781       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4782       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4783                            MachinePointerInfo::getFixedStack(
4784                                DAG.getMachineFunction(), NewFPIdx));
4785     }
4786   }
4787   return Chain;
4788 }
4789 
4790 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4791 /// the position of the argument.
4792 static void
CalculateTailCallArgDest(SelectionDAG & DAG,MachineFunction & MF,bool isPPC64,SDValue Arg,int SPDiff,unsigned ArgOffset,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)4793 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4794                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4795                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4796   int Offset = ArgOffset + SPDiff;
4797   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4798   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4799   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4800   SDValue FIN = DAG.getFrameIndex(FI, VT);
4801   TailCallArgumentInfo Info;
4802   Info.Arg = Arg;
4803   Info.FrameIdxOp = FIN;
4804   Info.FrameIdx = FI;
4805   TailCallArguments.push_back(Info);
4806 }
4807 
4808 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4809 /// stack slot. Returns the chain as result and the loaded frame pointers in
4810 /// LROpOut/FPOpout. Used when tail calling.
EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,int SPDiff,SDValue Chain,SDValue & LROpOut,SDValue & FPOpOut,const SDLoc & dl) const4811 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4812     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4813     SDValue &FPOpOut, const SDLoc &dl) const {
4814   if (SPDiff) {
4815     // Load the LR and FP stack slot for later adjusting.
4816     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4817     LROpOut = getReturnAddrFrameIndex(DAG);
4818     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4819     Chain = SDValue(LROpOut.getNode(), 1);
4820 
4821     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4822     // slot as the FP is never overwritten.
4823     if (Subtarget.isDarwinABI()) {
4824       FPOpOut = getFramePointerFrameIndex(DAG);
4825       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4826       Chain = SDValue(FPOpOut.getNode(), 1);
4827     }
4828   }
4829   return Chain;
4830 }
4831 
4832 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4833 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4834 /// specified by the specific parameter attribute. The copy will be passed as
4835 /// a byval function parameter.
4836 /// Sometimes what we are copying is the end of a larger object, the part that
4837 /// does not fit in registers.
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl)4838 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4839                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4840                                          SelectionDAG &DAG, const SDLoc &dl) {
4841   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4842   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4843                        false, false, false, MachinePointerInfo(),
4844                        MachinePointerInfo());
4845 }
4846 
4847 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4848 /// tail calls.
LowerMemOpCallTo(SelectionDAG & DAG,MachineFunction & MF,SDValue Chain,SDValue Arg,SDValue PtrOff,int SPDiff,unsigned ArgOffset,bool isPPC64,bool isTailCall,bool isVector,SmallVectorImpl<SDValue> & MemOpChains,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments,const SDLoc & dl)4849 static void LowerMemOpCallTo(
4850     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4851     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4852     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4853     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4854   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4855   if (!isTailCall) {
4856     if (isVector) {
4857       SDValue StackPtr;
4858       if (isPPC64)
4859         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4860       else
4861         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4862       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4863                            DAG.getConstant(ArgOffset, dl, PtrVT));
4864     }
4865     MemOpChains.push_back(
4866         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4867     // Calculate and remember argument location.
4868   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4869                                   TailCallArguments);
4870 }
4871 
4872 static void
PrepareTailCall(SelectionDAG & DAG,SDValue & InFlag,SDValue & Chain,const SDLoc & dl,int SPDiff,unsigned NumBytes,SDValue LROp,SDValue FPOp,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)4873 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4874                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4875                 SDValue FPOp,
4876                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4877   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4878   // might overwrite each other in case of tail call optimization.
4879   SmallVector<SDValue, 8> MemOpChains2;
4880   // Do not flag preceding copytoreg stuff together with the following stuff.
4881   InFlag = SDValue();
4882   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4883                                     MemOpChains2, dl);
4884   if (!MemOpChains2.empty())
4885     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4886 
4887   // Store the return address to the appropriate stack slot.
4888   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4889 
4890   // Emit callseq_end just before tailcall node.
4891   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4892                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4893   InFlag = Chain.getValue(1);
4894 }
4895 
4896 // Is this global address that of a function that can be called by name? (as
4897 // opposed to something that must hold a descriptor for an indirect call).
isFunctionGlobalAddress(SDValue Callee)4898 static bool isFunctionGlobalAddress(SDValue Callee) {
4899   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4900     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4901         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4902       return false;
4903 
4904     return G->getGlobal()->getValueType()->isFunctionTy();
4905   }
4906 
4907   return false;
4908 }
4909 
4910 static unsigned
PrepareCall(SelectionDAG & DAG,SDValue & Callee,SDValue & InFlag,SDValue & Chain,SDValue CallSeqStart,const SDLoc & dl,int SPDiff,bool isTailCall,bool isPatchPoint,bool hasNest,SmallVectorImpl<std::pair<unsigned,SDValue>> & RegsToPass,SmallVectorImpl<SDValue> & Ops,std::vector<EVT> & NodeTys,ImmutableCallSite CS,const PPCSubtarget & Subtarget)4911 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4912             SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4913             bool isPatchPoint, bool hasNest,
4914             SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4915             SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4916             ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4917   bool isPPC64 = Subtarget.isPPC64();
4918   bool isSVR4ABI = Subtarget.isSVR4ABI();
4919   bool isELFv2ABI = Subtarget.isELFv2ABI();
4920 
4921   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4922   NodeTys.push_back(MVT::Other);   // Returns a chain
4923   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
4924 
4925   unsigned CallOpc = PPCISD::CALL;
4926 
4927   bool needIndirectCall = true;
4928   if (!isSVR4ABI || !isPPC64)
4929     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4930       // If this is an absolute destination address, use the munged value.
4931       Callee = SDValue(Dest, 0);
4932       needIndirectCall = false;
4933     }
4934 
4935   // PC-relative references to external symbols should go through $stub, unless
4936   // we're building with the leopard linker or later, which automatically
4937   // synthesizes these stubs.
4938   const TargetMachine &TM = DAG.getTarget();
4939   const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4940   const GlobalValue *GV = nullptr;
4941   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4942     GV = G->getGlobal();
4943   bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4944   bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4945 
4946   if (isFunctionGlobalAddress(Callee)) {
4947     GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4948     // A call to a TLS address is actually an indirect call to a
4949     // thread-specific pointer.
4950     unsigned OpFlags = 0;
4951     if (UsePlt)
4952       OpFlags = PPCII::MO_PLT;
4953 
4954     // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4955     // every direct call is) turn it into a TargetGlobalAddress /
4956     // TargetExternalSymbol node so that legalize doesn't hack it.
4957     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4958                                         Callee.getValueType(), 0, OpFlags);
4959     needIndirectCall = false;
4960   }
4961 
4962   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4963     unsigned char OpFlags = 0;
4964 
4965     if (UsePlt)
4966       OpFlags = PPCII::MO_PLT;
4967 
4968     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4969                                          OpFlags);
4970     needIndirectCall = false;
4971   }
4972 
4973   if (isPatchPoint) {
4974     // We'll form an invalid direct call when lowering a patchpoint; the full
4975     // sequence for an indirect call is complicated, and many of the
4976     // instructions introduced might have side effects (and, thus, can't be
4977     // removed later). The call itself will be removed as soon as the
4978     // argument/return lowering is complete, so the fact that it has the wrong
4979     // kind of operands should not really matter.
4980     needIndirectCall = false;
4981   }
4982 
4983   if (needIndirectCall) {
4984     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
4985     // to do the call, we can't use PPCISD::CALL.
4986     SDValue MTCTROps[] = {Chain, Callee, InFlag};
4987 
4988     if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4989       // Function pointers in the 64-bit SVR4 ABI do not point to the function
4990       // entry point, but to the function descriptor (the function entry point
4991       // address is part of the function descriptor though).
4992       // The function descriptor is a three doubleword structure with the
4993       // following fields: function entry point, TOC base address and
4994       // environment pointer.
4995       // Thus for a call through a function pointer, the following actions need
4996       // to be performed:
4997       //   1. Save the TOC of the caller in the TOC save area of its stack
4998       //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4999       //   2. Load the address of the function entry point from the function
5000       //      descriptor.
5001       //   3. Load the TOC of the callee from the function descriptor into r2.
5002       //   4. Load the environment pointer from the function descriptor into
5003       //      r11.
5004       //   5. Branch to the function entry point address.
5005       //   6. On return of the callee, the TOC of the caller needs to be
5006       //      restored (this is done in FinishCall()).
5007       //
5008       // The loads are scheduled at the beginning of the call sequence, and the
5009       // register copies are flagged together to ensure that no other
5010       // operations can be scheduled in between. E.g. without flagging the
5011       // copies together, a TOC access in the caller could be scheduled between
5012       // the assignment of the callee TOC and the branch to the callee, which
5013       // results in the TOC access going through the TOC of the callee instead
5014       // of going through the TOC of the caller, which leads to incorrect code.
5015 
5016       // Load the address of the function entry point from the function
5017       // descriptor.
5018       SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
5019       if (LDChain.getValueType() == MVT::Glue)
5020         LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
5021 
5022       auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5023                           ? (MachineMemOperand::MODereferenceable |
5024                              MachineMemOperand::MOInvariant)
5025                           : MachineMemOperand::MONone;
5026 
5027       MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5028       SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
5029                                         /* Alignment = */ 8, MMOFlags);
5030 
5031       // Load environment pointer into r11.
5032       SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
5033       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
5034       SDValue LoadEnvPtr =
5035           DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
5036                       /* Alignment = */ 8, MMOFlags);
5037 
5038       SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
5039       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
5040       SDValue TOCPtr =
5041           DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
5042                       /* Alignment = */ 8, MMOFlags);
5043 
5044       setUsesTOCBasePtr(DAG);
5045       SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
5046                                         InFlag);
5047       Chain = TOCVal.getValue(0);
5048       InFlag = TOCVal.getValue(1);
5049 
5050       // If the function call has an explicit 'nest' parameter, it takes the
5051       // place of the environment pointer.
5052       if (!hasNest) {
5053         SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
5054                                           InFlag);
5055 
5056         Chain = EnvVal.getValue(0);
5057         InFlag = EnvVal.getValue(1);
5058       }
5059 
5060       MTCTROps[0] = Chain;
5061       MTCTROps[1] = LoadFuncPtr;
5062       MTCTROps[2] = InFlag;
5063     }
5064 
5065     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
5066                         makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
5067     InFlag = Chain.getValue(1);
5068 
5069     NodeTys.clear();
5070     NodeTys.push_back(MVT::Other);
5071     NodeTys.push_back(MVT::Glue);
5072     Ops.push_back(Chain);
5073     CallOpc = PPCISD::BCTRL;
5074     Callee.setNode(nullptr);
5075     // Add use of X11 (holding environment pointer)
5076     if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
5077       Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
5078     // Add CTR register as callee so a bctr can be emitted later.
5079     if (isTailCall)
5080       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
5081   }
5082 
5083   // If this is a direct call, pass the chain and the callee.
5084   if (Callee.getNode()) {
5085     Ops.push_back(Chain);
5086     Ops.push_back(Callee);
5087   }
5088   // If this is a tail call add stack pointer delta.
5089   if (isTailCall)
5090     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5091 
5092   // Add argument registers to the end of the list so that they are known live
5093   // into the call.
5094   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5095     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5096                                   RegsToPass[i].second.getValueType()));
5097 
5098   // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
5099   // into the call.
5100   // We do need to reserve X2 to appease the verifier for the PATCHPOINT.
5101   if (isSVR4ABI && isPPC64) {
5102     setUsesTOCBasePtr(DAG);
5103 
5104     // We cannot add X2 as an operand here for PATCHPOINT, because there is no
5105     // way to mark dependencies as implicit here. We will add the X2 dependency
5106     // in EmitInstrWithCustomInserter.
5107     if (!isPatchPoint)
5108       Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
5109   }
5110 
5111   return CallOpc;
5112 }
5113 
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const5114 SDValue PPCTargetLowering::LowerCallResult(
5115     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5116     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5117     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5118   SmallVector<CCValAssign, 16> RVLocs;
5119   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5120                     *DAG.getContext());
5121 
5122   CCRetInfo.AnalyzeCallResult(
5123       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5124                ? RetCC_PPC_Cold
5125                : RetCC_PPC);
5126 
5127   // Copy all of the result registers out of their specified physreg.
5128   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5129     CCValAssign &VA = RVLocs[i];
5130     assert(VA.isRegLoc() && "Can only return in registers!");
5131 
5132     SDValue Val = DAG.getCopyFromReg(Chain, dl,
5133                                      VA.getLocReg(), VA.getLocVT(), InFlag);
5134     Chain = Val.getValue(1);
5135     InFlag = Val.getValue(2);
5136 
5137     switch (VA.getLocInfo()) {
5138     default: llvm_unreachable("Unknown loc info!");
5139     case CCValAssign::Full: break;
5140     case CCValAssign::AExt:
5141       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5142       break;
5143     case CCValAssign::ZExt:
5144       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5145                         DAG.getValueType(VA.getValVT()));
5146       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5147       break;
5148     case CCValAssign::SExt:
5149       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5150                         DAG.getValueType(VA.getValVT()));
5151       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5152       break;
5153     }
5154 
5155     InVals.push_back(Val);
5156   }
5157 
5158   return Chain;
5159 }
5160 
FinishCall(CallingConv::ID CallConv,const SDLoc & dl,bool isTailCall,bool isVarArg,bool isPatchPoint,bool hasNest,SelectionDAG & DAG,SmallVector<std::pair<unsigned,SDValue>,8> & RegsToPass,SDValue InFlag,SDValue Chain,SDValue CallSeqStart,SDValue & Callee,int SPDiff,unsigned NumBytes,const SmallVectorImpl<ISD::InputArg> & Ins,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite CS) const5161 SDValue PPCTargetLowering::FinishCall(
5162     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5163     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5164     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5165     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5166     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5167     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5168   std::vector<EVT> NodeTys;
5169   SmallVector<SDValue, 8> Ops;
5170   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5171                                  SPDiff, isTailCall, isPatchPoint, hasNest,
5172                                  RegsToPass, Ops, NodeTys, CS, Subtarget);
5173 
5174   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5175   if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5176     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5177 
5178   // When performing tail call optimization the callee pops its arguments off
5179   // the stack. Account for this here so these bytes can be pushed back on in
5180   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5181   int BytesCalleePops =
5182     (CallConv == CallingConv::Fast &&
5183      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5184 
5185   // Add a register mask operand representing the call-preserved registers.
5186   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5187   const uint32_t *Mask =
5188       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5189   assert(Mask && "Missing call preserved mask for calling convention");
5190   Ops.push_back(DAG.getRegisterMask(Mask));
5191 
5192   if (InFlag.getNode())
5193     Ops.push_back(InFlag);
5194 
5195   // Emit tail call.
5196   if (isTailCall) {
5197     assert(((Callee.getOpcode() == ISD::Register &&
5198              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5199             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5200             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5201             isa<ConstantSDNode>(Callee)) &&
5202     "Expecting an global address, external symbol, absolute value or register");
5203 
5204     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5205     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5206   }
5207 
5208   // Add a NOP immediately after the branch instruction when using the 64-bit
5209   // SVR4 ABI. At link time, if caller and callee are in a different module and
5210   // thus have a different TOC, the call will be replaced with a call to a stub
5211   // function which saves the current TOC, loads the TOC of the callee and
5212   // branches to the callee. The NOP will be replaced with a load instruction
5213   // which restores the TOC of the caller from the TOC save slot of the current
5214   // stack frame. If caller and callee belong to the same module (and have the
5215   // same TOC), the NOP will remain unchanged.
5216 
5217   MachineFunction &MF = DAG.getMachineFunction();
5218   if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5219       !isPatchPoint) {
5220     if (CallOpc == PPCISD::BCTRL) {
5221       // This is a call through a function pointer.
5222       // Restore the caller TOC from the save area into R2.
5223       // See PrepareCall() for more information about calls through function
5224       // pointers in the 64-bit SVR4 ABI.
5225       // We are using a target-specific load with r2 hard coded, because the
5226       // result of a target-independent load would never go directly into r2,
5227       // since r2 is a reserved register (which prevents the register allocator
5228       // from allocating it), resulting in an additional register being
5229       // allocated and an unnecessary move instruction being generated.
5230       CallOpc = PPCISD::BCTRL_LOAD_TOC;
5231 
5232       EVT PtrVT = getPointerTy(DAG.getDataLayout());
5233       SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5234       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5235       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5236       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5237 
5238       // The address needs to go after the chain input but before the flag (or
5239       // any other variadic arguments).
5240       Ops.insert(std::next(Ops.begin()), AddTOC);
5241     } else if (CallOpc == PPCISD::CALL &&
5242       !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5243       // Otherwise insert NOP for non-local calls.
5244       CallOpc = PPCISD::CALL_NOP;
5245     }
5246   }
5247 
5248   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5249   InFlag = Chain.getValue(1);
5250 
5251   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5252                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5253                              InFlag, dl);
5254   if (!Ins.empty())
5255     InFlag = Chain.getValue(1);
5256 
5257   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5258                          Ins, dl, DAG, InVals);
5259 }
5260 
5261 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const5262 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5263                              SmallVectorImpl<SDValue> &InVals) const {
5264   SelectionDAG &DAG                     = CLI.DAG;
5265   SDLoc &dl                             = CLI.DL;
5266   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5267   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5268   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5269   SDValue Chain                         = CLI.Chain;
5270   SDValue Callee                        = CLI.Callee;
5271   bool &isTailCall                      = CLI.IsTailCall;
5272   CallingConv::ID CallConv              = CLI.CallConv;
5273   bool isVarArg                         = CLI.IsVarArg;
5274   bool isPatchPoint                     = CLI.IsPatchPoint;
5275   ImmutableCallSite CS                  = CLI.CS;
5276 
5277   if (isTailCall) {
5278     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5279       isTailCall = false;
5280     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5281       isTailCall =
5282         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5283                                                  isVarArg, Outs, Ins, DAG);
5284     else
5285       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5286                                                      Ins, DAG);
5287     if (isTailCall) {
5288       ++NumTailCalls;
5289       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5290         ++NumSiblingCalls;
5291 
5292       assert(isa<GlobalAddressSDNode>(Callee) &&
5293              "Callee should be an llvm::Function object.");
5294       LLVM_DEBUG(
5295           const GlobalValue *GV =
5296               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5297           const unsigned Width =
5298               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5299           dbgs() << "TCO caller: "
5300                  << left_justify(DAG.getMachineFunction().getName(), Width)
5301                  << ", callee linkage: " << GV->getVisibility() << ", "
5302                  << GV->getLinkage() << "\n");
5303     }
5304   }
5305 
5306   if (!isTailCall && CS && CS.isMustTailCall())
5307     report_fatal_error("failed to perform tail call elimination on a call "
5308                        "site marked musttail");
5309 
5310   // When long calls (i.e. indirect calls) are always used, calls are always
5311   // made via function pointer. If we have a function name, first translate it
5312   // into a pointer.
5313   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5314       !isTailCall)
5315     Callee = LowerGlobalAddress(Callee, DAG);
5316 
5317   if (Subtarget.isSVR4ABI()) {
5318     if (Subtarget.isPPC64())
5319       return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5320                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5321                               dl, DAG, InVals, CS);
5322     else
5323       return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5324                               isTailCall, isPatchPoint, Outs, OutVals, Ins,
5325                               dl, DAG, InVals, CS);
5326   }
5327 
5328   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5329                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5330                           dl, DAG, InVals, CS);
5331 }
5332 
LowerCall_32SVR4(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite CS) const5333 SDValue PPCTargetLowering::LowerCall_32SVR4(
5334     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5335     bool isTailCall, bool isPatchPoint,
5336     const SmallVectorImpl<ISD::OutputArg> &Outs,
5337     const SmallVectorImpl<SDValue> &OutVals,
5338     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5339     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5340     ImmutableCallSite CS) const {
5341   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5342   // of the 32-bit SVR4 ABI stack frame layout.
5343 
5344   assert((CallConv == CallingConv::C ||
5345           CallConv == CallingConv::Cold ||
5346           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5347 
5348   unsigned PtrByteSize = 4;
5349 
5350   MachineFunction &MF = DAG.getMachineFunction();
5351 
5352   // Mark this function as potentially containing a function that contains a
5353   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5354   // and restoring the callers stack pointer in this functions epilog. This is
5355   // done because by tail calling the called function might overwrite the value
5356   // in this function's (MF) stack pointer stack slot 0(SP).
5357   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5358       CallConv == CallingConv::Fast)
5359     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5360 
5361   // Count how many bytes are to be pushed on the stack, including the linkage
5362   // area, parameter list area and the part of the local variable space which
5363   // contains copies of aggregates which are passed by value.
5364 
5365   // Assign locations to all of the outgoing arguments.
5366   SmallVector<CCValAssign, 16> ArgLocs;
5367   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5368 
5369   // Reserve space for the linkage area on the stack.
5370   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5371                        PtrByteSize);
5372   if (useSoftFloat())
5373     CCInfo.PreAnalyzeCallOperands(Outs);
5374 
5375   if (isVarArg) {
5376     // Handle fixed and variable vector arguments differently.
5377     // Fixed vector arguments go into registers as long as registers are
5378     // available. Variable vector arguments always go into memory.
5379     unsigned NumArgs = Outs.size();
5380 
5381     for (unsigned i = 0; i != NumArgs; ++i) {
5382       MVT ArgVT = Outs[i].VT;
5383       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5384       bool Result;
5385 
5386       if (Outs[i].IsFixed) {
5387         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5388                                CCInfo);
5389       } else {
5390         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5391                                       ArgFlags, CCInfo);
5392       }
5393 
5394       if (Result) {
5395 #ifndef NDEBUG
5396         errs() << "Call operand #" << i << " has unhandled type "
5397              << EVT(ArgVT).getEVTString() << "\n";
5398 #endif
5399         llvm_unreachable(nullptr);
5400       }
5401     }
5402   } else {
5403     // All arguments are treated the same.
5404     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5405   }
5406   CCInfo.clearWasPPCF128();
5407 
5408   // Assign locations to all of the outgoing aggregate by value arguments.
5409   SmallVector<CCValAssign, 16> ByValArgLocs;
5410   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5411 
5412   // Reserve stack space for the allocations in CCInfo.
5413   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5414 
5415   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5416 
5417   // Size of the linkage area, parameter list area and the part of the local
5418   // space variable where copies of aggregates which are passed by value are
5419   // stored.
5420   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5421 
5422   // Calculate by how many bytes the stack has to be adjusted in case of tail
5423   // call optimization.
5424   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5425 
5426   // Adjust the stack pointer for the new arguments...
5427   // These operations are automatically eliminated by the prolog/epilog pass
5428   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5429   SDValue CallSeqStart = Chain;
5430 
5431   // Load the return address and frame pointer so it can be moved somewhere else
5432   // later.
5433   SDValue LROp, FPOp;
5434   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5435 
5436   // Set up a copy of the stack pointer for use loading and storing any
5437   // arguments that may not fit in the registers available for argument
5438   // passing.
5439   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5440 
5441   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5442   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5443   SmallVector<SDValue, 8> MemOpChains;
5444 
5445   bool seenFloatArg = false;
5446   // Walk the register/memloc assignments, inserting copies/loads.
5447   for (unsigned i = 0, j = 0, e = ArgLocs.size();
5448        i != e;
5449        ++i) {
5450     CCValAssign &VA = ArgLocs[i];
5451     SDValue Arg = OutVals[i];
5452     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5453 
5454     if (Flags.isByVal()) {
5455       // Argument is an aggregate which is passed by value, thus we need to
5456       // create a copy of it in the local variable space of the current stack
5457       // frame (which is the stack frame of the caller) and pass the address of
5458       // this copy to the callee.
5459       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5460       CCValAssign &ByValVA = ByValArgLocs[j++];
5461       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5462 
5463       // Memory reserved in the local variable space of the callers stack frame.
5464       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5465 
5466       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5467       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5468                            StackPtr, PtrOff);
5469 
5470       // Create a copy of the argument in the local area of the current
5471       // stack frame.
5472       SDValue MemcpyCall =
5473         CreateCopyOfByValArgument(Arg, PtrOff,
5474                                   CallSeqStart.getNode()->getOperand(0),
5475                                   Flags, DAG, dl);
5476 
5477       // This must go outside the CALLSEQ_START..END.
5478       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5479                                                      SDLoc(MemcpyCall));
5480       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5481                              NewCallSeqStart.getNode());
5482       Chain = CallSeqStart = NewCallSeqStart;
5483 
5484       // Pass the address of the aggregate copy on the stack either in a
5485       // physical register or in the parameter list area of the current stack
5486       // frame to the callee.
5487       Arg = PtrOff;
5488     }
5489 
5490     // When useCRBits() is true, there can be i1 arguments.
5491     // It is because getRegisterType(MVT::i1) => MVT::i1,
5492     // and for other integer types getRegisterType() => MVT::i32.
5493     // Extend i1 and ensure callee will get i32.
5494     if (Arg.getValueType() == MVT::i1)
5495       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5496                         dl, MVT::i32, Arg);
5497 
5498     if (VA.isRegLoc()) {
5499       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5500       // Put argument in a physical register.
5501       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5502     } else {
5503       // Put argument in the parameter list area of the current stack frame.
5504       assert(VA.isMemLoc());
5505       unsigned LocMemOffset = VA.getLocMemOffset();
5506 
5507       if (!isTailCall) {
5508         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5509         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5510                              StackPtr, PtrOff);
5511 
5512         MemOpChains.push_back(
5513             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5514       } else {
5515         // Calculate and remember argument location.
5516         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5517                                  TailCallArguments);
5518       }
5519     }
5520   }
5521 
5522   if (!MemOpChains.empty())
5523     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5524 
5525   // Build a sequence of copy-to-reg nodes chained together with token chain
5526   // and flag operands which copy the outgoing args into the appropriate regs.
5527   SDValue InFlag;
5528   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5529     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5530                              RegsToPass[i].second, InFlag);
5531     InFlag = Chain.getValue(1);
5532   }
5533 
5534   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5535   // registers.
5536   if (isVarArg) {
5537     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5538     SDValue Ops[] = { Chain, InFlag };
5539 
5540     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5541                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5542 
5543     InFlag = Chain.getValue(1);
5544   }
5545 
5546   if (isTailCall)
5547     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5548                     TailCallArguments);
5549 
5550   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5551                     /* unused except on PPC64 ELFv1 */ false, DAG,
5552                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5553                     NumBytes, Ins, InVals, CS);
5554 }
5555 
5556 // Copy an argument into memory, being careful to do this outside the
5557 // call sequence for the call to which the argument belongs.
createMemcpyOutsideCallSeq(SDValue Arg,SDValue PtrOff,SDValue CallSeqStart,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl) const5558 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5559     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5560     SelectionDAG &DAG, const SDLoc &dl) const {
5561   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5562                         CallSeqStart.getNode()->getOperand(0),
5563                         Flags, DAG, dl);
5564   // The MEMCPY must go outside the CALLSEQ_START..END.
5565   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5566   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5567                                                  SDLoc(MemcpyCall));
5568   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5569                          NewCallSeqStart.getNode());
5570   return NewCallSeqStart;
5571 }
5572 
LowerCall_64SVR4(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite CS) const5573 SDValue PPCTargetLowering::LowerCall_64SVR4(
5574     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5575     bool isTailCall, bool isPatchPoint,
5576     const SmallVectorImpl<ISD::OutputArg> &Outs,
5577     const SmallVectorImpl<SDValue> &OutVals,
5578     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5579     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5580     ImmutableCallSite CS) const {
5581   bool isELFv2ABI = Subtarget.isELFv2ABI();
5582   bool isLittleEndian = Subtarget.isLittleEndian();
5583   unsigned NumOps = Outs.size();
5584   bool hasNest = false;
5585   bool IsSibCall = false;
5586 
5587   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5588   unsigned PtrByteSize = 8;
5589 
5590   MachineFunction &MF = DAG.getMachineFunction();
5591 
5592   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5593     IsSibCall = true;
5594 
5595   // Mark this function as potentially containing a function that contains a
5596   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5597   // and restoring the callers stack pointer in this functions epilog. This is
5598   // done because by tail calling the called function might overwrite the value
5599   // in this function's (MF) stack pointer stack slot 0(SP).
5600   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5601       CallConv == CallingConv::Fast)
5602     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5603 
5604   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5605          "fastcc not supported on varargs functions");
5606 
5607   // Count how many bytes are to be pushed on the stack, including the linkage
5608   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5609   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5610   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5611   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5612   unsigned NumBytes = LinkageSize;
5613   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5614   unsigned &QFPR_idx = FPR_idx;
5615 
5616   static const MCPhysReg GPR[] = {
5617     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5618     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5619   };
5620   static const MCPhysReg VR[] = {
5621     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5622     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5623   };
5624 
5625   const unsigned NumGPRs = array_lengthof(GPR);
5626   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5627   const unsigned NumVRs  = array_lengthof(VR);
5628   const unsigned NumQFPRs = NumFPRs;
5629 
5630   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5631   // can be passed to the callee in registers.
5632   // For the fast calling convention, there is another check below.
5633   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5634   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5635   if (!HasParameterArea) {
5636     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5637     unsigned AvailableFPRs = NumFPRs;
5638     unsigned AvailableVRs = NumVRs;
5639     unsigned NumBytesTmp = NumBytes;
5640     for (unsigned i = 0; i != NumOps; ++i) {
5641       if (Outs[i].Flags.isNest()) continue;
5642       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5643                                 PtrByteSize, LinkageSize, ParamAreaSize,
5644                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5645                                 Subtarget.hasQPX()))
5646         HasParameterArea = true;
5647     }
5648   }
5649 
5650   // When using the fast calling convention, we don't provide backing for
5651   // arguments that will be in registers.
5652   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5653 
5654   // Avoid allocating parameter area for fastcc functions if all the arguments
5655   // can be passed in the registers.
5656   if (CallConv == CallingConv::Fast)
5657     HasParameterArea = false;
5658 
5659   // Add up all the space actually used.
5660   for (unsigned i = 0; i != NumOps; ++i) {
5661     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5662     EVT ArgVT = Outs[i].VT;
5663     EVT OrigVT = Outs[i].ArgVT;
5664 
5665     if (Flags.isNest())
5666       continue;
5667 
5668     if (CallConv == CallingConv::Fast) {
5669       if (Flags.isByVal()) {
5670         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5671         if (NumGPRsUsed > NumGPRs)
5672           HasParameterArea = true;
5673       } else {
5674         switch (ArgVT.getSimpleVT().SimpleTy) {
5675         default: llvm_unreachable("Unexpected ValueType for argument!");
5676         case MVT::i1:
5677         case MVT::i32:
5678         case MVT::i64:
5679           if (++NumGPRsUsed <= NumGPRs)
5680             continue;
5681           break;
5682         case MVT::v4i32:
5683         case MVT::v8i16:
5684         case MVT::v16i8:
5685         case MVT::v2f64:
5686         case MVT::v2i64:
5687         case MVT::v1i128:
5688         case MVT::f128:
5689           if (++NumVRsUsed <= NumVRs)
5690             continue;
5691           break;
5692         case MVT::v4f32:
5693           // When using QPX, this is handled like a FP register, otherwise, it
5694           // is an Altivec register.
5695           if (Subtarget.hasQPX()) {
5696             if (++NumFPRsUsed <= NumFPRs)
5697               continue;
5698           } else {
5699             if (++NumVRsUsed <= NumVRs)
5700               continue;
5701           }
5702           break;
5703         case MVT::f32:
5704         case MVT::f64:
5705         case MVT::v4f64: // QPX
5706         case MVT::v4i1:  // QPX
5707           if (++NumFPRsUsed <= NumFPRs)
5708             continue;
5709           break;
5710         }
5711         HasParameterArea = true;
5712       }
5713     }
5714 
5715     /* Respect alignment of argument on the stack.  */
5716     unsigned Align =
5717       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5718     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5719 
5720     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5721     if (Flags.isInConsecutiveRegsLast())
5722       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5723   }
5724 
5725   unsigned NumBytesActuallyUsed = NumBytes;
5726 
5727   // In the old ELFv1 ABI,
5728   // the prolog code of the callee may store up to 8 GPR argument registers to
5729   // the stack, allowing va_start to index over them in memory if its varargs.
5730   // Because we cannot tell if this is needed on the caller side, we have to
5731   // conservatively assume that it is needed.  As such, make sure we have at
5732   // least enough stack space for the caller to store the 8 GPRs.
5733   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5734   // really requires memory operands, e.g. a vararg function.
5735   if (HasParameterArea)
5736     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5737   else
5738     NumBytes = LinkageSize;
5739 
5740   // Tail call needs the stack to be aligned.
5741   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5742       CallConv == CallingConv::Fast)
5743     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5744 
5745   int SPDiff = 0;
5746 
5747   // Calculate by how many bytes the stack has to be adjusted in case of tail
5748   // call optimization.
5749   if (!IsSibCall)
5750     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5751 
5752   // To protect arguments on the stack from being clobbered in a tail call,
5753   // force all the loads to happen before doing any other lowering.
5754   if (isTailCall)
5755     Chain = DAG.getStackArgumentTokenFactor(Chain);
5756 
5757   // Adjust the stack pointer for the new arguments...
5758   // These operations are automatically eliminated by the prolog/epilog pass
5759   if (!IsSibCall)
5760     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5761   SDValue CallSeqStart = Chain;
5762 
5763   // Load the return address and frame pointer so it can be move somewhere else
5764   // later.
5765   SDValue LROp, FPOp;
5766   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5767 
5768   // Set up a copy of the stack pointer for use loading and storing any
5769   // arguments that may not fit in the registers available for argument
5770   // passing.
5771   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5772 
5773   // Figure out which arguments are going to go in registers, and which in
5774   // memory.  Also, if this is a vararg function, floating point operations
5775   // must be stored to our stack, and loaded into integer regs as well, if
5776   // any integer regs are available for argument passing.
5777   unsigned ArgOffset = LinkageSize;
5778 
5779   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5780   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5781 
5782   SmallVector<SDValue, 8> MemOpChains;
5783   for (unsigned i = 0; i != NumOps; ++i) {
5784     SDValue Arg = OutVals[i];
5785     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5786     EVT ArgVT = Outs[i].VT;
5787     EVT OrigVT = Outs[i].ArgVT;
5788 
5789     // PtrOff will be used to store the current argument to the stack if a
5790     // register cannot be found for it.
5791     SDValue PtrOff;
5792 
5793     // We re-align the argument offset for each argument, except when using the
5794     // fast calling convention, when we need to make sure we do that only when
5795     // we'll actually use a stack slot.
5796     auto ComputePtrOff = [&]() {
5797       /* Respect alignment of argument on the stack.  */
5798       unsigned Align =
5799         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5800       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5801 
5802       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5803 
5804       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5805     };
5806 
5807     if (CallConv != CallingConv::Fast) {
5808       ComputePtrOff();
5809 
5810       /* Compute GPR index associated with argument offset.  */
5811       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5812       GPR_idx = std::min(GPR_idx, NumGPRs);
5813     }
5814 
5815     // Promote integers to 64-bit values.
5816     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5817       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5818       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5819       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5820     }
5821 
5822     // FIXME memcpy is used way more than necessary.  Correctness first.
5823     // Note: "by value" is code for passing a structure by value, not
5824     // basic types.
5825     if (Flags.isByVal()) {
5826       // Note: Size includes alignment padding, so
5827       //   struct x { short a; char b; }
5828       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
5829       // These are the proper values we need for right-justifying the
5830       // aggregate in a parameter register.
5831       unsigned Size = Flags.getByValSize();
5832 
5833       // An empty aggregate parameter takes up no storage and no
5834       // registers.
5835       if (Size == 0)
5836         continue;
5837 
5838       if (CallConv == CallingConv::Fast)
5839         ComputePtrOff();
5840 
5841       // All aggregates smaller than 8 bytes must be passed right-justified.
5842       if (Size==1 || Size==2 || Size==4) {
5843         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5844         if (GPR_idx != NumGPRs) {
5845           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5846                                         MachinePointerInfo(), VT);
5847           MemOpChains.push_back(Load.getValue(1));
5848           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5849 
5850           ArgOffset += PtrByteSize;
5851           continue;
5852         }
5853       }
5854 
5855       if (GPR_idx == NumGPRs && Size < 8) {
5856         SDValue AddPtr = PtrOff;
5857         if (!isLittleEndian) {
5858           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5859                                           PtrOff.getValueType());
5860           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5861         }
5862         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5863                                                           CallSeqStart,
5864                                                           Flags, DAG, dl);
5865         ArgOffset += PtrByteSize;
5866         continue;
5867       }
5868       // Copy entire object into memory.  There are cases where gcc-generated
5869       // code assumes it is there, even if it could be put entirely into
5870       // registers.  (This is not what the doc says.)
5871 
5872       // FIXME: The above statement is likely due to a misunderstanding of the
5873       // documents.  All arguments must be copied into the parameter area BY
5874       // THE CALLEE in the event that the callee takes the address of any
5875       // formal argument.  That has not yet been implemented.  However, it is
5876       // reasonable to use the stack area as a staging area for the register
5877       // load.
5878 
5879       // Skip this for small aggregates, as we will use the same slot for a
5880       // right-justified copy, below.
5881       if (Size >= 8)
5882         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5883                                                           CallSeqStart,
5884                                                           Flags, DAG, dl);
5885 
5886       // When a register is available, pass a small aggregate right-justified.
5887       if (Size < 8 && GPR_idx != NumGPRs) {
5888         // The easiest way to get this right-justified in a register
5889         // is to copy the structure into the rightmost portion of a
5890         // local variable slot, then load the whole slot into the
5891         // register.
5892         // FIXME: The memcpy seems to produce pretty awful code for
5893         // small aggregates, particularly for packed ones.
5894         // FIXME: It would be preferable to use the slot in the
5895         // parameter save area instead of a new local variable.
5896         SDValue AddPtr = PtrOff;
5897         if (!isLittleEndian) {
5898           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5899           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5900         }
5901         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5902                                                           CallSeqStart,
5903                                                           Flags, DAG, dl);
5904 
5905         // Load the slot into the register.
5906         SDValue Load =
5907             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5908         MemOpChains.push_back(Load.getValue(1));
5909         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5910 
5911         // Done with this argument.
5912         ArgOffset += PtrByteSize;
5913         continue;
5914       }
5915 
5916       // For aggregates larger than PtrByteSize, copy the pieces of the
5917       // object that fit into registers from the parameter save area.
5918       for (unsigned j=0; j<Size; j+=PtrByteSize) {
5919         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5920         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5921         if (GPR_idx != NumGPRs) {
5922           SDValue Load =
5923               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5924           MemOpChains.push_back(Load.getValue(1));
5925           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5926           ArgOffset += PtrByteSize;
5927         } else {
5928           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5929           break;
5930         }
5931       }
5932       continue;
5933     }
5934 
5935     switch (Arg.getSimpleValueType().SimpleTy) {
5936     default: llvm_unreachable("Unexpected ValueType for argument!");
5937     case MVT::i1:
5938     case MVT::i32:
5939     case MVT::i64:
5940       if (Flags.isNest()) {
5941         // The 'nest' parameter, if any, is passed in R11.
5942         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5943         hasNest = true;
5944         break;
5945       }
5946 
5947       // These can be scalar arguments or elements of an integer array type
5948       // passed directly.  Clang may use those instead of "byval" aggregate
5949       // types to avoid forcing arguments to memory unnecessarily.
5950       if (GPR_idx != NumGPRs) {
5951         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5952       } else {
5953         if (CallConv == CallingConv::Fast)
5954           ComputePtrOff();
5955 
5956         assert(HasParameterArea &&
5957                "Parameter area must exist to pass an argument in memory.");
5958         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5959                          true, isTailCall, false, MemOpChains,
5960                          TailCallArguments, dl);
5961         if (CallConv == CallingConv::Fast)
5962           ArgOffset += PtrByteSize;
5963       }
5964       if (CallConv != CallingConv::Fast)
5965         ArgOffset += PtrByteSize;
5966       break;
5967     case MVT::f32:
5968     case MVT::f64: {
5969       // These can be scalar arguments or elements of a float array type
5970       // passed directly.  The latter are used to implement ELFv2 homogenous
5971       // float aggregates.
5972 
5973       // Named arguments go into FPRs first, and once they overflow, the
5974       // remaining arguments go into GPRs and then the parameter save area.
5975       // Unnamed arguments for vararg functions always go to GPRs and
5976       // then the parameter save area.  For now, put all arguments to vararg
5977       // routines always in both locations (FPR *and* GPR or stack slot).
5978       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5979       bool NeededLoad = false;
5980 
5981       // First load the argument into the next available FPR.
