xref: /openbsd/sys/uvm/uvm_km.c (revision 1aba0c0b)
1 /*	$OpenBSD: uvm_km.c,v 1.155 2024/11/01 20:26:18 mpi Exp $	*/
2 /*	$NetBSD: uvm_km.c,v 1.42 2001/01/14 02:10:01 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * Copyright (c) 1991, 1993, The Regents of the University of California.
7  *
8  * All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
38  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 
65 /*
66  * uvm_km.c: handle kernel memory allocation and management
67  */
68 
69 /*
70  * overview of kernel memory management:
71  *
72  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
73  * starts at a machine-dependent address and is VM_KERNEL_SPACE_SIZE bytes
74  * large.
75  *
76  * the kernel_map has several "submaps."   submaps can only appear in
77  * the kernel_map (user processes can't use them).   submaps "take over"
78  * the management of a sub-range of the kernel's address space.  submaps
79  * are typically allocated at boot time and are never released.   kernel
80  * virtual address space that is mapped by a submap is locked by the
81  * submap's lock -- not the kernel_map's lock.
82  *
83  * thus, the useful feature of submaps is that they allow us to break
84  * up the locking and protection of the kernel address space into smaller
85  * chunks.
86  *
87  * The VM system has several standard kernel submaps:
88  *   kmem_map: Contains only wired kernel memory for malloc(9).
89  *	       Note: All access to this map must be protected by splvm as
90  *	       calls to malloc(9) are allowed in interrupt handlers.
91  *   exec_map: Memory to hold arguments to system calls are allocated from
92  *	       this map.
93  *	       XXX: This is primeraly used to artificially limit the number
94  *	       of concurrent processes doing an exec.
95  *   phys_map: Buffers for vmapbuf (physio) are allocated from this map.
96  *
97  * the kernel allocates its private memory out of special uvm_objects whose
98  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
99  * are "special" and never die).   all kernel objects should be thought of
100  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
101  * object is equal to the size of kernel virtual address space (i.e.
102  * VM_KERNEL_SPACE_SIZE).
103  *
104  * most kernel private memory lives in kernel_object.   the only exception
105  * to this is for memory that belongs to submaps that must be protected
106  * by splvm(). each of these submaps manages their own pages.
107  *
108  * note that just because a kernel object spans the entire kernel virtual
109  * address space doesn't mean that it has to be mapped into the entire space.
110  * large chunks of a kernel object's space go unused either because
111  * that area of kernel VM is unmapped, or there is some other type of
112  * object mapped into that range (e.g. a vnode).    for submap's kernel
113  * objects, the only part of the object that can ever be populated is the
114  * offsets that are managed by the submap.
115  *
116  * note that the "offset" in a kernel object is always the kernel virtual
117  * address minus the vm_map_min(kernel_map).
118  * example:
119  *   suppose kernel_map starts at 0xf8000000 and the kernel does a
120  *   km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_waitok)) [allocate 1 wired
121  *   down page in the kernel map].    if km_alloc() returns virtual address
122  *   0xf8235000, then that means that the page at offset 0x235000 in
123  *   kernel_object is mapped at 0xf8235000.
124  *
125  * kernel objects have one other special property: when the kernel virtual
126  * memory mapping them is unmapped, the backing memory in the object is
127  * freed right away.   this is done with the uvm_km_pgremove() function.
128  * this has to be done because there is no backing store for kernel pages
129  * and no need to save them after they are no longer referenced.
130  */
131 
132 #include <sys/param.h>
133 #include <sys/systm.h>
134 #include <sys/proc.h>
135 #include <sys/kthread.h>
136 #include <uvm/uvm.h>
137 
138 /*
139  * global data structures
140  */
141 
142 struct vm_map *kernel_map = NULL;
143 
144 /* Unconstraint range. */
145 struct uvm_constraint_range	no_constraint = { 0x0, (paddr_t)-1 };
146 
147 /*
148  * local data structures
149  */
150 static struct vm_map		kernel_map_store;
151 
152 /*
153  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
154  * KVM already allocated for text, data, bss, and static data structures).
155  *
156  * => KVM is defined by [base.. base + VM_KERNEL_SPACE_SIZE].
157  *    we assume that [base -> start] has already been allocated and that
158  *    "end" is the end of the kernel image span.
159  */
160 void
uvm_km_init(vaddr_t base,vaddr_t start,vaddr_t end)161 uvm_km_init(vaddr_t base, vaddr_t start, vaddr_t end)
162 {
163 	/* kernel_object: for pageable anonymous kernel memory */
164 	uao_init();
165 	uvm.kernel_object = uao_create(VM_KERNEL_SPACE_SIZE, UAO_FLAG_KERNOBJ);
166 
167 	/*
168 	 * init the map and reserve already allocated kernel space
169 	 * before installing.