5982       if (FPR_idx != NumFPRs)
5983         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5984 
5985       // Next, load the argument into GPR or stack slot if needed.
5986       if (!NeedGPROrStack)
5987         ;
5988       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5989         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5990         // once we support fp <-> gpr moves.
5991 
5992         // In the non-vararg case, this can only ever happen in the
5993         // presence of f32 array types, since otherwise we never run
5994         // out of FPRs before running out of GPRs.
5995         SDValue ArgVal;
5996 
5997         // Double values are always passed in a single GPR.
5998         if (Arg.getValueType() != MVT::f32) {
5999           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6000 
6001         // Non-array float values are extended and passed in a GPR.
6002         } else if (!Flags.isInConsecutiveRegs()) {
6003           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6004           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6005 
6006         // If we have an array of floats, we collect every odd element
6007         // together with its predecessor into one GPR.
6008         } else if (ArgOffset % PtrByteSize != 0) {
6009           SDValue Lo, Hi;
6010           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6011           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6012           if (!isLittleEndian)
6013             std::swap(Lo, Hi);
6014           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6015 
6016         // The final element, if even, goes into the first half of a GPR.
6017         } else if (Flags.isInConsecutiveRegsLast()) {
6018           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6019           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6020           if (!isLittleEndian)
6021             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6022                                  DAG.getConstant(32, dl, MVT::i32));
6023 
6024         // Non-final even elements are skipped; they will be handled
6025         // together the with subsequent argument on the next go-around.
6026         } else
6027           ArgVal = SDValue();
6028 
6029         if (ArgVal.getNode())
6030           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6031       } else {
6032         if (CallConv == CallingConv::Fast)
6033           ComputePtrOff();
6034 
6035         // Single-precision floating-point values are mapped to the
6036         // second (rightmost) word of the stack doubleword.
6037         if (Arg.getValueType() == MVT::f32 &&
6038             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6039           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6040           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6041         }
6042 
6043         assert(HasParameterArea &&
6044                "Parameter area must exist to pass an argument in memory.");
6045         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6046                          true, isTailCall, false, MemOpChains,
6047                          TailCallArguments, dl);
6048 
6049         NeededLoad = true;
6050       }
6051       // When passing an array of floats, the array occupies consecutive
6052       // space in the argument area; only round up to the next doubleword
6053       // at the end of the array.  Otherwise, each float takes 8 bytes.
6054       if (CallConv != CallingConv::Fast || NeededLoad) {
6055         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6056                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6057         if (Flags.isInConsecutiveRegsLast())
6058           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6059       }
6060       break;
6061     }
6062     case MVT::v4f32:
6063     case MVT::v4i32:
6064     case MVT::v8i16:
6065     case MVT::v16i8:
6066     case MVT::v2f64:
6067     case MVT::v2i64:
6068     case MVT::v1i128:
6069     case MVT::f128:
6070       if (!Subtarget.hasQPX()) {
6071       // These can be scalar arguments or elements of a vector array type
6072       // passed directly.  The latter are used to implement ELFv2 homogenous
6073       // vector aggregates.
6074 
6075       // For a varargs call, named arguments go into VRs or on the stack as
6076       // usual; unnamed arguments always go to the stack or the corresponding
6077       // GPRs when within range.  For now, we always put the value in both
6078       // locations (or even all three).
6079       if (isVarArg) {
6080         assert(HasParameterArea &&
6081                "Parameter area must exist if we have a varargs call.");
6082         // We could elide this store in the case where the object fits
6083         // entirely in R registers.  Maybe later.
6084         SDValue Store =
6085             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6086         MemOpChains.push_back(Store);
6087         if (VR_idx != NumVRs) {
6088           SDValue Load =
6089               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6090           MemOpChains.push_back(Load.getValue(1));
6091           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6092         }
6093         ArgOffset += 16;
6094         for (unsigned i=0; i<16; i+=PtrByteSize) {
6095           if (GPR_idx == NumGPRs)
6096             break;
6097           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6098                                    DAG.getConstant(i, dl, PtrVT));
6099           SDValue Load =
6100               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6101           MemOpChains.push_back(Load.getValue(1));
6102           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6103         }
6104         break;
6105       }
6106 
6107       // Non-varargs Altivec params go into VRs or on the stack.
6108       if (VR_idx != NumVRs) {
6109         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6110       } else {
6111         if (CallConv == CallingConv::Fast)
6112           ComputePtrOff();
6113 
6114         assert(HasParameterArea &&
6115                "Parameter area must exist to pass an argument in memory.");
6116         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6117                          true, isTailCall, true, MemOpChains,
6118                          TailCallArguments, dl);
6119         if (CallConv == CallingConv::Fast)
6120           ArgOffset += 16;
6121       }
6122 
6123       if (CallConv != CallingConv::Fast)
6124         ArgOffset += 16;
6125       break;
6126       } // not QPX
6127 
6128       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6129              "Invalid QPX parameter type");
6130 
6131       LLVM_FALLTHROUGH;
6132     case MVT::v4f64:
6133     case MVT::v4i1: {
6134       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6135       if (isVarArg) {
6136         assert(HasParameterArea &&
6137                "Parameter area must exist if we have a varargs call.");
6138         // We could elide this store in the case where the object fits
6139         // entirely in R registers.  Maybe later.
6140         SDValue Store =
6141             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6142         MemOpChains.push_back(Store);
6143         if (QFPR_idx != NumQFPRs) {
6144           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6145                                      PtrOff, MachinePointerInfo());
6146           MemOpChains.push_back(Load.getValue(1));
6147           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6148         }
6149         ArgOffset += (IsF32 ? 16 : 32);
6150         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6151           if (GPR_idx == NumGPRs)
6152             break;
6153           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6154                                    DAG.getConstant(i, dl, PtrVT));
6155           SDValue Load =
6156               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6157           MemOpChains.push_back(Load.getValue(1));
6158           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6159         }
6160         break;
6161       }
6162 
6163       // Non-varargs QPX params go into registers or on the stack.
6164       if (QFPR_idx != NumQFPRs) {
6165         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6166       } else {
6167         if (CallConv == CallingConv::Fast)
6168           ComputePtrOff();
6169 
6170         assert(HasParameterArea &&
6171                "Parameter area must exist to pass an argument in memory.");
6172         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6173                          true, isTailCall, true, MemOpChains,
6174                          TailCallArguments, dl);
6175         if (CallConv == CallingConv::Fast)
6176           ArgOffset += (IsF32 ? 16 : 32);
6177       }
6178 
6179       if (CallConv != CallingConv::Fast)
6180         ArgOffset += (IsF32 ? 16 : 32);
6181       break;
6182       }
6183     }
6184   }
6185 
6186   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6187          "mismatch in size of parameter area");
6188   (void)NumBytesActuallyUsed;
6189 
6190   if (!MemOpChains.empty())
6191     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6192 
6193   // Check if this is an indirect call (MTCTR/BCTRL).
6194   // See PrepareCall() for more information about calls through function
6195   // pointers in the 64-bit SVR4 ABI.
6196   if (!isTailCall && !isPatchPoint &&
6197       !isFunctionGlobalAddress(Callee) &&
6198       !isa<ExternalSymbolSDNode>(Callee)) {
6199     // Load r2 into a virtual register and store it to the TOC save area.
6200     setUsesTOCBasePtr(DAG);
6201     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6202     // TOC save area offset.
6203     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6204     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6205     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6206     Chain = DAG.getStore(
6207         Val.getValue(1), dl, Val, AddPtr,
6208         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6209     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6210     // This does not mean the MTCTR instruction must use R12; it's easier
6211     // to model this as an extra parameter, so do that.
6212     if (isELFv2ABI && !isPatchPoint)
6213       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6214   }
6215 
6216   // Build a sequence of copy-to-reg nodes chained together with token chain
6217   // and flag operands which copy the outgoing args into the appropriate regs.
6218   SDValue InFlag;
6219   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6220     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6221                              RegsToPass[i].second, InFlag);
6222     InFlag = Chain.getValue(1);
6223   }
6224 
6225   if (isTailCall && !IsSibCall)
6226     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6227                     TailCallArguments);
6228 
6229   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6230                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6231                     SPDiff, NumBytes, Ins, InVals, CS);
6232 }
6233 
LowerCall_Darwin(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite CS) const6234 SDValue PPCTargetLowering::LowerCall_Darwin(
6235     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6236     bool isTailCall, bool isPatchPoint,
6237     const SmallVectorImpl<ISD::OutputArg> &Outs,
6238     const SmallVectorImpl<SDValue> &OutVals,
6239     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6240     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6241     ImmutableCallSite CS) const {
6242   unsigned NumOps = Outs.size();
6243 
6244   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6245   bool isPPC64 = PtrVT == MVT::i64;
6246   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6247 
6248   MachineFunction &MF = DAG.getMachineFunction();
6249 
6250   // Mark this function as potentially containing a function that contains a
6251   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6252   // and restoring the callers stack pointer in this functions epilog. This is
6253   // done because by tail calling the called function might overwrite the value
6254   // in this function's (MF) stack pointer stack slot 0(SP).
6255   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6256       CallConv == CallingConv::Fast)
6257     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6258 
6259   // Count how many bytes are to be pushed on the stack, including the linkage
6260   // area, and parameter passing area.  We start with 24/48 bytes, which is
6261   // prereserved space for [SP][CR][LR][3 x unused].
6262   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6263   unsigned NumBytes = LinkageSize;
6264 
6265   // Add up all the space actually used.
6266   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6267   // they all go in registers, but we must reserve stack space for them for
6268   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6269   // assigned stack space in order, with padding so Altivec parameters are
6270   // 16-byte aligned.
6271   unsigned nAltivecParamsAtEnd = 0;
6272   for (unsigned i = 0; i != NumOps; ++i) {
6273     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6274     EVT ArgVT = Outs[i].VT;
6275     // Varargs Altivec parameters are padded to a 16 byte boundary.
6276     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6277         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6278         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6279       if (!isVarArg && !isPPC64) {
6280         // Non-varargs Altivec parameters go after all the non-Altivec
6281         // parameters; handle those later so we know how much padding we need.
6282         nAltivecParamsAtEnd++;
6283         continue;
6284       }
6285       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6286       NumBytes = ((NumBytes+15)/16)*16;
6287     }
6288     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6289   }
6290 
6291   // Allow for Altivec parameters at the end, if needed.
6292   if (nAltivecParamsAtEnd) {
6293     NumBytes = ((NumBytes+15)/16)*16;
6294     NumBytes += 16*nAltivecParamsAtEnd;
6295   }
6296 
6297   // The prolog code of the callee may store up to 8 GPR argument registers to
6298   // the stack, allowing va_start to index over them in memory if its varargs.
6299   // Because we cannot tell if this is needed on the caller side, we have to
6300   // conservatively assume that it is needed.  As such, make sure we have at
6301   // least enough stack space for the caller to store the 8 GPRs.
6302   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6303 
6304   // Tail call needs the stack to be aligned.
6305   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6306       CallConv == CallingConv::Fast)
6307     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6308 
6309   // Calculate by how many bytes the stack has to be adjusted in case of tail
6310   // call optimization.
6311   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6312 
6313   // To protect arguments on the stack from being clobbered in a tail call,
6314   // force all the loads to happen before doing any other lowering.
6315   if (isTailCall)
6316     Chain = DAG.getStackArgumentTokenFactor(Chain);
6317 
6318   // Adjust the stack pointer for the new arguments...
6319   // These operations are automatically eliminated by the prolog/epilog pass
6320   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6321   SDValue CallSeqStart = Chain;
6322 
6323   // Load the return address and frame pointer so it can be move somewhere else
6324   // later.
6325   SDValue LROp, FPOp;
6326   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6327 
6328   // Set up a copy of the stack pointer for use loading and storing any
6329   // arguments that may not fit in the registers available for argument
6330   // passing.
6331   SDValue StackPtr;
6332   if (isPPC64)
6333     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6334   else
6335     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6336 
6337   // Figure out which arguments are going to go in registers, and which in
6338   // memory.  Also, if this is a vararg function, floating point operations
6339   // must be stored to our stack, and loaded into integer regs as well, if
6340   // any integer regs are available for argument passing.
6341   unsigned ArgOffset = LinkageSize;
6342   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6343 
6344   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6345     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6346     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6347   };
6348   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6349     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6350     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6351   };
6352   static const MCPhysReg VR[] = {
6353     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6354     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6355   };
6356   const unsigned NumGPRs = array_lengthof(GPR_32);
6357   const unsigned NumFPRs = 13;
6358   const unsigned NumVRs  = array_lengthof(VR);
6359 
6360   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6361 
6362   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6363   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6364 
6365   SmallVector<SDValue, 8> MemOpChains;
6366   for (unsigned i = 0; i != NumOps; ++i) {
6367     SDValue Arg = OutVals[i];
6368     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6369 
6370     // PtrOff will be used to store the current argument to the stack if a
6371     // register cannot be found for it.
6372     SDValue PtrOff;
6373 
6374     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6375 
6376     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6377 
6378     // On PPC64, promote integers to 64-bit values.
6379     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6380       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6381       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6382       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6383     }
6384 
6385     // FIXME memcpy is used way more than necessary.  Correctness first.
6386     // Note: "by value" is code for passing a structure by value, not
6387     // basic types.
6388     if (Flags.isByVal()) {
6389       unsigned Size = Flags.getByValSize();
6390       // Very small objects are passed right-justified.  Everything else is
6391       // passed left-justified.
6392       if (Size==1 || Size==2) {
6393         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6394         if (GPR_idx != NumGPRs) {
6395           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6396                                         MachinePointerInfo(), VT);
6397           MemOpChains.push_back(Load.getValue(1));
6398           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6399 
6400           ArgOffset += PtrByteSize;
6401         } else {
6402           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6403                                           PtrOff.getValueType());
6404           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6405           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6406                                                             CallSeqStart,
6407                                                             Flags, DAG, dl);
6408           ArgOffset += PtrByteSize;
6409         }
6410         continue;
6411       }
6412       // Copy entire object into memory.  There are cases where gcc-generated
6413       // code assumes it is there, even if it could be put entirely into
6414       // registers.  (This is not what the doc says.)
6415       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6416                                                         CallSeqStart,
6417                                                         Flags, DAG, dl);
6418 
6419       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6420       // copy the pieces of the object that fit into registers from the
6421       // parameter save area.
6422       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6423         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6424         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6425         if (GPR_idx != NumGPRs) {
6426           SDValue Load =
6427               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6428           MemOpChains.push_back(Load.getValue(1));
6429           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6430           ArgOffset += PtrByteSize;
6431         } else {
6432           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6433           break;
6434         }
6435       }
6436       continue;
6437     }
6438 
6439     switch (Arg.getSimpleValueType().SimpleTy) {
6440     default: llvm_unreachable("Unexpected ValueType for argument!");
6441     case MVT::i1:
6442     case MVT::i32:
6443     case MVT::i64:
6444       if (GPR_idx != NumGPRs) {
6445         if (Arg.getValueType() == MVT::i1)
6446           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6447 
6448         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6449       } else {
6450         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6451                          isPPC64, isTailCall, false, MemOpChains,
6452                          TailCallArguments, dl);
6453       }
6454       ArgOffset += PtrByteSize;
6455       break;
6456     case MVT::f32:
6457     case MVT::f64:
6458       if (FPR_idx != NumFPRs) {
6459         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6460 
6461         if (isVarArg) {
6462           SDValue Store =
6463               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6464           MemOpChains.push_back(Store);
6465 
6466           // Float varargs are always shadowed in available integer registers
6467           if (GPR_idx != NumGPRs) {
6468             SDValue Load =
6469                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6470             MemOpChains.push_back(Load.getValue(1));
6471             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6472           }
6473           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6474             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6475             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6476             SDValue Load =
6477                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6478             MemOpChains.push_back(Load.getValue(1));
6479             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6480           }
6481         } else {
6482           // If we have any FPRs remaining, we may also have GPRs remaining.
6483           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6484           // GPRs.
6485           if (GPR_idx != NumGPRs)
6486             ++GPR_idx;
6487           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6488               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6489             ++GPR_idx;
6490         }
6491       } else
6492         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6493                          isPPC64, isTailCall, false, MemOpChains,
6494                          TailCallArguments, dl);
6495       if (isPPC64)
6496         ArgOffset += 8;
6497       else
6498         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6499       break;
6500     case MVT::v4f32:
6501     case MVT::v4i32:
6502     case MVT::v8i16:
6503     case MVT::v16i8:
6504       if (isVarArg) {
6505         // These go aligned on the stack, or in the corresponding R registers
6506         // when within range.  The Darwin PPC ABI doc claims they also go in
6507         // V registers; in fact gcc does this only for arguments that are
6508         // prototyped, not for those that match the ...  We do it for all
6509         // arguments, seems to work.
6510         while (ArgOffset % 16 !=0) {
6511           ArgOffset += PtrByteSize;
6512           if (GPR_idx != NumGPRs)
6513             GPR_idx++;
6514         }
6515         // We could elide this store in the case where the object fits
6516         // entirely in R registers.  Maybe later.
6517         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6518                              DAG.getConstant(ArgOffset, dl, PtrVT));
6519         SDValue Store =
6520             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6521         MemOpChains.push_back(Store);
6522         if (VR_idx != NumVRs) {
6523           SDValue Load =
6524               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6525           MemOpChains.push_back(Load.getValue(1));
6526           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6527         }
6528         ArgOffset += 16;
6529         for (unsigned i=0; i<16; i+=PtrByteSize) {
6530           if (GPR_idx == NumGPRs)
6531             break;
6532           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6533                                    DAG.getConstant(i, dl, PtrVT));
6534           SDValue Load =
6535               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6536           MemOpChains.push_back(Load.getValue(1));
6537           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6538         }
6539         break;
6540       }
6541 
6542       // Non-varargs Altivec params generally go in registers, but have
6543       // stack space allocated at the end.
6544       if (VR_idx != NumVRs) {
6545         // Doesn't have GPR space allocated.
6546         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6547       } else if (nAltivecParamsAtEnd==0) {
6548         // We are emitting Altivec params in order.
6549         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6550                          isPPC64, isTailCall, true, MemOpChains,
6551                          TailCallArguments, dl);
6552         ArgOffset += 16;
6553       }
6554       break;
6555     }
6556   }
6557   // If all Altivec parameters fit in registers, as they usually do,
6558   // they get stack space following the non-Altivec parameters.  We
6559   // don't track this here because nobody below needs it.
6560   // If there are more Altivec parameters than fit in registers emit
6561   // the stores here.
6562   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6563     unsigned j = 0;
6564     // Offset is aligned; skip 1st 12 params which go in V registers.
6565     ArgOffset = ((ArgOffset+15)/16)*16;
6566     ArgOffset += 12*16;
6567     for (unsigned i = 0; i != NumOps; ++i) {
6568       SDValue Arg = OutVals[i];
6569       EVT ArgType = Outs[i].VT;
6570       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6571           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6572         if (++j > NumVRs) {
6573           SDValue PtrOff;
6574           // We are emitting Altivec params in order.
6575           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6576                            isPPC64, isTailCall, true, MemOpChains,
6577                            TailCallArguments, dl);
6578           ArgOffset += 16;
6579         }
6580       }
6581     }
6582   }
6583 
6584   if (!MemOpChains.empty())
6585     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6586 
6587   // On Darwin, R12 must contain the address of an indirect callee.  This does
6588   // not mean the MTCTR instruction must use R12; it's easier to model this as
6589   // an extra parameter, so do that.
6590   if (!isTailCall &&
6591       !isFunctionGlobalAddress(Callee) &&
6592       !isa<ExternalSymbolSDNode>(Callee) &&
6593       !isBLACompatibleAddress(Callee, DAG))
6594     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6595                                                    PPC::R12), Callee));
6596 
6597   // Build a sequence of copy-to-reg nodes chained together with token chain
6598   // and flag operands which copy the outgoing args into the appropriate regs.
6599   SDValue InFlag;
6600   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6601     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6602                              RegsToPass[i].second, InFlag);
6603     InFlag = Chain.getValue(1);
6604   }
6605 
6606   if (isTailCall)
6607     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6608                     TailCallArguments);
6609 
6610   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6611                     /* unused except on PPC64 ELFv1 */ false, DAG,
6612                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6613                     NumBytes, Ins, InVals, CS);
6614 }
6615 
6616 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const6617 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6618                                   MachineFunction &MF, bool isVarArg,
6619                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
6620                                   LLVMContext &Context) const {
6621   SmallVector<CCValAssign, 16> RVLocs;
6622   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6623   return CCInfo.CheckReturn(
6624       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6625                 ? RetCC_PPC_Cold
6626                 : RetCC_PPC);
6627 }
6628 
6629 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const6630 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6631                                bool isVarArg,
6632                                const SmallVectorImpl<ISD::OutputArg> &Outs,
6633                                const SmallVectorImpl<SDValue> &OutVals,
6634                                const SDLoc &dl, SelectionDAG &DAG) const {
6635   SmallVector<CCValAssign, 16> RVLocs;
6636   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6637                  *DAG.getContext());
6638   CCInfo.AnalyzeReturn(Outs,
6639                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6640                            ? RetCC_PPC_Cold
6641                            : RetCC_PPC);
6642 
6643   SDValue Flag;
6644   SmallVector<SDValue, 4> RetOps(1, Chain);
6645 
6646   // Copy the result values into the output registers.
6647   for (unsigned i = 0; i != RVLocs.size(); ++i) {
6648     CCValAssign &VA = RVLocs[i];
6649     assert(VA.isRegLoc() && "Can only return in registers!");
6650 
6651     SDValue Arg = OutVals[i];
6652 
6653     switch (VA.getLocInfo()) {
6654     default: llvm_unreachable("Unknown loc info!");
6655     case CCValAssign::Full: break;
6656     case CCValAssign::AExt:
6657       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6658       break;
6659     case CCValAssign::ZExt:
6660       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6661       break;
6662     case CCValAssign::SExt:
6663       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6664       break;
6665     }
6666 
6667     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6668     Flag = Chain.getValue(1);
6669     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6670   }
6671 
6672   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6673   const MCPhysReg *I =
6674     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6675   if (I) {
6676     for (; *I; ++I) {
6677 
6678       if (PPC::G8RCRegClass.contains(*I))
6679         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6680       else if (PPC::F8RCRegClass.contains(*I))
6681         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6682       else if (PPC::CRRCRegClass.contains(*I))
6683         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6684       else if (PPC::VRRCRegClass.contains(*I))
6685         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6686       else
6687         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6688     }
6689   }
6690 
6691   RetOps[0] = Chain;  // Update chain.
6692 
6693   // Add the flag if we have it.
6694   if (Flag.getNode())
6695     RetOps.push_back(Flag);
6696 
6697   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6698 }
6699 
6700 SDValue
LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const6701 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6702                                                 SelectionDAG &DAG) const {
6703   SDLoc dl(Op);
6704 
6705   // Get the correct type for integers.
6706   EVT IntVT = Op.getValueType();
6707 
6708   // Get the inputs.
6709   SDValue Chain = Op.getOperand(0);
6710   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6711   // Build a DYNAREAOFFSET node.
6712   SDValue Ops[2] = {Chain, FPSIdx};
6713   SDVTList VTs = DAG.getVTList(IntVT);
6714   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6715 }
6716 
LowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const6717 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6718                                              SelectionDAG &DAG) const {
6719   // When we pop the dynamic allocation we need to restore the SP link.
6720   SDLoc dl(Op);
6721 
6722   // Get the correct type for pointers.
6723   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6724 
6725   // Construct the stack pointer operand.
6726   bool isPPC64 = Subtarget.isPPC64();
6727   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6728   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6729 
6730   // Get the operands for the STACKRESTORE.
6731   SDValue Chain = Op.getOperand(0);
6732   SDValue SaveSP = Op.getOperand(1);
6733 
6734   // Load the old link SP.
6735   SDValue LoadLinkSP =
6736       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6737 
6738   // Restore the stack pointer.
6739   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6740 
6741   // Store the old link SP.
6742   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6743 }
6744 
getReturnAddrFrameIndex(SelectionDAG & DAG) const6745 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6746   MachineFunction &MF = DAG.getMachineFunction();
6747   bool isPPC64 = Subtarget.isPPC64();
6748   EVT PtrVT = getPointerTy(MF.getDataLayout());
6749 
6750   // Get current frame pointer save index.  The users of this index will be
6751   // primarily DYNALLOC instructions.
6752   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6753   int RASI = FI->getReturnAddrSaveIndex();
6754 
6755   // If the frame pointer save index hasn't been defined yet.
6756   if (!RASI) {
6757     // Find out what the fix offset of the frame pointer save area.
6758     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6759     // Allocate the frame index for frame pointer save area.
6760     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6761     // Save the result.
6762     FI->setReturnAddrSaveIndex(RASI);
6763   }
6764   return DAG.getFrameIndex(RASI, PtrVT);
6765 }
6766 
6767 SDValue
getFramePointerFrameIndex(SelectionDAG & DAG) const6768 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6769   MachineFunction &MF = DAG.getMachineFunction();
6770   bool isPPC64 = Subtarget.isPPC64();
6771   EVT PtrVT = getPointerTy(MF.getDataLayout());
6772 
6773   // Get current frame pointer save index.  The users of this index will be
6774   // primarily DYNALLOC instructions.
6775   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6776   int FPSI = FI->getFramePointerSaveIndex();
6777 
6778   // If the frame pointer save index hasn't been defined yet.
6779   if (!FPSI) {
6780     // Find out what the fix offset of the frame pointer save area.
6781     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6782     // Allocate the frame index for frame pointer save area.
6783     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6784     // Save the result.
6785     FI->setFramePointerSaveIndex(FPSI);
6786   }
6787   return DAG.getFrameIndex(FPSI, PtrVT);
6788 }
6789 
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const6790 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6791                                                    SelectionDAG &DAG) const {
6792   // Get the inputs.
6793   SDValue Chain = Op.getOperand(0);
6794   SDValue Size  = Op.getOperand(1);
6795   SDLoc dl(Op);
6796 
6797   // Get the correct type for pointers.
6798   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6799   // Negate the size.
6800   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6801                                 DAG.getConstant(0, dl, PtrVT), Size);
6802   // Construct a node for the frame pointer save index.
6803   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6804   // Build a DYNALLOC node.
6805   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6806   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6807   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6808 }
6809 
LowerEH_DWARF_CFA(SDValue Op,SelectionDAG & DAG) const6810 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6811                                                      SelectionDAG &DAG) const {
6812   MachineFunction &MF = DAG.getMachineFunction();
6813 
6814   bool isPPC64 = Subtarget.isPPC64();
6815   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6816 
6817   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6818   return DAG.getFrameIndex(FI, PtrVT);
6819 }
6820 
lowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const6821 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6822                                                SelectionDAG &DAG) const {
6823   SDLoc DL(Op);
6824   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6825                      DAG.getVTList(MVT::i32, MVT::Other),
6826                      Op.getOperand(0), Op.getOperand(1));
6827 }
6828 
lowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const6829 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6830                                                 SelectionDAG &DAG) const {
6831   SDLoc DL(Op);
6832   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6833                      Op.getOperand(0), Op.getOperand(1));
6834 }
6835 
LowerLOAD(SDValue Op,SelectionDAG & DAG) const6836 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6837   if (Op.getValueType().isVector())
6838     return LowerVectorLoad(Op, DAG);
6839 
6840   assert(Op.getValueType() == MVT::i1 &&
6841          "Custom lowering only for i1 loads");
6842 
6843   // First, load 8 bits into 32 bits, then truncate to 1 bit.
6844 
6845   SDLoc dl(Op);
6846   LoadSDNode *LD = cast<LoadSDNode>(Op);
6847 
6848   SDValue Chain = LD->getChain();
6849   SDValue BasePtr = LD->getBasePtr();
6850   MachineMemOperand *MMO = LD->getMemOperand();
6851 
6852   SDValue NewLD =
6853       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6854                      BasePtr, MVT::i8, MMO);
6855   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6856 
6857   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6858   return DAG.getMergeValues(Ops, dl);
6859 }
6860 
LowerSTORE(SDValue Op,SelectionDAG & DAG) const6861 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6862   if (Op.getOperand(1).getValueType().isVector())
6863     return LowerVectorStore(Op, DAG);
6864 
6865   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6866          "Custom lowering only for i1 stores");
6867 
6868   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6869 
6870   SDLoc dl(Op);
6871   StoreSDNode *ST = cast<StoreSDNode>(Op);
6872 
6873   SDValue Chain = ST->getChain();
6874   SDValue BasePtr = ST->getBasePtr();
6875   SDValue Value = ST->getValue();
6876   MachineMemOperand *MMO = ST->getMemOperand();
6877 
6878   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6879                       Value);
6880   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6881 }
6882 
6883 // FIXME: Remove this once the ANDI glue bug is fixed:
LowerTRUNCATE(SDValue Op,SelectionDAG & DAG) const6884 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6885   assert(Op.getValueType() == MVT::i1 &&
6886          "Custom lowering only for i1 results");
6887 
6888   SDLoc DL(Op);
6889   return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6890                      Op.getOperand(0));
6891 }
6892 
6893 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6894 /// possible.
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const6895 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6896   // Not FP? Not a fsel.
6897   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6898       !Op.getOperand(2).getValueType().isFloatingPoint())
6899     return Op;
6900 
6901   // We might be able to do better than this under some circumstances, but in
6902   // general, fsel-based lowering of select is a finite-math-only optimization.
6903   // For more information, see section F.3 of the 2.06 ISA specification.
6904   if (!DAG.getTarget().Options.NoInfsFPMath ||
6905       !DAG.getTarget().Options.NoNaNsFPMath)
6906     return Op;
6907   // TODO: Propagate flags from the select rather than global settings.
6908   SDNodeFlags Flags;
6909   Flags.setNoInfs(true);
6910   Flags.setNoNaNs(true);
6911 
6912   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6913 
6914   EVT ResVT = Op.getValueType();
6915   EVT CmpVT = Op.getOperand(0).getValueType();
6916   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6917   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
6918   SDLoc dl(Op);
6919 
6920   // If the RHS of the comparison is a 0.0, we don't need to do the
6921   // subtraction at all.
6922   SDValue Sel1;
6923   if (isFloatingPointZero(RHS))
6924     switch (CC) {
6925     default: break;       // SETUO etc aren't handled by fsel.
6926     case ISD::SETNE:
6927       std::swap(TV, FV);
6928       LLVM_FALLTHROUGH;
6929     case ISD::SETEQ:
6930       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6931         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6932       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6933       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6934         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6935       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6936                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6937     case ISD::SETULT:
6938     case ISD::SETLT:
6939       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6940       LLVM_FALLTHROUGH;
6941     case ISD::SETOGE:
6942     case ISD::SETGE:
6943       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6944         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6945       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6946     case ISD::SETUGT:
6947     case ISD::SETGT:
6948       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
6949       LLVM_FALLTHROUGH;
6950     case ISD::SETOLE:
6951     case ISD::SETLE:
6952       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
6953         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6954       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6955                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6956     }
6957 
6958   SDValue Cmp;
6959   switch (CC) {
6960   default: break;       // SETUO etc aren't handled by fsel.
6961   case ISD::SETNE:
6962     std::swap(TV, FV);
6963     LLVM_FALLTHROUGH;
6964   case ISD::SETEQ:
6965     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6966     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6967       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6968     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6969     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
6970       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6971     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6972                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6973   case ISD::SETULT:
6974   case ISD::SETLT:
6975     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6976     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6977       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6978     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6979   case ISD::SETOGE:
6980   case ISD::SETGE:
6981     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6982     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6983       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6984     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6985   case ISD::SETUGT:
6986   case ISD::SETGT:
6987     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6988     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6989       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6990     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6991   case ISD::SETOLE:
6992   case ISD::SETLE:
6993     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6994     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
6995       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6996     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6997   }
6998   return Op;
6999 }
7000 
LowerFP_TO_INTForReuse(SDValue Op,ReuseLoadInfo & RLI,SelectionDAG & DAG,const SDLoc & dl) const7001 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7002                                                SelectionDAG &DAG,
7003                                                const SDLoc &dl) const {
7004   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7005   SDValue Src = Op.getOperand(0);
7006   if (Src.getValueType() == MVT::f32)
7007     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7008 
7009   SDValue Tmp;
7010   switch (Op.getSimpleValueType().SimpleTy) {
7011   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7012   case MVT::i32:
7013     Tmp = DAG.getNode(
7014         Op.getOpcode() == ISD::FP_TO_SINT
7015             ? PPCISD::FCTIWZ
7016             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7017         dl, MVT::f64, Src);
7018     break;
7019   case MVT::i64:
7020     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7021            "i64 FP_TO_UINT is supported only with FPCVT");
7022     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7023                                                         PPCISD::FCTIDUZ,
7024                       dl, MVT::f64, Src);
7025     break;
7026   }
7027 
7028   // Convert the FP value to an int value through memory.
7029   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7030     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7031   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7032   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7033   MachinePointerInfo MPI =
7034       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7035 
7036   // Emit a store to the stack slot.
7037   SDValue Chain;
7038   if (i32Stack) {
7039     MachineFunction &MF = DAG.getMachineFunction();
7040     MachineMemOperand *MMO =
7041       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7042     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7043     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7044               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7045   } else
7046     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7047 
7048   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7049   // add in a bias on big endian.
7050   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7051     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7052                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7053     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7054   }
7055 
7056   RLI.Chain = Chain;
7057   RLI.Ptr = FIPtr;
7058   RLI.MPI = MPI;
7059 }
7060 
7061 /// Custom lowers floating point to integer conversions to use
7062 /// the direct move instructions available in ISA 2.07 to avoid the
7063 /// need for load/store combinations.
LowerFP_TO_INTDirectMove(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const7064 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7065                                                     SelectionDAG &DAG,
7066                                                     const SDLoc &dl) const {
7067   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7068   SDValue Src = Op.getOperand(0);
7069 
7070   if (Src.getValueType() == MVT::f32)
7071     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7072 
7073   SDValue Tmp;
7074   switch (Op.getSimpleValueType().SimpleTy) {
7075   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7076   case MVT::i32:
7077     Tmp = DAG.getNode(
7078         Op.getOpcode() == ISD::FP_TO_SINT
7079             ? PPCISD::FCTIWZ
7080             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7081         dl, MVT::f64, Src);
7082     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7083     break;
7084   case MVT::i64:
7085     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7086            "i64 FP_TO_UINT is supported only with FPCVT");
7087     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7088                                                         PPCISD::FCTIDUZ,
7089                       dl, MVT::f64, Src);
7090     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7091     break;
7092   }
7093   return Tmp;
7094 }
7095 
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const7096 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7097                                           const SDLoc &dl) const {
7098 
7099   // FP to INT conversions are legal for f128.
7100   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7101     return Op;
7102 
7103   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7104   // PPC (the libcall is not available).
7105   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7106     if (Op.getValueType() == MVT::i32) {
7107       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7108         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7109                                  MVT::f64, Op.getOperand(0),
7110                                  DAG.getIntPtrConstant(0, dl));
7111         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7112                                  MVT::f64, Op.getOperand(0),
7113                                  DAG.getIntPtrConstant(1, dl));
7114 
7115         // Add the two halves of the long double in round-to-zero mode.
7116         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7117 
7118         // Now use a smaller FP_TO_SINT.
7119         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7120       }
7121       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7122         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7123         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7124         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7125         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7126         // FIXME: generated code sucks.
7127         // TODO: Are there fast-math-flags to propagate to this FSUB?
7128         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7129                                    Op.getOperand(0), Tmp);
7130         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7131         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7132                            DAG.getConstant(0x80000000, dl, MVT::i32));
7133         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7134                                     Op.getOperand(0));
7135         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7136                                ISD::SETGE);
7137       }
7138     }
7139 
7140     return SDValue();
7141   }
7142 
7143   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7144     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7145 
7146   ReuseLoadInfo RLI;
7147   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7148 
7149   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7150                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7151 }
7152 
7153 // We're trying to insert a regular store, S, and then a load, L. If the
7154 // incoming value, O, is a load, we might just be able to have our load use the
7155 // address used by O. However, we don't know if anything else will store to
7156 // that address before we can load from it. To prevent this situation, we need
7157 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7158 // the same chain operand as O, we create a token factor from the chain results
7159 // of O and L, and we replace all uses of O's chain result with that token
7160 // factor (see spliceIntoChain below for this last part).
canReuseLoadAddress(SDValue Op,EVT MemVT,ReuseLoadInfo & RLI,SelectionDAG & DAG,ISD::LoadExtType ET) const7161 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7162                                             ReuseLoadInfo &RLI,
7163                                             SelectionDAG &DAG,
7164                                             ISD::LoadExtType ET) const {
7165   SDLoc dl(Op);
7166   if (ET == ISD::NON_EXTLOAD &&
7167       (Op.getOpcode() == ISD::FP_TO_UINT ||
7168        Op.getOpcode() == ISD::FP_TO_SINT) &&
7169       isOperationLegalOrCustom(Op.getOpcode(),
7170                                Op.getOperand(0).getValueType())) {
7171 
7172     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7173     return true;
7174   }
7175 
7176   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7177   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7178       LD->isNonTemporal())
7179     return false;
7180   if (LD->getMemoryVT() != MemVT)
7181     return false;
7182 
7183   RLI.Ptr = LD->getBasePtr();
7184   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7185     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7186            "Non-pre-inc AM on PPC?");
7187     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7188                           LD->getOffset());
7189   }
7190 
7191   RLI.Chain = LD->getChain();
7192   RLI.MPI = LD->getPointerInfo();
7193   RLI.IsDereferenceable = LD->isDereferenceable();
7194   RLI.IsInvariant = LD->isInvariant();
7195   RLI.Alignment = LD->getAlignment();
7196   RLI.AAInfo = LD->getAAInfo();
7197   RLI.Ranges = LD->getRanges();
7198 
7199   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7200   return true;
7201 }
7202 
7203 // Given the head of the old chain, ResChain, insert a token factor containing
7204 // it and NewResChain, and make users of ResChain now be users of that token
7205 // factor.
7206 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
spliceIntoChain(SDValue ResChain,SDValue NewResChain,SelectionDAG & DAG) const7207 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7208                                         SDValue NewResChain,
7209                                         SelectionDAG &DAG) const {
7210   if (!ResChain)
7211     return;
7212 
7213   SDLoc dl(NewResChain);
7214 
7215   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7216                            NewResChain, DAG.getUNDEF(MVT::Other));
7217   assert(TF.getNode() != NewResChain.getNode() &&
7218          "A new TF really is required here");
7219 
7220   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7221   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7222 }
7223 
7224 /// Analyze profitability of direct move
7225 /// prefer float load to int load plus direct move
7226 /// when there is no integer use of int load
directMoveIsProfitable(const SDValue & Op) const7227 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7228   SDNode *Origin = Op.getOperand(0).getNode();
7229   if (Origin->getOpcode() != ISD::LOAD)
7230     return true;
7231 
7232   // If there is no LXSIBZX/LXSIHZX, like Power8,
7233   // prefer direct move if the memory size is 1 or 2 bytes.
7234   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7235   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7236     return true;
7237 
7238   for (SDNode::use_iterator UI = Origin->use_begin(),
7239                             UE = Origin->use_end();
7240        UI != UE; ++UI) {
7241 
7242     // Only look at the users of the loaded value.
7243     if (UI.getUse().get().getResNo() != 0)
7244       continue;
7245 
7246     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7247         UI->getOpcode() != ISD::UINT_TO_FP)
7248       return true;
7249   }
7250 
7251   return false;
7252 }
7253 
7254 /// Custom lowers integer to floating point conversions to use
7255 /// the direct move instructions available in ISA 2.07 to avoid the
7256 /// need for load/store combinations.
LowerINT_TO_FPDirectMove(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const7257 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7258                                                     SelectionDAG &DAG,
7259                                                     const SDLoc &dl) const {
7260   assert((Op.getValueType() == MVT::f32 ||
7261           Op.getValueType() == MVT::f64) &&
7262          "Invalid floating point type as target of conversion");
7263   assert(Subtarget.hasFPCVT() &&
7264          "Int to FP conversions with direct moves require FPCVT");
7265   SDValue FP;
7266   SDValue Src = Op.getOperand(0);
7267   bool SinglePrec = Op.getValueType() == MVT::f32;
7268   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7269   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7270   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7271                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7272 
7273   if (WordInt) {
7274     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7275                      dl, MVT::f64, Src);
7276     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7277   }
7278   else {
7279     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7280     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7281   }
7282 
7283   return FP;
7284 }
7285 
widenVec(SelectionDAG & DAG,SDValue Vec,const SDLoc & dl)7286 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7287 
7288   EVT VecVT = Vec.getValueType();
7289   assert(VecVT.isVector() && "Expected a vector type.");
7290   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7291 
7292   EVT EltVT = VecVT.getVectorElementType();
7293   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7294   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7295 
7296   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7297   SmallVector<SDValue, 16> Ops(NumConcat);
7298   Ops[0] = Vec;
7299   SDValue UndefVec = DAG.getUNDEF(VecVT);
7300   for (unsigned i = 1; i < NumConcat; ++i)
7301     Ops[i] = UndefVec;
7302 
7303   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7304 }
7305 
LowerINT_TO_FPVector(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const7306 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7307                                                 const SDLoc &dl) const {
7308 
7309   unsigned Opc = Op.getOpcode();
7310   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7311          "Unexpected conversion type");
7312   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7313          "Supports conversions to v2f64/v4f32 only.");
7314 
7315   bool SignedConv = Opc == ISD::SINT_TO_FP;
7316   bool FourEltRes = Op.getValueType() == MVT::v4f32;
7317 
7318   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
7319   EVT WideVT = Wide.getValueType();
7320   unsigned WideNumElts = WideVT.getVectorNumElements();
7321   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
7322 
7323   SmallVector<int, 16> ShuffV;
7324   for (unsigned i = 0; i < WideNumElts; ++i)
7325     ShuffV.push_back(i + WideNumElts);
7326 
7327   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
7328   int SaveElts = FourEltRes ? 4 : 2;
7329   if (Subtarget.isLittleEndian())
7330     for (int i = 0; i < SaveElts; i++)
7331       ShuffV[i * Stride] = i;
7332   else
7333     for (int i = 1; i <= SaveElts; i++)
7334       ShuffV[i * Stride - 1] = i - 1;
7335 
7336   SDValue ShuffleSrc2 =
7337       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
7338   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
7339   unsigned ExtendOp =
7340       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
7341 
7342   SDValue Extend;
7343   if (!Subtarget.hasP9Altivec() && SignedConv) {
7344     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
7345     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
7346                          DAG.getValueType(Op.getOperand(0).getValueType()));
7347   } else
7348     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
7349 
7350   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
7351 }
7352 
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const7353 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7354                                           SelectionDAG &DAG) const {
7355   SDLoc dl(Op);
7356 
7357   EVT InVT = Op.getOperand(0).getValueType();
7358   EVT OutVT = Op.getValueType();
7359   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
7360       isOperationCustom(Op.getOpcode(), InVT))
7361     return LowerINT_TO_FPVector(Op, DAG, dl);
7362 
7363   // Conversions to f128 are legal.
7364   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7365     return Op;
7366 
7367   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7368     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7369       return SDValue();
7370 
7371     SDValue Value = Op.getOperand(0);
7372     // The values are now known to be -1 (false) or 1 (true). To convert this
7373     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7374     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7375     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7376 
7377     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7378 
7379     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7380 
7381     if (Op.getValueType() != MVT::v4f64)
7382       Value = DAG.getNode(ISD::FP_ROUND, dl,
7383                           Op.getValueType(), Value,
7384                           DAG.getIntPtrConstant(1, dl));
7385     return Value;
7386   }
7387 
7388   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7389   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7390     return SDValue();
7391 
7392   if (Op.getOperand(0).getValueType() == MVT::i1)
7393     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7394                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
7395                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
7396 
7397   // If we have direct moves, we can do all the conversion, skip the store/load
7398   // however, without FPCVT we can't do most conversions.
7399   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7400       Subtarget.isPPC64() && Subtarget.hasFPCVT())
7401     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7402 
7403   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7404          "UINT_TO_FP is supported only with FPCVT");
7405 
7406   // If we have FCFIDS, then use it when converting to single-precision.
7407   // Otherwise, convert to double-precision and then round.
7408   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7409                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7410                                                             : PPCISD::FCFIDS)
7411                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7412                                                             : PPCISD::FCFID);
7413   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7414                   ? MVT::f32
7415                   : MVT::f64;
7416 
7417   if (Op.getOperand(0).getValueType() == MVT::i64) {
7418     SDValue SINT = Op.getOperand(0);
7419     // When converting to single-precision, we actually need to convert
7420     // to double-precision first and then round to single-precision.
7421     // To avoid double-rounding effects during that operation, we have
7422     // to prepare the input operand.  Bits that might be truncated when
7423     // converting to double-precision are replaced by a bit that won't
7424     // be lost at this stage, but is below the single-precision rounding
7425     // position.
7426     //
7427     // However, if -enable-unsafe-fp-math is in effect, accept double
7428     // rounding to avoid the extra overhead.
7429     if (Op.getValueType() == MVT::f32 &&
7430         !Subtarget.hasFPCVT() &&
7431         !DAG.getTarget().Options.UnsafeFPMath) {
7432 
7433       // Twiddle input to make sure the low 11 bits are zero.  (If this
7434       // is the case, we are guaranteed the value will fit into the 53 bit
7435       // mantissa of an IEEE double-precision value without rounding.)
7436       // If any of those low 11 bits were not zero originally, make sure
7437       // bit 12 (value 2048) is set instead, so that the final rounding
7438       // to single-precision gets the correct result.
7439       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7440                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
7441       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7442                           Round, DAG.getConstant(2047, dl, MVT::i64));
7443       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7444       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7445                           Round, DAG.getConstant(-2048, dl, MVT::i64));
7446 
7447       // However, we cannot use that value unconditionally: if the magnitude
7448       // of the input value is small, the bit-twiddling we did above might
7449       // end up visibly changing the output.  Fortunately, in that case, we
7450       // don't need to twiddle bits since the original input will convert
7451       // exactly to double-precision floating-point already.  Therefore,
7452       // construct a conditional to use the original value if the top 11
7453       // bits are all sign-bit copies, and use the rounded value computed
7454       // above otherwise.
7455       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7456                                  SINT, DAG.getConstant(53, dl, MVT::i32));
7457       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7458                          Cond, DAG.getConstant(1, dl, MVT::i64));
7459       Cond = DAG.getSetCC(dl, MVT::i32,
7460                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7461 
7462       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7463     }
7464 
7465     ReuseLoadInfo RLI;
7466     SDValue Bits;
7467 
7468     MachineFunction &MF = DAG.getMachineFunction();
7469     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7470       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7471                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7472       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7473     } else if (Subtarget.hasLFIWAX() &&
7474                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7475       MachineMemOperand *MMO =
7476         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7477                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7478       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7479       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7480                                      DAG.getVTList(MVT::f64, MVT::Other),
7481                                      Ops, MVT::i32, MMO);
7482       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7483     } else if (Subtarget.hasFPCVT() &&
7484                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7485       MachineMemOperand *MMO =
7486         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7487                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7488       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7489       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7490                                      DAG.getVTList(MVT::f64, MVT::Other),
7491                                      Ops, MVT::i32, MMO);
7492       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7493     } else if (((Subtarget.hasLFIWAX() &&
7494                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7495                 (Subtarget.hasFPCVT() &&
7496                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7497                SINT.getOperand(0).getValueType() == MVT::i32) {
7498       MachineFrameInfo &MFI = MF.getFrameInfo();
7499       EVT PtrVT = getPointerTy(DAG.getDataLayout());
7500 
7501       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7502       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7503 
7504       SDValue Store =
7505           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7506                        MachinePointerInfo::getFixedStack(
7507                            DAG.getMachineFunction(), FrameIdx));
7508 
7509       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7510              "Expected an i32 store");
7511 
7512       RLI.Ptr = FIdx;
7513       RLI.Chain = Store;
7514       RLI.MPI =
7515           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7516       RLI.Alignment = 4;
7517 
7518       MachineMemOperand *MMO =
7519         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7520                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7521       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7522       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7523                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
7524                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
7525                                      Ops, MVT::i32, MMO);
7526     } else
7527       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7528 
7529     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7530 
7531     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7532       FP = DAG.getNode(ISD::FP_ROUND, dl,
7533                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7534     return FP;
7535   }
7536 
7537   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7538          "Unhandled INT_TO_FP type in custom expander!");
7539   // Since we only generate this in 64-bit mode, we can take advantage of
7540   // 64-bit registers.  In particular, sign extend the input value into the
7541   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7542   // then lfd it and fcfid it.
7543   MachineFunction &MF = DAG.getMachineFunction();
7544   MachineFrameInfo &MFI = MF.getFrameInfo();
7545   EVT PtrVT = getPointerTy(MF.getDataLayout());
7546 
7547   SDValue Ld;
7548   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7549     ReuseLoadInfo RLI;
7550     bool ReusingLoad;
7551     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7552                                             DAG))) {
7553       int FrameIdx = MFI.CreateStackObject(4, 4, false);
7554       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7555 
7556       SDValue Store =
7557           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7558                        MachinePointerInfo::getFixedStack(
7559                            DAG.getMachineFunction(), FrameIdx));
7560 
7561       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7562              "Expected an i32 store");
7563 
7564       RLI.Ptr = FIdx;
7565       RLI.Chain = Store;
7566       RLI.MPI =
7567           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7568       RLI.Alignment = 4;
7569     }
7570 
7571     MachineMemOperand *MMO =
7572       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7573                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7574     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7575     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7576                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
7577                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
7578                                  Ops, MVT::i32, MMO);
7579     if (ReusingLoad)
7580       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7581   } else {
7582     assert(Subtarget.isPPC64() &&
7583            "i32->FP without LFIWAX supported only on PPC64");
7584 
7585     int FrameIdx = MFI.CreateStackObject(8, 8, false);
7586     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7587 
7588     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7589                                 Op.getOperand(0));
7590 
7591     // STD the extended value into the stack slot.
7592     SDValue Store = DAG.getStore(
7593         DAG.getEntryNode(), dl, Ext64, FIdx,
7594         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7595 
7596     // Load the value as a double.
7597     Ld = DAG.getLoad(
7598         MVT::f64, dl, Store, FIdx,
7599         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7600   }
7601 
7602   // FCFID it and return it.
7603   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7604   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7605     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7606                      DAG.getIntPtrConstant(0, dl));
7607   return FP;
7608 }
7609 
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const7610 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7611                                             SelectionDAG &DAG) const {
7612   SDLoc dl(Op);
7613   /*
7614    The rounding mode is in bits 30:31 of FPSR, and has the following
7615    settings:
7616      00 Round to nearest
7617      01 Round to 0
7618      10 Round to +inf
7619      11 Round to -inf
7620 
7621   FLT_ROUNDS, on the other hand, expects the following:
7622     -1 Undefined
7623      0 Round to 0
7624      1 Round to nearest
7625      2 Round to +inf
7626      3 Round to -inf
7627 
7628   To perform the conversion, we do:
7629     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7630   */
7631 
7632   MachineFunction &MF = DAG.getMachineFunction();
7633   EVT VT = Op.getValueType();
7634   EVT PtrVT = getPointerTy(MF.getDataLayout());
7635 
7636   // Save FP Control Word to register
7637   EVT NodeTys[] = {
7638     MVT::f64,    // return register
7639     MVT::Glue    // unused in this context
7640   };
7641   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7642 
7643   // Save FP register to stack slot
7644   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7645   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7646   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7647                                MachinePointerInfo());
7648 
7649   // Load FP Control Word from low 32 bits of stack slot.
7650   SDValue Four = DAG.getConstant(4, dl, PtrVT);
7651   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7652   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7653 
7654   // Transform as necessary
7655   SDValue CWD1 =
7656     DAG.getNode(ISD::AND, dl, MVT::i32,
7657                 CWD, DAG.getConstant(3, dl, MVT::i32));
7658   SDValue CWD2 =
7659     DAG.getNode(ISD::SRL, dl, MVT::i32,
7660                 DAG.getNode(ISD::AND, dl, MVT::i32,
7661                             DAG.getNode(ISD::XOR, dl, MVT::i32,
7662                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
7663                             DAG.getConstant(3, dl, MVT::i32)),
7664                 DAG.getConstant(1, dl, MVT::i32));
7665 
7666   SDValue RetVal =
7667     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7668 
7669   return DAG.getNode((VT.getSizeInBits() < 16 ?
7670                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7671 }
7672 
LowerSHL_PARTS(SDValue Op,SelectionDAG & DAG) const7673 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7674   EVT VT = Op.getValueType();
7675   unsigned BitWidth = VT.getSizeInBits();
7676   SDLoc dl(Op);
7677   assert(Op.getNumOperands() == 3 &&
7678          VT == Op.getOperand(1).getValueType() &&
7679          "Unexpected SHL!");
7680 
7681   // Expand into a bunch of logical ops.  Note that these ops
7682   // depend on the PPC behavior for oversized shift amounts.
7683   SDValue Lo = Op.getOperand(0);
7684   SDValue Hi = Op.getOperand(1);
7685   SDValue Amt = Op.getOperand(2);
7686   EVT AmtVT = Amt.getValueType();
7687 
7688   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7689                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7690   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7691   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7692   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7693   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7694                              DAG.getConstant(-BitWidth, dl, AmtVT));
7695   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7696   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7697   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7698   SDValue OutOps[] = { OutLo, OutHi };
7699   return DAG.getMergeValues(OutOps, dl);
7700 }
7701 
LowerSRL_PARTS(SDValue Op,SelectionDAG & DAG) const7702 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7703   EVT VT = Op.getValueType();
7704   SDLoc dl(Op);
7705   unsigned BitWidth = VT.getSizeInBits();
7706   assert(Op.getNumOperands() == 3 &&
7707          VT == Op.getOperand(1).getValueType() &&
7708          "Unexpected SRL!");
7709 
7710   // Expand into a bunch of logical ops.  Note that these ops
7711   // depend on the PPC behavior for oversized shift amounts.
7712   SDValue Lo = Op.getOperand(0);
7713   SDValue Hi = Op.getOperand(1);
7714   SDValue Amt = Op.getOperand(2);
7715   EVT AmtVT = Amt.getValueType();
7716 
7717   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7718                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7719   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7720   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7721   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7722   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7723                              DAG.getConstant(-BitWidth, dl, AmtVT));
7724   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7725   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7726   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7727   SDValue OutOps[] = { OutLo, OutHi };
7728   return DAG.getMergeValues(OutOps, dl);
7729 }
7730 
LowerSRA_PARTS(SDValue Op,SelectionDAG & DAG) const7731 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7732   SDLoc dl(Op);
7733   EVT VT = Op.getValueType();
7734   unsigned BitWidth = VT.getSizeInBits();
7735   assert(Op.getNumOperands() == 3 &&
7736          VT == Op.getOperand(1).getValueType() &&
7737          "Unexpected SRA!");
7738 
7739   // Expand into a bunch of logical ops, followed by a select_cc.
7740   SDValue Lo = Op.getOperand(0);
7741   SDValue Hi = Op.getOperand(1);
7742   SDValue Amt = Op.getOperand(2);
7743   EVT AmtVT = Amt.getValueType();
7744 
7745   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7746                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7747   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7748   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7749   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7750   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7751                              DAG.getConstant(-BitWidth, dl, AmtVT));
7752   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7753   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7754   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7755                                   Tmp4, Tmp6, ISD::SETLE);
7756   SDValue OutOps[] = { OutLo, OutHi };
7757   return DAG.getMergeValues(OutOps, dl);
7758 }
7759 
7760 //===----------------------------------------------------------------------===//
7761 // Vector related lowering.
7762 //
7763 
7764 /// BuildSplatI - Build a canonical splati of Val with an element size of
7765 /// SplatSize.  Cast the result to VT.
BuildSplatI(int Val,unsigned SplatSize,EVT VT,SelectionDAG & DAG,const SDLoc & dl)7766 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7767                            SelectionDAG &DAG, const SDLoc &dl) {
7768   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7769 
7770   static const MVT VTys[] = { // canonical VT to use for each size.
7771     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7772   };
7773 
7774   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7775 
7776   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7777   if (Val == -1)
7778     SplatSize = 1;
7779 
7780   EVT CanonicalVT = VTys[SplatSize-1];
7781 
7782   // Build a canonical splat for this value.
7783   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7784 }
7785 
7786 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7787 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7788 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7789                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
7790   if (DestVT == MVT::Other) DestVT = Op.getValueType();
7791   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7792                      DAG.getConstant(IID, dl, MVT::i32), Op);
7793 }
7794 
7795 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7796 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7797 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7798                                 SelectionDAG &DAG, const SDLoc &dl,
7799                                 EVT DestVT = MVT::Other) {
7800   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7801   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7802                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7803 }
7804 
7805 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7806 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op0,SDValue Op1,SDValue Op2,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7807 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7808                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7809                                 EVT DestVT = MVT::Other) {
7810   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7811   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7812                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7813 }
7814 
7815 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7816 /// amount.  The result has the specified value type.
BuildVSLDOI(SDValue LHS,SDValue RHS,unsigned Amt,EVT VT,SelectionDAG & DAG,const SDLoc & dl)7817 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7818                            SelectionDAG &DAG, const SDLoc &dl) {
7819   // Force LHS/RHS to be the right type.
7820   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7821   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7822 
7823   int Ops[16];
7824   for (unsigned i = 0; i != 16; ++i)
7825     Ops[i] = i + Amt;
7826   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7827   return DAG.getNode(ISD::BITCAST, dl, VT, T);
7828 }
7829 
7830 /// Do we have an efficient pattern in a .td file for this node?
7831 ///
7832 /// \param V - pointer to the BuildVectorSDNode being matched
7833 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7834 ///
7835 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7836 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7837 /// the opposite is true (expansion is beneficial) are:
7838 /// - The node builds a vector out of integers that are not 32 or 64-bits
7839 /// - The node builds a vector out of constants
7840 /// - The node is a "load-and-splat"
7841 /// In all other cases, we will choose to keep the BUILD_VECTOR.
haveEfficientBuildVectorPattern(BuildVectorSDNode * V,bool HasDirectMove,bool HasP8Vector)7842 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7843                                             bool HasDirectMove,
7844                                             bool HasP8Vector) {
7845   EVT VecVT = V->getValueType(0);
7846   bool RightType = VecVT == MVT::v2f64 ||
7847     (HasP8Vector && VecVT == MVT::v4f32) ||
7848     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7849   if (!RightType)
7850     return false;
7851 
7852   bool IsSplat = true;
7853   bool IsLoad = false;
7854   SDValue Op0 = V->getOperand(0);
7855 
7856   // This function is called in a block that confirms the node is not a constant
7857   // splat. So a constant BUILD_VECTOR here means the vector is built out of
7858   // different constants.
7859   if (V->isConstant())
7860     return false;
7861   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7862     if (V->getOperand(i).isUndef())
7863       return false;
7864     // We want to expand nodes that represent load-and-splat even if the
7865     // loaded value is a floating point truncation or conversion to int.
7866     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7867         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7868          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7869         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7870          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7871         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7872          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7873       IsLoad = true;
7874     // If the operands are different or the input is not a load and has more
7875     // uses than just this BV node, then it isn't a splat.
7876     if (V->getOperand(i) != Op0 ||
7877         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7878       IsSplat = false;
7879   }
7880   return !(IsSplat && IsLoad);
7881 }
7882 
7883 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
LowerBITCAST(SDValue Op,SelectionDAG & DAG) const7884 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
7885 
7886   SDLoc dl(Op);
7887   SDValue Op0 = Op->getOperand(0);
7888 
7889   if (!EnableQuadPrecision ||
7890       (Op.getValueType() != MVT::f128 ) ||
7891       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
7892       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
7893       (Op0.getOperand(1).getValueType() != MVT::i64))
7894     return SDValue();
7895 
7896   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
7897                      Op0.getOperand(1));
7898 }
7899 
7900 // If this is a case we can't handle, return null and let the default
7901 // expansion code take care of it.  If we CAN select this case, and if it
7902 // selects to a single instruction, return Op.  Otherwise, if we can codegen
7903 // this case more efficiently than a constant pool load, lower it to the
7904 // sequence of ops that should be used.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const7905 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7906                                              SelectionDAG &DAG) const {
7907   SDLoc dl(Op);
7908   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7909   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7910 
7911   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7912     // We first build an i32 vector, load it into a QPX register,
7913     // then convert it to a floating-point vector and compare it
7914     // to a zero vector to get the boolean result.
7915     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7916     int FrameIdx = MFI.CreateStackObject(16, 16, false);
7917     MachinePointerInfo PtrInfo =
7918         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7919     EVT PtrVT = getPointerTy(DAG.getDataLayout());
7920     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7921 
7922     assert(BVN->getNumOperands() == 4 &&
7923       "BUILD_VECTOR for v4i1 does not have 4 operands");
7924 
7925     bool IsConst = true;
7926     for (unsigned i = 0; i < 4; ++i) {
7927       if (BVN->getOperand(i).isUndef()) continue;
7928       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7929         IsConst = false;
7930         break;
7931       }
7932     }
7933 
7934     if (IsConst) {
7935       Constant *One =
7936         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7937       Constant *NegOne =
7938         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7939 
7940       Constant *CV[4];
7941       for (unsigned i = 0; i < 4; ++i) {
7942         if (BVN->getOperand(i).isUndef())
7943           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7944         else if (isNullConstant(BVN->getOperand(i)))
7945           CV[i] = NegOne;
7946         else
7947           CV[i] = One;
7948       }
7949 
7950       Constant *CP = ConstantVector::get(CV);
7951       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7952                                           16 /* alignment */);
7953 
7954       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7955       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7956       return DAG.getMemIntrinsicNode(
7957           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7958           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7959     }
7960 
7961     SmallVector<SDValue, 4> Stores;
7962     for (unsigned i = 0; i < 4; ++i) {
7963       if (BVN->getOperand(i).isUndef()) continue;
7964 
7965       unsigned Offset = 4*i;
7966       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7967       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7968 
7969       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7970       if (StoreSize > 4) {
7971         Stores.push_back(
7972             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7973                               PtrInfo.getWithOffset(Offset), MVT::i32));
7974       } else {
7975         SDValue StoreValue = BVN->getOperand(i);
7976         if (StoreSize < 4)
7977           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7978 
7979         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7980                                       PtrInfo.getWithOffset(Offset)));
7981       }
7982     }
7983 
7984     SDValue StoreChain;
7985     if (!Stores.empty())
7986       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7987     else
7988       StoreChain = DAG.getEntryNode();
7989 
7990     // Now load from v4i32 into the QPX register; this will extend it to
7991     // v4i64 but not yet convert it to a floating point. Nevertheless, this
7992     // is typed as v4f64 because the QPX register integer states are not
7993     // explicitly represented.
7994 
7995     SDValue Ops[] = {StoreChain,
7996                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7997                      FIdx};
7998     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7999 
8000     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8001       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8002     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8003       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8004       LoadedVect);
8005 
8006     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8007 
8008     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8009   }
8010 
8011   // All other QPX vectors are handled by generic code.
8012   if (Subtarget.hasQPX())
8013     return SDValue();
8014 
8015   // Check if this is a splat of a constant value.
8016   APInt APSplatBits, APSplatUndef;
8017   unsigned SplatBitSize;
8018   bool HasAnyUndefs;
8019   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8020                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8021       SplatBitSize > 32) {
8022     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8023     // lowered to VSX instructions under certain conditions.
8024     // Without VSX, there is no pattern more efficient than expanding the node.
8025     if (Subtarget.hasVSX() &&
8026         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8027                                         Subtarget.hasP8Vector()))
8028       return Op;
8029     return SDValue();
8030   }
8031 
8032   unsigned SplatBits = APSplatBits.getZExtValue();
8033   unsigned SplatUndef = APSplatUndef.getZExtValue();
8034   unsigned SplatSize = SplatBitSize / 8;
8035 
8036   // First, handle single instruction cases.
8037 
8038   // All zeros?
8039   if (SplatBits == 0) {
8040     // Canonicalize all zero vectors to be v4i32.
8041     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8042       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8043       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8044     }
8045     return Op;
8046   }
8047 
8048   // We have XXSPLTIB for constant splats one byte wide
8049   if (Subtarget.hasP9Vector() && SplatSize == 1) {
8050     // This is a splat of 1-byte elements with some elements potentially undef.
8051     // Rather than trying to match undef in the SDAG patterns, ensure that all
8052     // elements are the same constant.
8053     if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
8054       SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
8055                                                        dl, MVT::i32));
8056       SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
8057       if (Op.getValueType() != MVT::v16i8)
8058         return DAG.getBitcast(Op.getValueType(), NewBV);
8059       return NewBV;
8060     }
8061 
8062     // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
8063     // detect that constant splats like v8i16: 0xABAB are really just splats
8064     // of a 1-byte constant. In this case, we need to convert the node to a
8065     // splat of v16i8 and a bitcast.
8066     if (Op.getValueType() != MVT::v16i8)
8067       return DAG.getBitcast(Op.getValueType(),
8068                             DAG.getConstant(SplatBits, dl, MVT::v16i8));
8069 
8070     return Op;
8071   }
8072 
8073   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8074   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8075                     (32-SplatBitSize));
8076   if (SextVal >= -16 && SextVal <= 15)
8077     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8078 
8079   // Two instruction sequences.
8080 
8081   // If this value is in the range [-32,30] and is even, use:
8082   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8083   // If this value is in the range [17,31] and is odd, use:
8084   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8085   // If this value is in the range [-31,-17] and is odd, use:
8086   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8087   // Note the last two are three-instruction sequences.
8088   if (SextVal >= -32 && SextVal <= 31) {
8089     // To avoid having these optimizations undone by constant folding,
8090     // we convert to a pseudo that will be expanded later into one of
8091     // the above forms.
8092     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8093     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8094               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8095     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8096     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8097     if (VT == Op.getValueType())
8098       return RetVal;
8099     else
8100       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8101   }
8102 
8103   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8104   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8105   // for fneg/fabs.
8106   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8107     // Make -1 and vspltisw -1:
8108     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8109 
8110     // Make the VSLW intrinsic, computing 0x8000_0000.
8111     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8112                                    OnesV, DAG, dl);
8113 
8114     // xor by OnesV to invert it.
8115     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8116     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8117   }
8118 
8119   // Check to see if this is a wide variety of vsplti*, binop self cases.
8120   static const signed char SplatCsts[] = {
8121     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8122     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8123   };
8124 
8125   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8126     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8127     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8128     int i = SplatCsts[idx];
8129 
8130     // Figure out what shift amount will be used by altivec if shifted by i in
8131     // this splat size.
8132     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8133 
8134     // vsplti + shl self.
8135     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8136       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8137       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8138         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8139         Intrinsic::ppc_altivec_vslw
8140       };
8141       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8142       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8143     }
8144 
8145     // vsplti + srl self.
8146     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8147       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8148       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8149         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8150         Intrinsic::ppc_altivec_vsrw
8151       };
8152       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8153       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8154     }
8155 
8156     // vsplti + sra self.
8157     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8158       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8159       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8160         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8161         Intrinsic::ppc_altivec_vsraw
8162       };
8163       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8164       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8165     }
8166 
8167     // vsplti + rol self.
8168     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8169                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8170       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8171       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8172         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8173         Intrinsic::ppc_altivec_vrlw
8174       };
8175       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8176       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8177     }
8178 
8179     // t = vsplti c, result = vsldoi t, t, 1
8180     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8181       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8182       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8183       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8184     }
8185     // t = vsplti c, result = vsldoi t, t, 2
8186     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8187       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8188       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8189       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8190     }
8191     // t = vsplti c, result = vsldoi t, t, 3
8192     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8193       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8194       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8195       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8196     }
8197   }
8198 
8199   return SDValue();
8200 }
8201 
8202 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8203 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)8204 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8205                                       SDValue RHS, SelectionDAG &DAG,
8206                                       const SDLoc &dl) {
8207   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8208   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8209   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8210 
8211   enum {
8212     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8213     OP_VMRGHW,
8214     OP_VMRGLW,
8215     OP_VSPLTISW0,
8216     OP_VSPLTISW1,
8217     OP_VSPLTISW2,
8218     OP_VSPLTISW3,
8219     OP_VSLDOI4,
8220     OP_VSLDOI8,
8221     OP_VSLDOI12
8222   };
8223 
8224   if (OpNum == OP_COPY) {
8225     if (LHSID == (1*9+2)*9+3) return LHS;
8226     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8227     return RHS;
8228   }
8229 
8230   SDValue OpLHS, OpRHS;
8231   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8232   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8233 
8234   int ShufIdxs[16];
8235   switch (OpNum) {
8236   default: llvm_unreachable("Unknown i32 permute!");
8237   case OP_VMRGHW:
8238     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8239     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8240     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8241     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8242     break;
8243   case OP_VMRGLW:
8244     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8245     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8246     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8247     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8248     break;
8249   case OP_VSPLTISW0:
8250     for (unsigned i = 0; i != 16; ++i)
8251       ShufIdxs[i] = (i&3)+0;
8252     break;
8253   case OP_VSPLTISW1:
8254     for (unsigned i = 0; i != 16; ++i)
8255       ShufIdxs[i] = (i&3)+4;
8256     break;
8257   case OP_VSPLTISW2:
8258     for (unsigned i = 0; i != 16; ++i)
8259       ShufIdxs[i] = (i&3)+8;
8260     break;
8261   case OP_VSPLTISW3:
8262     for (unsigned i = 0; i != 16; ++i)
8263       ShufIdxs[i] = (i&3)+12;
8264     break;
8265   case OP_VSLDOI4:
8266     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8267   case OP_VSLDOI8:
8268     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8269   case OP_VSLDOI12:
8270     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8271   }
8272   EVT VT = OpLHS.getValueType();
8273   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8274   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8275   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8276   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8277 }
8278 
8279 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8280 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8281 /// SDValue.
lowerToVINSERTB(ShuffleVectorSDNode * N,SelectionDAG & DAG) const8282 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8283                                            SelectionDAG &DAG) const {
8284   const unsigned BytesInVector = 16;
8285   bool IsLE = Subtarget.isLittleEndian();
8286   SDLoc dl(N);
8287   SDValue V1 = N->getOperand(0);
8288   SDValue V2 = N->getOperand(1);
8289   unsigned ShiftElts = 0, InsertAtByte = 0;
8290   bool Swap = false;
8291 
8292   // Shifts required to get the byte we want at element 7.
8293   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8294                                    0, 15, 14, 13, 12, 11, 10, 9};
8295   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8296                                 1, 2,  3,  4,  5,  6,  7,  8};
8297 
8298   ArrayRef<int> Mask = N->getMask();
8299   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8300 
8301   // For each mask element, find out if we're just inserting something
8302   // from V2 into V1 or vice versa.
8303   // Possible permutations inserting an element from V2 into V1:
8304   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8305   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8306   //   ...
8307   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8308   // Inserting from V1 into V2 will be similar, except mask range will be
8309   // [16,31].
8310 
8311   bool FoundCandidate = false;
8312   // If both vector operands for the shuffle are the same vector, the mask
8313   // will contain only elements from the first one and the second one will be
8314   // undef.
8315   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8316   // Go through the mask of half-words to find an element that's being moved
8317   // from one vector to the other.
8318   for (unsigned i = 0; i < BytesInVector; ++i) {
8319     unsigned CurrentElement = Mask[i];
8320     // If 2nd operand is undefined, we should only look for element 7 in the
8321     // Mask.
8322     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8323       continue;
8324 
8325     bool OtherElementsInOrder = true;
8326     // Examine the other elements in the Mask to see if they're in original
8327     // order.
8328     for (unsigned j = 0; j < BytesInVector; ++j) {
8329       if (j == i)
8330         continue;
8331       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8332       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
8333       // in which we always assume we're always picking from the 1st operand.
8334       int MaskOffset =
8335           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8336       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8337         OtherElementsInOrder = false;
8338         break;
8339       }
8340     }
8341     // If other elements are in original order, we record the number of shifts
8342     // we need to get the element we want into element 7. Also record which byte
8343     // in the vector we should insert into.
8344     if (OtherElementsInOrder) {
8345       // If 2nd operand is undefined, we assume no shifts and no swapping.
8346       if (V2.isUndef()) {
8347         ShiftElts = 0;
8348         Swap = false;
8349       } else {
8350         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8351         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8352                          : BigEndianShifts[CurrentElement & 0xF];
8353         Swap = CurrentElement < BytesInVector;
8354       }
8355       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8356       FoundCandidate = true;
8357       break;
8358     }
8359   }
8360 
8361   if (!FoundCandidate)
8362     return SDValue();
8363 
8364   // Candidate found, construct the proper SDAG sequence with VINSERTB,
8365   // optionally with VECSHL if shift is required.
8366   if (Swap)
8367     std::swap(V1, V2);
8368   if (V2.isUndef())
8369     V2 = V1;
8370   if (ShiftElts) {
8371     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8372                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8373     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8374                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
8375   }
8376   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8377                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
8378 }
8379 
8380 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8381 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8382 /// SDValue.
lowerToVINSERTH(ShuffleVectorSDNode * N,SelectionDAG & DAG) const8383 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8384                                            SelectionDAG &DAG) const {
8385   const unsigned NumHalfWords = 8;
8386   const unsigned BytesInVector = NumHalfWords * 2;
8387   // Check that the shuffle is on half-words.
8388   if (!isNByteElemShuffleMask(N, 2, 1))
8389     return SDValue();
8390 
8391   bool IsLE = Subtarget.isLittleEndian();
8392   SDLoc dl(N);
8393   SDValue V1 = N->getOperand(0);
8394   SDValue V2 = N->getOperand(1);
8395   unsigned ShiftElts = 0, InsertAtByte = 0;
8396   bool Swap = false;
8397 
8398   // Shifts required to get the half-word we want at element 3.
8399   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8400   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8401 
8402   uint32_t Mask = 0;
8403   uint32_t OriginalOrderLow = 0x1234567;
8404   uint32_t OriginalOrderHigh = 0x89ABCDEF;
8405   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
8406   // 32-bit space, only need 4-bit nibbles per element.
8407   for (unsigned i = 0; i < NumHalfWords; ++i) {
8408     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8409     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8410   }
8411 
8412   // For each mask element, find out if we're just inserting something
8413   // from V2 into V1 or vice versa.  Possible permutations inserting an element
8414   // from V2 into V1:
8415   //   X, 1, 2, 3, 4, 5, 6, 7
8416   //   0, X, 2, 3, 4, 5, 6, 7
8417   //   0, 1, X, 3, 4, 5, 6, 7
8418   //   0, 1, 2, X, 4, 5, 6, 7
8419   //   0, 1, 2, 3, X, 5, 6, 7
8420   //   0, 1, 2, 3, 4, X, 6, 7
8421   //   0, 1, 2, 3, 4, 5, X, 7
8422   //   0, 1, 2, 3, 4, 5, 6, X
8423   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8424 
8425   bool FoundCandidate = false;
8426   // Go through the mask of half-words to find an element that's being moved
8427   // from one vector to the other.
8428   for (unsigned i = 0; i < NumHalfWords; ++i) {
8429     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8430     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8431     uint32_t MaskOtherElts = ~(0xF << MaskShift);
8432     uint32_t TargetOrder = 0x0;
8433 
8434     // If both vector operands for the shuffle are the same vector, the mask
8435     // will contain only elements from the first one and the second one will be
8436     // undef.
8437     if (V2.isUndef()) {
8438       ShiftElts = 0;
8439       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8440       TargetOrder = OriginalOrderLow;
8441       Swap = false;
8442       // Skip if not the correct element or mask of other elements don't equal
8443       // to our expected order.
8444       if (MaskOneElt == VINSERTHSrcElem &&
8445           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8446         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8447         FoundCandidate = true;
8448         break;
8449       }
8450     } else { // If both operands are defined.
8451       // Target order is [8,15] if the current mask is between [0,7].
8452       TargetOrder =
8453           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8454       // Skip if mask of other elements don't equal our expected order.
8455       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8456         // We only need the last 3 bits for the number of shifts.
8457         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8458                          : BigEndianShifts[MaskOneElt & 0x7];
8459         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8460         Swap = MaskOneElt < NumHalfWords;
8461         FoundCandidate = true;
8462         break;
8463       }
8464     }
8465   }
8466 
8467   if (!FoundCandidate)
8468     return SDValue();
8469 
8470   // Candidate found, construct the proper SDAG sequence with VINSERTH,
8471   // optionally with VECSHL if shift is required.
8472   if (Swap)
8473     std::swap(V1, V2);
8474   if (V2.isUndef())
8475     V2 = V1;
8476   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8477   if (ShiftElts) {
8478     // Double ShiftElts because we're left shifting on v16i8 type.
8479     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8480                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8481     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8482     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8483                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8484     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8485   }
8486   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8487   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8488                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
8489   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8490 }
8491 
8492 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
8493 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
8494 /// return the code it can be lowered into.  Worst case, it can always be
8495 /// lowered into a vperm.
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const8496 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8497                                                SelectionDAG &DAG) const {
8498   SDLoc dl(Op);
8499   SDValue V1 = Op.getOperand(0);
8500   SDValue V2 = Op.getOperand(1);
8501   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8502   EVT VT = Op.getValueType();
8503   bool isLittleEndian = Subtarget.isLittleEndian();
8504 
8505   unsigned ShiftElts, InsertAtByte;
8506   bool Swap = false;
8507   if (Subtarget.hasP9Vector() &&
8508       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8509                            isLittleEndian)) {
8510     if (Swap)
8511       std::swap(V1, V2);
8512     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8513     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8514     if (ShiftElts) {
8515       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8516                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
8517       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8518                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8519       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8520     }
8521     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8522                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
8523     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8524   }
8525 
8526   if (Subtarget.hasP9Altivec()) {
8527     SDValue NewISDNode;
8528     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8529       return NewISDNode;
8530 
8531     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8532       return NewISDNode;
8533   }
8534 
8535   if (Subtarget.hasVSX() &&
8536       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8537     if (Swap)
8538       std::swap(V1, V2);
8539     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8540     SDValue Conv2 =
8541         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8542 
8543     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8544                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8545     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8546   }
8547 
8548   if (Subtarget.hasVSX() &&
8549     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8550     if (Swap)
8551       std::swap(V1, V2);
8552     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8553     SDValue Conv2 =
8554         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8555 
8556     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8557                               DAG.getConstant(ShiftElts, dl, MVT::i32));
8558     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8559   }
8560 
8561   if (Subtarget.hasP9Vector()) {
8562      if (PPC::isXXBRHShuffleMask(SVOp)) {
8563       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8564       SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8565       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8566     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8567       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8568       SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8569       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8570     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8571       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8572       SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8573       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8574     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8575       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8576       SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8577       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8578     }
8579   }
8580 
8581   if (Subtarget.hasVSX()) {
8582     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8583       int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8584 
8585       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8586       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8587                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
8588       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8589     }
8590 
8591     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8592     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8593       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8594       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8595       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8596     }
8597   }
8598 
8599   if (Subtarget.hasQPX()) {
8600     if (VT.getVectorNumElements() != 4)
8601       return SDValue();
8602 
8603     if (V2.isUndef()) V2 = V1;
8604 
8605     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8606     if (AlignIdx != -1) {
8607       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8608                          DAG.getConstant(AlignIdx, dl, MVT::i32));
8609     } else if (SVOp->isSplat()) {
8610       int SplatIdx = SVOp->getSplatIndex();
8611       if (SplatIdx >= 4) {
8612         std::swap(V1, V2);
8613         SplatIdx -= 4;
8614       }
8615 
8616       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8617                          DAG.getConstant(SplatIdx, dl, MVT::i32));
8618     }
8619 
8620     // Lower this into a qvgpci/qvfperm pair.
8621 
8622     // Compute the qvgpci literal
8623     unsigned idx = 0;
8624     for (unsigned i = 0; i < 4; ++i) {
8625       int m = SVOp->getMaskElt(i);
8626       unsigned mm = m >= 0 ? (unsigned) m : i;
8627       idx |= mm << (3-i)*3;
8628     }
8629 
8630     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8631                              DAG.getConstant(idx, dl, MVT::i32));
8632     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8633   }
8634 
8635   // Cases that are handled by instructions that take permute immediates
8636   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8637   // selected by the instruction selector.
8638   if (V2.isUndef()) {
8639     if (PPC::isSplatShuffleMask(SVOp, 1) ||
8640         PPC::isSplatShuffleMask(SVOp, 2) ||
8641         PPC::isSplatShuffleMask(SVOp, 4) ||
8642         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8643         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8644         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8645         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8646         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8647         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8648         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8649         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8650         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8651         (Subtarget.hasP8Altivec() && (
8652          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8653          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8654          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8655       return Op;
8656     }
8657   }
8658 
8659   // Altivec has a variety of "shuffle immediates" that take two vector inputs
8660   // and produce a fixed permutation.  If any of these match, do not lower to
8661   // VPERM.
8662   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8663   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8664       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8665       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8666       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8667       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8668       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8669       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8670       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8671       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8672       (Subtarget.hasP8Altivec() && (
8673        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8674        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8675        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8676     return Op;
8677 
8678   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
8679   // perfect shuffle table to emit an optimal matching sequence.
8680   ArrayRef<int> PermMask = SVOp->getMask();
8681 
8682   unsigned PFIndexes[4];
8683   bool isFourElementShuffle = true;
8684   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8685     unsigned EltNo = 8;   // Start out undef.
8686     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
8687       if (PermMask[i*4+j] < 0)
8688         continue;   // Undef, ignore it.
8689 
8690       unsigned ByteSource = PermMask[i*4+j];
8691       if ((ByteSource & 3) != j) {
8692         isFourElementShuffle = false;
8693         break;
8694       }
8695 
8696       if (EltNo == 8) {
8697         EltNo = ByteSource/4;
8698       } else if (EltNo != ByteSource/4) {
8699         isFourElementShuffle = false;
8700         break;
8701       }
8702     }
8703     PFIndexes[i] = EltNo;
8704   }
8705 
8706   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8707   // perfect shuffle vector to determine if it is cost effective to do this as
8708   // discrete instructions, or whether we should use a vperm.
8709   // For now, we skip this for little endian until such time as we have a
8710   // little-endian perfect shuffle table.
8711   if (isFourElementShuffle && !isLittleEndian) {
8712     // Compute the index in the perfect shuffle table.
8713     unsigned PFTableIndex =
8714       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8715 
8716     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8717     unsigned Cost  = (PFEntry >> 30);
8718 
8719     // Determining when to avoid vperm is tricky.  Many things affect the cost
8720     // of vperm, particularly how many times the perm mask needs to be computed.
8721     // For example, if the perm mask can be hoisted out of a loop or is already
8722     // used (perhaps because there are multiple permutes with the same shuffle
8723     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
8724     // the loop requires an extra register.
8725     //
8726     // As a compromise, we only emit discrete instructions if the shuffle can be
8727     // generated in 3 or fewer operations.  When we have loop information
8728     // available, if this block is within a loop, we should avoid using vperm
8729     // for 3-operation perms and use a constant pool load instead.
8730     if (Cost < 3)
8731       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8732   }
8733 
8734   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8735   // vector that will get spilled to the constant pool.
8736   if (V2.isUndef()) V2 = V1;
8737 
8738   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8739   // that it is in input element units, not in bytes.  Convert now.
8740 
8741   // For little endian, the order of the input vectors is reversed, and
8742   // the permutation mask is complemented with respect to 31.  This is
8743   // necessary to produce proper semantics with the big-endian-biased vperm
8744   // instruction.
8745   EVT EltVT = V1.getValueType().getVectorElementType();
8746   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8747 
8748   SmallVector<SDValue, 16> ResultMask;
8749   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8750     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8751 
8752     for (unsigned j = 0; j != BytesPerElement; ++j)
8753       if (isLittleEndian)
8754         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8755                                              dl, MVT::i32));
8756       else
8757         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8758                                              MVT::i32));
8759   }
8760 
8761   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8762   if (isLittleEndian)
8763     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8764                        V2, V1, VPermMask);
8765   else
8766     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8767                        V1, V2, VPermMask);
8768 }
8769 
8770 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8771 /// vector comparison.  If it is, return true and fill in Opc/isDot with
8772 /// information about the intrinsic.
getVectorCompareInfo(SDValue Intrin,int & CompareOpc,bool & isDot,const PPCSubtarget & Subtarget)8773 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8774                                  bool &isDot, const PPCSubtarget &Subtarget) {
8775   unsigned IntrinsicID =
8776       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8777   CompareOpc = -1;
8778   isDot = false;
8779   switch (IntrinsicID) {
8780   default:
8781     return false;
8782   // Comparison predicates.
8783   case Intrinsic::ppc_altivec_vcmpbfp_p:
8784     CompareOpc = 966;
8785     isDot = true;
8786     break;
8787   case Intrinsic::ppc_altivec_vcmpeqfp_p:
8788     CompareOpc = 198;
8789     isDot = true;
8790     break;
8791   case Intrinsic::ppc_altivec_vcmpequb_p:
8792     CompareOpc = 6;
8793     isDot = true;
8794     break;
8795   case Intrinsic::ppc_altivec_vcmpequh_p:
8796     CompareOpc = 70;
8797     isDot = true;
8798     break;
8799   case Intrinsic::ppc_altivec_vcmpequw_p:
8800     CompareOpc = 134;
8801     isDot = true;
8802     break;
8803   case Intrinsic::ppc_altivec_vcmpequd_p:
8804     if (Subtarget.hasP8Altivec()) {
8805       CompareOpc = 199;
8806       isDot = true;
8807     } else
8808       return false;
8809     break;
8810   case Intrinsic::ppc_altivec_vcmpneb_p:
8811   case Intrinsic::ppc_altivec_vcmpneh_p:
8812   case Intrinsic::ppc_altivec_vcmpnew_p:
8813   case Intrinsic::ppc_altivec_vcmpnezb_p:
8814   case Intrinsic::ppc_altivec_vcmpnezh_p:
8815   case Intrinsic::ppc_altivec_vcmpnezw_p:
8816     if (Subtarget.hasP9Altivec()) {
8817       switch (IntrinsicID) {
8818       default:
8819         llvm_unreachable("Unknown comparison intrinsic.");
8820       case Intrinsic::ppc_altivec_vcmpneb_p:
8821         CompareOpc = 7;
8822         break;
8823       case Intrinsic::ppc_altivec_vcmpneh_p:
8824         CompareOpc = 71;
8825         break;
8826       case Intrinsic::ppc_altivec_vcmpnew_p:
8827         CompareOpc = 135;
8828         break;
8829       case Intrinsic::ppc_altivec_vcmpnezb_p:
8830         CompareOpc = 263;
8831         break;
8832       case Intrinsic::ppc_altivec_vcmpnezh_p:
8833         CompareOpc = 327;
8834         break;
8835       case Intrinsic::ppc_altivec_vcmpnezw_p:
8836         CompareOpc = 391;
8837         break;
8838       }
8839       isDot = true;
8840     } else
8841       return false;
8842     break;
8843   case Intrinsic::ppc_altivec_vcmpgefp_p:
8844     CompareOpc = 454;
8845     isDot = true;
8846     break;
8847   case Intrinsic::ppc_altivec_vcmpgtfp_p:
8848     CompareOpc = 710;
8849     isDot = true;
8850     break;
8851   case Intrinsic::ppc_altivec_vcmpgtsb_p:
8852     CompareOpc = 774;
8853     isDot = true;
8854     break;
8855   case Intrinsic::ppc_altivec_vcmpgtsh_p:
8856     CompareOpc = 838;
8857     isDot = true;
8858     break;
8859   case Intrinsic::ppc_altivec_vcmpgtsw_p:
8860     CompareOpc = 902;
8861     isDot = true;
8862     break;
8863   case Intrinsic::ppc_altivec_vcmpgtsd_p:
8864     if (Subtarget.hasP8Altivec()) {
8865       CompareOpc = 967;
8866       isDot = true;
8867     } else
8868       return false;
8869     break;
8870   case Intrinsic::ppc_altivec_vcmpgtub_p:
8871     CompareOpc = 518;
8872     isDot = true;
8873     break;
8874   case Intrinsic::ppc_altivec_vcmpgtuh_p:
8875     CompareOpc = 582;
8876     isDot = true;
8877     break;
8878   case Intrinsic::ppc_altivec_vcmpgtuw_p:
8879     CompareOpc = 646;
8880     isDot = true;
8881     break;
8882   case Intrinsic::ppc_altivec_vcmpgtud_p:
8883     if (Subtarget.hasP8Altivec()) {
8884       CompareOpc = 711;
8885       isDot = true;
8886     } else
8887       return false;
8888     break;
8889 
8890   // VSX predicate comparisons use the same infrastructure
8891   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8892   case Intrinsic::ppc_vsx_xvcmpgedp_p:
8893   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8894   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8895   case Intrinsic::ppc_vsx_xvcmpgesp_p:
8896   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8897     if (Subtarget.hasVSX()) {
8898       switch (IntrinsicID) {
8899       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8900         CompareOpc = 99;
8901         break;
8902       case Intrinsic::ppc_vsx_xvcmpgedp_p:
8903         CompareOpc = 115;
8904         break;
8905       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8906         CompareOpc = 107;
8907         break;
8908       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8909         CompareOpc = 67;
8910         break;
8911       case Intrinsic::ppc_vsx_xvcmpgesp_p:
8912         CompareOpc = 83;
8913         break;
8914       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8915         CompareOpc = 75;
8916         break;
8917       }
8918       isDot = true;
8919     } else
8920       return false;
8921     break;
8922 
8923   // Normal Comparisons.
8924   case Intrinsic::ppc_altivec_vcmpbfp:
8925     CompareOpc = 966;
8926     break;
8927   case Intrinsic::ppc_altivec_vcmpeqfp:
8928     CompareOpc = 198;
8929     break;
8930   case Intrinsic::ppc_altivec_vcmpequb:
8931     CompareOpc = 6;
8932     break;
8933   case Intrinsic::ppc_altivec_vcmpequh:
8934     CompareOpc = 70;
8935     break;
8936   case Intrinsic::ppc_altivec_vcmpequw:
8937     CompareOpc = 134;
8938     break;
8939   case Intrinsic::ppc_altivec_vcmpequd:
8940     if (Subtarget.hasP8Altivec())
8941       CompareOpc = 199;
8942     else
8943       return false;
8944     break;
8945   case Intrinsic::ppc_altivec_vcmpneb:
8946   case Intrinsic::ppc_altivec_vcmpneh:
8947   case Intrinsic::ppc_altivec_vcmpnew:
8948   case Intrinsic::ppc_altivec_vcmpnezb:
8949   case Intrinsic::ppc_altivec_vcmpnezh:
8950   case Intrinsic::ppc_altivec_vcmpnezw:
8951     if (Subtarget.hasP9Altivec())
8952       switch (IntrinsicID) {
8953       default:
8954         llvm_unreachable("Unknown comparison intrinsic.");
8955       case Intrinsic::ppc_altivec_vcmpneb:
8956         CompareOpc = 7;
8957         break;
8958       case Intrinsic::ppc_altivec_vcmpneh:
8959         CompareOpc = 71;
8960         break;
8961       case Intrinsic::ppc_altivec_vcmpnew:
8962         CompareOpc = 135;
8963         break;
8964       case Intrinsic::ppc_altivec_vcmpnezb:
8965         CompareOpc = 263;
8966         break;
8967       case Intrinsic::ppc_altivec_vcmpnezh:
8968         CompareOpc = 327;
8969         break;
8970       case Intrinsic::ppc_altivec_vcmpnezw:
8971         CompareOpc = 391;
8972         break;
8973       }
8974     else
8975       return false;
8976     break;
8977   case Intrinsic::ppc_altivec_vcmpgefp:
8978     CompareOpc = 454;
8979     break;
8980   case Intrinsic::ppc_altivec_vcmpgtfp:
8981     CompareOpc = 710;
8982     break;
8983   case Intrinsic::ppc_altivec_vcmpgtsb:
8984     CompareOpc = 774;
8985     break;
8986   case Intrinsic::ppc_altivec_vcmpgtsh:
8987     CompareOpc = 838;
8988     break;
8989   case Intrinsic::ppc_altivec_vcmpgtsw:
8990     CompareOpc = 902;
8991     break;
8992   case Intrinsic::ppc_altivec_vcmpgtsd:
8993     if (Subtarget.hasP8Altivec())
8994       CompareOpc = 967;
8995     else
8996       return false;
8997     break;
8998   case Intrinsic::ppc_altivec_vcmpgtub:
8999     CompareOpc = 518;
9000     break;
9001   case Intrinsic::ppc_altivec_vcmpgtuh:
9002     CompareOpc = 582;
9003     break;
9004   case Intrinsic::ppc_altivec_vcmpgtuw:
9005     CompareOpc = 646;
9006     break;
9007   case Intrinsic::ppc_altivec_vcmpgtud:
9008     if (Subtarget.hasP8Altivec())
9009       CompareOpc = 711;
9010     else
9011       return false;
9012     break;
9013   }
9014   return true;
9015 }
9016 
9017 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9018 /// lower, do it, otherwise return null.
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const9019 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9020                                                    SelectionDAG &DAG) const {
9021   unsigned IntrinsicID =
9022     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9023 
9024   SDLoc dl(Op);
9025 
9026   if (IntrinsicID == Intrinsic::thread_pointer) {
9027     // Reads the thread pointer register, used for __builtin_thread_pointer.
9028     if (Subtarget.isPPC64())
9029       return DAG.getRegister(PPC::X13, MVT::i64);
9030     return DAG.getRegister(PPC::R2, MVT::i32);
9031   }
9032 
9033   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9034   // opcode number of the comparison.
9035   int CompareOpc;
9036   bool isDot;
9037   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9038     return SDValue();    // Don't custom lower most intrinsics.
9039 
9040   // If this is a non-dot comparison, make the VCMP node and we are done.
9041   if (!isDot) {
9042     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9043                               Op.getOperand(1), Op.getOperand(2),
9044                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9045     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9046   }
9047 
9048   // Create the PPCISD altivec 'dot' comparison node.
9049   SDValue Ops[] = {
9050     Op.getOperand(2),  // LHS
9051     Op.getOperand(3),  // RHS
9052     DAG.getConstant(CompareOpc, dl, MVT::i32)
9053   };
9054   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9055   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9056 
9057   // Now that we have the comparison, emit a copy from the CR to a GPR.
9058   // This is flagged to the above dot comparison.
9059   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9060                                 DAG.getRegister(PPC::CR6, MVT::i32),
9061                                 CompNode.getValue(1));
9062 
9063   // Unpack the result based on how the target uses it.
9064   unsigned BitNo;   // Bit # of CR6.
9065   bool InvertBit;   // Invert result?
9066   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9067   default:  // Can't happen, don't crash on invalid number though.
9068   case 0:   // Return the value of the EQ bit of CR6.
9069     BitNo = 0; InvertBit = false;
9070     break;
9071   case 1:   // Return the inverted value of the EQ bit of CR6.
9072     BitNo = 0; InvertBit = true;
9073     break;
9074   case 2:   // Return the value of the LT bit of CR6.
9075     BitNo = 2; InvertBit = false;
9076     break;
9077   case 3:   // Return the inverted value of the LT bit of CR6.
9078     BitNo = 2; InvertBit = true;
9079     break;
9080   }
9081 
9082   // Shift the bit into the low position.
9083   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9084                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9085   // Isolate the bit.
9086   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9087                       DAG.getConstant(1, dl, MVT::i32));
9088 
9089   // If we are supposed to, toggle the bit.
9090   if (InvertBit)
9091     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9092                         DAG.getConstant(1, dl, MVT::i32));
9093   return Flags;
9094 }
9095 
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const9096 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9097                                                SelectionDAG &DAG) const {
9098   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9099   // the beginning of the argument list.
9100   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9101   SDLoc DL(Op);
9102   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9103   case Intrinsic::ppc_cfence: {
9104     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9105     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9106     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9107                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9108                                                   Op.getOperand(ArgStart + 1)),
9109                                       Op.getOperand(0)),
9110                    0);
9111   }
9112   default:
9113     break;
9114   }
9115   return SDValue();
9116 }
9117 
LowerREM(SDValue Op,SelectionDAG & DAG) const9118 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9119   // Check for a DIV with the same operands as this REM.
9120   for (auto UI : Op.getOperand(1)->uses()) {
9121     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9122         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9123       if (UI->getOperand(0) == Op.getOperand(0) &&
9124           UI->getOperand(1) == Op.getOperand(1))
9125         return SDValue();
9126   }
9127   return Op;
9128 }
9129 
9130 // Lower scalar BSWAP64 to xxbrd.
LowerBSWAP(SDValue Op,SelectionDAG & DAG) const9131 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9132   SDLoc dl(Op);
9133   // MTVSRDD
9134   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9135                    Op.getOperand(0));
9136   // XXBRD
9137   Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9138   // MFVSRD
9139   int VectorIndex = 0;
9140   if (Subtarget.isLittleEndian())
9141     VectorIndex = 1;
9142   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9143                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9144   return Op;
9145 }
9146 
9147 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9148 // compared to a value that is atomically loaded (atomic loads zero-extend).
LowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const9149 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9150                                                 SelectionDAG &DAG) const {
9151   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9152          "Expecting an atomic compare-and-swap here.");
9153   SDLoc dl(Op);
9154   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9155   EVT MemVT = AtomicNode->getMemoryVT();
9156   if (MemVT.getSizeInBits() >= 32)
9157     return Op;
9158 
9159   SDValue CmpOp = Op.getOperand(2);
9160   // If this is already correctly zero-extended, leave it alone.
9161   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9162   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9163     return Op;
9164 
9165   // Clear the high bits of the compare operand.
9166   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9167   SDValue NewCmpOp =
9168     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9169                 DAG.getConstant(MaskVal, dl, MVT::i32));
9170 
9171   // Replace the existing compare operand with the properly zero-extended one.
9172   SmallVector<SDValue, 4> Ops;
9173   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9174     Ops.push_back(AtomicNode->getOperand(i));
9175   Ops[2] = NewCmpOp;
9176   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9177   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9178   auto NodeTy =
9179     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9180   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9181 }
9182 
LowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const9183 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9184                                                  SelectionDAG &DAG) const {
9185   SDLoc dl(Op);
9186   // Create a stack slot that is 16-byte aligned.
9187   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9188   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9189   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9190   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9191 
9192   // Store the input value into Value#0 of the stack slot.
9193   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9194                                MachinePointerInfo());
9195   // Load it out.
9196   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9197 }
9198 
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const9199 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9200                                                   SelectionDAG &DAG) const {
9201   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9202          "Should only be called for ISD::INSERT_VECTOR_ELT");
9203 
9204   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9205   // We have legal lowering for constant indices but not for variable ones.
9206   if (!C)
9207     return SDValue();
9208 
9209   EVT VT = Op.getValueType();
9210   SDLoc dl(Op);
9211   SDValue V1 = Op.getOperand(0);
9212   SDValue V2 = Op.getOperand(1);
9213   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9214   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9215     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9216     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9217     unsigned InsertAtElement = C->getZExtValue();
9218     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9219     if (Subtarget.isLittleEndian()) {
9220       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9221     }
9222     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9223                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9224   }
9225   return Op;
9226 }
9227 
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const9228 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9229                                                    SelectionDAG &DAG) const {
9230   SDLoc dl(Op);
9231   SDNode *N = Op.getNode();
9232 
9233   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9234          "Unknown extract_vector_elt type");
9235 
9236   SDValue Value = N->getOperand(0);
9237 
9238   // The first part of this is like the store lowering except that we don't
9239   // need to track the chain.
9240 
9241   // The values are now known to be -1 (false) or 1 (true). To convert this
9242   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9243   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9244   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9245 
9246   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9247   // understand how to form the extending load.
9248   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9249 
9250   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9251 
9252   // Now convert to an integer and store.
9253   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9254     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9255     Value);
9256 
9257   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9258   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9259   MachinePointerInfo PtrInfo =
9260       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9261   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9262   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9263 
9264   SDValue StoreChain = DAG.getEntryNode();
9265   SDValue Ops[] = {StoreChain,
9266                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9267                    Value, FIdx};
9268   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9269 
9270   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9271     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9272 
9273   // Extract the value requested.
9274   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9275   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9276   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9277 
9278   SDValue IntVal =
9279       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9280 
9281   if (!Subtarget.useCRBits())
9282     return IntVal;
9283 
9284   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9285 }
9286 
9287 /// Lowering for QPX v4i1 loads
LowerVectorLoad(SDValue Op,SelectionDAG & DAG) const9288 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9289                                            SelectionDAG &DAG) const {
9290   SDLoc dl(Op);
9291   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9292   SDValue LoadChain = LN->getChain();
9293   SDValue BasePtr = LN->getBasePtr();
9294 
9295   if (Op.getValueType() == MVT::v4f64 ||
9296       Op.getValueType() == MVT::v4f32) {
9297     EVT MemVT = LN->getMemoryVT();
9298     unsigned Alignment = LN->getAlignment();
9299 
9300     // If this load is properly aligned, then it is legal.
9301     if (Alignment >= MemVT.getStoreSize())
9302       return Op;
9303 
9304     EVT ScalarVT = Op.getValueType().getScalarType(),
9305         ScalarMemVT = MemVT.getScalarType();
9306     unsigned Stride = ScalarMemVT.getStoreSize();
9307 
9308     SDValue Vals[4], LoadChains[4];
9309     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9310       SDValue Load;
9311       if (ScalarVT != ScalarMemVT)
9312         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9313                               BasePtr,
9314                               LN->getPointerInfo().getWithOffset(Idx * Stride),
9315                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9316                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
9317       else
9318         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9319                            LN->getPointerInfo().getWithOffset(Idx * Stride),
9320                            MinAlign(Alignment, Idx * Stride),
9321                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
9322 
9323       if (Idx == 0 && LN->isIndexed()) {
9324         assert(LN->getAddressingMode() == ISD::PRE_INC &&
9325                "Unknown addressing mode on vector load");
9326         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9327                                   LN->getAddressingMode());
9328       }
9329 
9330       Vals[Idx] = Load;
9331       LoadChains[Idx] = Load.getValue(1);
9332 
9333       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9334                             DAG.getConstant(Stride, dl,
9335                                             BasePtr.getValueType()));
9336     }
9337 
9338     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9339     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9340 
9341     if (LN->isIndexed()) {
9342       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9343       return DAG.getMergeValues(RetOps, dl);
9344     }
9345 
9346     SDValue RetOps[] = { Value, TF };
9347     return DAG.getMergeValues(RetOps, dl);
9348   }
9349 
9350   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9351   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9352 
9353   // To lower v4i1 from a byte array, we load the byte elements of the
9354   // vector and then reuse the BUILD_VECTOR logic.
9355 
9356   SDValue VectElmts[4], VectElmtChains[4];
9357   for (unsigned i = 0; i < 4; ++i) {
9358     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9359     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9360 
9361     VectElmts[i] = DAG.getExtLoad(
9362         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9363         LN->getPointerInfo().getWithOffset(i), MVT::i8,
9364         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9365     VectElmtChains[i] = VectElmts[i].getValue(1);
9366   }
9367 
9368   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9369   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9370 
9371   SDValue RVals[] = { Value, LoadChain };
9372   return DAG.getMergeValues(RVals, dl);
9373 }
9374 
9375 /// Lowering for QPX v4i1 stores
LowerVectorStore(SDValue Op,SelectionDAG & DAG) const9376 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9377                                             SelectionDAG &DAG) const {
9378   SDLoc dl(Op);
9379   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9380   SDValue StoreChain = SN->getChain();
9381   SDValue BasePtr = SN->getBasePtr();
9382   SDValue Value = SN->getValue();
9383 
9384   if (Value.getValueType() == MVT::v4f64 ||
9385       Value.getValueType() == MVT::v4f32) {
9386     EVT MemVT = SN->getMemoryVT();
9387     unsigned Alignment = SN->getAlignment();
9388 
9389     // If this store is properly aligned, then it is legal.
9390     if (Alignment >= MemVT.getStoreSize())
9391       return Op;
9392 
9393     EVT ScalarVT = Value.getValueType().getScalarType(),
9394         ScalarMemVT = MemVT.getScalarType();
9395     unsigned Stride = ScalarMemVT.getStoreSize();
9396 
9397     SDValue Stores[4];
9398     for (unsigned Idx = 0; Idx < 4; ++Idx) {
9399       SDValue Ex = DAG.getNode(
9400           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9401           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9402       SDValue Store;
9403       if (ScalarVT != ScalarMemVT)
9404         Store =
9405             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9406                               SN->getPointerInfo().getWithOffset(Idx * Stride),
9407                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9408                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
9409       else
9410         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9411                              SN->getPointerInfo().getWithOffset(Idx * Stride),
9412                              MinAlign(Alignment, Idx * Stride),
9413                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
9414 
9415       if (Idx == 0 && SN->isIndexed()) {
9416         assert(SN->getAddressingMode() == ISD::PRE_INC &&
9417                "Unknown addressing mode on vector store");
9418         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9419                                     SN->getAddressingMode());
9420       }
9421 
9422       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9423                             DAG.getConstant(Stride, dl,
9424                                             BasePtr.getValueType()));
9425       Stores[Idx] = Store;
9426     }
9427 
9428     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9429 
9430     if (SN->isIndexed()) {
9431       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9432       return DAG.getMergeValues(RetOps, dl);
9433     }
9434 
9435     return TF;
9436   }
9437 
9438   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9439   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9440 
9441   // The values are now known to be -1 (false) or 1 (true). To convert this
9442   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9443   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9444   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9445 
9446   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9447   // understand how to form the extending load.
9448   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9449 
9450   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9451 
9452   // Now convert to an integer and store.
9453   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9454     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9455     Value);
9456 
9457   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9458   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9459   MachinePointerInfo PtrInfo =
9460       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9461   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9462   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9463 
9464   SDValue Ops[] = {StoreChain,
9465                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9466                    Value, FIdx};
9467   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9468 
9469   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9470     dl, VTs, Ops, MVT::v4i32, PtrInfo);
9471 
9472   // Move data into the byte array.
9473   SDValue Loads[4], LoadChains[4];
9474   for (unsigned i = 0; i < 4; ++i) {
9475     unsigned Offset = 4*i;
9476     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9477     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9478 
9479     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9480                            PtrInfo.getWithOffset(Offset));
9481     LoadChains[i] = Loads[i].getValue(1);
9482   }
9483 
9484   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9485 
9486   SDValue Stores[4];
9487   for (unsigned i = 0; i < 4; ++i) {
9488     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9489     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9490 
9491     Stores[i] = DAG.getTruncStore(
9492         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9493         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9494         SN->getAAInfo());
9495   }
9496 
9497   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9498 
9499   return StoreChain;
9500 }
9501 
LowerMUL(SDValue Op,SelectionDAG & DAG) const9502 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9503   SDLoc dl(Op);
9504   if (Op.getValueType() == MVT::v4i32) {
9505     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9506 
9507     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
9508     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9509 
9510     SDValue RHSSwap =   // = vrlw RHS, 16
9511       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9512 
9513     // Shrinkify inputs to v8i16.
9514     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9515     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9516     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9517 
9518     // Low parts multiplied together, generating 32-bit results (we ignore the
9519     // top parts).
9520     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9521                                         LHS, RHS, DAG, dl, MVT::v4i32);
9522 
9523     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9524                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9525     // Shift the high parts up 16 bits.
9526     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9527                               Neg16, DAG, dl);
9528     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9529   } else if (Op.getValueType() == MVT::v8i16) {
9530     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9531 
9532     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9533 
9534     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9535                             LHS, RHS, Zero, DAG, dl);
9536   } else if (Op.getValueType() == MVT::v16i8) {
9537     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9538     bool isLittleEndian = Subtarget.isLittleEndian();
9539 
9540     // Multiply the even 8-bit parts, producing 16-bit sums.
9541     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9542                                            LHS, RHS, DAG, dl, MVT::v8i16);
9543     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9544 
9545     // Multiply the odd 8-bit parts, producing 16-bit sums.
9546     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9547                                           LHS, RHS, DAG, dl, MVT::v8i16);
9548     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9549 
9550     // Merge the results together.  Because vmuleub and vmuloub are
9551     // instructions with a big-endian bias, we must reverse the
9552     // element numbering and reverse the meaning of "odd" and "even"
9553     // when generating little endian code.
9554     int Ops[16];
9555     for (unsigned i = 0; i != 8; ++i) {
9556       if (isLittleEndian) {
9557         Ops[i*2  ] = 2*i;
9558         Ops[i*2+1] = 2*i+16;
9559       } else {
9560         Ops[i*2  ] = 2*i+1;
9561         Ops[i*2+1] = 2*i+1+16;
9562       }
9563     }
9564     if (isLittleEndian)
9565       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9566     else
9567       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9568   } else {
9569     llvm_unreachable("Unknown mul to lower!");
9570   }
9571 }
9572 
LowerABS(SDValue Op,SelectionDAG & DAG) const9573 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
9574 
9575   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
9576 
9577   EVT VT = Op.getValueType();
9578   assert(VT.isVector() &&
9579          "Only set vector abs as custom, scalar abs shouldn't reach here!");
9580   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
9581           VT == MVT::v16i8) &&
9582          "Unexpected vector element type!");
9583   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
9584          "Current subtarget doesn't support smax v2i64!");
9585 
9586   // For vector abs, it can be lowered to:
9587   // abs x
9588   // ==>
9589   // y = -x
9590   // smax(x, y)
9591 
9592   SDLoc dl(Op);
9593   SDValue X = Op.getOperand(0);
9594   SDValue Zero = DAG.getConstant(0, dl, VT);
9595   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
9596 
9597   // SMAX patch https://reviews.llvm.org/D47332
9598   // hasn't landed yet, so use intrinsic first here.
9599   // TODO: Should use SMAX directly once SMAX patch landed
9600   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
9601   if (VT == MVT::v2i64)
9602     BifID = Intrinsic::ppc_altivec_vmaxsd;
9603   else if (VT == MVT::v8i16)
9604     BifID = Intrinsic::ppc_altivec_vmaxsh;
9605   else if (VT == MVT::v16i8)
9606     BifID = Intrinsic::ppc_altivec_vmaxsb;
9607 
9608   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
9609 }
9610 
9611 /// LowerOperation - Provide custom lowering hooks for some operations.
9612 ///
LowerOperation(SDValue Op,SelectionDAG & DAG) const9613 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9614   switch (Op.getOpcode()) {
9615   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9616   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9617   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9618   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9619   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9620   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9621   case ISD::SETCC:              return LowerSETCC(Op, DAG);
9622   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
9623   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
9624 
9625   // Variable argument lowering.
9626   case ISD::VASTART:            return LowerVASTART(Op, DAG);
9627   case ISD::VAARG:              return LowerVAARG(Op, DAG);
9628   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9629 
9630   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
9631   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9632   case ISD::GET_DYNAMIC_AREA_OFFSET:
9633     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9634 
9635   // Exception handling lowering.
9636   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
9637   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
9638   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
9639 
9640   case ISD::LOAD:               return LowerLOAD(Op, DAG);
9641   case ISD::STORE:              return LowerSTORE(Op, DAG);
9642   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
9643   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
9644   case ISD::FP_TO_UINT:
9645   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9646   case ISD::UINT_TO_FP:
9647   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
9648   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9649 
9650   // Lower 64-bit shifts.
9651   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
9652   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
9653   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
9654 
9655   // Vector-related lowering.
9656   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9657   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9658   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9659   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9660   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9661   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9662   case ISD::MUL:                return LowerMUL(Op, DAG);
9663   case ISD::ABS:                return LowerABS(Op, DAG);
9664 
9665   // For counter-based loop handling.
9666   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
9667 
9668   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9669 
9670   // Frame & Return address.
9671   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9672   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9673 
9674   case ISD::INTRINSIC_VOID:
9675     return LowerINTRINSIC_VOID(Op, DAG);
9676   case ISD::SREM:
9677   case ISD::UREM:
9678     return LowerREM(Op, DAG);
9679   case ISD::BSWAP:
9680     return LowerBSWAP(Op, DAG);
9681   case ISD::ATOMIC_CMP_SWAP:
9682     return LowerATOMIC_CMP_SWAP(Op, DAG);
9683   }
9684 }
9685 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const9686 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9687                                            SmallVectorImpl<SDValue>&Results,
9688                                            SelectionDAG &DAG) const {
9689   SDLoc dl(N);
9690   switch (N->getOpcode()) {
9691   default:
9692     llvm_unreachable("Do not know how to custom type legalize this operation!");
9693   case ISD::READCYCLECOUNTER: {
9694     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9695     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9696 
9697     Results.push_back(RTB);
9698     Results.push_back(RTB.getValue(1));
9699     Results.push_back(RTB.getValue(2));
9700     break;
9701   }
9702   case ISD::INTRINSIC_W_CHAIN: {
9703     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9704         Intrinsic::ppc_is_decremented_ctr_nonzero)
9705       break;
9706 
9707     assert(N->getValueType(0) == MVT::i1 &&
9708            "Unexpected result type for CTR decrement intrinsic");
9709     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9710                                  N->getValueType(0));
9711     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9712     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9713                                  N->getOperand(1));
9714 
9715     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9716     Results.push_back(NewInt.getValue(1));
9717     break;
9718   }
9719   case ISD::VAARG: {
9720     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9721       return;
9722 
9723     EVT VT = N->getValueType(0);
9724 
9725     if (VT == MVT::i64) {
9726       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9727 
9728       Results.push_back(NewNode);
9729       Results.push_back(NewNode.getValue(1));
9730     }
9731     return;
9732   }
9733   case ISD::FP_TO_SINT:
9734   case ISD::FP_TO_UINT:
9735     // LowerFP_TO_INT() can only handle f32 and f64.
9736     if (N->getOperand(0).getValueType() == MVT::ppcf128)
9737       return;
9738     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9739     return;
9740   case ISD::BITCAST:
9741     // Don't handle bitcast here.
9742     return;
9743   }
9744 }
9745 
9746 //===----------------------------------------------------------------------===//
9747 //  Other Lowering Code
9748 //===----------------------------------------------------------------------===//
9749 
callIntrinsic(IRBuilder<> & Builder,Intrinsic::ID Id)9750 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9751   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9752   Function *Func = Intrinsic::getDeclaration(M, Id);
9753   return Builder.CreateCall(Func, {});
9754 }
9755 
9756 // The mappings for emitLeading/TrailingFence is taken from
9757 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const9758 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9759                                                  Instruction *Inst,
9760                                                  AtomicOrdering Ord) const {
9761   if (Ord == AtomicOrdering::SequentiallyConsistent)
9762     return callIntrinsic(Builder, Intrinsic::ppc_sync);
9763   if (isReleaseOrStronger(Ord))
9764     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9765   return nullptr;
9766 }
9767 
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const9768 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9769                                                   Instruction *Inst,
9770                                                   AtomicOrdering Ord) const {
9771   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9772     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9773     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9774     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9775     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9776       return Builder.CreateCall(
9777           Intrinsic::getDeclaration(
9778               Builder.GetInsertBlock()->getParent()->getParent(),
9779               Intrinsic::ppc_cfence, {Inst->getType()}),
9780           {Inst});
9781     // FIXME: Can use isync for rmw operation.
9782     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9783   }
9784   return nullptr;
9785 }
9786 
9787 MachineBasicBlock *
EmitAtomicBinary(MachineInstr & MI,MachineBasicBlock * BB,unsigned AtomicSize,unsigned BinOpcode,unsigned CmpOpcode,unsigned CmpPred) const9788 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9789                                     unsigned AtomicSize,
9790                                     unsigned BinOpcode,
9791                                     unsigned CmpOpcode,
9792                                     unsigned CmpPred) const {
9793   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9794   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9795 
9796   auto LoadMnemonic = PPC::LDARX;
9797   auto StoreMnemonic = PPC::STDCX;
9798   switch (AtomicSize) {
9799   default:
9800     llvm_unreachable("Unexpected size of atomic entity");
9801   case 1:
9802     LoadMnemonic = PPC::LBARX;
9803     StoreMnemonic = PPC::STBCX;
9804     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9805     break;
9806   case 2:
9807     LoadMnemonic = PPC::LHARX;
9808     StoreMnemonic = PPC::STHCX;
9809     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9810     break;
9811   case 4:
9812     LoadMnemonic = PPC::LWARX;
9813     StoreMnemonic = PPC::STWCX;
9814     break;
9815   case 8:
9816     LoadMnemonic = PPC::LDARX;
9817     StoreMnemonic = PPC::STDCX;
9818     break;
9819   }
9820 
9821   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9822   MachineFunction *F = BB->getParent();
9823   MachineFunction::iterator It = ++BB->getIterator();
9824 
9825   unsigned dest = MI.getOperand(0).getReg();
9826   unsigned ptrA = MI.getOperand(1).getReg();
9827   unsigned ptrB = MI.getOperand(2).getReg();
9828   unsigned incr = MI.getOperand(3).getReg();
9829   DebugLoc dl = MI.getDebugLoc();
9830 
9831   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9832   MachineBasicBlock *loop2MBB =
9833     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9834   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9835   F->insert(It, loopMBB);
9836   if (CmpOpcode)
9837     F->insert(It, loop2MBB);
9838   F->insert(It, exitMBB);
9839   exitMBB->splice(exitMBB->begin(), BB,
9840                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9841   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9842 
9843   MachineRegisterInfo &RegInfo = F->getRegInfo();
9844   unsigned TmpReg = (!BinOpcode) ? incr :
9845     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9846                                            : &PPC::GPRCRegClass);
9847 
9848   //  thisMBB:
9849   //   ...
9850   //   fallthrough --> loopMBB
9851   BB->addSuccessor(loopMBB);
9852 
9853   //  loopMBB:
9854   //   l[wd]arx dest, ptr
9855   //   add r0, dest, incr
9856   //   st[wd]cx. r0, ptr
9857   //   bne- loopMBB
9858   //   fallthrough --> exitMBB
9859 
9860   // For max/min...
9861   //  loopMBB:
9862   //   l[wd]arx dest, ptr
9863   //   cmpl?[wd] incr, dest
9864   //   bgt exitMBB
9865   //  loop2MBB:
9866   //   st[wd]cx. dest, ptr
9867   //   bne- loopMBB
9868   //   fallthrough --> exitMBB
9869 
9870   BB = loopMBB;
9871   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9872     .addReg(ptrA).addReg(ptrB);
9873   if (BinOpcode)
9874     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9875   if (CmpOpcode) {
9876     // Signed comparisons of byte or halfword values must be sign-extended.
9877     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9878       unsigned ExtReg =  RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9879       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9880               ExtReg).addReg(dest);
9881       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9882         .addReg(incr).addReg(ExtReg);
9883     } else
9884       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9885         .addReg(incr).addReg(dest);
9886 
9887     BuildMI(BB, dl, TII->get(PPC::BCC))
9888       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9889     BB->addSuccessor(loop2MBB);
9890     BB->addSuccessor(exitMBB);
9891     BB = loop2MBB;
9892   }
9893   BuildMI(BB, dl, TII->get(StoreMnemonic))
9894     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9895   BuildMI(BB, dl, TII->get(PPC::BCC))
9896     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9897   BB->addSuccessor(loopMBB);
9898   BB->addSuccessor(exitMBB);
9899 
9900   //  exitMBB:
9901   //   ...
9902   BB = exitMBB;
9903   return BB;
9904 }
9905 
EmitPartwordAtomicBinary(MachineInstr & MI,MachineBasicBlock * BB,bool is8bit,unsigned BinOpcode,unsigned CmpOpcode,unsigned CmpPred) const9906 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
9907     MachineInstr &MI, MachineBasicBlock *BB,
9908     bool is8bit, // operation
9909     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
9910   // If we support part-word atomic mnemonics, just use them
9911   if (Subtarget.hasPartwordAtomics())
9912     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
9913                             CmpPred);
9914 
9915   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9916   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9917   // In 64 bit mode we have to use 64 bits for addresses, even though the
9918   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
9919   // registers without caring whether they're 32 or 64, but here we're
9920   // doing actual arithmetic on the addresses.
9921   bool is64bit = Subtarget.isPPC64();
9922   bool isLittleEndian = Subtarget.isLittleEndian();
9923   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9924 
9925   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9926   MachineFunction *F = BB->getParent();
9927   MachineFunction::iterator It = ++BB->getIterator();
9928 
9929   unsigned dest = MI.getOperand(0).getReg();
9930   unsigned ptrA = MI.getOperand(1).getReg();
9931   unsigned ptrB = MI.getOperand(2).getReg();
9932   unsigned incr = MI.getOperand(3).getReg();
9933   DebugLoc dl = MI.getDebugLoc();
9934 
9935   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9936   MachineBasicBlock *loop2MBB =
9937       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9938   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9939   F->insert(It, loopMBB);
9940   if (CmpOpcode)
9941     F->insert(It, loop2MBB);
9942   F->insert(It, exitMBB);
9943   exitMBB->splice(exitMBB->begin(), BB,
9944                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9945   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9946 
9947   MachineRegisterInfo &RegInfo = F->getRegInfo();
9948   const TargetRegisterClass *RC =
9949       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
9950   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
9951 
9952   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9953   unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
9954   unsigned ShiftReg =
9955       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
9956   unsigned Incr2Reg = RegInfo.createVirtualRegister(GPRC);
9957   unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
9958   unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
9959   unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
9960   unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
9961   unsigned Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
9962   unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
9963   unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
9964   unsigned Ptr1Reg;
9965   unsigned TmpReg =
9966       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
9967 
9968   //  thisMBB:
9969   //   ...
9970   //   fallthrough --> loopMBB
9971   BB->addSuccessor(loopMBB);
9972 
9973   // The 4-byte load must be aligned, while a char or short may be
9974   // anywhere in the word.  Hence all this nasty bookkeeping code.
9975   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
9976   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9977   //   xori shift, shift1, 24 [16]
9978   //   rlwinm ptr, ptr1, 0, 0, 29
9979   //   slw incr2, incr, shift
9980   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9981   //   slw mask, mask2, shift
9982   //  loopMBB:
9983   //   lwarx tmpDest, ptr
9984   //   add tmp, tmpDest, incr2
9985   //   andc tmp2, tmpDest, mask
9986   //   and tmp3, tmp, mask
9987   //   or tmp4, tmp3, tmp2
9988   //   stwcx. tmp4, ptr
9989   //   bne- loopMBB
9990   //   fallthrough --> exitMBB
9991   //   srw dest, tmpDest, shift
9992   if (ptrA != ZeroReg) {
9993     Ptr1Reg = RegInfo.createVirtualRegister(RC);
9994     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9995         .addReg(ptrA)
9996         .addReg(ptrB);
9997   } else {
9998     Ptr1Reg = ptrB;
9999   }
10000   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10001   // mode.
10002   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10003       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10004       .addImm(3)
10005       .addImm(27)
10006       .addImm(is8bit ? 28 : 27);
10007   if (!isLittleEndian)
10008     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10009         .addReg(Shift1Reg)
10010         .addImm(is8bit ? 24 : 16);
10011   if (is64bit)
10012     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10013         .addReg(Ptr1Reg)
10014         .addImm(0)
10015         .addImm(61);
10016   else
10017     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10018         .addReg(Ptr1Reg)
10019         .addImm(0)
10020         .addImm(0)
10021         .addImm(29);
10022   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10023   if (is8bit)
10024     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10025   else {
10026     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10027     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10028         .addReg(Mask3Reg)
10029         .addImm(65535);
10030   }
10031   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10032       .addReg(Mask2Reg)
10033       .addReg(ShiftReg);
10034 
10035   BB = loopMBB;
10036   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10037       .addReg(ZeroReg)
10038       .addReg(PtrReg);
10039   if (BinOpcode)
10040     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10041         .addReg(Incr2Reg)
10042         .addReg(TmpDestReg);
10043   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10044       .addReg(TmpDestReg)
10045       .addReg(MaskReg);
10046   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10047   if (CmpOpcode) {
10048     // For unsigned comparisons, we can directly compare the shifted values.
10049     // For signed comparisons we shift and sign extend.
10050     unsigned SReg = RegInfo.createVirtualRegister(GPRC);
10051     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10052         .addReg(TmpDestReg)
10053         .addReg(MaskReg);
10054     unsigned ValueReg = SReg;
10055     unsigned CmpReg = Incr2Reg;
10056     if (CmpOpcode == PPC::CMPW) {
10057       ValueReg = RegInfo.createVirtualRegister(GPRC);
10058       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10059           .addReg(SReg)
10060           .addReg(ShiftReg);
10061       unsigned ValueSReg = RegInfo.createVirtualRegister(GPRC);
10062       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10063           .addReg(ValueReg);
10064       ValueReg = ValueSReg;
10065       CmpReg = incr;
10066     }
10067     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10068         .addReg(CmpReg)
10069         .addReg(ValueReg);
10070     BuildMI(BB, dl, TII->get(PPC::BCC))
10071         .addImm(CmpPred)
10072         .addReg(PPC::CR0)
10073         .addMBB(exitMBB);
10074     BB->addSuccessor(loop2MBB);
10075     BB->addSuccessor(exitMBB);
10076     BB = loop2MBB;
10077   }
10078   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10079   BuildMI(BB, dl, TII->get(PPC::STWCX))
10080       .addReg(Tmp4Reg)
10081       .addReg(ZeroReg)
10082       .addReg(PtrReg);
10083   BuildMI(BB, dl, TII->get(PPC::BCC))
10084       .addImm(PPC::PRED_NE)
10085       .addReg(PPC::CR0)
10086       .addMBB(loopMBB);
10087   BB->addSuccessor(loopMBB);
10088   BB->addSuccessor(exitMBB);
10089 
10090   //  exitMBB:
10091   //   ...
10092   BB = exitMBB;
10093   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10094       .addReg(TmpDestReg)
10095       .addReg(ShiftReg);
10096   return BB;
10097 }
10098 
10099 llvm::MachineBasicBlock *
emitEHSjLjSetJmp(MachineInstr & MI,MachineBasicBlock * MBB) const10100 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10101                                     MachineBasicBlock *MBB) const {
10102   DebugLoc DL = MI.getDebugLoc();
10103   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10104   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10105 
10106   MachineFunction *MF = MBB->getParent();
10107   MachineRegisterInfo &MRI = MF->getRegInfo();
10108 
10109   const BasicBlock *BB = MBB->getBasicBlock();
10110   MachineFunction::iterator I = ++MBB->getIterator();
10111 
10112   unsigned DstReg = MI.getOperand(0).getReg();
10113   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10114   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10115   unsigned mainDstReg = MRI.createVirtualRegister(RC);
10116   unsigned restoreDstReg = MRI.createVirtualRegister(RC);
10117 
10118   MVT PVT = getPointerTy(MF->getDataLayout());
10119   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10120          "Invalid Pointer Size!");
10121   // For v = setjmp(buf), we generate
10122   //
10123   // thisMBB:
10124   //  SjLjSetup mainMBB
10125   //  bl mainMBB
10126   //  v_restore = 1
10127   //  b sinkMBB
10128   //
10129   // mainMBB:
10130   //  buf[LabelOffset] = LR
10131   //  v_main = 0
10132   //
10133   // sinkMBB:
10134   //  v = phi(main, restore)
10135   //
10136 
10137   MachineBasicBlock *thisMBB = MBB;
10138   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10139   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10140   MF->insert(I, mainMBB);
10141   MF->insert(I, sinkMBB);
10142 
10143   MachineInstrBuilder MIB;
10144 
10145   // Transfer the remainder of BB and its successor edges to sinkMBB.
10146   sinkMBB->splice(sinkMBB->begin(), MBB,
10147                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10148   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10149 
10150   // Note that the structure of the jmp_buf used here is not compatible
10151   // with that used by libc, and is not designed to be. Specifically, it
10152   // stores only those 'reserved' registers that LLVM does not otherwise
10153   // understand how to spill. Also, by convention, by the time this
10154   // intrinsic is called, Clang has already stored the frame address in the
10155   // first slot of the buffer and stack address in the third. Following the
10156   // X86 target code, we'll store the jump address in the second slot. We also
10157   // need to save the TOC pointer (R2) to handle jumps between shared
10158   // libraries, and that will be stored in the fourth slot. The thread
10159   // identifier (R13) is not affected.
10160 
10161   // thisMBB:
10162   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10163   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10164   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10165 
10166   // Prepare IP either in reg.
10167   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10168   unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
10169   unsigned BufReg = MI.getOperand(1).getReg();
10170 
10171   if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
10172     setUsesTOCBasePtr(*MBB->getParent());
10173     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10174               .addReg(PPC::X2)
10175               .addImm(TOCOffset)
10176               .addReg(BufReg)
10177               .cloneMemRefs(MI);
10178   }
10179 
10180   // Naked functions never have a base pointer, and so we use r1. For all
10181   // other functions, this decision must be delayed until during PEI.
10182   unsigned BaseReg;
10183   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10184     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10185   else
10186     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10187 
10188   MIB = BuildMI(*thisMBB, MI, DL,
10189                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10190             .addReg(BaseReg)
10191             .addImm(BPOffset)
10192             .addReg(BufReg)
10193             .cloneMemRefs(MI);
10194 
10195   // Setup
10196   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10197   MIB.addRegMask(TRI->getNoPreservedMask());
10198 
10199   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10200 
10201   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10202           .addMBB(mainMBB);
10203   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10204 
10205   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10206   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10207 
10208   // mainMBB:
10209   //  mainDstReg = 0
10210   MIB =
10211       BuildMI(mainMBB, DL,
10212               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10213 
10214   // Store IP
10215   if (Subtarget.isPPC64()) {
10216     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10217             .addReg(LabelReg)
10218             .addImm(LabelOffset)
10219             .addReg(BufReg);
10220   } else {
10221     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10222             .addReg(LabelReg)
10223             .addImm(LabelOffset)
10224             .addReg(BufReg);
10225   }
10226   MIB.cloneMemRefs(MI);
10227 
10228   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10229   mainMBB->addSuccessor(sinkMBB);
10230 
10231   // sinkMBB:
10232   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10233           TII->get(PPC::PHI), DstReg)
10234     .addReg(mainDstReg).addMBB(mainMBB)
10235     .addReg(restoreDstReg).addMBB(thisMBB);
10236 
10237   MI.eraseFromParent();
10238   return sinkMBB;
10239 }
10240 
10241 MachineBasicBlock *
emitEHSjLjLongJmp(MachineInstr & MI,MachineBasicBlock * MBB) const10242 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10243                                      MachineBasicBlock *MBB) const {
10244   DebugLoc DL = MI.getDebugLoc();
10245   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10246 
10247   MachineFunction *MF = MBB->getParent();
10248   MachineRegisterInfo &MRI = MF->getRegInfo();
10249 
10250   MVT PVT = getPointerTy(MF->getDataLayout());
10251   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10252          "Invalid Pointer Size!");
10253 
10254   const TargetRegisterClass *RC =
10255     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10256   unsigned Tmp = MRI.createVirtualRegister(RC);
10257   // Since FP is only updated here but NOT referenced, it's treated as GPR.
10258   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10259   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10260   unsigned BP =
10261       (PVT == MVT::i64)
10262           ? PPC::X30
10263           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10264                                                               : PPC::R30);
10265 
10266   MachineInstrBuilder MIB;
10267 
10268   const int64_t LabelOffset = 1 * PVT.getStoreSize();
10269   const int64_t SPOffset    = 2 * PVT.getStoreSize();
10270   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10271   const int64_t BPOffset    = 4 * PVT.getStoreSize();
10272 
10273   unsigned BufReg = MI.getOperand(0).getReg();
10274 
10275   // Reload FP (the jumped-to function may not have had a
10276   // frame pointer, and if so, then its r31 will be restored
10277   // as necessary).
10278   if (PVT == MVT::i64) {
10279     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10280             .addImm(0)
10281             .addReg(BufReg);
10282   } else {
10283     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10284             .addImm(0)
10285             .addReg(BufReg);
10286   }
10287   MIB.cloneMemRefs(MI);
10288 
10289   // Reload IP
10290   if (PVT == MVT::i64) {
10291     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10292             .addImm(LabelOffset)
10293             .addReg(BufReg);
10294   } else {
10295     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10296             .addImm(LabelOffset)
10297             .addReg(BufReg);
10298   }
10299   MIB.cloneMemRefs(MI);
10300 
10301   // Reload SP
10302   if (PVT == MVT::i64) {
10303     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10304             .addImm(SPOffset)
10305             .addReg(BufReg);
10306   } else {
10307     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10308             .addImm(SPOffset)
10309             .addReg(BufReg);
10310   }
10311   MIB.cloneMemRefs(MI);
10312 
10313   // Reload BP
10314   if (PVT == MVT::i64) {
10315     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10316             .addImm(BPOffset)
10317             .addReg(BufReg);
10318   } else {
10319     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10320             .addImm(BPOffset)
10321             .addReg(BufReg);
10322   }
10323   MIB.cloneMemRefs(MI);
10324 
10325   // Reload TOC
10326   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10327     setUsesTOCBasePtr(*MBB->getParent());
10328     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10329               .addImm(TOCOffset)
10330               .addReg(BufReg)
10331               .cloneMemRefs(MI);
10332   }
10333 
10334   // Jump
10335   BuildMI(*MBB, MI, DL,
10336           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10337   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10338 
10339   MI.eraseFromParent();
10340   return MBB;
10341 }
10342 
10343 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const10344 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10345                                                MachineBasicBlock *BB) const {
10346   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10347       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10348     if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10349         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10350       // Call lowering should have added an r2 operand to indicate a dependence
10351       // on the TOC base pointer value. It can't however, because there is no
10352       // way to mark the dependence as implicit there, and so the stackmap code
10353       // will confuse it with a regular operand. Instead, add the dependence
10354       // here.
10355       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10356     }
10357 
10358     return emitPatchPoint(MI, BB);
10359   }
10360 
10361   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10362       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10363     return emitEHSjLjSetJmp(MI, BB);
10364   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10365              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10366     return emitEHSjLjLongJmp(MI, BB);
10367   }
10368 
10369   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10370 
10371   // To "insert" these instructions we actually have to insert their
10372   // control-flow patterns.
10373   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10374   MachineFunction::iterator It = ++BB->getIterator();
10375 
10376   MachineFunction *F = BB->getParent();
10377 
10378   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10379       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
10380       MI.getOpcode() == PPC::SELECT_I8) {
10381     SmallVector<MachineOperand, 2> Cond;
10382     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10383         MI.getOpcode() == PPC::SELECT_CC_I8)
10384       Cond.push_back(MI.getOperand(4));
10385     else
10386       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10387     Cond.push_back(MI.getOperand(1));
10388 
10389     DebugLoc dl = MI.getDebugLoc();
10390     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10391                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10392   } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10393              MI.getOpcode() == PPC::SELECT_CC_I8 ||
10394              MI.getOpcode() == PPC::SELECT_CC_F4 ||
10395              MI.getOpcode() == PPC::SELECT_CC_F8 ||
10396              MI.getOpcode() == PPC::SELECT_CC_F16 ||
10397              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10398              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10399              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10400              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10401              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10402              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10403              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10404              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10405              MI.getOpcode() == PPC::SELECT_CC_SPE ||
10406              MI.getOpcode() == PPC::SELECT_I4 ||
10407              MI.getOpcode() == PPC::SELECT_I8 ||
10408              MI.getOpcode() == PPC::SELECT_F4 ||
10409              MI.getOpcode() == PPC::SELECT_F8 ||
10410              MI.getOpcode() == PPC::SELECT_F16 ||
10411              MI.getOpcode() == PPC::SELECT_QFRC ||
10412              MI.getOpcode() == PPC::SELECT_QSRC ||
10413              MI.getOpcode() == PPC::SELECT_QBRC ||
10414              MI.getOpcode() == PPC::SELECT_SPE ||
10415              MI.getOpcode() == PPC::SELECT_SPE4 ||
10416              MI.getOpcode() == PPC::SELECT_VRRC ||
10417              MI.getOpcode() == PPC::SELECT_VSFRC ||
10418              MI.getOpcode() == PPC::SELECT_VSSRC ||
10419              MI.getOpcode() == PPC::SELECT_VSRC) {
10420     // The incoming instruction knows the destination vreg to set, the
10421     // condition code register to branch on, the true/false values to
10422     // select between, and a branch opcode to use.
10423 
10424     //  thisMBB:
10425     //  ...
10426     //   TrueVal = ...
10427     //   cmpTY ccX, r1, r2
10428     //   bCC copy1MBB
10429     //   fallthrough --> copy0MBB
10430     MachineBasicBlock *thisMBB = BB;
10431     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10432     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10433     DebugLoc dl = MI.getDebugLoc();
10434     F->insert(It, copy0MBB);
10435     F->insert(It, sinkMBB);
10436 
10437     // Transfer the remainder of BB and its successor edges to sinkMBB.
10438     sinkMBB->splice(sinkMBB->begin(), BB,
10439                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10440     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10441 
10442     // Next, add the true and fallthrough blocks as its successors.
10443     BB->addSuccessor(copy0MBB);
10444     BB->addSuccessor(sinkMBB);
10445 
10446     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10447         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10448         MI.getOpcode() == PPC::SELECT_F16 ||
10449         MI.getOpcode() == PPC::SELECT_SPE4 ||
10450         MI.getOpcode() == PPC::SELECT_SPE ||
10451         MI.getOpcode() == PPC::SELECT_QFRC ||
10452         MI.getOpcode() == PPC::SELECT_QSRC ||
10453         MI.getOpcode() == PPC::SELECT_QBRC ||
10454         MI.getOpcode() == PPC::SELECT_VRRC ||
10455         MI.getOpcode() == PPC::SELECT_VSFRC ||
10456         MI.getOpcode() == PPC::SELECT_VSSRC ||
10457         MI.getOpcode() == PPC::SELECT_VSRC) {
10458       BuildMI(BB, dl, TII->get(PPC::BC))
10459           .addReg(MI.getOperand(1).getReg())
10460           .addMBB(sinkMBB);
10461     } else {
10462       unsigned SelectPred = MI.getOperand(4).getImm();
10463       BuildMI(BB, dl, TII->get(PPC::BCC))
10464           .addImm(SelectPred)
10465           .addReg(MI.getOperand(1).getReg())
10466           .addMBB(sinkMBB);
10467     }
10468 
10469     //  copy0MBB:
10470     //   %FalseValue = ...
10471     //   # fallthrough to sinkMBB
10472     BB = copy0MBB;
10473 
10474     // Update machine-CFG edges
10475     BB->addSuccessor(sinkMBB);
10476 
10477     //  sinkMBB:
10478     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10479     //  ...
10480     BB = sinkMBB;
10481     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10482         .addReg(MI.getOperand(3).getReg())
10483         .addMBB(copy0MBB)
10484         .addReg(MI.getOperand(2).getReg())
10485         .addMBB(thisMBB);
10486   } else if (MI.getOpcode() == PPC::ReadTB) {
10487     // To read the 64-bit time-base register on a 32-bit target, we read the
10488     // two halves. Should the counter have wrapped while it was being read, we
10489     // need to try again.
10490     // ...
10491     // readLoop:
10492     // mfspr Rx,TBU # load from TBU
10493     // mfspr Ry,TB  # load from TB
10494     // mfspr Rz,TBU # load from TBU
10495     // cmpw crX,Rx,Rz # check if 'old'='new'
10496     // bne readLoop   # branch if they're not equal
10497     // ...
10498 
10499     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10500     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10501     DebugLoc dl = MI.getDebugLoc();
10502     F->insert(It, readMBB);
10503     F->insert(It, sinkMBB);
10504 
10505     // Transfer the remainder of BB and its successor edges to sinkMBB.
10506     sinkMBB->splice(sinkMBB->begin(), BB,
10507                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10508     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10509 
10510     BB->addSuccessor(readMBB);
10511     BB = readMBB;
10512 
10513     MachineRegisterInfo &RegInfo = F->getRegInfo();
10514     unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10515     unsigned LoReg = MI.getOperand(0).getReg();
10516     unsigned HiReg = MI.getOperand(1).getReg();
10517 
10518     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10519     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10520     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10521 
10522     unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10523 
10524     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10525         .addReg(HiReg)
10526         .addReg(ReadAgainReg);
10527     BuildMI(BB, dl, TII->get(PPC::BCC))
10528         .addImm(PPC::PRED_NE)
10529         .addReg(CmpReg)
10530         .addMBB(readMBB);
10531 
10532     BB->addSuccessor(readMBB);
10533     BB->addSuccessor(sinkMBB);
10534   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10535     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10536   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10537     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10538   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10539     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10540   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10541     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10542 
10543   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10544     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10545   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10546     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10547   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10548     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10549   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10550     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10551 
10552   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10553     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10554   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10555     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10556   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10557     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10558   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10559     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10560 
10561   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10562     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10563   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10564     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10565   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10566     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10567   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10568     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10569 
10570   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10571     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10572   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10573     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10574   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10575     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10576   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10577     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10578 
10579   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10580     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10581   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10582     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10583   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10584     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10585   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10586     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10587 
10588   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10589     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10590   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10591     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10592   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10593     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10594   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10595     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10596 
10597   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10598     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10599   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10600     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10601   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10602     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10603   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10604     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10605 
10606   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10607     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10608   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10609     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10610   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10611     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10612   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10613     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10614 
10615   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10616     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10617   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10618     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10619   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10620     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10621   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10622     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10623 
10624   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10625     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10626   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10627     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10628   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10629     BB = EmitAtomicBinary(MI, BB, 4, 0);
10630   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10631     BB = EmitAtomicBinary(MI, BB, 8, 0);
10632   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10633            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10634            (Subtarget.hasPartwordAtomics() &&
10635             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10636            (Subtarget.hasPartwordAtomics() &&
10637             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10638     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10639 
10640     auto LoadMnemonic = PPC::LDARX;
10641     auto StoreMnemonic = PPC::STDCX;
10642     switch (MI.getOpcode()) {
10643     default:
10644       llvm_unreachable("Compare and swap of unknown size");
10645     case PPC::ATOMIC_CMP_SWAP_I8:
10646       LoadMnemonic = PPC::LBARX;
10647       StoreMnemonic = PPC::STBCX;
10648       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10649       break;
10650     case PPC::ATOMIC_CMP_SWAP_I16:
10651       LoadMnemonic = PPC::LHARX;
10652       StoreMnemonic = PPC::STHCX;
10653       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10654       break;
10655     case PPC::ATOMIC_CMP_SWAP_I32:
10656       LoadMnemonic = PPC::LWARX;
10657       StoreMnemonic = PPC::STWCX;
10658       break;
10659     case PPC::ATOMIC_CMP_SWAP_I64:
10660       LoadMnemonic = PPC::LDARX;
10661       StoreMnemonic = PPC::STDCX;
10662       break;
10663     }
10664     unsigned dest = MI.getOperand(0).getReg();
10665     unsigned ptrA = MI.getOperand(1).getReg();
10666     unsigned ptrB = MI.getOperand(2).getReg();
10667     unsigned oldval = MI.getOperand(3).getReg();
10668     unsigned newval = MI.getOperand(4).getReg();
10669     DebugLoc dl = MI.getDebugLoc();
10670 
10671     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10672     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10673     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10674     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10675     F->insert(It, loop1MBB);
10676     F->insert(It, loop2MBB);
10677     F->insert(It, midMBB);
10678     F->insert(It, exitMBB);
10679     exitMBB->splice(exitMBB->begin(), BB,
10680                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10681     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10682 
10683     //  thisMBB:
10684     //   ...
10685     //   fallthrough --> loopMBB
10686     BB->addSuccessor(loop1MBB);
10687 
10688     // loop1MBB:
10689     //   l[bhwd]arx dest, ptr
10690     //   cmp[wd] dest, oldval
10691     //   bne- midMBB
10692     // loop2MBB:
10693     //   st[bhwd]cx. newval, ptr
10694     //   bne- loopMBB
10695     //   b exitBB
10696     // midMBB:
10697     //   st[bhwd]cx. dest, ptr
10698     // exitBB:
10699     BB = loop1MBB;
10700     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
10701     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10702         .addReg(oldval)
10703         .addReg(dest);
10704     BuildMI(BB, dl, TII->get(PPC::BCC))
10705         .addImm(PPC::PRED_NE)
10706         .addReg(PPC::CR0)
10707         .addMBB(midMBB);
10708     BB->addSuccessor(loop2MBB);
10709     BB->addSuccessor(midMBB);
10710 
10711     BB = loop2MBB;
10712     BuildMI(BB, dl, TII->get(StoreMnemonic))
10713         .addReg(newval)
10714         .addReg(ptrA)
10715         .addReg(ptrB);
10716     BuildMI(BB, dl, TII->get(PPC::BCC))
10717         .addImm(PPC::PRED_NE)
10718         .addReg(PPC::CR0)
10719         .addMBB(loop1MBB);
10720     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10721     BB->addSuccessor(loop1MBB);
10722     BB->addSuccessor(exitMBB);
10723 
10724     BB = midMBB;
10725     BuildMI(BB, dl, TII->get(StoreMnemonic))
10726         .addReg(dest)
10727         .addReg(ptrA)
10728         .addReg(ptrB);
10729     BB->addSuccessor(exitMBB);
10730 
10731     //  exitMBB:
10732     //   ...
10733     BB = exitMBB;
10734   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10735              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10736     // We must use 64-bit registers for addresses when targeting 64-bit,
10737     // since we're actually doing arithmetic on them.  Other registers
10738     // can be 32-bit.
10739     bool is64bit = Subtarget.isPPC64();
10740     bool isLittleEndian = Subtarget.isLittleEndian();
10741     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10742 
10743     unsigned dest = MI.getOperand(0).getReg();
10744     unsigned ptrA = MI.getOperand(1).getReg();
10745     unsigned ptrB = MI.getOperand(2).getReg();
10746     unsigned oldval = MI.getOperand(3).getReg();
10747     unsigned newval = MI.getOperand(4).getReg();
10748     DebugLoc dl = MI.getDebugLoc();
10749 
10750     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10751     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10752     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10753     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10754     F->insert(It, loop1MBB);
10755     F->insert(It, loop2MBB);
10756     F->insert(It, midMBB);
10757     F->insert(It, exitMBB);
10758     exitMBB->splice(exitMBB->begin(), BB,
10759                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10760     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10761 
10762     MachineRegisterInfo &RegInfo = F->getRegInfo();
10763     const TargetRegisterClass *RC =
10764         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10765     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10766 
10767     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10768     unsigned Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10769     unsigned ShiftReg =
10770         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10771     unsigned NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
10772     unsigned NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
10773     unsigned OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
10774     unsigned OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
10775     unsigned MaskReg = RegInfo.createVirtualRegister(GPRC);
10776     unsigned Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10777     unsigned Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10778     unsigned Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10779     unsigned Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10780     unsigned TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10781     unsigned Ptr1Reg;
10782     unsigned TmpReg = RegInfo.createVirtualRegister(GPRC);
10783     unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10784     //  thisMBB:
10785     //   ...
10786     //   fallthrough --> loopMBB
10787     BB->addSuccessor(loop1MBB);
10788 
10789     // The 4-byte load must be aligned, while a char or short may be
10790     // anywhere in the word.  Hence all this nasty bookkeeping code.
10791     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10792     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10793     //   xori shift, shift1, 24 [16]
10794     //   rlwinm ptr, ptr1, 0, 0, 29
10795     //   slw newval2, newval, shift
10796     //   slw oldval2, oldval,shift
10797     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10798     //   slw mask, mask2, shift
10799     //   and newval3, newval2, mask
10800     //   and oldval3, oldval2, mask
10801     // loop1MBB:
10802     //   lwarx tmpDest, ptr
10803     //   and tmp, tmpDest, mask
10804     //   cmpw tmp, oldval3
10805     //   bne- midMBB
10806     // loop2MBB:
10807     //   andc tmp2, tmpDest, mask
10808     //   or tmp4, tmp2, newval3
10809     //   stwcx. tmp4, ptr
10810     //   bne- loop1MBB
10811     //   b exitBB
10812     // midMBB:
10813     //   stwcx. tmpDest, ptr
10814     // exitBB:
10815     //   srw dest, tmpDest, shift
10816     if (ptrA != ZeroReg) {
10817       Ptr1Reg = RegInfo.createVirtualRegister(RC);
10818       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10819           .addReg(ptrA)
10820           .addReg(ptrB);
10821     } else {
10822       Ptr1Reg = ptrB;
10823     }
10824 
10825     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10826     // mode.
10827     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10828         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10829         .addImm(3)
10830         .addImm(27)
10831         .addImm(is8bit ? 28 : 27);
10832     if (!isLittleEndian)
10833       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10834           .addReg(Shift1Reg)
10835           .addImm(is8bit ? 24 : 16);
10836     if (is64bit)
10837       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10838           .addReg(Ptr1Reg)
10839           .addImm(0)
10840           .addImm(61);
10841     else
10842       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10843           .addReg(Ptr1Reg)
10844           .addImm(0)
10845           .addImm(0)
10846           .addImm(29);
10847     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10848         .addReg(newval)
10849         .addReg(ShiftReg);
10850     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10851         .addReg(oldval)
10852         .addReg(ShiftReg);
10853     if (is8bit)
10854       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10855     else {
10856       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10857       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10858           .addReg(Mask3Reg)
10859           .addImm(65535);
10860     }
10861     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10862         .addReg(Mask2Reg)
10863         .addReg(ShiftReg);
10864     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10865         .addReg(NewVal2Reg)
10866         .addReg(MaskReg);
10867     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10868         .addReg(OldVal2Reg)
10869         .addReg(MaskReg);
10870 
10871     BB = loop1MBB;
10872     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10873         .addReg(ZeroReg)
10874         .addReg(PtrReg);
10875     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
10876         .addReg(TmpDestReg)
10877         .addReg(MaskReg);
10878     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10879         .addReg(TmpReg)
10880         .addReg(OldVal3Reg);
10881     BuildMI(BB, dl, TII->get(PPC::BCC))
10882         .addImm(PPC::PRED_NE)
10883         .addReg(PPC::CR0)
10884         .addMBB(midMBB);
10885     BB->addSuccessor(loop2MBB);
10886     BB->addSuccessor(midMBB);
10887 
10888     BB = loop2MBB;
10889     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10890         .addReg(TmpDestReg)
10891         .addReg(MaskReg);
10892     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
10893         .addReg(Tmp2Reg)
10894         .addReg(NewVal3Reg);
10895     BuildMI(BB, dl, TII->get(PPC::STWCX))
10896         .addReg(Tmp4Reg)
10897         .addReg(ZeroReg)
10898         .addReg(PtrReg);
10899     BuildMI(BB, dl, TII->get(PPC::BCC))
10900         .addImm(PPC::PRED_NE)
10901         .addReg(PPC::CR0)
10902         .addMBB(loop1MBB);
10903     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10904     BB->addSuccessor(loop1MBB);
10905     BB->addSuccessor(exitMBB);
10906 
10907     BB = midMBB;
10908     BuildMI(BB, dl, TII->get(PPC::STWCX))
10909         .addReg(TmpDestReg)
10910         .addReg(ZeroReg)
10911         .addReg(PtrReg);
10912     BB->addSuccessor(exitMBB);
10913 
10914     //  exitMBB:
10915     //   ...
10916     BB = exitMBB;
10917     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10918         .addReg(TmpReg)
10919         .addReg(ShiftReg);
10920   } else if (MI.getOpcode() == PPC::FADDrtz) {
10921     // This pseudo performs an FADD with rounding mode temporarily forced
10922     // to round-to-zero.  We emit this via custom inserter since the FPSCR
10923     // is not modeled at the SelectionDAG level.
10924     unsigned Dest = MI.getOperand(0).getReg();
10925     unsigned Src1 = MI.getOperand(1).getReg();
10926     unsigned Src2 = MI.getOperand(2).getReg();
10927     DebugLoc dl = MI.getDebugLoc();
10928 
10929     MachineRegisterInfo &RegInfo = F->getRegInfo();
10930     unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10931 
10932     // Save FPSCR value.
10933     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10934 
10935     // Set rounding mode to round-to-zero.
10936     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10937     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10938 
10939     // Perform addition.
10940     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10941 
10942     // Restore FPSCR value.
10943     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10944   } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10945              MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10946              MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10947              MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10948     unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10949                        MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10950                           ? PPC::ANDIo8
10951                           : PPC::ANDIo;
10952     bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10953                  MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10954 
10955     MachineRegisterInfo &RegInfo = F->getRegInfo();
10956     unsigned Dest = RegInfo.createVirtualRegister(
10957         Opcode == PPC::ANDIo ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
10958 
10959     DebugLoc dl = MI.getDebugLoc();
10960     BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10961         .addReg(MI.getOperand(1).getReg())
10962         .addImm(1);
10963     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10964             MI.getOperand(0).getReg())
10965         .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10966   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10967     DebugLoc Dl = MI.getDebugLoc();
10968     MachineRegisterInfo &RegInfo = F->getRegInfo();
10969     unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10970     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10971     return BB;
10972   } else {
10973     llvm_unreachable("Unexpected instr type to insert");
10974   }
10975 
10976   MI.eraseFromParent(); // The pseudo instruction is gone now.
10977   return BB;
10978 }
10979 
10980 //===----------------------------------------------------------------------===//
10981 // Target Optimization Hooks
10982 //===----------------------------------------------------------------------===//
10983 
getEstimateRefinementSteps(EVT VT,const PPCSubtarget & Subtarget)10984 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
10985   // For the estimates, convergence is quadratic, so we essentially double the
10986   // number of digits correct after every iteration. For both FRE and FRSQRTE,
10987   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
10988   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
10989   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
10990   if (VT.getScalarType() == MVT::f64)
10991     RefinementSteps++;
10992   return RefinementSteps;
10993 }
10994 
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps,bool & UseOneConstNR,bool Reciprocal) const10995 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
10996                                            int Enabled, int &RefinementSteps,
10997                                            bool &UseOneConstNR,
10998                                            bool Reciprocal) const {
10999   EVT VT = Operand.getValueType();
11000   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11001       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11002       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11003       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11004       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11005       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11006     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11007       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11008 
11009     UseOneConstNR = true;
11010     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11011   }
11012   return SDValue();
11013 }
11014 
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps) const11015 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11016                                             int Enabled,
11017                                             int &RefinementSteps) const {
11018   EVT VT = Operand.getValueType();
11019   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11020       (VT == MVT::f64 && Subtarget.hasFRE()) ||
11021       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11022       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11023       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11024       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11025     if (RefinementSteps == ReciprocalEstimate::Unspecified)
11026       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11027     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11028   }
11029   return SDValue();
11030 }
11031 
combineRepeatedFPDivisors() const11032 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11033   // Note: This functionality is used only when unsafe-fp-math is enabled, and
11034   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11035   // enabled for division), this functionality is redundant with the default
11036   // combiner logic (once the division -> reciprocal/multiply transformation
11037   // has taken place). As a result, this matters more for older cores than for
11038   // newer ones.
11039 
11040   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11041   // reciprocal if there are two or more FDIVs (for embedded cores with only
11042   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11043   switch (Subtarget.getDarwinDirective()) {
11044   default:
11045     return 3;
11046   case PPC::DIR_440:
11047   case PPC::DIR_A2:
11048   case PPC::DIR_E500:
11049   case PPC::DIR_E500mc:
11050   case PPC::DIR_E5500:
11051     return 2;
11052   }
11053 }
11054 
11055 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11056 // collapsed, and so we need to look through chains of them.
getBaseWithConstantOffset(SDValue Loc,SDValue & Base,int64_t & Offset,SelectionDAG & DAG)11057 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
11058                                      int64_t& Offset, SelectionDAG &DAG) {
11059   if (DAG.isBaseWithConstantOffset(Loc)) {
11060     Base = Loc.getOperand(0);
11061     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
11062 
11063     // The base might itself be a base plus an offset, and if so, accumulate
11064     // that as well.
11065     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
11066   }
11067 }
11068 
isConsecutiveLSLoc(SDValue Loc,EVT VT,LSBaseSDNode * Base,unsigned Bytes,int Dist,SelectionDAG & DAG)11069 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
11070                             unsigned Bytes, int Dist,
11071                             SelectionDAG &DAG) {
11072   if (VT.getSizeInBits() / 8 != Bytes)
11073     return false;
11074 
11075   SDValue BaseLoc = Base->getBasePtr();
11076   if (Loc.getOpcode() == ISD::FrameIndex) {
11077     if (BaseLoc.getOpcode() != ISD::FrameIndex)
11078       return false;
11079     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11080     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
11081     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
11082     int FS  = MFI.getObjectSize(FI);
11083     int BFS = MFI.getObjectSize(BFI);
11084     if (FS != BFS || FS != (int)Bytes) return false;
11085     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
11086   }
11087 
11088   SDValue Base1 = Loc, Base2 = BaseLoc;
11089   int64_t Offset1 = 0, Offset2 = 0;
11090   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
11091   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
11092   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
11093     return true;
11094 
11095   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11096   const GlobalValue *GV1 = nullptr;
11097   const GlobalValue *GV2 = nullptr;
11098   Offset1 = 0;
11099   Offset2 = 0;
11100   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
11101   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
11102   if (isGA1 && isGA2 && GV1 == GV2)
11103     return Offset1 == (Offset2 + Dist*Bytes);
11104   return false;
11105 }
11106 
11107 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11108 // not enforce equality of the chain operands.
isConsecutiveLS(SDNode * N,LSBaseSDNode * Base,unsigned Bytes,int Dist,SelectionDAG & DAG)11109 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
11110                             unsigned Bytes, int Dist,
11111                             SelectionDAG &DAG) {
11112   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
11113     EVT VT = LS->getMemoryVT();
11114     SDValue Loc = LS->getBasePtr();
11115     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
11116   }
11117 
11118   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
11119     EVT VT;
11120     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11121     default: return false;
11122     case Intrinsic::ppc_qpx_qvlfd:
11123     case Intrinsic::ppc_qpx_qvlfda:
11124       VT = MVT::v4f64;
11125       break;
11126     case Intrinsic::ppc_qpx_qvlfs:
11127     case Intrinsic::ppc_qpx_qvlfsa:
11128       VT = MVT::v4f32;
11129       break;
11130     case Intrinsic::ppc_qpx_qvlfcd:
11131     case Intrinsic::ppc_qpx_qvlfcda:
11132       VT = MVT::v2f64;
11133       break;
11134     case Intrinsic::ppc_qpx_qvlfcs:
11135     case Intrinsic::ppc_qpx_qvlfcsa:
11136       VT = MVT::v2f32;
11137       break;
11138     case Intrinsic::ppc_qpx_qvlfiwa:
11139     case Intrinsic::ppc_qpx_qvlfiwz:
11140     case Intrinsic::ppc_altivec_lvx:
11141     case Intrinsic::ppc_altivec_lvxl:
11142     case Intrinsic::ppc_vsx_lxvw4x:
11143     case Intrinsic::ppc_vsx_lxvw4x_be:
11144       VT = MVT::v4i32;
11145       break;
11146     case Intrinsic::ppc_vsx_lxvd2x:
11147     case Intrinsic::ppc_vsx_lxvd2x_be:
11148       VT = MVT::v2f64;
11149       break;
11150     case Intrinsic::ppc_altivec_lvebx:
11151       VT = MVT::i8;
11152       break;
11153     case Intrinsic::ppc_altivec_lvehx:
11154       VT = MVT::i16;
11155       break;
11156     case Intrinsic::ppc_altivec_lvewx:
11157       VT = MVT::i32;
11158       break;
11159     }
11160 
11161     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
11162   }
11163 
11164   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
11165     EVT VT;
11166     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11167     default: return false;
11168     case Intrinsic::ppc_qpx_qvstfd:
11169     case Intrinsic::ppc_qpx_qvstfda:
11170       VT = MVT::v4f64;
11171       break;
11172     case Intrinsic::ppc_qpx_qvstfs:
11173     case Intrinsic::ppc_qpx_qvstfsa:
11174       VT = MVT::v4f32;
11175       break;
11176     case Intrinsic::ppc_qpx_qvstfcd:
11177     case Intrinsic::ppc_qpx_qvstfcda:
11178       VT = MVT::v2f64;
11179       break;
11180     case Intrinsic::ppc_qpx_qvstfcs:
11181     case Intrinsic::ppc_qpx_qvstfcsa:
11182       VT = MVT::v2f32;
11183       break;
11184     case Intrinsic::ppc_qpx_qvstfiw:
11185     case Intrinsic::ppc_qpx_qvstfiwa:
11186     case Intrinsic::ppc_altivec_stvx:
11187     case Intrinsic::ppc_altivec_stvxl:
11188     case Intrinsic::ppc_vsx_stxvw4x:
11189       VT = MVT::v4i32;
11190       break;
11191     case Intrinsic::ppc_vsx_stxvd2x:
11192       VT = MVT::v2f64;
11193       break;
11194     case Intrinsic::ppc_vsx_stxvw4x_be:
11195       VT = MVT::v4i32;
11196       break;
11197     case Intrinsic::ppc_vsx_stxvd2x_be:
11198       VT = MVT::v2f64;
11199       break;
11200     case Intrinsic::ppc_altivec_stvebx:
11201       VT = MVT::i8;
11202       break;
11203     case Intrinsic::ppc_altivec_stvehx:
11204       VT = MVT::i16;
11205       break;
11206     case Intrinsic::ppc_altivec_stvewx:
11207       VT = MVT::i32;
11208       break;
11209     }
11210 
11211     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11212   }
11213 
11214   return false;
11215 }
11216 
11217 // Return true is there is a nearyby consecutive load to the one provided
11218 // (regardless of alignment). We search up and down the chain, looking though
11219 // token factors and other loads (but nothing else). As a result, a true result
11220 // indicates that it is safe to create a new consecutive load adjacent to the
11221 // load provided.
findConsecutiveLoad(LoadSDNode * LD,SelectionDAG & DAG)11222 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11223   SDValue Chain = LD->getChain();
11224   EVT VT = LD->getMemoryVT();
11225 
11226   SmallSet<SDNode *, 16> LoadRoots;
11227   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11228   SmallSet<SDNode *, 16> Visited;
11229 
11230   // First, search up the chain, branching to follow all token-factor operands.
11231   // If we find a consecutive load, then we're done, otherwise, record all
11232   // nodes just above the top-level loads and token factors.
11233   while (!Queue.empty()) {
11234     SDNode *ChainNext = Queue.pop_back_val();
11235     if (!Visited.insert(ChainNext).second)
11236       continue;
11237 
11238     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11239       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11240         return true;
11241 
11242       if (!Visited.count(ChainLD->getChain().getNode()))
11243         Queue.push_back(ChainLD->getChain().getNode());
11244     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11245       for (const SDUse &O : ChainNext->ops())
11246         if (!Visited.count(O.getNode()))
11247           Queue.push_back(O.getNode());
11248     } else
11249       LoadRoots.insert(ChainNext);
11250   }
11251 
11252   // Second, search down the chain, starting from the top-level nodes recorded
11253   // in the first phase. These top-level nodes are the nodes just above all
11254   // loads and token factors. Starting with their uses, recursively look though
11255   // all loads (just the chain uses) and token factors to find a consecutive
11256   // load.
11257   Visited.clear();
11258   Queue.clear();
11259 
11260   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11261        IE = LoadRoots.end(); I != IE; ++I) {
11262     Queue.push_back(*I);
11263 
11264     while (!Queue.empty()) {
11265       SDNode *LoadRoot = Queue.pop_back_val();
11266       if (!Visited.insert(LoadRoot).second)
11267         continue;
11268 
11269       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11270         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11271           return true;
11272 
11273       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11274            UE = LoadRoot->use_end(); UI != UE; ++UI)
11275         if (((isa<MemSDNode>(*UI) &&
11276             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11277             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11278           Queue.push_back(*UI);
11279     }
11280   }
11281 
11282   return false;
11283 }
11284 
11285 /// This function is called when we have proved that a SETCC node can be replaced
11286 /// by subtraction (and other supporting instructions) so that the result of
11287 /// comparison is kept in a GPR instead of CR. This function is purely for
11288 /// codegen purposes and has some flags to guide the codegen process.
generateEquivalentSub(SDNode * N,int Size,bool Complement,bool Swap,SDLoc & DL,SelectionDAG & DAG)11289 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11290                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11291   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11292 
11293   // Zero extend the operands to the largest legal integer. Originally, they
11294   // must be of a strictly smaller size.
11295   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11296                          DAG.getConstant(Size, DL, MVT::i32));
11297   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11298                          DAG.getConstant(Size, DL, MVT::i32));
11299 
11300   // Swap if needed. Depends on the condition code.
11301   if (Swap)
11302     std::swap(Op0, Op1);
11303 
11304   // Subtract extended integers.
11305   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11306 
11307   // Move the sign bit to the least significant position and zero out the rest.
11308   // Now the least significant bit carries the result of original comparison.
11309   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11310                              DAG.getConstant(Size - 1, DL, MVT::i32));
11311   auto Final = Shifted;
11312 
11313   // Complement the result if needed. Based on the condition code.
11314   if (Complement)
11315     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11316                         DAG.getConstant(1, DL, MVT::i64));
11317 
11318   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11319 }
11320 
ConvertSETCCToSubtract(SDNode * N,DAGCombinerInfo & DCI) const11321 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11322                                                   DAGCombinerInfo &DCI) const {
11323   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11324 
11325   SelectionDAG &DAG = DCI.DAG;
11326   SDLoc DL(N);
11327 
11328   // Size of integers being compared has a critical role in the following
11329   // analysis, so we prefer to do this when all types are legal.
11330   if (!DCI.isAfterLegalizeDAG())
11331     return SDValue();
11332 
11333   // If all users of SETCC extend its value to a legal integer type
11334   // then we replace SETCC with a subtraction
11335   for (SDNode::use_iterator UI = N->use_begin(),
11336        UE = N->use_end(); UI != UE; ++UI) {
11337     if (UI->getOpcode() != ISD::ZERO_EXTEND)
11338       return SDValue();
11339   }
11340 
11341   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11342   auto OpSize = N->getOperand(0).getValueSizeInBits();
11343 
11344   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11345 
11346   if (OpSize < Size) {
11347     switch (CC) {
11348     default: break;
11349     case ISD::SETULT:
11350       return generateEquivalentSub(N, Size, false, false, DL, DAG);
11351     case ISD::SETULE:
11352       return generateEquivalentSub(N, Size, true, true, DL, DAG);
11353     case ISD::SETUGT:
11354       return generateEquivalentSub(N, Size, false, true, DL, DAG);
11355     case ISD::SETUGE:
11356       return generateEquivalentSub(N, Size, true, false, DL, DAG);
11357     }
11358   }
11359 
11360   return SDValue();
11361 }
11362 
DAGCombineTruncBoolExt(SDNode * N,DAGCombinerInfo & DCI) const11363 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11364                                                   DAGCombinerInfo &DCI) const {
11365   SelectionDAG &DAG = DCI.DAG;
11366   SDLoc dl(N);
11367 
11368   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11369   // If we're tracking CR bits, we need to be careful that we don't have:
11370   //   trunc(binary-ops(zext(x), zext(y)))
11371   // or
11372   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11373   // such that we're unnecessarily moving things into GPRs when it would be
11374   // better to keep them in CR bits.
11375 
11376   // Note that trunc here can be an actual i1 trunc, or can be the effective
11377   // truncation that comes from a setcc or select_cc.
11378   if (N->getOpcode() == ISD::TRUNCATE &&
11379       N->getValueType(0) != MVT::i1)
11380     return SDValue();
11381 
11382   if (N->getOperand(0).getValueType() != MVT::i32 &&
11383       N->getOperand(0).getValueType() != MVT::i64)
11384     return SDValue();
11385 
11386   if (N->getOpcode() == ISD::SETCC ||
11387       N->getOpcode() == ISD::SELECT_CC) {
11388     // If we're looking at a comparison, then we need to make sure that the
11389     // high bits (all except for the first) don't matter the result.
11390     ISD::CondCode CC =
11391       cast<CondCodeSDNode>(N->getOperand(
11392         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11393     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11394 
11395     if (ISD::isSignedIntSetCC(CC)) {
11396       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11397           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11398         return SDValue();
11399     } else if (ISD::isUnsignedIntSetCC(CC)) {
11400       if (!DAG.MaskedValueIsZero(N->getOperand(0),
11401                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11402           !DAG.MaskedValueIsZero(N->getOperand(1),
11403                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
11404         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11405                                              : SDValue());
11406     } else {
11407       // This is neither a signed nor an unsigned comparison, just make sure
11408       // that the high bits are equal.
11409       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
11410       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
11411 
11412       // We don't really care about what is known about the first bit (if
11413       // anything), so clear it in all masks prior to comparing them.
11414       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11415       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11416 
11417       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11418         return SDValue();
11419     }
11420   }
11421 
11422   // We now know that the higher-order bits are irrelevant, we just need to
11423   // make sure that all of the intermediate operations are bit operations, and
11424   // all inputs are extensions.
11425   if (N->getOperand(0).getOpcode() != ISD::AND &&
11426       N->getOperand(0).getOpcode() != ISD::OR  &&
11427       N->getOperand(0).getOpcode() != ISD::XOR &&
11428       N->getOperand(0).getOpcode() != ISD::SELECT &&
11429       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11430       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11431       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11432       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11433       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11434     return SDValue();
11435 
11436   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11437       N->getOperand(1).getOpcode() != ISD::AND &&
11438       N->getOperand(1).getOpcode() != ISD::OR  &&
11439       N->getOperand(1).getOpcode() != ISD::XOR &&
11440       N->getOperand(1).getOpcode() != ISD::SELECT &&
11441       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11442       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11443       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11444       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11445       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11446     return SDValue();
11447 
11448   SmallVector<SDValue, 4> Inputs;
11449   SmallVector<SDValue, 8> BinOps, PromOps;
11450   SmallPtrSet<SDNode *, 16> Visited;
11451 
11452   for (unsigned i = 0; i < 2; ++i) {
11453     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11454           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11455           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11456           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11457         isa<ConstantSDNode>(N->getOperand(i)))
11458       Inputs.push_back(N->getOperand(i));
11459     else
11460       BinOps.push_back(N->getOperand(i));
11461 
11462     if (N->getOpcode() == ISD::TRUNCATE)
11463       break;
11464   }
11465 
11466   // Visit all inputs, collect all binary operations (and, or, xor and
11467   // select) that are all fed by extensions.
11468   while (!BinOps.empty()) {
11469     SDValue BinOp = BinOps.back();
11470     BinOps.pop_back();
11471 
11472     if (!Visited.insert(BinOp.getNode()).second)
11473       continue;
11474 
11475     PromOps.push_back(BinOp);
11476 
11477     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11478       // The condition of the select is not promoted.
11479       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11480         continue;
11481       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11482         continue;
11483 
11484       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11485             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11486             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11487            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11488           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11489         Inputs.push_back(BinOp.getOperand(i));
11490       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11491                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11492                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11493                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11494                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11495                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11496                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11497                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11498                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11499         BinOps.push_back(BinOp.getOperand(i));
11500       } else {
11501         // We have an input that is not an extension or another binary
11502         // operation; we'll abort this transformation.
11503         return SDValue();
11504       }
11505     }
11506   }
11507 
11508   // Make sure that this is a self-contained cluster of operations (which
11509   // is not quite the same thing as saying that everything has only one
11510   // use).
11511   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11512     if (isa<ConstantSDNode>(Inputs[i]))
11513       continue;
11514 
11515     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11516                               UE = Inputs[i].getNode()->use_end();
11517          UI != UE; ++UI) {
11518       SDNode *User = *UI;
11519       if (User != N && !Visited.count(User))
11520         return SDValue();
11521 
11522       // Make sure that we're not going to promote the non-output-value
11523       // operand(s) or SELECT or SELECT_CC.
11524       // FIXME: Although we could sometimes handle this, and it does occur in
11525       // practice that one of the condition inputs to the select is also one of
11526       // the outputs, we currently can't deal with this.
11527       if (User->getOpcode() == ISD::SELECT) {
11528         if (User->getOperand(0) == Inputs[i])
11529           return SDValue();
11530       } else if (User->getOpcode() == ISD::SELECT_CC) {
11531         if (User->getOperand(0) == Inputs[i] ||
11532             User->getOperand(1) == Inputs[i])
11533           return SDValue();
11534       }
11535     }
11536   }
11537 
11538   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11539     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11540                               UE = PromOps[i].getNode()->use_end();
11541          UI != UE; ++UI) {
11542       SDNode *User = *UI;
11543       if (User != N && !Visited.count(User))
11544         return SDValue();
11545 
11546       // Make sure that we're not going to promote the non-output-value
11547       // operand(s) or SELECT or SELECT_CC.
11548       // FIXME: Although we could sometimes handle this, and it does occur in
11549       // practice that one of the condition inputs to the select is also one of
11550       // the outputs, we currently can't deal with this.
11551       if (User->getOpcode() == ISD::SELECT) {
11552         if (User->getOperand(0) == PromOps[i])
11553           return SDValue();
11554       } else if (User->getOpcode() == ISD::SELECT_CC) {
11555         if (User->getOperand(0) == PromOps[i] ||
11556             User->getOperand(1) == PromOps[i])
11557           return SDValue();
11558       }
11559     }
11560   }
11561 
11562   // Replace all inputs with the extension operand.
11563   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11564     // Constants may have users outside the cluster of to-be-promoted nodes,
11565     // and so we need to replace those as we do the promotions.
11566     if (isa<ConstantSDNode>(Inputs[i]))
11567       continue;
11568     else
11569       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11570   }
11571 
11572   std::list<HandleSDNode> PromOpHandles;
11573   for (auto &PromOp : PromOps)
11574     PromOpHandles.emplace_back(PromOp);
11575 
11576   // Replace all operations (these are all the same, but have a different
11577   // (i1) return type). DAG.getNode will validate that the types of
11578   // a binary operator match, so go through the list in reverse so that
11579   // we've likely promoted both operands first. Any intermediate truncations or
11580   // extensions disappear.
11581   while (!PromOpHandles.empty()) {
11582     SDValue PromOp = PromOpHandles.back().getValue();
11583     PromOpHandles.pop_back();
11584 
11585     if (PromOp.getOpcode() == ISD::TRUNCATE ||
11586         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11587         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11588         PromOp.getOpcode() == ISD::ANY_EXTEND) {
11589       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11590           PromOp.getOperand(0).getValueType() != MVT::i1) {
11591         // The operand is not yet ready (see comment below).
11592         PromOpHandles.emplace_front(PromOp);
11593         continue;
11594       }
11595 
11596       SDValue RepValue = PromOp.getOperand(0);
11597       if (isa<ConstantSDNode>(RepValue))
11598         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11599 
11600       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11601       continue;
11602     }
11603 
11604     unsigned C;
11605     switch (PromOp.getOpcode()) {
11606     default:             C = 0; break;
11607     case ISD::SELECT:    C = 1; break;
11608     case ISD::SELECT_CC: C = 2; break;
11609     }
11610 
11611     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11612          PromOp.getOperand(C).getValueType() != MVT::i1) ||
11613         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11614          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11615       // The to-be-promoted operands of this node have not yet been
11616       // promoted (this should be rare because we're going through the
11617       // list backward, but if one of the operands has several users in
11618       // this cluster of to-be-promoted nodes, it is possible).
11619       PromOpHandles.emplace_front(PromOp);
11620       continue;
11621     }
11622 
11623     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11624                                 PromOp.getNode()->op_end());
11625 
11626     // If there are any constant inputs, make sure they're replaced now.
11627     for (unsigned i = 0; i < 2; ++i)
11628       if (isa<ConstantSDNode>(Ops[C+i]))
11629         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11630 
11631     DAG.ReplaceAllUsesOfValueWith(PromOp,
11632       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11633   }
11634 
11635   // Now we're left with the initial truncation itself.
11636   if (N->getOpcode() == ISD::TRUNCATE)
11637     return N->getOperand(0);
11638 
11639   // Otherwise, this is a comparison. The operands to be compared have just
11640   // changed type (to i1), but everything else is the same.
11641   return SDValue(N, 0);
11642 }
11643 
DAGCombineExtBoolTrunc(SDNode * N,DAGCombinerInfo & DCI) const11644 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11645                                                   DAGCombinerInfo &DCI) const {
11646   SelectionDAG &DAG = DCI.DAG;
11647   SDLoc dl(N);
11648 
11649   // If we're tracking CR bits, we need to be careful that we don't have:
11650   //   zext(binary-ops(trunc(x), trunc(y)))
11651   // or
11652   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11653   // such that we're unnecessarily moving things into CR bits that can more
11654   // efficiently stay in GPRs. Note that if we're not certain that the high
11655   // bits are set as required by the final extension, we still may need to do
11656   // some masking to get the proper behavior.
11657 
11658   // This same functionality is important on PPC64 when dealing with
11659   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11660   // the return values of functions. Because it is so similar, it is handled
11661   // here as well.
11662 
11663   if (N->getValueType(0) != MVT::i32 &&
11664       N->getValueType(0) != MVT::i64)
11665     return SDValue();
11666 
11667   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11668         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11669     return SDValue();
11670 
11671   if (N->getOperand(0).getOpcode() != ISD::AND &&
11672       N->getOperand(0).getOpcode() != ISD::OR  &&
11673       N->getOperand(0).getOpcode() != ISD::XOR &&
11674       N->getOperand(0).getOpcode() != ISD::SELECT &&
11675       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11676     return SDValue();
11677 
11678   SmallVector<SDValue, 4> Inputs;
11679   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11680   SmallPtrSet<SDNode *, 16> Visited;
11681 
11682   // Visit all inputs, collect all binary operations (and, or, xor and
11683   // select) that are all fed by truncations.
11684   while (!BinOps.empty()) {
11685     SDValue BinOp = BinOps.back();
11686     BinOps.pop_back();
11687 
11688     if (!Visited.insert(BinOp.getNode()).second)
11689       continue;
11690 
11691     PromOps.push_back(BinOp);
11692 
11693     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11694       // The condition of the select is not promoted.
11695       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11696         continue;
11697       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11698         continue;
11699 
11700       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11701           isa<ConstantSDNode>(BinOp.getOperand(i))) {
11702         Inputs.push_back(BinOp.getOperand(i));
11703       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11704                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
11705                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11706                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11707                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11708         BinOps.push_back(BinOp.getOperand(i));
11709       } else {
11710         // We have an input that is not a truncation or another binary
11711         // operation; we'll abort this transformation.
11712         return SDValue();
11713       }
11714     }
11715   }
11716 
11717   // The operands of a select that must be truncated when the select is
11718   // promoted because the operand is actually part of the to-be-promoted set.
11719   DenseMap<SDNode *, EVT> SelectTruncOp[2];
11720 
11721   // Make sure that this is a self-contained cluster of operations (which
11722   // is not quite the same thing as saying that everything has only one
11723   // use).
11724   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11725     if (isa<ConstantSDNode>(Inputs[i]))
11726       continue;
11727 
11728     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11729                               UE = Inputs[i].getNode()->use_end();
11730          UI != UE; ++UI) {
11731       SDNode *User = *UI;
11732       if (User != N && !Visited.count(User))
11733         return SDValue();
11734 
11735       // If we're going to promote the non-output-value operand(s) or SELECT or
11736       // SELECT_CC, record them for truncation.
11737       if (User->getOpcode() == ISD::SELECT) {
11738         if (User->getOperand(0) == Inputs[i])
11739           SelectTruncOp[0].insert(std::make_pair(User,
11740                                     User->getOperand(0).getValueType()));
11741       } else if (User->getOpcode() == ISD::SELECT_CC) {
11742         if (User->getOperand(0) == Inputs[i])
11743           SelectTruncOp[0].insert(std::make_pair(User,
11744                                     User->getOperand(0).getValueType()));
11745         if (User->getOperand(1) == Inputs[i])
11746           SelectTruncOp[1].insert(std::make_pair(User,
11747                                     User->getOperand(1).getValueType()));
11748       }
11749     }
11750   }
11751 
11752   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11753     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11754                               UE = PromOps[i].getNode()->use_end();
11755          UI != UE; ++UI) {
11756       SDNode *User = *UI;
11757       if (User != N && !Visited.count(User))
11758         return SDValue();
11759 
11760       // If we're going to promote the non-output-value operand(s) or SELECT or
11761       // SELECT_CC, record them for truncation.
11762       if (User->getOpcode() == ISD::SELECT) {
11763         if (User->getOperand(0) == PromOps[i])
11764           SelectTruncOp[0].insert(std::make_pair(User,
11765                                     User->getOperand(0).getValueType()));
11766       } else if (User->getOpcode() == ISD::SELECT_CC) {
11767         if (User->getOperand(0) == PromOps[i])
11768           SelectTruncOp[0].insert(std::make_pair(User,
11769                                     User->getOperand(0).getValueType()));
11770         if (User->getOperand(1) == PromOps[i])
11771           SelectTruncOp[1].insert(std::make_pair(User,
11772                                     User->getOperand(1).getValueType()));
11773       }
11774     }
11775   }
11776 
11777   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11778   bool ReallyNeedsExt = false;
11779   if (N->getOpcode() != ISD::ANY_EXTEND) {
11780     // If all of the inputs are not already sign/zero extended, then
11781     // we'll still need to do that at the end.
11782     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11783       if (isa<ConstantSDNode>(Inputs[i]))
11784         continue;
11785 
11786       unsigned OpBits =
11787         Inputs[i].getOperand(0).getValueSizeInBits();
11788       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11789 
11790       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11791            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11792                                   APInt::getHighBitsSet(OpBits,
11793                                                         OpBits-PromBits))) ||
11794           (N->getOpcode() == ISD::SIGN_EXTEND &&
11795            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11796              (OpBits-(PromBits-1)))) {
11797         ReallyNeedsExt = true;
11798         break;
11799       }
11800     }
11801   }
11802 
11803   // Replace all inputs, either with the truncation operand, or a
11804   // truncation or extension to the final output type.
11805   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11806     // Constant inputs need to be replaced with the to-be-promoted nodes that
11807     // use them because they might have users outside of the cluster of
11808     // promoted nodes.
11809     if (isa<ConstantSDNode>(Inputs[i]))
11810       continue;
11811 
11812     SDValue InSrc = Inputs[i].getOperand(0);
11813     if (Inputs[i].getValueType() == N->getValueType(0))
11814       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11815     else if (N->getOpcode() == ISD::SIGN_EXTEND)
11816       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11817         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11818     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11819       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11820         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11821     else
11822       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11823         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11824   }
11825 
11826   std::list<HandleSDNode> PromOpHandles;
11827   for (auto &PromOp : PromOps)
11828     PromOpHandles.emplace_back(PromOp);
11829 
11830   // Replace all operations (these are all the same, but have a different
11831   // (promoted) return type). DAG.getNode will validate that the types of
11832   // a binary operator match, so go through the list in reverse so that
11833   // we've likely promoted both operands first.
11834   while (!PromOpHandles.empty()) {
11835     SDValue PromOp = PromOpHandles.back().getValue();
11836     PromOpHandles.pop_back();
11837 
11838     unsigned C;
11839     switch (PromOp.getOpcode()) {
11840     default:             C = 0; break;
11841     case ISD::SELECT:    C = 1; break;
11842     case ISD::SELECT_CC: C = 2; break;
11843     }
11844 
11845     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11846          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11847         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11848          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11849       // The to-be-promoted operands of this node have not yet been
11850       // promoted (this should be rare because we're going through the
11851       // list backward, but if one of the operands has several users in
11852       // this cluster of to-be-promoted nodes, it is possible).
11853       PromOpHandles.emplace_front(PromOp);
11854       continue;
11855     }
11856 
11857     // For SELECT and SELECT_CC nodes, we do a similar check for any
11858     // to-be-promoted comparison inputs.
11859     if (PromOp.getOpcode() == ISD::SELECT ||
11860         PromOp.getOpcode() == ISD::SELECT_CC) {
11861       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11862            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11863           (SelectTruncOp[1].count(PromOp.getNode()) &&
11864            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11865         PromOpHandles.emplace_front(PromOp);
11866         continue;
11867       }
11868     }
11869 
11870     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11871                                 PromOp.getNode()->op_end());
11872 
11873     // If this node has constant inputs, then they'll need to be promoted here.
11874     for (unsigned i = 0; i < 2; ++i) {
11875       if (!isa<ConstantSDNode>(Ops[C+i]))
11876         continue;
11877       if (Ops[C+i].getValueType() == N->getValueType(0))
11878         continue;
11879 
11880       if (N->getOpcode() == ISD::SIGN_EXTEND)
11881         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11882       else if (N->getOpcode() == ISD::ZERO_EXTEND)
11883         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11884       else
11885         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11886     }
11887 
11888     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
11889     // truncate them again to the original value type.
11890     if (PromOp.getOpcode() == ISD::SELECT ||
11891         PromOp.getOpcode() == ISD::SELECT_CC) {
11892       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
11893       if (SI0 != SelectTruncOp[0].end())
11894         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
11895       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
11896       if (SI1 != SelectTruncOp[1].end())
11897         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
11898     }
11899 
11900     DAG.ReplaceAllUsesOfValueWith(PromOp,
11901       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
11902   }
11903 
11904   // Now we're left with the initial extension itself.
11905   if (!ReallyNeedsExt)
11906     return N->getOperand(0);
11907 
11908   // To zero extend, just mask off everything except for the first bit (in the
11909   // i1 case).
11910   if (N->getOpcode() == ISD::ZERO_EXTEND)
11911     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
11912                        DAG.getConstant(APInt::getLowBitsSet(
11913                                          N->getValueSizeInBits(0), PromBits),
11914                                        dl, N->getValueType(0)));
11915 
11916   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
11917          "Invalid extension type");
11918   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
11919   SDValue ShiftCst =
11920       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
11921   return DAG.getNode(
11922       ISD::SRA, dl, N->getValueType(0),
11923       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
11924       ShiftCst);
11925 }
11926 
combineSetCC(SDNode * N,DAGCombinerInfo & DCI) const11927 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
11928                                         DAGCombinerInfo &DCI) const {
11929   assert(N->getOpcode() == ISD::SETCC &&
11930          "Should be called with a SETCC node");
11931 
11932   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11933   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
11934     SDValue LHS = N->getOperand(0);
11935     SDValue RHS = N->getOperand(1);
11936 
11937     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
11938     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
11939         LHS.hasOneUse())
11940       std::swap(LHS, RHS);
11941 
11942     // x == 0-y --> x+y == 0
11943     // x != 0-y --> x+y != 0
11944     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
11945         RHS.hasOneUse()) {
11946       SDLoc DL(N);
11947       SelectionDAG &DAG = DCI.DAG;
11948       EVT VT = N->getValueType(0);
11949       EVT OpVT = LHS.getValueType();
11950       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
11951       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
11952     }
11953   }
11954 
11955   return DAGCombineTruncBoolExt(N, DCI);
11956 }
11957 
11958 // Is this an extending load from an f32 to an f64?
isFPExtLoad(SDValue Op)11959 static bool isFPExtLoad(SDValue Op) {
11960   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
11961     return LD->getExtensionType() == ISD::EXTLOAD &&
11962       Op.getValueType() == MVT::f64;
11963   return false;
11964 }
11965 
11966 /// Reduces the number of fp-to-int conversion when building a vector.
11967 ///
11968 /// If this vector is built out of floating to integer conversions,
11969 /// transform it to a vector built out of floating point values followed by a
11970 /// single floating to integer conversion of the vector.
11971 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
11972 /// becomes (fptosi (build_vector ($A, $B, ...)))
11973 SDValue PPCTargetLowering::
combineElementTruncationToVectorTruncation(SDNode * N,DAGCombinerInfo & DCI) const11974 combineElementTruncationToVectorTruncation(SDNode *N,
11975                                            DAGCombinerInfo &DCI) const {
11976   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11977          "Should be called with a BUILD_VECTOR node");
11978 
11979   SelectionDAG &DAG = DCI.DAG;
11980   SDLoc dl(N);
11981 
11982   SDValue FirstInput = N->getOperand(0);
11983   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
11984          "The input operand must be an fp-to-int conversion.");
11985 
11986   // This combine happens after legalization so the fp_to_[su]i nodes are
11987   // already converted to PPCSISD nodes.
11988   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
11989   if (FirstConversion == PPCISD::FCTIDZ ||
11990       FirstConversion == PPCISD::FCTIDUZ ||
11991       FirstConversion == PPCISD::FCTIWZ ||
11992       FirstConversion == PPCISD::FCTIWUZ) {
11993     bool IsSplat = true;
11994     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
11995       FirstConversion == PPCISD::FCTIWUZ;
11996     EVT SrcVT = FirstInput.getOperand(0).getValueType();
11997     SmallVector<SDValue, 4> Ops;
11998     EVT TargetVT = N->getValueType(0);
11999     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12000       SDValue NextOp = N->getOperand(i);
12001       if (NextOp.getOpcode() != PPCISD::MFVSR)
12002         return SDValue();
12003       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12004       if (NextConversion != FirstConversion)
12005         return SDValue();
12006       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12007       // This is not valid if the input was originally double precision. It is
12008       // also not profitable to do unless this is an extending load in which
12009       // case doing this combine will allow us to combine consecutive loads.
12010       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12011         return SDValue();
12012       if (N->getOperand(i) != FirstInput)
12013         IsSplat = false;
12014     }
12015 
12016     // If this is a splat, we leave it as-is since there will be only a single
12017     // fp-to-int conversion followed by a splat of the integer. This is better
12018     // for 32-bit and smaller ints and neutral for 64-bit ints.
12019     if (IsSplat)
12020       return SDValue();
12021 
12022     // Now that we know we have the right type of node, get its operands
12023     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12024       SDValue In = N->getOperand(i).getOperand(0);
12025       if (Is32Bit) {
12026         // For 32-bit values, we need to add an FP_ROUND node (if we made it
12027         // here, we know that all inputs are extending loads so this is safe).
12028         if (In.isUndef())
12029           Ops.push_back(DAG.getUNDEF(SrcVT));
12030         else {
12031           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
12032                                       MVT::f32, In.getOperand(0),
12033                                       DAG.getIntPtrConstant(1, dl));
12034           Ops.push_back(Trunc);
12035         }
12036       } else
12037         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
12038     }
12039 
12040     unsigned Opcode;
12041     if (FirstConversion == PPCISD::FCTIDZ ||
12042         FirstConversion == PPCISD::FCTIWZ)
12043       Opcode = ISD::FP_TO_SINT;
12044     else
12045       Opcode = ISD::FP_TO_UINT;
12046 
12047     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
12048     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
12049     return DAG.getNode(Opcode, dl, TargetVT, BV);
12050   }
12051   return SDValue();
12052 }
12053 
12054 /// Reduce the number of loads when building a vector.
12055 ///
12056 /// Building a vector out of multiple loads can be converted to a load
12057 /// of the vector type if the loads are consecutive. If the loads are
12058 /// consecutive but in descending order, a shuffle is added at the end
12059 /// to reorder the vector.
combineBVOfConsecutiveLoads(SDNode * N,SelectionDAG & DAG)12060 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
12061   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12062          "Should be called with a BUILD_VECTOR node");
12063 
12064   SDLoc dl(N);
12065   bool InputsAreConsecutiveLoads = true;
12066   bool InputsAreReverseConsecutive = true;
12067   unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
12068   SDValue FirstInput = N->getOperand(0);
12069   bool IsRoundOfExtLoad = false;
12070 
12071   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
12072       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
12073     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
12074     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
12075   }
12076   // Not a build vector of (possibly fp_rounded) loads.
12077   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
12078       N->getNumOperands() == 1)
12079     return SDValue();
12080 
12081   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
12082     // If any inputs are fp_round(extload), they all must be.
12083     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
12084       return SDValue();
12085 
12086     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
12087       N->getOperand(i);
12088     if (NextInput.getOpcode() != ISD::LOAD)
12089       return SDValue();
12090 
12091     SDValue PreviousInput =
12092       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
12093     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
12094     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
12095 
12096     // If any inputs are fp_round(extload), they all must be.
12097     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
12098       return SDValue();
12099 
12100     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
12101       InputsAreConsecutiveLoads = false;
12102     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
12103       InputsAreReverseConsecutive = false;
12104 
12105     // Exit early if the loads are neither consecutive nor reverse consecutive.
12106     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
12107       return SDValue();
12108   }
12109 
12110   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
12111          "The loads cannot be both consecutive and reverse consecutive.");
12112 
12113   SDValue FirstLoadOp =
12114     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
12115   SDValue LastLoadOp =
12116     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
12117                        N->getOperand(N->getNumOperands()-1);
12118 
12119   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
12120   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
12121   if (InputsAreConsecutiveLoads) {
12122     assert(LD1 && "Input needs to be a LoadSDNode.");
12123     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
12124                        LD1->getBasePtr(), LD1->getPointerInfo(),
12125                        LD1->getAlignment());
12126   }
12127   if (InputsAreReverseConsecutive) {
12128     assert(LDL && "Input needs to be a LoadSDNode.");
12129     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
12130                                LDL->getBasePtr(), LDL->getPointerInfo(),
12131                                LDL->getAlignment());
12132     SmallVector<int, 16> Ops;
12133     for (int i = N->getNumOperands() - 1; i >= 0; i--)
12134       Ops.push_back(i);
12135 
12136     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
12137                                 DAG.getUNDEF(N->getValueType(0)), Ops);
12138   }
12139   return SDValue();
12140 }
12141 
12142 // This function adds the required vector_shuffle needed to get
12143 // the elements of the vector extract in the correct position
12144 // as specified by the CorrectElems encoding.
addShuffleForVecExtend(SDNode * N,SelectionDAG & DAG,SDValue Input,uint64_t Elems,uint64_t CorrectElems)12145 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
12146                                       SDValue Input, uint64_t Elems,
12147                                       uint64_t CorrectElems) {
12148   SDLoc dl(N);
12149 
12150   unsigned NumElems = Input.getValueType().getVectorNumElements();
12151   SmallVector<int, 16> ShuffleMask(NumElems, -1);
12152 
12153   // Knowing the element indices being extracted from the original
12154   // vector and the order in which they're being inserted, just put
12155   // them at element indices required for the instruction.
12156   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12157     if (DAG.getDataLayout().isLittleEndian())
12158       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
12159     else
12160       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
12161     CorrectElems = CorrectElems >> 8;
12162     Elems = Elems >> 8;
12163   }
12164 
12165   SDValue Shuffle =
12166       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
12167                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
12168 
12169   EVT Ty = N->getValueType(0);
12170   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
12171   return BV;
12172 }
12173 
12174 // Look for build vector patterns where input operands come from sign
12175 // extended vector_extract elements of specific indices. If the correct indices
12176 // aren't used, add a vector shuffle to fix up the indices and create a new
12177 // PPCISD:SExtVElems node which selects the vector sign extend instructions
12178 // during instruction selection.
combineBVOfVecSExt(SDNode * N,SelectionDAG & DAG)12179 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
12180   // This array encodes the indices that the vector sign extend instructions
12181   // extract from when extending from one type to another for both BE and LE.
12182   // The right nibble of each byte corresponds to the LE incides.
12183   // and the left nibble of each byte corresponds to the BE incides.
12184   // For example: 0x3074B8FC  byte->word
12185   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
12186   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
12187   // For example: 0x000070F8  byte->double word
12188   // For LE: the allowed indices are: 0x0,0x8
12189   // For BE: the allowed indices are: 0x7,0xF
12190   uint64_t TargetElems[] = {
12191       0x3074B8FC, // b->w
12192       0x000070F8, // b->d
12193       0x10325476, // h->w
12194       0x00003074, // h->d
12195       0x00001032, // w->d
12196   };
12197 
12198   uint64_t Elems = 0;
12199   int Index;
12200   SDValue Input;
12201 
12202   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
12203     if (!Op)
12204       return false;
12205     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
12206         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
12207       return false;
12208 
12209     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12210     // of the right width.
12211     SDValue Extract = Op.getOperand(0);
12212     if (Extract.getOpcode() == ISD::ANY_EXTEND)
12213       Extract = Extract.getOperand(0);
12214     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12215       return false;
12216 
12217     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12218     if (!ExtOp)
12219       return false;
12220 
12221     Index = ExtOp->getZExtValue();
12222     if (Input && Input != Extract.getOperand(0))
12223       return false;
12224 
12225     if (!Input)
12226       Input = Extract.getOperand(0);
12227 
12228     Elems = Elems << 8;
12229     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12230     Elems |= Index;
12231 
12232     return true;
12233   };
12234 
12235   // If the build vector operands aren't sign extended vector extracts,
12236   // of the same input vector, then return.
12237   for (unsigned i = 0; i < N->getNumOperands(); i++) {
12238     if (!isSExtOfVecExtract(N->getOperand(i))) {
12239       return SDValue();
12240     }
12241   }
12242 
12243   // If the vector extract indicies are not correct, add the appropriate
12244   // vector_shuffle.
12245   int TgtElemArrayIdx;
12246   int InputSize = Input.getValueType().getScalarSizeInBits();
12247   int OutputSize = N->getValueType(0).getScalarSizeInBits();
12248   if (InputSize + OutputSize == 40)
12249     TgtElemArrayIdx = 0;
12250   else if (InputSize + OutputSize == 72)
12251     TgtElemArrayIdx = 1;
12252   else if (InputSize + OutputSize == 48)
12253     TgtElemArrayIdx = 2;
12254   else if (InputSize + OutputSize == 80)
12255     TgtElemArrayIdx = 3;
12256   else if (InputSize + OutputSize == 96)
12257     TgtElemArrayIdx = 4;
12258   else
12259     return SDValue();
12260 
12261   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12262   CorrectElems = DAG.getDataLayout().isLittleEndian()
12263                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12264                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12265   if (Elems != CorrectElems) {
12266     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12267   }
12268 
12269   // Regular lowering will catch cases where a shuffle is not needed.
12270   return SDValue();
12271 }
12272 
DAGCombineBuildVector(SDNode * N,DAGCombinerInfo & DCI) const12273 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12274                                                  DAGCombinerInfo &DCI) const {
12275   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12276          "Should be called with a BUILD_VECTOR node");
12277 
12278   SelectionDAG &DAG = DCI.DAG;
12279   SDLoc dl(N);
12280 
12281   if (!Subtarget.hasVSX())
12282     return SDValue();
12283 
12284   // The target independent DAG combiner will leave a build_vector of
12285   // float-to-int conversions intact. We can generate MUCH better code for
12286   // a float-to-int conversion of a vector of floats.
12287   SDValue FirstInput = N->getOperand(0);
12288   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12289     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12290     if (Reduced)
12291       return Reduced;
12292   }
12293 
12294   // If we're building a vector out of consecutive loads, just load that
12295   // vector type.
12296   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12297   if (Reduced)
12298     return Reduced;
12299 
12300   // If we're building a vector out of extended elements from another vector
12301   // we have P9 vector integer extend instructions. The code assumes legal
12302   // input types (i.e. it can't handle things like v4i16) so do not run before
12303   // legalization.
12304   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
12305     Reduced = combineBVOfVecSExt(N, DAG);
12306     if (Reduced)
12307       return Reduced;
12308   }
12309 
12310 
12311   if (N->getValueType(0) != MVT::v2f64)
12312     return SDValue();
12313 
12314   // Looking for:
12315   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12316   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12317       FirstInput.getOpcode() != ISD::UINT_TO_FP)
12318     return SDValue();
12319   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12320       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12321     return SDValue();
12322   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12323     return SDValue();
12324 
12325   SDValue Ext1 = FirstInput.getOperand(0);
12326   SDValue Ext2 = N->getOperand(1).getOperand(0);
12327   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12328      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12329     return SDValue();
12330 
12331   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12332   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12333   if (!Ext1Op || !Ext2Op)
12334     return SDValue();
12335   if (Ext1.getValueType() != MVT::i32 ||
12336       Ext2.getValueType() != MVT::i32)
12337   if (Ext1.getOperand(0) != Ext2.getOperand(0))
12338     return SDValue();
12339 
12340   int FirstElem = Ext1Op->getZExtValue();
12341   int SecondElem = Ext2Op->getZExtValue();
12342   int SubvecIdx;
12343   if (FirstElem == 0 && SecondElem == 1)
12344     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
12345   else if (FirstElem == 2 && SecondElem == 3)
12346     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
12347   else
12348     return SDValue();
12349 
12350   SDValue SrcVec = Ext1.getOperand(0);
12351   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
12352     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
12353   return DAG.getNode(NodeType, dl, MVT::v2f64,
12354                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
12355 }
12356 
combineFPToIntToFP(SDNode * N,DAGCombinerInfo & DCI) const12357 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
12358                                               DAGCombinerInfo &DCI) const {
12359   assert((N->getOpcode() == ISD::SINT_TO_FP ||
12360           N->getOpcode() == ISD::UINT_TO_FP) &&
12361          "Need an int -> FP conversion node here");
12362 
12363   if (useSoftFloat() || !Subtarget.has64BitSupport())
12364     return SDValue();
12365 
12366   SelectionDAG &DAG = DCI.DAG;
12367   SDLoc dl(N);
12368   SDValue Op(N, 0);
12369 
12370   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12371   // from the hardware.
12372   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12373     return SDValue();
12374   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12375       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12376     return SDValue();
12377 
12378   SDValue FirstOperand(Op.getOperand(0));
12379   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12380     (FirstOperand.getValueType() == MVT::i8 ||
12381      FirstOperand.getValueType() == MVT::i16);
12382   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12383     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12384     bool DstDouble = Op.getValueType() == MVT::f64;
12385     unsigned ConvOp = Signed ?
12386       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
12387       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12388     SDValue WidthConst =
12389       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12390                             dl, false);
12391     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12392     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12393     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12394                                          DAG.getVTList(MVT::f64, MVT::Other),
12395                                          Ops, MVT::i8, LDN->getMemOperand());
12396 
12397     // For signed conversion, we need to sign-extend the value in the VSR
12398     if (Signed) {
12399       SDValue ExtOps[] = { Ld, WidthConst };
12400       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12401       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12402     } else
12403       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12404   }
12405 
12406 
12407   // For i32 intermediate values, unfortunately, the conversion functions
12408   // leave the upper 32 bits of the value are undefined. Within the set of
12409   // scalar instructions, we have no method for zero- or sign-extending the
12410   // value. Thus, we cannot handle i32 intermediate values here.
12411   if (Op.getOperand(0).getValueType() == MVT::i32)
12412     return SDValue();
12413 
12414   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12415          "UINT_TO_FP is supported only with FPCVT");
12416 
12417   // If we have FCFIDS, then use it when converting to single-precision.
12418   // Otherwise, convert to double-precision and then round.
12419   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12420                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12421                                                             : PPCISD::FCFIDS)
12422                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12423                                                             : PPCISD::FCFID);
12424   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12425                   ? MVT::f32
12426                   : MVT::f64;
12427 
12428   // If we're converting from a float, to an int, and back to a float again,
12429   // then we don't need the store/load pair at all.
12430   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12431        Subtarget.hasFPCVT()) ||
12432       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12433     SDValue Src = Op.getOperand(0).getOperand(0);
12434     if (Src.getValueType() == MVT::f32) {
12435       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12436       DCI.AddToWorklist(Src.getNode());
12437     } else if (Src.getValueType() != MVT::f64) {
12438       // Make sure that we don't pick up a ppc_fp128 source value.
12439       return SDValue();
12440     }
12441 
12442     unsigned FCTOp =
12443       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12444                                                         PPCISD::FCTIDUZ;
12445 
12446     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12447     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12448 
12449     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12450       FP = DAG.getNode(ISD::FP_ROUND, dl,
12451                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12452       DCI.AddToWorklist(FP.getNode());
12453     }
12454 
12455     return FP;
12456   }
12457 
12458   return SDValue();
12459 }
12460 
12461 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12462 // builtins) into loads with swaps.
expandVSXLoadForLE(SDNode * N,DAGCombinerInfo & DCI) const12463 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12464                                               DAGCombinerInfo &DCI) const {
12465   SelectionDAG &DAG = DCI.DAG;
12466   SDLoc dl(N);
12467   SDValue Chain;
12468   SDValue Base;
12469   MachineMemOperand *MMO;
12470 
12471   switch (N->getOpcode()) {
12472   default:
12473     llvm_unreachable("Unexpected opcode for little endian VSX load");
12474   case ISD::LOAD: {
12475     LoadSDNode *LD = cast<LoadSDNode>(N);
12476     Chain = LD->getChain();
12477     Base = LD->getBasePtr();
12478     MMO = LD->getMemOperand();
12479     // If the MMO suggests this isn't a load of a full vector, leave
12480     // things alone.  For a built-in, we have to make the change for
12481     // correctness, so if there is a size problem that will be a bug.
12482     if (MMO->getSize() < 16)
12483       return SDValue();
12484     break;
12485   }
12486   case ISD::INTRINSIC_W_CHAIN: {
12487     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12488     Chain = Intrin->getChain();
12489     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12490     // us what we want. Get operand 2 instead.
12491     Base = Intrin->getOperand(2);
12492     MMO = Intrin->getMemOperand();
12493     break;
12494   }
12495   }
12496 
12497   MVT VecTy = N->getValueType(0).getSimpleVT();
12498 
12499   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12500   // aligned and the type is a vector with elements up to 4 bytes
12501   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12502       && VecTy.getScalarSizeInBits() <= 32 ) {
12503     return SDValue();
12504   }
12505 
12506   SDValue LoadOps[] = { Chain, Base };
12507   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12508                                          DAG.getVTList(MVT::v2f64, MVT::Other),
12509                                          LoadOps, MVT::v2f64, MMO);
12510 
12511   DCI.AddToWorklist(Load.getNode());
12512   Chain = Load.getValue(1);
12513   SDValue Swap = DAG.getNode(
12514       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12515   DCI.AddToWorklist(Swap.getNode());
12516 
12517   // Add a bitcast if the resulting load type doesn't match v2f64.
12518   if (VecTy != MVT::v2f64) {
12519     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12520     DCI.AddToWorklist(N.getNode());
12521     // Package {bitcast value, swap's chain} to match Load's shape.
12522     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12523                        N, Swap.getValue(1));
12524   }
12525 
12526   return Swap;
12527 }
12528 
12529 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12530 // builtins) into stores with swaps.
expandVSXStoreForLE(SDNode * N,DAGCombinerInfo & DCI) const12531 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12532                                                DAGCombinerInfo &DCI) const {
12533   SelectionDAG &DAG = DCI.DAG;
12534   SDLoc dl(N);
12535   SDValue Chain;
12536   SDValue Base;
12537   unsigned SrcOpnd;
12538   MachineMemOperand *MMO;
12539 
12540   switch (N->getOpcode()) {
12541   default:
12542     llvm_unreachable("Unexpected opcode for little endian VSX store");
12543   case ISD::STORE: {
12544     StoreSDNode *ST = cast<StoreSDNode>(N);
12545     Chain = ST->getChain();
12546     Base = ST->getBasePtr();
12547     MMO = ST->getMemOperand();
12548     SrcOpnd = 1;
12549     // If the MMO suggests this isn't a store of a full vector, leave
12550     // things alone.  For a built-in, we have to make the change for
12551     // correctness, so if there is a size problem that will be a bug.
12552     if (MMO->getSize() < 16)
12553       return SDValue();
12554     break;
12555   }
12556   case ISD::INTRINSIC_VOID: {
12557     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12558     Chain = Intrin->getChain();
12559     // Intrin->getBasePtr() oddly does not get what we want.
12560     Base = Intrin->getOperand(3);
12561     MMO = Intrin->getMemOperand();
12562     SrcOpnd = 2;
12563     break;
12564   }
12565   }
12566 
12567   SDValue Src = N->getOperand(SrcOpnd);
12568   MVT VecTy = Src.getValueType().getSimpleVT();
12569 
12570   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12571   // aligned and the type is a vector with elements up to 4 bytes
12572   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12573       && VecTy.getScalarSizeInBits() <= 32 ) {
12574     return SDValue();
12575   }
12576 
12577   // All stores are done as v2f64 and possible bit cast.
12578   if (VecTy != MVT::v2f64) {
12579     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12580     DCI.AddToWorklist(Src.getNode());
12581   }
12582 
12583   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12584                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12585   DCI.AddToWorklist(Swap.getNode());
12586   Chain = Swap.getValue(1);
12587   SDValue StoreOps[] = { Chain, Swap, Base };
12588   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12589                                           DAG.getVTList(MVT::Other),
12590                                           StoreOps, VecTy, MMO);
12591   DCI.AddToWorklist(Store.getNode());
12592   return Store;
12593 }
12594 
12595 // Handle DAG combine for STORE (FP_TO_INT F).
combineStoreFPToInt(SDNode * N,DAGCombinerInfo & DCI) const12596 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
12597                                                DAGCombinerInfo &DCI) const {
12598 
12599   SelectionDAG &DAG = DCI.DAG;
12600   SDLoc dl(N);
12601   unsigned Opcode = N->getOperand(1).getOpcode();
12602 
12603   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
12604          && "Not a FP_TO_INT Instruction!");
12605 
12606   SDValue Val = N->getOperand(1).getOperand(0);
12607   EVT Op1VT = N->getOperand(1).getValueType();
12608   EVT ResVT = Val.getValueType();
12609 
12610   // Floating point types smaller than 32 bits are not legal on Power.
12611   if (ResVT.getScalarSizeInBits() < 32)
12612     return SDValue();
12613 
12614   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
12615   bool ValidTypeForStoreFltAsInt =
12616         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
12617          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
12618 
12619   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
12620       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
12621     return SDValue();
12622 
12623   // Extend f32 values to f64
12624   if (ResVT.getScalarSizeInBits() == 32) {
12625     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12626     DCI.AddToWorklist(Val.getNode());
12627   }
12628 
12629   // Set signed or unsigned conversion opcode.
12630   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
12631                           PPCISD::FP_TO_SINT_IN_VSR :
12632                           PPCISD::FP_TO_UINT_IN_VSR;
12633 
12634   Val = DAG.getNode(ConvOpcode,
12635                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
12636   DCI.AddToWorklist(Val.getNode());
12637 
12638   // Set number of bytes being converted.
12639   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
12640   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
12641                     DAG.getIntPtrConstant(ByteSize, dl, false),
12642                     DAG.getValueType(Op1VT) };
12643 
12644   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
12645           DAG.getVTList(MVT::Other), Ops,
12646           cast<StoreSDNode>(N)->getMemoryVT(),
12647           cast<StoreSDNode>(N)->getMemOperand());
12648 
12649   DCI.AddToWorklist(Val.getNode());
12650   return Val;
12651 }
12652 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const12653 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12654                                              DAGCombinerInfo &DCI) const {
12655   SelectionDAG &DAG = DCI.DAG;
12656   SDLoc dl(N);
12657   switch (N->getOpcode()) {
12658   default: break;
12659   case ISD::ADD:
12660     return combineADD(N, DCI);
12661   case ISD::SHL:
12662     return combineSHL(N, DCI);
12663   case ISD::SRA:
12664     return combineSRA(N, DCI);
12665   case ISD::SRL:
12666     return combineSRL(N, DCI);
12667   case PPCISD::SHL:
12668     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12669         return N->getOperand(0);
12670     break;
12671   case PPCISD::SRL:
12672     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12673         return N->getOperand(0);
12674     break;
12675   case PPCISD::SRA:
12676     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12677       if (C->isNullValue() ||   //  0 >>s V -> 0.
12678           C->isAllOnesValue())    // -1 >>s V -> -1.
12679         return N->getOperand(0);
12680     }
12681     break;
12682   case ISD::SIGN_EXTEND:
12683   case ISD::ZERO_EXTEND:
12684   case ISD::ANY_EXTEND:
12685     return DAGCombineExtBoolTrunc(N, DCI);
12686   case ISD::TRUNCATE:
12687     return combineTRUNCATE(N, DCI);
12688   case ISD::SETCC:
12689     if (SDValue CSCC = combineSetCC(N, DCI))
12690       return CSCC;
12691     LLVM_FALLTHROUGH;
12692   case ISD::SELECT_CC:
12693     return DAGCombineTruncBoolExt(N, DCI);
12694   case ISD::SINT_TO_FP:
12695   case ISD::UINT_TO_FP:
12696     return combineFPToIntToFP(N, DCI);
12697   case ISD::STORE: {
12698 
12699     EVT Op1VT = N->getOperand(1).getValueType();
12700     unsigned Opcode = N->getOperand(1).getOpcode();
12701 
12702     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
12703       SDValue Val= combineStoreFPToInt(N, DCI);
12704       if (Val)
12705         return Val;
12706     }
12707 
12708     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12709     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
12710         N->getOperand(1).getNode()->hasOneUse() &&
12711         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
12712          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
12713 
12714       // STBRX can only handle simple types and it makes no sense to store less
12715       // two bytes in byte-reversed order.
12716       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12717       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
12718         break;
12719 
12720       SDValue BSwapOp = N->getOperand(1).getOperand(0);
12721       // Do an any-extend to 32-bits if this is a half-word input.
12722       if (BSwapOp.getValueType() == MVT::i16)
12723         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12724 
12725       // If the type of BSWAP operand is wider than stored memory width
12726       // it need to be shifted to the right side before STBRX.
12727       if (Op1VT.bitsGT(mVT)) {
12728         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12729         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12730                               DAG.getConstant(Shift, dl, MVT::i32));
12731         // Need to truncate if this is a bswap of i64 stored as i32/i16.
12732         if (Op1VT == MVT::i64)
12733           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12734       }
12735 
12736       SDValue Ops[] = {
12737         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12738       };
12739       return
12740         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12741                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12742                                 cast<StoreSDNode>(N)->getMemOperand());
12743     }
12744 
12745     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
12746     // So it can increase the chance of CSE constant construction.
12747     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12748         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
12749       // Need to sign-extended to 64-bits to handle negative values.
12750       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12751       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12752                                     MemVT.getSizeInBits());
12753       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12754 
12755       // DAG.getTruncStore() can't be used here because it doesn't accept
12756       // the general (base + offset) addressing mode.
12757       // So we use UpdateNodeOperands and setTruncatingStore instead.
12758       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12759                              N->getOperand(3));
12760       cast<StoreSDNode>(N)->setTruncatingStore(true);
12761       return SDValue(N, 0);
12762     }
12763 
12764     // For little endian, VSX stores require generating xxswapd/lxvd2x.
12765     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12766     if (Op1VT.isSimple()) {
12767       MVT StoreVT = Op1VT.getSimpleVT();
12768       if (Subtarget.needsSwapsForVSXMemOps() &&
12769           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12770            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12771         return expandVSXStoreForLE(N, DCI);
12772     }
12773     break;
12774   }
12775   case ISD::LOAD: {
12776     LoadSDNode *LD = cast<LoadSDNode>(N);
12777     EVT VT = LD->getValueType(0);
12778 
12779     // For little endian, VSX loads require generating lxvd2x/xxswapd.
12780     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12781     if (VT.isSimple()) {
12782       MVT LoadVT = VT.getSimpleVT();
12783       if (Subtarget.needsSwapsForVSXMemOps() &&
12784           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12785            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12786         return expandVSXLoadForLE(N, DCI);
12787     }
12788 
12789     // We sometimes end up with a 64-bit integer load, from which we extract
12790     // two single-precision floating-point numbers. This happens with
12791     // std::complex<float>, and other similar structures, because of the way we
12792     // canonicalize structure copies. However, if we lack direct moves,
12793     // then the final bitcasts from the extracted integer values to the
12794     // floating-point numbers turn into store/load pairs. Even with direct moves,
12795     // just loading the two floating-point numbers is likely better.
12796     auto ReplaceTwoFloatLoad = [&]() {
12797       if (VT != MVT::i64)
12798         return false;
12799 
12800       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12801           LD->isVolatile())
12802         return false;
12803 
12804       //  We're looking for a sequence like this:
12805       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12806       //      t16: i64 = srl t13, Constant:i32<32>
12807       //    t17: i32 = truncate t16
12808       //  t18: f32 = bitcast t17
12809       //    t19: i32 = truncate t13
12810       //  t20: f32 = bitcast t19
12811 
12812       if (!LD->hasNUsesOfValue(2, 0))
12813         return false;
12814 
12815       auto UI = LD->use_begin();
12816       while (UI.getUse().getResNo() != 0) ++UI;
12817       SDNode *Trunc = *UI++;
12818       while (UI.getUse().getResNo() != 0) ++UI;
12819       SDNode *RightShift = *UI;
12820       if (Trunc->getOpcode() != ISD::TRUNCATE)
12821         std::swap(Trunc, RightShift);
12822 
12823       if (Trunc->getOpcode() != ISD::TRUNCATE ||
12824           Trunc->getValueType(0) != MVT::i32 ||
12825           !Trunc->hasOneUse())
12826         return false;
12827       if (RightShift->getOpcode() != ISD::SRL ||
12828           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12829           RightShift->getConstantOperandVal(1) != 32 ||
12830           !RightShift->hasOneUse())
12831         return false;
12832 
12833       SDNode *Trunc2 = *RightShift->use_begin();
12834       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12835           Trunc2->getValueType(0) != MVT::i32 ||
12836           !Trunc2->hasOneUse())
12837         return false;
12838 
12839       SDNode *Bitcast = *Trunc->use_begin();
12840       SDNode *Bitcast2 = *Trunc2->use_begin();
12841 
12842       if (Bitcast->getOpcode() != ISD::BITCAST ||
12843           Bitcast->getValueType(0) != MVT::f32)
12844         return false;
12845       if (Bitcast2->getOpcode() != ISD::BITCAST ||
12846           Bitcast2->getValueType(0) != MVT::f32)
12847         return false;
12848 
12849       if (Subtarget.isLittleEndian())
12850         std::swap(Bitcast, Bitcast2);
12851 
12852       // Bitcast has the second float (in memory-layout order) and Bitcast2
12853       // has the first one.
12854 
12855       SDValue BasePtr = LD->getBasePtr();
12856       if (LD->isIndexed()) {
12857         assert(LD->getAddressingMode() == ISD::PRE_INC &&
12858                "Non-pre-inc AM on PPC?");
12859         BasePtr =
12860           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12861                       LD->getOffset());
12862       }
12863 
12864       auto MMOFlags =
12865           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12866       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12867                                       LD->getPointerInfo(), LD->getAlignment(),
12868                                       MMOFlags, LD->getAAInfo());
12869       SDValue AddPtr =
12870         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12871                     BasePtr, DAG.getIntPtrConstant(4, dl));
12872       SDValue FloatLoad2 = DAG.getLoad(
12873           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12874           LD->getPointerInfo().getWithOffset(4),
12875           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12876 
12877       if (LD->isIndexed()) {
12878         // Note that DAGCombine should re-form any pre-increment load(s) from
12879         // what is produced here if that makes sense.
12880         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12881       }
12882 
12883       DCI.CombineTo(Bitcast2, FloatLoad);
12884       DCI.CombineTo(Bitcast, FloatLoad2);
12885 
12886       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
12887                                     SDValue(FloatLoad2.getNode(), 1));
12888       return true;
12889     };
12890 
12891     if (ReplaceTwoFloatLoad())
12892       return SDValue(N, 0);
12893 
12894     EVT MemVT = LD->getMemoryVT();
12895     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
12896     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
12897     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
12898     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
12899     if (LD->isUnindexed() && VT.isVector() &&
12900         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
12901           // P8 and later hardware should just use LOAD.
12902           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
12903                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
12904          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
12905           LD->getAlignment() >= ScalarABIAlignment)) &&
12906         LD->getAlignment() < ABIAlignment) {
12907       // This is a type-legal unaligned Altivec or QPX load.
12908       SDValue Chain = LD->getChain();
12909       SDValue Ptr = LD->getBasePtr();
12910       bool isLittleEndian = Subtarget.isLittleEndian();
12911 
12912       // This implements the loading of unaligned vectors as described in
12913       // the venerable Apple Velocity Engine overview. Specifically:
12914       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
12915       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
12916       //
12917       // The general idea is to expand a sequence of one or more unaligned
12918       // loads into an alignment-based permutation-control instruction (lvsl
12919       // or lvsr), a series of regular vector loads (which always truncate
12920       // their input address to an aligned address), and a series of
12921       // permutations.  The results of these permutations are the requested
12922       // loaded values.  The trick is that the last "extra" load is not taken
12923       // from the address you might suspect (sizeof(vector) bytes after the
12924       // last requested load), but rather sizeof(vector) - 1 bytes after the
12925       // last requested vector. The point of this is to avoid a page fault if
12926       // the base address happened to be aligned. This works because if the
12927       // base address is aligned, then adding less than a full vector length
12928       // will cause the last vector in the sequence to be (re)loaded.
12929       // Otherwise, the next vector will be fetched as you might suspect was
12930       // necessary.
12931 
12932       // We might be able to reuse the permutation generation from
12933       // a different base address offset from this one by an aligned amount.
12934       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
12935       // optimization later.
12936       Intrinsic::ID Intr, IntrLD, IntrPerm;
12937       MVT PermCntlTy, PermTy, LDTy;
12938       if (Subtarget.hasAltivec()) {
12939         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
12940                                  Intrinsic::ppc_altivec_lvsl;
12941         IntrLD = Intrinsic::ppc_altivec_lvx;
12942         IntrPerm = Intrinsic::ppc_altivec_vperm;
12943         PermCntlTy = MVT::v16i8;
12944         PermTy = MVT::v4i32;
12945         LDTy = MVT::v4i32;
12946       } else {
12947         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
12948                                        Intrinsic::ppc_qpx_qvlpcls;
12949         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
12950                                        Intrinsic::ppc_qpx_qvlfs;
12951         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
12952         PermCntlTy = MVT::v4f64;
12953         PermTy = MVT::v4f64;
12954         LDTy = MemVT.getSimpleVT();
12955       }
12956 
12957       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
12958 
12959       // Create the new MMO for the new base load. It is like the original MMO,
12960       // but represents an area in memory almost twice the vector size centered
12961       // on the original address. If the address is unaligned, we might start
12962       // reading up to (sizeof(vector)-1) bytes below the address of the
12963       // original unaligned load.
12964       MachineFunction &MF = DAG.getMachineFunction();
12965       MachineMemOperand *BaseMMO =
12966         MF.getMachineMemOperand(LD->getMemOperand(),
12967                                 -(long)MemVT.getStoreSize()+1,
12968                                 2*MemVT.getStoreSize()-1);
12969 
12970       // Create the new base load.
12971       SDValue LDXIntID =
12972           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
12973       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
12974       SDValue BaseLoad =
12975         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12976                                 DAG.getVTList(PermTy, MVT::Other),
12977                                 BaseLoadOps, LDTy, BaseMMO);
12978 
12979       // Note that the value of IncOffset (which is provided to the next
12980       // load's pointer info offset value, and thus used to calculate the
12981       // alignment), and the value of IncValue (which is actually used to
12982       // increment the pointer value) are different! This is because we
12983       // require the next load to appear to be aligned, even though it
12984       // is actually offset from the base pointer by a lesser amount.
12985       int IncOffset = VT.getSizeInBits() / 8;
12986       int IncValue = IncOffset;
12987 
12988       // Walk (both up and down) the chain looking for another load at the real
12989       // (aligned) offset (the alignment of the other load does not matter in
12990       // this case). If found, then do not use the offset reduction trick, as
12991       // that will prevent the loads from being later combined (as they would
12992       // otherwise be duplicates).
12993       if (!findConsecutiveLoad(LD, DAG))
12994         --IncValue;
12995 
12996       SDValue Increment =
12997           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
12998       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12999 
13000       MachineMemOperand *ExtraMMO =
13001         MF.getMachineMemOperand(LD->getMemOperand(),
13002                                 1, 2*MemVT.getStoreSize()-1);
13003       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
13004       SDValue ExtraLoad =
13005         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
13006                                 DAG.getVTList(PermTy, MVT::Other),
13007                                 ExtraLoadOps, LDTy, ExtraMMO);
13008 
13009       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
13010         BaseLoad.getValue(1), ExtraLoad.getValue(1));
13011 
13012       // Because vperm has a big-endian bias, we must reverse the order
13013       // of the input vectors and complement the permute control vector
13014       // when generating little endian code.  We have already handled the
13015       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
13016       // and ExtraLoad here.
13017       SDValue Perm;
13018       if (isLittleEndian)
13019         Perm = BuildIntrinsicOp(IntrPerm,
13020                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
13021       else
13022         Perm = BuildIntrinsicOp(IntrPerm,
13023                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
13024 
13025       if (VT != PermTy)
13026         Perm = Subtarget.hasAltivec() ?
13027                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
13028                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
13029                                DAG.getTargetConstant(1, dl, MVT::i64));
13030                                // second argument is 1 because this rounding
13031                                // is always exact.
13032 
13033       // The output of the permutation is our loaded result, the TokenFactor is
13034       // our new chain.
13035       DCI.CombineTo(N, Perm, TF);
13036       return SDValue(N, 0);
13037     }
13038     }
13039     break;
13040     case ISD::INTRINSIC_WO_CHAIN: {
13041       bool isLittleEndian = Subtarget.isLittleEndian();
13042       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13043       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
13044                                            : Intrinsic::ppc_altivec_lvsl);
13045       if ((IID == Intr ||
13046            IID == Intrinsic::ppc_qpx_qvlpcld  ||
13047            IID == Intrinsic::ppc_qpx_qvlpcls) &&
13048         N->getOperand(1)->getOpcode() == ISD::ADD) {
13049         SDValue Add = N->getOperand(1);
13050 
13051         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
13052                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
13053 
13054         if (DAG.MaskedValueIsZero(Add->getOperand(1),
13055                                   APInt::getAllOnesValue(Bits /* alignment */)
13056                                       .zext(Add.getScalarValueSizeInBits()))) {
13057           SDNode *BasePtr = Add->getOperand(0).getNode();
13058           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13059                                     UE = BasePtr->use_end();
13060                UI != UE; ++UI) {
13061             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13062                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
13063               // We've found another LVSL/LVSR, and this address is an aligned
13064               // multiple of that one. The results will be the same, so use the
13065               // one we've just found instead.
13066 
13067               return SDValue(*UI, 0);
13068             }
13069           }
13070         }
13071 
13072         if (isa<ConstantSDNode>(Add->getOperand(1))) {
13073           SDNode *BasePtr = Add->getOperand(0).getNode();
13074           for (SDNode::use_iterator UI = BasePtr->use_begin(),
13075                UE = BasePtr->use_end(); UI != UE; ++UI) {
13076             if (UI->getOpcode() == ISD::ADD &&
13077                 isa<ConstantSDNode>(UI->getOperand(1)) &&
13078                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
13079                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
13080                 (1ULL << Bits) == 0) {
13081               SDNode *OtherAdd = *UI;
13082               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
13083                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
13084                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13085                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
13086                   return SDValue(*VI, 0);
13087                 }
13088               }
13089             }
13090           }
13091         }
13092       }
13093 
13094       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
13095       // Expose the vabsduw/h/b opportunity for down stream
13096       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
13097           (IID == Intrinsic::ppc_altivec_vmaxsw ||
13098            IID == Intrinsic::ppc_altivec_vmaxsh ||
13099            IID == Intrinsic::ppc_altivec_vmaxsb)) {
13100         SDValue V1 = N->getOperand(1);
13101         SDValue V2 = N->getOperand(2);
13102         if ((V1.getSimpleValueType() == MVT::v4i32 ||
13103              V1.getSimpleValueType() == MVT::v8i16 ||
13104              V1.getSimpleValueType() == MVT::v16i8) &&
13105             V1.getSimpleValueType() == V2.getSimpleValueType()) {
13106           // (0-a, a)
13107           if (V1.getOpcode() == ISD::SUB &&
13108               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
13109               V1.getOperand(1) == V2) {
13110             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
13111           }
13112           // (a, 0-a)
13113           if (V2.getOpcode() == ISD::SUB &&
13114               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
13115               V2.getOperand(1) == V1) {
13116             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13117           }
13118           // (x-y, y-x)
13119           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
13120               V1.getOperand(0) == V2.getOperand(1) &&
13121               V1.getOperand(1) == V2.getOperand(0)) {
13122             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
13123           }
13124         }
13125       }
13126     }
13127 
13128     break;
13129   case ISD::INTRINSIC_W_CHAIN:
13130     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13131     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13132     if (Subtarget.needsSwapsForVSXMemOps()) {
13133       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13134       default:
13135         break;
13136       case Intrinsic::ppc_vsx_lxvw4x:
13137       case Intrinsic::ppc_vsx_lxvd2x:
13138         return expandVSXLoadForLE(N, DCI);
13139       }
13140     }
13141     break;
13142   case ISD::INTRINSIC_VOID:
13143     // For little endian, VSX stores require generating xxswapd/stxvd2x.
13144     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13145     if (Subtarget.needsSwapsForVSXMemOps()) {
13146       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13147       default:
13148         break;
13149       case Intrinsic::ppc_vsx_stxvw4x:
13150       case Intrinsic::ppc_vsx_stxvd2x:
13151         return expandVSXStoreForLE(N, DCI);
13152       }
13153     }
13154     break;
13155   case ISD::BSWAP:
13156     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
13157     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
13158         N->getOperand(0).hasOneUse() &&
13159         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
13160          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
13161           N->getValueType(0) == MVT::i64))) {
13162       SDValue Load = N->getOperand(0);
13163       LoadSDNode *LD = cast<LoadSDNode>(Load);
13164       // Create the byte-swapping load.
13165       SDValue Ops[] = {
13166         LD->getChain(),    // Chain
13167         LD->getBasePtr(),  // Ptr
13168         DAG.getValueType(N->getValueType(0)) // VT
13169       };
13170       SDValue BSLoad =
13171         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
13172                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
13173                                               MVT::i64 : MVT::i32, MVT::Other),
13174                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
13175 
13176       // If this is an i16 load, insert the truncate.
13177       SDValue ResVal = BSLoad;
13178       if (N->getValueType(0) == MVT::i16)
13179         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
13180 
13181       // First, combine the bswap away.  This makes the value produced by the
13182       // load dead.
13183       DCI.CombineTo(N, ResVal);
13184 
13185       // Next, combine the load away, we give it a bogus result value but a real
13186       // chain result.  The result value is dead because the bswap is dead.
13187       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
13188 
13189       // Return N so it doesn't get rechecked!
13190       return SDValue(N, 0);
13191     }
13192     break;
13193   case PPCISD::VCMP:
13194     // If a VCMPo node already exists with exactly the same operands as this
13195     // node, use its result instead of this node (VCMPo computes both a CR6 and
13196     // a normal output).
13197     //
13198     if (!N->getOperand(0).hasOneUse() &&
13199         !N->getOperand(1).hasOneUse() &&
13200         !N->getOperand(2).hasOneUse()) {
13201 
13202       // Scan all of the users of the LHS, looking for VCMPo's that match.
13203       SDNode *VCMPoNode = nullptr;
13204 
13205       SDNode *LHSN = N->getOperand(0).getNode();
13206       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
13207            UI != E; ++UI)
13208         if (UI->getOpcode() == PPCISD::VCMPo &&
13209             UI->getOperand(1) == N->getOperand(1) &&
13210             UI->getOperand(2) == N->getOperand(2) &&
13211             UI->getOperand(0) == N->getOperand(0)) {
13212           VCMPoNode = *UI;
13213           break;
13214         }
13215 
13216       // If there is no VCMPo node, or if the flag value has a single use, don't
13217       // transform this.
13218       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
13219         break;
13220 
13221       // Look at the (necessarily single) use of the flag value.  If it has a
13222       // chain, this transformation is more complex.  Note that multiple things
13223       // could use the value result, which we should ignore.
13224       SDNode *FlagUser = nullptr;
13225       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
13226            FlagUser == nullptr; ++UI) {
13227         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
13228         SDNode *User = *UI;
13229         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
13230           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
13231             FlagUser = User;
13232             break;
13233           }
13234         }
13235       }
13236 
13237       // If the user is a MFOCRF instruction, we know this is safe.
13238       // Otherwise we give up for right now.
13239       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
13240         return SDValue(VCMPoNode, 0);
13241     }
13242     break;
13243   case ISD::BRCOND: {
13244     SDValue Cond = N->getOperand(1);
13245     SDValue Target = N->getOperand(2);
13246 
13247     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13248         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13249           Intrinsic::ppc_is_decremented_ctr_nonzero) {
13250 
13251       // We now need to make the intrinsic dead (it cannot be instruction
13252       // selected).
13253       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13254       assert(Cond.getNode()->hasOneUse() &&
13255              "Counter decrement has more than one use");
13256 
13257       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13258                          N->getOperand(0), Target);
13259     }
13260   }
13261   break;
13262   case ISD::BR_CC: {
13263     // If this is a branch on an altivec predicate comparison, lower this so
13264     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
13265     // lowering is done pre-legalize, because the legalizer lowers the predicate
13266     // compare down to code that is difficult to reassemble.
13267     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13268     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13269 
13270     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13271     // value. If so, pass-through the AND to get to the intrinsic.
13272     if (LHS.getOpcode() == ISD::AND &&
13273         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13274         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
13275           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13276         isa<ConstantSDNode>(LHS.getOperand(1)) &&
13277         !isNullConstant(LHS.getOperand(1)))
13278       LHS = LHS.getOperand(0);
13279 
13280     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13281         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
13282           Intrinsic::ppc_is_decremented_ctr_nonzero &&
13283         isa<ConstantSDNode>(RHS)) {
13284       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
13285              "Counter decrement comparison is not EQ or NE");
13286 
13287       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13288       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
13289                     (CC == ISD::SETNE && !Val);
13290 
13291       // We now need to make the intrinsic dead (it cannot be instruction
13292       // selected).
13293       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
13294       assert(LHS.getNode()->hasOneUse() &&
13295              "Counter decrement has more than one use");
13296 
13297       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
13298                          N->getOperand(0), N->getOperand(4));
13299     }
13300 
13301     int CompareOpc;
13302     bool isDot;
13303 
13304     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13305         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
13306         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
13307       assert(isDot && "Can't compare against a vector result!");
13308 
13309       // If this is a comparison against something other than 0/1, then we know
13310       // that the condition is never/always true.
13311       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13312       if (Val != 0 && Val != 1) {
13313         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
13314           return N->getOperand(0);
13315         // Always !=, turn it into an unconditional branch.
13316         return DAG.getNode(ISD::BR, dl, MVT::Other,
13317                            N->getOperand(0), N->getOperand(4));
13318       }
13319 
13320       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
13321 
13322       // Create the PPCISD altivec 'dot' comparison node.
13323       SDValue Ops[] = {
13324         LHS.getOperand(2),  // LHS of compare
13325         LHS.getOperand(3),  // RHS of compare
13326         DAG.getConstant(CompareOpc, dl, MVT::i32)
13327       };
13328       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
13329       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
13330 
13331       // Unpack the result based on how the target uses it.
13332       PPC::Predicate CompOpc;
13333       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
13334       default:  // Can't happen, don't crash on invalid number though.
13335       case 0:   // Branch on the value of the EQ bit of CR6.
13336         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
13337         break;
13338       case 1:   // Branch on the inverted value of the EQ bit of CR6.
13339         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
13340         break;
13341       case 2:   // Branch on the value of the LT bit of CR6.
13342         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
13343         break;
13344       case 3:   // Branch on the inverted value of the LT bit of CR6.
13345         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
13346         break;
13347       }
13348 
13349       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
13350                          DAG.getConstant(CompOpc, dl, MVT::i32),
13351                          DAG.getRegister(PPC::CR6, MVT::i32),
13352                          N->getOperand(4), CompNode.getValue(1));
13353     }
13354     break;
13355   }
13356   case ISD::BUILD_VECTOR:
13357     return DAGCombineBuildVector(N, DCI);
13358   case ISD::ABS:
13359     return combineABS(N, DCI);
13360   case ISD::VSELECT:
13361     return combineVSelect(N, DCI);
13362   }
13363 
13364   return SDValue();
13365 }
13366 
13367 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const13368 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
13369                                  SelectionDAG &DAG,
13370                                  SmallVectorImpl<SDNode *> &Created) const {
13371   // fold (sdiv X, pow2)
13372   EVT VT = N->getValueType(0);
13373   if (VT == MVT::i64 && !Subtarget.isPPC64())
13374     return SDValue();
13375   if ((VT != MVT::i32 && VT != MVT::i64) ||
13376       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
13377     return SDValue();
13378 
13379   SDLoc DL(N);
13380   SDValue N0 = N->getOperand(0);
13381 
13382   bool IsNegPow2 = (-Divisor).isPowerOf2();
13383   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
13384   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
13385 
13386   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
13387   Created.push_back(Op.getNode());
13388 
13389   if (IsNegPow2) {
13390     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
13391     Created.push_back(Op.getNode());
13392   }
13393 
13394   return Op;
13395 }
13396 
13397 //===----------------------------------------------------------------------===//
13398 // Inline Assembly Support
13399 //===----------------------------------------------------------------------===//
13400 
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const13401 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13402                                                       KnownBits &Known,
13403                                                       const APInt &DemandedElts,
13404                                                       const SelectionDAG &DAG,
13405                                                       unsigned Depth) const {
13406   Known.resetAll();
13407   switch (Op.getOpcode()) {
13408   default: break;
13409   case PPCISD::LBRX: {
13410     // lhbrx is known to have the top bits cleared out.
13411     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
13412       Known.Zero = 0xFFFF0000;
13413     break;
13414   }
13415   case ISD::INTRINSIC_WO_CHAIN: {
13416     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
13417     default: break;
13418     case Intrinsic::ppc_altivec_vcmpbfp_p:
13419     case Intrinsic::ppc_altivec_vcmpeqfp_p:
13420     case Intrinsic::ppc_altivec_vcmpequb_p:
13421     case Intrinsic::ppc_altivec_vcmpequh_p:
13422     case Intrinsic::ppc_altivec_vcmpequw_p:
13423     case Intrinsic::ppc_altivec_vcmpequd_p:
13424     case Intrinsic::ppc_altivec_vcmpgefp_p:
13425     case Intrinsic::ppc_altivec_vcmpgtfp_p:
13426     case Intrinsic::ppc_altivec_vcmpgtsb_p:
13427     case Intrinsic::ppc_altivec_vcmpgtsh_p:
13428     case Intrinsic::ppc_altivec_vcmpgtsw_p:
13429     case Intrinsic::ppc_altivec_vcmpgtsd_p:
13430     case Intrinsic::ppc_altivec_vcmpgtub_p:
13431     case Intrinsic::ppc_altivec_vcmpgtuh_p:
13432     case Intrinsic::ppc_altivec_vcmpgtuw_p:
13433     case Intrinsic::ppc_altivec_vcmpgtud_p:
13434       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
13435       break;
13436     }
13437   }
13438   }
13439 }
13440 
getPrefLoopAlignment(MachineLoop * ML) const13441 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13442   switch (Subtarget.getDarwinDirective()) {
13443   default: break;
13444   case PPC::DIR_970:
13445   case PPC::DIR_PWR4:
13446   case PPC::DIR_PWR5:
13447   case PPC::DIR_PWR5X:
13448   case PPC::DIR_PWR6:
13449   case PPC::DIR_PWR6X:
13450   case PPC::DIR_PWR7:
13451   case PPC::DIR_PWR8:
13452   case PPC::DIR_PWR9: {
13453     if (!ML)
13454       break;
13455 
13456     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13457 
13458     // For small loops (between 5 and 8 instructions), align to a 32-byte
13459     // boundary so that the entire loop fits in one instruction-cache line.
13460     uint64_t LoopSize = 0;
13461     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13462       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13463         LoopSize += TII->getInstSizeInBytes(*J);
13464         if (LoopSize > 32)
13465           break;
13466       }
13467 
13468     if (LoopSize > 16 && LoopSize <= 32)
13469       return 5;
13470 
13471     break;
13472   }
13473   }
13474 
13475   return TargetLowering::getPrefLoopAlignment(ML);
13476 }
13477 
13478 /// getConstraintType - Given a constraint, return the type of
13479 /// constraint it is for this target.
13480 PPCTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const13481 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13482   if (Constraint.size() == 1) {
13483     switch (Constraint[0]) {
13484     default: break;
13485     case 'b':
13486     case 'r':
13487     case 'f':
13488     case 'd':
13489     case 'v':
13490     case 'y':
13491       return C_RegisterClass;
13492     case 'Z':
13493       // FIXME: While Z does indicate a memory constraint, it specifically
13494       // indicates an r+r address (used in conjunction with the 'y' modifier
13495       // in the replacement string). Currently, we're forcing the base
13496       // register to be r0 in the asm printer (which is interpreted as zero)
13497       // and forming the complete address in the second register. This is
13498       // suboptimal.
13499       return C_Memory;
13500     }
13501   } else if (Constraint == "wc") { // individual CR bits.
13502     return C_RegisterClass;
13503   } else if (Constraint == "wa" || Constraint == "wd" ||
13504              Constraint == "wf" || Constraint == "ws" ||
13505              Constraint == "wi") {
13506     return C_RegisterClass; // VSX registers.
13507   }
13508   return TargetLowering::getConstraintType(Constraint);
13509 }
13510 
13511 /// Examine constraint type and operand type and determine a weight value.
13512 /// This object must already have been set up with the operand type
13513 /// and the current alternative constraint selected.
13514 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const13515 PPCTargetLowering::getSingleConstraintMatchWeight(
13516     AsmOperandInfo &info, const char *constraint) const {
13517   ConstraintWeight weight = CW_Invalid;
13518   Value *CallOperandVal = info.CallOperandVal;
13519     // If we don't have a value, we can't do a match,
13520     // but allow it at the lowest weight.
13521   if (!CallOperandVal)
13522     return CW_Default;
13523   Type *type = CallOperandVal->getType();
13524 
13525   // Look at the constraint type.
13526   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13527     return CW_Register; // an individual CR bit.
13528   else if ((StringRef(constraint) == "wa" ||
13529             StringRef(constraint) == "wd" ||
13530             StringRef(constraint) == "wf") &&
13531            type->isVectorTy())
13532     return CW_Register;
13533   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13534     return CW_Register;
13535   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
13536     return CW_Register; // just hold 64-bit integers data.
13537 
13538   switch (*constraint) {
13539   default:
13540     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13541     break;
13542   case 'b':
13543     if (type->isIntegerTy())
13544       weight = CW_Register;
13545     break;
13546   case 'f':
13547     if (type->isFloatTy())
13548       weight = CW_Register;
13549     break;
13550   case 'd':
13551     if (type->isDoubleTy())
13552       weight = CW_Register;
13553     break;
13554   case 'v':
13555     if (type->isVectorTy())
13556       weight = CW_Register;
13557     break;
13558   case 'y':
13559     weight = CW_Register;
13560     break;
13561   case 'Z':
13562     weight = CW_Memory;
13563     break;
13564   }
13565   return weight;
13566 }
13567 
13568 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const13569 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13570                                                 StringRef Constraint,
13571                                                 MVT VT) const {
13572   if (Constraint.size() == 1) {
13573     // GCC RS6000 Constraint Letters
13574     switch (Constraint[0]) {
13575     case 'b':   // R1-R31
13576       if (VT == MVT::i64 && Subtarget.isPPC64())
13577         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13578       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13579     case 'r':   // R0-R31
13580       if (VT == MVT::i64 && Subtarget.isPPC64())
13581         return std::make_pair(0U, &PPC::G8RCRegClass);
13582       return std::make_pair(0U, &PPC::GPRCRegClass);
13583     // 'd' and 'f' constraints are both defined to be "the floating point
13584     // registers", where one is for 32-bit and the other for 64-bit. We don't
13585     // really care overly much here so just give them all the same reg classes.
13586     case 'd':
13587     case 'f':
13588       if (Subtarget.hasSPE()) {
13589         if (VT == MVT::f32 || VT == MVT::i32)
13590           return std::make_pair(0U, &PPC::SPE4RCRegClass);
13591         if (VT == MVT::f64 || VT == MVT::i64)
13592           return std::make_pair(0U, &PPC::SPERCRegClass);
13593       } else {
13594         if (VT == MVT::f32 || VT == MVT::i32)
13595           return std::make_pair(0U, &PPC::F4RCRegClass);
13596         if (VT == MVT::f64 || VT == MVT::i64)
13597           return std::make_pair(0U, &PPC::F8RCRegClass);
13598         if (VT == MVT::v4f64 && Subtarget.hasQPX())
13599           return std::make_pair(0U, &PPC::QFRCRegClass);
13600         if (VT == MVT::v4f32 && Subtarget.hasQPX())
13601           return std::make_pair(0U, &PPC::QSRCRegClass);
13602       }
13603       break;
13604     case 'v':
13605       if (VT == MVT::v4f64 && Subtarget.hasQPX())
13606         return std::make_pair(0U, &PPC::QFRCRegClass);
13607       if (VT == MVT::v4f32 && Subtarget.hasQPX())
13608         return std::make_pair(0U, &PPC::QSRCRegClass);
13609       if (Subtarget.hasAltivec())
13610         return std::make_pair(0U, &PPC::VRRCRegClass);
13611       break;
13612     case 'y':   // crrc
13613       return std::make_pair(0U, &PPC::CRRCRegClass);
13614     }
13615   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13616     // An individual CR bit.
13617     return std::make_pair(0U, &PPC::CRBITRCRegClass);
13618   } else if ((Constraint == "wa" || Constraint == "wd" ||
13619              Constraint == "wf" || Constraint == "wi") &&
13620              Subtarget.hasVSX()) {
13621     return std::make_pair(0U, &PPC::VSRCRegClass);
13622   } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13623     if (VT == MVT::f32 && Subtarget.hasP8Vector())
13624       return std::make_pair(0U, &PPC::VSSRCRegClass);
13625     else
13626       return std::make_pair(0U, &PPC::VSFRCRegClass);
13627   }
13628 
13629   std::pair<unsigned, const TargetRegisterClass *> R =
13630       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13631 
13632   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13633   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13634   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13635   // register.
13636   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13637   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13638   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13639       PPC::GPRCRegClass.contains(R.first))
13640     return std::make_pair(TRI->getMatchingSuperReg(R.first,
13641                             PPC::sub_32, &PPC::G8RCRegClass),
13642                           &PPC::G8RCRegClass);
13643 
13644   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13645   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13646     R.first = PPC::CR0;
13647     R.second = &PPC::CRRCRegClass;
13648   }
13649 
13650   return R;
13651 }
13652 
13653 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13654 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const13655 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13656                                                      std::string &Constraint,
13657                                                      std::vector<SDValue>&Ops,
13658                                                      SelectionDAG &DAG) const {
13659   SDValue Result;
13660 
13661   // Only support length 1 constraints.
13662   if (Constraint.length() > 1) return;
13663 
13664   char Letter = Constraint[0];
13665   switch (Letter) {
13666   default: break;
13667   case 'I':
13668   case 'J':
13669   case 'K':
13670   case 'L':
13671   case 'M':
13672   case 'N':
13673   case 'O':
13674   case 'P': {
13675     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13676     if (!CST) return; // Must be an immediate to match.
13677     SDLoc dl(Op);
13678     int64_t Value = CST->getSExtValue();
13679     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13680                          // numbers are printed as such.
13681     switch (Letter) {
13682     default: llvm_unreachable("Unknown constraint letter!");
13683     case 'I':  // "I" is a signed 16-bit constant.
13684       if (isInt<16>(Value))
13685         Result = DAG.getTargetConstant(Value, dl, TCVT);
13686       break;
13687     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
13688       if (isShiftedUInt<16, 16>(Value))
13689         Result = DAG.getTargetConstant(Value, dl, TCVT);
13690       break;
13691     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
13692       if (isShiftedInt<16, 16>(Value))
13693         Result = DAG.getTargetConstant(Value, dl, TCVT);
13694       break;
13695     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
13696       if (isUInt<16>(Value))
13697         Result = DAG.getTargetConstant(Value, dl, TCVT);
13698       break;
13699     case 'M':  // "M" is a constant that is greater than 31.
13700       if (Value > 31)
13701         Result = DAG.getTargetConstant(Value, dl, TCVT);
13702       break;
13703     case 'N':  // "N" is a positive constant that is an exact power of two.
13704       if (Value > 0 && isPowerOf2_64(Value))
13705         Result = DAG.getTargetConstant(Value, dl, TCVT);
13706       break;
13707     case 'O':  // "O" is the constant zero.
13708       if (Value == 0)
13709         Result = DAG.getTargetConstant(Value, dl, TCVT);
13710       break;
13711     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
13712       if (isInt<16>(-Value))
13713         Result = DAG.getTargetConstant(Value, dl, TCVT);
13714       break;
13715     }
13716     break;
13717   }
13718   }
13719 
13720   if (Result.getNode()) {
13721     Ops.push_back(Result);
13722     return;
13723   }
13724 
13725   // Handle standard constraint letters.
13726   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13727 }
13728 
13729 // isLegalAddressingMode - Return true if the addressing mode represented
13730 // by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const13731 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13732                                               const AddrMode &AM, Type *Ty,
13733                                               unsigned AS, Instruction *I) const {
13734   // PPC does not allow r+i addressing modes for vectors!
13735   if (Ty->isVectorTy() && AM.BaseOffs != 0)
13736     return false;
13737 
13738   // PPC allows a sign-extended 16-bit immediate field.
13739   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13740     return false;
13741 
13742   // No global is ever allowed as a base.
13743   if (AM.BaseGV)
13744     return false;
13745 
13746   // PPC only support r+r,
13747   switch (AM.Scale) {
13748   case 0:  // "r+i" or just "i", depending on HasBaseReg.
13749     break;
13750   case 1:
13751     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
13752       return false;
13753     // Otherwise we have r+r or r+i.
13754     break;
13755   case 2:
13756     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
13757       return false;
13758     // Allow 2*r as r+r.
13759     break;
13760   default:
13761     // No other scales are supported.
13762     return false;
13763   }
13764 
13765   return true;
13766 }
13767 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const13768 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13769                                            SelectionDAG &DAG) const {
13770   MachineFunction &MF = DAG.getMachineFunction();
13771   MachineFrameInfo &MFI = MF.getFrameInfo();
13772   MFI.setReturnAddressIsTaken(true);
13773 
13774   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13775     return SDValue();
13776 
13777   SDLoc dl(Op);
13778   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13779 
13780   // Make sure the function does not optimize away the store of the RA to
13781   // the stack.
13782   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13783   FuncInfo->setLRStoreRequired();
13784   bool isPPC64 = Subtarget.isPPC64();
13785   auto PtrVT = getPointerTy(MF.getDataLayout());
13786 
13787   if (Depth > 0) {
13788     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13789     SDValue Offset =
13790         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13791                         isPPC64 ? MVT::i64 : MVT::i32);
13792     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13793                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13794                        MachinePointerInfo());
13795   }
13796 
13797   // Just load the return address off the stack.
13798   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13799   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13800                      MachinePointerInfo());
13801 }
13802 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const13803 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13804                                           SelectionDAG &DAG) const {
13805   SDLoc dl(Op);
13806   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13807 
13808   MachineFunction &MF = DAG.getMachineFunction();
13809   MachineFrameInfo &MFI = MF.getFrameInfo();
13810   MFI.setFrameAddressIsTaken(true);
13811 
13812   EVT PtrVT = getPointerTy(MF.getDataLayout());
13813   bool isPPC64 = PtrVT == MVT::i64;
13814 
13815   // Naked functions never have a frame pointer, and so we use r1. For all
13816   // other functions, this decision must be delayed until during PEI.
13817   unsigned FrameReg;
13818   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13819     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13820   else
13821     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13822 
13823   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13824                                          PtrVT);
13825   while (Depth--)
13826     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13827                             FrameAddr, MachinePointerInfo());
13828   return FrameAddr;
13829 }
13830 
13831 // FIXME? Maybe this could be a TableGen attribute on some registers and
13832 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const13833 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13834                                               SelectionDAG &DAG) const {
13835   bool isPPC64 = Subtarget.isPPC64();
13836   bool isDarwinABI = Subtarget.isDarwinABI();
13837 
13838   if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13839       (!isPPC64 && VT != MVT::i32))
13840     report_fatal_error("Invalid register global variable type");
13841 
13842   bool is64Bit = isPPC64 && VT == MVT::i64;
13843   unsigned Reg = StringSwitch<unsigned>(RegName)
13844                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13845                    .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13846                    .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13847                                   (is64Bit ? PPC::X13 : PPC::R13))
13848                    .Default(0);
13849 
13850   if (Reg)
13851     return Reg;
13852   report_fatal_error("Invalid register name global variable");
13853 }
13854 
isAccessedAsGotIndirect(SDValue GA) const13855 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
13856   // 32-bit SVR4 ABI access everything as got-indirect.
13857   if (Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
13858     return true;
13859 
13860   CodeModel::Model CModel = getTargetMachine().getCodeModel();
13861   // If it is small or large code model, module locals are accessed
13862   // indirectly by loading their address from .toc/.got. The difference
13863   // is that for large code model we have ADDISTocHa + LDtocL and for
13864   // small code model we simply have LDtoc.
13865   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
13866     return true;
13867 
13868   // JumpTable and BlockAddress are accessed as got-indirect.
13869   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
13870     return true;
13871 
13872   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
13873     const GlobalValue *GV = G->getGlobal();
13874     unsigned char GVFlags = Subtarget.classifyGlobalReference(GV);
13875     // The NLP flag indicates that a global access has to use an
13876     // extra indirection.
13877     if (GVFlags & PPCII::MO_NLP_FLAG)
13878       return true;
13879   }
13880 
13881   return false;
13882 }
13883 
13884 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const13885 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
13886   // The PowerPC target isn't yet aware of offsets.
13887   return false;
13888 }
13889 
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const13890 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
13891                                            const CallInst &I,
13892                                            MachineFunction &MF,
13893                                            unsigned Intrinsic) const {
13894   switch (Intrinsic) {
13895   case Intrinsic::ppc_qpx_qvlfd:
13896   case Intrinsic::ppc_qpx_qvlfs:
13897   case Intrinsic::ppc_qpx_qvlfcd:
13898   case Intrinsic::ppc_qpx_qvlfcs:
13899   case Intrinsic::ppc_qpx_qvlfiwa:
13900   case Intrinsic::ppc_qpx_qvlfiwz:
13901   case Intrinsic::ppc_altivec_lvx:
13902   case Intrinsic::ppc_altivec_lvxl:
13903   case Intrinsic::ppc_altivec_lvebx:
13904   case Intrinsic::ppc_altivec_lvehx:
13905   case Intrinsic::ppc_altivec_lvewx:
13906   case Intrinsic::ppc_vsx_lxvd2x:
13907   case Intrinsic::ppc_vsx_lxvw4x: {
13908     EVT VT;
13909     switch (Intrinsic) {
13910     case Intrinsic::ppc_altivec_lvebx:
13911       VT = MVT::i8;
13912       break;
13913     case Intrinsic::ppc_altivec_lvehx:
13914       VT = MVT::i16;
13915       break;
13916     case Intrinsic::ppc_altivec_lvewx:
13917       VT = MVT::i32;
13918       break;
13919     case Intrinsic::ppc_vsx_lxvd2x:
13920       VT = MVT::v2f64;
13921       break;
13922     case Intrinsic::ppc_qpx_qvlfd:
13923       VT = MVT::v4f64;
13924       break;
13925     case Intrinsic::ppc_qpx_qvlfs:
13926       VT = MVT::v4f32;
13927       break;
13928     case Intrinsic::ppc_qpx_qvlfcd:
13929       VT = MVT::v2f64;
13930       break;
13931     case Intrinsic::ppc_qpx_qvlfcs:
13932       VT = MVT::v2f32;
13933       break;
13934     default:
13935       VT = MVT::v4i32;
13936       break;
13937     }
13938 
13939     Info.opc = ISD::INTRINSIC_W_CHAIN;
13940     Info.memVT = VT;
13941     Info.ptrVal = I.getArgOperand(0);
13942     Info.offset = -VT.getStoreSize()+1;
13943     Info.size = 2*VT.getStoreSize()-1;
13944     Info.align = 1;
13945     Info.flags = MachineMemOperand::MOLoad;
13946     return true;
13947   }
13948   case Intrinsic::ppc_qpx_qvlfda:
13949   case Intrinsic::ppc_qpx_qvlfsa:
13950   case Intrinsic::ppc_qpx_qvlfcda:
13951   case Intrinsic::ppc_qpx_qvlfcsa:
13952   case Intrinsic::ppc_qpx_qvlfiwaa:
13953   case Intrinsic::ppc_qpx_qvlfiwza: {
13954     EVT VT;
13955     switch (Intrinsic) {
13956     case Intrinsic::ppc_qpx_qvlfda:
13957       VT = MVT::v4f64;
13958       break;
13959     case Intrinsic::ppc_qpx_qvlfsa:
13960       VT = MVT::v4f32;
13961       break;
13962     case Intrinsic::ppc_qpx_qvlfcda:
13963       VT = MVT::v2f64;
13964       break;
13965     case Intrinsic::ppc_qpx_qvlfcsa:
13966       VT = MVT::v2f32;
13967       break;
13968     default:
13969       VT = MVT::v4i32;
13970       break;
13971     }
13972 
13973     Info.opc = ISD::INTRINSIC_W_CHAIN;
13974     Info.memVT = VT;
13975     Info.ptrVal = I.getArgOperand(0);
13976     Info.offset = 0;
13977     Info.size = VT.getStoreSize();
13978     Info.align = 1;
13979     Info.flags = MachineMemOperand::MOLoad;
13980     return true;
13981   }
13982   case Intrinsic::ppc_qpx_qvstfd:
13983   case Intrinsic::ppc_qpx_qvstfs:
13984   case Intrinsic::ppc_qpx_qvstfcd:
13985   case Intrinsic::ppc_qpx_qvstfcs:
13986   case Intrinsic::ppc_qpx_qvstfiw:
13987   case Intrinsic::ppc_altivec_stvx:
13988   case Intrinsic::ppc_altivec_stvxl:
13989   case Intrinsic::ppc_altivec_stvebx:
13990   case Intrinsic::ppc_altivec_stvehx:
13991   case Intrinsic::ppc_altivec_stvewx:
13992   case Intrinsic::ppc_vsx_stxvd2x:
13993   case Intrinsic::ppc_vsx_stxvw4x: {
13994     EVT VT;
13995     switch (Intrinsic) {
13996     case Intrinsic::ppc_altivec_stvebx:
13997       VT = MVT::i8;
13998       break;
13999     case Intrinsic::ppc_altivec_stvehx:
14000       VT = MVT::i16;
14001       break;
14002     case Intrinsic::ppc_altivec_stvewx:
14003       VT = MVT::i32;
14004       break;
14005     case Intrinsic::ppc_vsx_stxvd2x:
14006       VT = MVT::v2f64;
14007       break;
14008     case Intrinsic::ppc_qpx_qvstfd:
14009       VT = MVT::v4f64;
14010       break;
14011     case Intrinsic::ppc_qpx_qvstfs:
14012       VT = MVT::v4f32;
14013       break;
14014     case Intrinsic::ppc_qpx_qvstfcd:
14015       VT = MVT::v2f64;
14016       break;
14017     case Intrinsic::ppc_qpx_qvstfcs:
14018       VT = MVT::v2f32;
14019       break;
14020     default:
14021       VT = MVT::v4i32;
14022       break;
14023     }
14024 
14025     Info.opc = ISD::INTRINSIC_VOID;
14026     Info.memVT = VT;
14027     Info.ptrVal = I.getArgOperand(1);
14028     Info.offset = -VT.getStoreSize()+1;
14029     Info.size = 2*VT.getStoreSize()-1;
14030     Info.align = 1;
14031     Info.flags = MachineMemOperand::MOStore;
14032     return true;
14033   }
14034   case Intrinsic::ppc_qpx_qvstfda:
14035   case Intrinsic::ppc_qpx_qvstfsa:
14036   case Intrinsic::ppc_qpx_qvstfcda:
14037   case Intrinsic::ppc_qpx_qvstfcsa:
14038   case Intrinsic::ppc_qpx_qvstfiwa: {
14039     EVT VT;
14040     switch (Intrinsic) {
14041     case Intrinsic::ppc_qpx_qvstfda:
14042       VT = MVT::v4f64;
14043       break;
14044     case Intrinsic::ppc_qpx_qvstfsa:
14045       VT = MVT::v4f32;
14046       break;
14047     case Intrinsic::ppc_qpx_qvstfcda:
14048       VT = MVT::v2f64;
14049       break;
14050     case Intrinsic::ppc_qpx_qvstfcsa:
14051       VT = MVT::v2f32;
14052       break;
14053     default:
14054       VT = MVT::v4i32;
14055       break;
14056     }
14057 
14058     Info.opc = ISD::INTRINSIC_VOID;
14059     Info.memVT = VT;
14060     Info.ptrVal = I.getArgOperand(1);
14061     Info.offset = 0;
14062     Info.size = VT.getStoreSize();
14063     Info.align = 1;
14064     Info.flags = MachineMemOperand::MOStore;
14065     return true;
14066   }
14067   default:
14068     break;
14069   }
14070 
14071   return false;
14072 }
14073 
14074 /// getOptimalMemOpType - Returns the target specific optimal type for load
14075 /// and store operations as a result of memset, memcpy, and memmove
14076 /// lowering. If DstAlign is zero that means it's safe to destination
14077 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
14078 /// means there isn't a need to check it against alignment requirement,
14079 /// probably because the source does not need to be loaded. If 'IsMemset' is
14080 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
14081 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
14082 /// source is constant so it does not need to be loaded.
14083 /// It returns EVT::Other if the type should be determined using generic
14084 /// target-independent logic.
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const14085 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
14086                                            unsigned DstAlign, unsigned SrcAlign,
14087                                            bool IsMemset, bool ZeroMemset,
14088                                            bool MemcpyStrSrc,
14089                                            MachineFunction &MF) const {
14090   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
14091     const Function &F = MF.getFunction();
14092     // When expanding a memset, require at least two QPX instructions to cover
14093     // the cost of loading the value to be stored from the constant pool.
14094     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
14095        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
14096         !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
14097       return MVT::v4f64;
14098     }
14099 
14100     // We should use Altivec/VSX loads and stores when available. For unaligned
14101     // addresses, unaligned VSX loads are only fast starting with the P8.
14102     if (Subtarget.hasAltivec() && Size >= 16 &&
14103         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
14104          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
14105       return MVT::v4i32;
14106   }
14107 
14108   if (Subtarget.isPPC64()) {
14109     return MVT::i64;
14110   }
14111 
14112   return MVT::i32;
14113 }
14114 
14115 /// Returns true if it is beneficial to convert a load of a constant
14116 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const14117 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14118                                                           Type *Ty) const {
14119   assert(Ty->isIntegerTy());
14120 
14121   unsigned BitSize = Ty->getPrimitiveSizeInBits();
14122   return !(BitSize == 0 || BitSize > 64);
14123 }
14124 
isTruncateFree(Type * Ty1,Type * Ty2) const14125 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
14126   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
14127     return false;
14128   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
14129   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
14130   return NumBits1 == 64 && NumBits2 == 32;
14131 }
14132 
isTruncateFree(EVT VT1,EVT VT2) const14133 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
14134   if (!VT1.isInteger() || !VT2.isInteger())
14135     return false;
14136   unsigned NumBits1 = VT1.getSizeInBits();
14137   unsigned NumBits2 = VT2.getSizeInBits();
14138   return NumBits1 == 64 && NumBits2 == 32;
14139 }
14140 
isZExtFree(SDValue Val,EVT VT2) const14141 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14142   // Generally speaking, zexts are not free, but they are free when they can be
14143   // folded with other operations.
14144   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
14145     EVT MemVT = LD->getMemoryVT();
14146     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
14147          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
14148         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
14149          LD->getExtensionType() == ISD::ZEXTLOAD))
14150       return true;
14151   }
14152 
14153   // FIXME: Add other cases...
14154   //  - 32-bit shifts with a zext to i64
14155   //  - zext after ctlz, bswap, etc.
14156   //  - zext after and by a constant mask
14157 
14158   return TargetLowering::isZExtFree(Val, VT2);
14159 }
14160 
isFPExtFree(EVT DestVT,EVT SrcVT) const14161 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
14162   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
14163          "invalid fpext types");
14164   // Extending to float128 is not free.
14165   if (DestVT == MVT::f128)
14166     return false;
14167   return true;
14168 }
14169 
isLegalICmpImmediate(int64_t Imm) const14170 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
14171   return isInt<16>(Imm) || isUInt<16>(Imm);
14172 }
14173 
isLegalAddImmediate(int64_t Imm) const14174 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
14175   return isInt<16>(Imm) || isUInt<16>(Imm);
14176 }
14177 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const14178 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
14179                                                        unsigned,
14180                                                        unsigned,
14181                                                        bool *Fast) const {
14182   if (DisablePPCUnaligned)
14183     return false;
14184 
14185   // PowerPC supports unaligned memory access for simple non-vector types.
14186   // Although accessing unaligned addresses is not as efficient as accessing
14187   // aligned addresses, it is generally more efficient than manual expansion,
14188   // and generally only traps for software emulation when crossing page
14189   // boundaries.
14190 
14191   if (!VT.isSimple())
14192     return false;
14193 
14194   if (VT.getSimpleVT().isVector()) {
14195     if (Subtarget.hasVSX()) {
14196       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
14197           VT != MVT::v4f32 && VT != MVT::v4i32)
14198         return false;
14199     } else {
14200       return false;
14201     }
14202   }
14203 
14204   if (VT == MVT::ppcf128)
14205     return false;
14206 
14207   if (Fast)
14208     *Fast = true;
14209 
14210   return true;
14211 }
14212 
isFMAFasterThanFMulAndFAdd(EVT VT) const14213 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
14214   VT = VT.getScalarType();
14215 
14216   if (!VT.isSimple())
14217     return false;
14218 
14219   switch (VT.getSimpleVT().SimpleTy) {
14220   case MVT::f32:
14221   case MVT::f64:
14222     return true;
14223   case MVT::f128:
14224     return (EnableQuadPrecision && Subtarget.hasP9Vector());
14225   default:
14226     break;
14227   }
14228 
14229   return false;
14230 }
14231 
14232 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const14233 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
14234   // LR is a callee-save register, but we must treat it as clobbered by any call
14235   // site. Hence we include LR in the scratch registers, which are in turn added
14236   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
14237   // to CTR, which is used by any indirect call.
14238   static const MCPhysReg ScratchRegs[] = {
14239     PPC::X12, PPC::LR8, PPC::CTR8, 0
14240   };
14241 
14242   return ScratchRegs;
14243 }
14244 
getExceptionPointerRegister(const Constant * PersonalityFn) const14245 unsigned PPCTargetLowering::getExceptionPointerRegister(
14246     const Constant *PersonalityFn) const {
14247   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
14248 }
14249 
getExceptionSelectorRegister(const Constant * PersonalityFn) const14250 unsigned PPCTargetLowering::getExceptionSelectorRegister(
14251     const Constant *PersonalityFn) const {
14252   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
14253 }
14254 
14255 bool
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const14256 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
14257                      EVT VT , unsigned DefinedValues) const {
14258   if (VT == MVT::v2i64)
14259     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
14260 
14261   if (Subtarget.hasVSX() || Subtarget.hasQPX())
14262     return true;
14263 
14264   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
14265 }
14266 
getSchedulingPreference(SDNode * N) const14267 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
14268   if (DisableILPPref || Subtarget.enableMachineScheduler())
14269     return TargetLowering::getSchedulingPreference(N);
14270 
14271   return Sched::ILP;
14272 }
14273 
14274 // Create a fast isel object.
14275 FastISel *
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo) const14276 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
14277                                   const TargetLibraryInfo *LibInfo) const {
14278   return PPC::createFastISel(FuncInfo, LibInfo);
14279 }
14280 
initializeSplitCSR(MachineBasicBlock * Entry) const14281 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
14282   if (Subtarget.isDarwinABI()) return;
14283   if (!Subtarget.isPPC64()) return;
14284 
14285   // Update IsSplitCSR in PPCFunctionInfo
14286   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
14287   PFI->setIsSplitCSR(true);
14288 }
14289 
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const14290 void PPCTargetLowering::insertCopiesSplitCSR(
14291   MachineBasicBlock *Entry,
14292   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14293   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
14294   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14295   if (!IStart)
14296     return;
14297 
14298   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
14299   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14300   MachineBasicBlock::iterator MBBI = Entry->begin();
14301   for (const MCPhysReg *I = IStart; *I; ++I) {
14302     const TargetRegisterClass *RC = nullptr;
14303     if (PPC::G8RCRegClass.contains(*I))
14304       RC = &PPC::G8RCRegClass;
14305     else if (PPC::F8RCRegClass.contains(*I))
14306       RC = &PPC::F8RCRegClass;
14307     else if (PPC::CRRCRegClass.contains(*I))
14308       RC = &PPC::CRRCRegClass;
14309     else if (PPC::VRRCRegClass.contains(*I))
14310       RC = &PPC::VRRCRegClass;
14311     else
14312       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14313 
14314     unsigned NewVR = MRI->createVirtualRegister(RC);
14315     // Create copy from CSR to a virtual register.
14316     // FIXME: this currently does not emit CFI pseudo-instructions, it works
14317     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14318     // nounwind. If we want to generalize this later, we may need to emit
14319     // CFI pseudo-instructions.
14320     assert(Entry->getParent()->getFunction().hasFnAttribute(
14321              Attribute::NoUnwind) &&
14322            "Function should be nounwind in insertCopiesSplitCSR!");
14323     Entry->addLiveIn(*I);
14324     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14325       .addReg(*I);
14326 
14327     // Insert the copy-back instructions right before the terminator
14328     for (auto *Exit : Exits)
14329       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14330               TII->get(TargetOpcode::COPY), *I)
14331         .addReg(NewVR);
14332   }
14333 }
14334 
14335 // Override to enable LOAD_STACK_GUARD lowering on Linux.
useLoadStackGuardNode() const14336 bool PPCTargetLowering::useLoadStackGuardNode() const {
14337   if (!Subtarget.isTargetLinux())
14338     return TargetLowering::useLoadStackGuardNode();
14339   return true;
14340 }
14341 
14342 // Override to disable global variable loading on Linux.
insertSSPDeclarations(Module & M) const14343 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
14344   if (!Subtarget.isTargetLinux())
14345     return TargetLowering::insertSSPDeclarations(M);
14346 }
14347 
isFPImmLegal(const APFloat & Imm,EVT VT) const14348 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
14349   if (!VT.isSimple() || !Subtarget.hasVSX())
14350     return false;
14351 
14352   switch(VT.getSimpleVT().SimpleTy) {
14353   default:
14354     // For FP types that are currently not supported by PPC backend, return
14355     // false. Examples: f16, f80.
14356     return false;
14357   case MVT::f32:
14358   case MVT::f64:
14359   case MVT::ppcf128:
14360     return Imm.isPosZero();
14361   }
14362 }
14363 
14364 // For vector shift operation op, fold
14365 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
stripModuloOnShift(const TargetLowering & TLI,SDNode * N,SelectionDAG & DAG)14366 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
14367                                   SelectionDAG &DAG) {
14368   SDValue N0 = N->getOperand(0);
14369   SDValue N1 = N->getOperand(1);
14370   EVT VT = N0.getValueType();
14371   unsigned OpSizeInBits = VT.getScalarSizeInBits();
14372   unsigned Opcode = N->getOpcode();
14373   unsigned TargetOpcode;
14374 
14375   switch (Opcode) {
14376   default:
14377     llvm_unreachable("Unexpected shift operation");
14378   case ISD::SHL:
14379     TargetOpcode = PPCISD::SHL;
14380     break;
14381   case ISD::SRL:
14382     TargetOpcode = PPCISD::SRL;
14383     break;
14384   case ISD::SRA:
14385     TargetOpcode = PPCISD::SRA;
14386     break;
14387   }
14388 
14389   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
14390       N1->getOpcode() == ISD::AND)
14391     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
14392       if (Mask->getZExtValue() == OpSizeInBits - 1)
14393         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
14394 
14395   return SDValue();
14396 }
14397 
combineSHL(SDNode * N,DAGCombinerInfo & DCI) const14398 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
14399   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14400     return Value;
14401 
14402   SDValue N0 = N->getOperand(0);
14403   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
14404   if (!Subtarget.isISA3_0() ||
14405       N0.getOpcode() != ISD::SIGN_EXTEND ||
14406       N0.getOperand(0).getValueType() != MVT::i32 ||
14407       CN1 == nullptr || N->getValueType(0) != MVT::i64)
14408     return SDValue();
14409 
14410   // We can't save an operation here if the value is already extended, and
14411   // the existing shift is easier to combine.
14412   SDValue ExtsSrc = N0.getOperand(0);
14413   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
14414       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
14415     return SDValue();
14416 
14417   SDLoc DL(N0);
14418   SDValue ShiftBy = SDValue(CN1, 0);
14419   // We want the shift amount to be i32 on the extswli, but the shift could
14420   // have an i64.
14421   if (ShiftBy.getValueType() == MVT::i64)
14422     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
14423 
14424   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
14425                          ShiftBy);
14426 }
14427 
combineSRA(SDNode * N,DAGCombinerInfo & DCI) const14428 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
14429   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14430     return Value;
14431 
14432   return SDValue();
14433 }
14434 
combineSRL(SDNode * N,DAGCombinerInfo & DCI) const14435 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
14436   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14437     return Value;
14438 
14439   return SDValue();
14440 }
14441 
14442 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
14443 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
14444 // When C is zero, the equation (addi Z, -C) can be simplified to Z
14445 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
combineADDToADDZE(SDNode * N,SelectionDAG & DAG,const PPCSubtarget & Subtarget)14446 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
14447                                  const PPCSubtarget &Subtarget) {
14448   if (!Subtarget.isPPC64())
14449     return SDValue();
14450 
14451   SDValue LHS = N->getOperand(0);
14452   SDValue RHS = N->getOperand(1);
14453 
14454   auto isZextOfCompareWithConstant = [](SDValue Op) {
14455     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
14456         Op.getValueType() != MVT::i64)
14457       return false;
14458 
14459     SDValue Cmp = Op.getOperand(0);
14460     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
14461         Cmp.getOperand(0).getValueType() != MVT::i64)
14462       return false;
14463 
14464     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
14465       int64_t NegConstant = 0 - Constant->getSExtValue();
14466       // Due to the limitations of the addi instruction,
14467       // -C is required to be [-32768, 32767].
14468       return isInt<16>(NegConstant);
14469     }
14470 
14471     return false;
14472   };
14473 
14474   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
14475   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
14476 
14477   // If there is a pattern, canonicalize a zext operand to the RHS.
14478   if (LHSHasPattern && !RHSHasPattern)
14479     std::swap(LHS, RHS);
14480   else if (!LHSHasPattern && !RHSHasPattern)
14481     return SDValue();
14482 
14483   SDLoc DL(N);
14484   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
14485   SDValue Cmp = RHS.getOperand(0);
14486   SDValue Z = Cmp.getOperand(0);
14487   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
14488 
14489   assert(Constant && "Constant Should not be a null pointer.");
14490   int64_t NegConstant = 0 - Constant->getSExtValue();
14491 
14492   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
14493   default: break;
14494   case ISD::SETNE: {
14495     //                                 when C == 0
14496     //                             --> addze X, (addic Z, -1).carry
14497     //                            /
14498     // add X, (zext(setne Z, C))--
14499     //                            \    when -32768 <= -C <= 32767 && C != 0
14500     //                             --> addze X, (addic (addi Z, -C), -1).carry
14501     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14502                               DAG.getConstant(NegConstant, DL, MVT::i64));
14503     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14504     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14505                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
14506     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14507                        SDValue(Addc.getNode(), 1));
14508     }
14509   case ISD::SETEQ: {
14510     //                                 when C == 0
14511     //                             --> addze X, (subfic Z, 0).carry
14512     //                            /
14513     // add X, (zext(sete  Z, C))--
14514     //                            \    when -32768 <= -C <= 32767 && C != 0
14515     //                             --> addze X, (subfic (addi Z, -C), 0).carry
14516     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
14517                               DAG.getConstant(NegConstant, DL, MVT::i64));
14518     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
14519     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
14520                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
14521     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
14522                        SDValue(Subc.getNode(), 1));
14523     }
14524   }
14525 
14526   return SDValue();
14527 }
14528 
combineADD(SDNode * N,DAGCombinerInfo & DCI) const14529 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
14530   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
14531     return Value;
14532 
14533   return SDValue();
14534 }
14535 
14536 // Detect TRUNCATE operations on bitcasts of float128 values.
14537 // What we are looking for here is the situtation where we extract a subset
14538 // of bits from a 128 bit float.
14539 // This can be of two forms:
14540 // 1) BITCAST of f128 feeding TRUNCATE
14541 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
14542 // The reason this is required is because we do not have a legal i128 type
14543 // and so we want to prevent having to store the f128 and then reload part
14544 // of it.
combineTRUNCATE(SDNode * N,DAGCombinerInfo & DCI) const14545 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
14546                                            DAGCombinerInfo &DCI) const {
14547   // If we are using CRBits then try that first.
14548   if (Subtarget.useCRBits()) {
14549     // Check if CRBits did anything and return that if it did.
14550     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
14551       return CRTruncValue;
14552   }
14553 
14554   SDLoc dl(N);
14555   SDValue Op0 = N->getOperand(0);
14556 
14557   // Looking for a truncate of i128 to i64.
14558   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
14559     return SDValue();
14560 
14561   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
14562 
14563   // SRL feeding TRUNCATE.
14564   if (Op0.getOpcode() == ISD::SRL) {
14565     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
14566     // The right shift has to be by 64 bits.
14567     if (!ConstNode || ConstNode->getZExtValue() != 64)
14568       return SDValue();
14569 
14570     // Switch the element number to extract.
14571     EltToExtract = EltToExtract ? 0 : 1;
14572     // Update Op0 past the SRL.
14573     Op0 = Op0.getOperand(0);
14574   }
14575 
14576   // BITCAST feeding a TRUNCATE possibly via SRL.
14577   if (Op0.getOpcode() == ISD::BITCAST &&
14578       Op0.getValueType() == MVT::i128 &&
14579       Op0.getOperand(0).getValueType() == MVT::f128) {
14580     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
14581     return DCI.DAG.getNode(
14582         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
14583         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
14584   }
14585   return SDValue();
14586 }
14587 
mayBeEmittedAsTailCall(const CallInst * CI) const14588 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
14589   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
14590   if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
14591     return false;
14592 
14593   // If not a tail call then no need to proceed.
14594   if (!CI->isTailCall())
14595     return false;
14596 
14597   // If tail calls are disabled for the caller then we are done.
14598   const Function *Caller = CI->getParent()->getParent();
14599   auto Attr = Caller->getFnAttribute("disable-tail-calls");
14600   if (Attr.getValueAsString() == "true")
14601     return false;
14602 
14603   // If sibling calls have been disabled and tail-calls aren't guaranteed
14604   // there is no reason to duplicate.
14605   auto &TM = getTargetMachine();
14606   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
14607     return false;
14608 
14609   // Can't tail call a function called indirectly, or if it has variadic args.
14610   const Function *Callee = CI->getCalledFunction();
14611   if (!Callee || Callee->isVarArg())
14612     return false;
14613 
14614   // Make sure the callee and caller calling conventions are eligible for tco.
14615   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
14616                                            CI->getCallingConv()))
14617       return false;
14618 
14619   // If the function is local then we have a good chance at tail-calling it
14620   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
14621 }
14622 
hasBitPreservingFPLogic(EVT VT) const14623 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
14624   if (!Subtarget.hasVSX())
14625     return false;
14626   if (Subtarget.hasP9Vector() && VT == MVT::f128)
14627     return true;
14628   return VT == MVT::f32 || VT == MVT::f64 ||
14629     VT == MVT::v4f32 || VT == MVT::v2f64;
14630 }
14631 
14632 bool PPCTargetLowering::
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI) const14633 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
14634   const Value *Mask = AndI.getOperand(1);
14635   // If the mask is suitable for andi. or andis. we should sink the and.
14636   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
14637     // Can't handle constants wider than 64-bits.
14638     if (CI->getBitWidth() > 64)
14639       return false;
14640     int64_t ConstVal = CI->getZExtValue();
14641     return isUInt<16>(ConstVal) ||
14642       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
14643   }
14644 
14645   // For non-constant masks, we can always use the record-form and.
14646   return true;
14647 }
14648 
14649 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
14650 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
14651 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
14652 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
14653 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
combineABS(SDNode * N,DAGCombinerInfo & DCI) const14654 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
14655   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
14656   assert(Subtarget.hasP9Altivec() &&
14657          "Only combine this when P9 altivec supported!");
14658   EVT VT = N->getValueType(0);
14659   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14660     return SDValue();
14661 
14662   SelectionDAG &DAG = DCI.DAG;
14663   SDLoc dl(N);
14664   if (N->getOperand(0).getOpcode() == ISD::SUB) {
14665     // Even for signed integers, if it's known to be positive (as signed
14666     // integer) due to zero-extended inputs.
14667     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
14668     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
14669     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
14670          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
14671         (SubOpcd1 == ISD::ZERO_EXTEND ||
14672          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
14673       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14674                          N->getOperand(0)->getOperand(0),
14675                          N->getOperand(0)->getOperand(1),
14676                          DAG.getTargetConstant(0, dl, MVT::i32));
14677     }
14678 
14679     // For type v4i32, it can be optimized with xvnegsp + vabsduw
14680     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
14681         N->getOperand(0).hasOneUse()) {
14682       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
14683                          N->getOperand(0)->getOperand(0),
14684                          N->getOperand(0)->getOperand(1),
14685                          DAG.getTargetConstant(1, dl, MVT::i32));
14686     }
14687   }
14688 
14689   return SDValue();
14690 }
14691 
14692 // For type v4i32/v8ii16/v16i8, transform
14693 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
14694 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
14695 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
14696 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
combineVSelect(SDNode * N,DAGCombinerInfo & DCI) const14697 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
14698                                           DAGCombinerInfo &DCI) const {
14699   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
14700   assert(Subtarget.hasP9Altivec() &&
14701          "Only combine this when P9 altivec supported!");
14702 
14703   SelectionDAG &DAG = DCI.DAG;
14704   SDLoc dl(N);
14705   SDValue Cond = N->getOperand(0);
14706   SDValue TrueOpnd = N->getOperand(1);
14707   SDValue FalseOpnd = N->getOperand(2);
14708   EVT VT = N->getOperand(1).getValueType();
14709 
14710   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
14711       FalseOpnd.getOpcode() != ISD::SUB)
14712     return SDValue();
14713 
14714   // ABSD only available for type v4i32/v8i16/v16i8
14715   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
14716     return SDValue();
14717 
14718   // At least to save one more dependent computation
14719   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
14720     return SDValue();
14721 
14722   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14723 
14724   // Can only handle unsigned comparison here
14725   switch (CC) {
14726   default:
14727     return SDValue();
14728   case ISD::SETUGT:
14729   case ISD::SETUGE:
14730     break;
14731   case ISD::SETULT:
14732   case ISD::SETULE:
14733     std::swap(TrueOpnd, FalseOpnd);
14734     break;
14735   }
14736 
14737   SDValue CmpOpnd1 = Cond.getOperand(0);
14738   SDValue CmpOpnd2 = Cond.getOperand(1);
14739 
14740   // SETCC CmpOpnd1 CmpOpnd2 cond
14741   // TrueOpnd = CmpOpnd1 - CmpOpnd2
14742   // FalseOpnd = CmpOpnd2 - CmpOpnd1
14743   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
14744       TrueOpnd.getOperand(1) == CmpOpnd2 &&
14745       FalseOpnd.getOperand(0) == CmpOpnd2 &&
14746       FalseOpnd.getOperand(1) == CmpOpnd1) {
14747     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
14748                        CmpOpnd1, CmpOpnd2,
14749                        DAG.getTargetConstant(0, dl, MVT::i32));
14750   }
14751 
14752   return SDValue();
14753 }
14754