170 	 */
171 
172 	uvm_map_setup(&kernel_map_store, pmap_kernel(), base, end,
173 #ifdef KVA_GUARDPAGES
174 	    VM_MAP_PAGEABLE | VM_MAP_GUARDPAGES
175 #else
176 	    VM_MAP_PAGEABLE
177 #endif
178 	    );
179 	if (base != start && uvm_map(&kernel_map_store, &base, start - base,
180 	    NULL, UVM_UNKNOWN_OFFSET, 0,
181 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
182 	    MAP_INHERIT_NONE, MADV_RANDOM, UVM_FLAG_FIXED)) != 0)
183 		panic("uvm_km_init: could not reserve space for kernel");
184 
185 	kernel_map = &kernel_map_store;
186 
187 #ifndef __HAVE_PMAP_DIRECT
188 	/* allow km_alloc calls before uvm_km_thread starts */
189 	mtx_init(&uvm_km_pages.mtx, IPL_VM);
190 #endif
191 }
192 
193 /*
194  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
195  * is allocated all references to that area of VM must go through it.  this
196  * allows the locking of VAs in kernel_map to be broken up into regions.
197  *
198  * => if `fixed' is true, *min specifies where the region described
199  *      by the submap must start
200  * => if submap is non NULL we use that as the submap, otherwise we
201  *	alloc a new map
202  */
203 struct vm_map *
uvm_km_suballoc(struct vm_map * map,vaddr_t * min,vaddr_t * max,vsize_t size,int flags,boolean_t fixed,struct vm_map * submap)204 uvm_km_suballoc(struct vm_map *map, vaddr_t *min, vaddr_t *max, vsize_t size,
205     int flags, boolean_t fixed, struct vm_map *submap)
206 {
207 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
208 
209 	size = round_page(size);	/* round up to pagesize */
210 
211 	/* first allocate a blank spot in the parent map */
212 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
213 	    UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
214 	    MAP_INHERIT_NONE, MADV_RANDOM, mapflags)) != 0) {
215 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
216 	}
217 
218 	/* set VM bounds (min is filled in by uvm_map) */
219 	*max = *min + size;
220 
221 	/* add references to pmap and create or init the submap */
222 	pmap_reference(vm_map_pmap(map));
223 	if (submap == NULL) {
224 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
225 		if (submap == NULL)
226 			panic("uvm_km_suballoc: unable to create submap");
227 	} else {
228 		uvm_map_setup(submap, vm_map_pmap(map), *min, *max, flags);
229 	}
230 
231 	/*
232 	 * now let uvm_map_submap plug in it...
233 	 */
234 	if (uvm_map_submap(map, *min, *max, submap) != 0)
235 		panic("uvm_km_suballoc: submap allocation failed");
236 
237 	return(submap);
238 }
239 
240 /*
241  * uvm_km_pgremove: remove pages from a kernel uvm_object.
242  *
243  * => when you unmap a part of anonymous kernel memory you want to toss
244  *    the pages right away.    (this gets called from uvm_unmap_...).
245  */
246 void
uvm_km_pgremove(struct uvm_object * uobj,vaddr_t startva,vaddr_t endva)247 uvm_km_pgremove(struct uvm_object *uobj, vaddr_t startva, vaddr_t endva)
248 {
249 	const voff_t start = startva - vm_map_min(kernel_map);
250 	const voff_t end = endva - vm_map_min(kernel_map);
251 	struct vm_page *pp;
252 	voff_t curoff;
253 	int slot;
254 	int swpgonlydelta = 0;
255 
256 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
257 	KASSERT(rw_write_held(uobj->vmobjlock));
258 
259 	pmap_remove(pmap_kernel(), startva, endva);
260 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
261 		pp = uvm_pagelookup(uobj, curoff);
262 		if (pp && pp->pg_flags & PG_BUSY) {
263 			uvm_pagewait(pp, uobj->vmobjlock, "km_pgrm");
264 			rw_enter(uobj->vmobjlock, RW_WRITE);
265 			curoff -= PAGE_SIZE; /* loop back to us */
266 			continue;
267 		}
268 
269 		/* free the swap slot, then the page */
270 		slot = uao_dropswap(uobj, curoff >> PAGE_SHIFT);
271 
272 		if (pp != NULL) {
273 			uvm_lock_pageq();
274 			uvm_pagefree(pp);
275 			uvm_unlock_pageq();
276 		} else if (slot != 0) {
277 			swpgonlydelta++;
278 		}
279 	}
280 
281 	if (swpgonlydelta > 0) {
282 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
283 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
284 	}
285 }
286 
287 
288 /*
289  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
290  *    objects
291  *
292  * => when you unmap a part of anonymous kernel memory you want to toss
293  *    the pages right away.    (this gets called from uvm_unmap_...).
294  * => none of the pages will ever be busy, and none of them will ever
295  *    be on the active or inactive queues (because these objects are
296  *    never allowed to "page").
297  */
298 void
uvm_km_pgremove_intrsafe(vaddr_t start,vaddr_t end)299 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
300 {
301 	struct vm_page *pg;
302 	vaddr_t va;
303 	paddr_t pa;
304 
305 	for (va = start; va < end; va += PAGE_SIZE) {
306 		if (!pmap_extract(pmap_kernel(), va, &pa))
307 			continue;
308 		pg = PHYS_TO_VM_PAGE(pa);
309 		if (pg == NULL)
310 			panic("uvm_km_pgremove_intrsafe: no page");
311 		uvm_pagefree(pg);
312 	}
313 	pmap_kremove(start, end - start);
314 }
315 
316 /*
317  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
318  *
319  * => we map wired memory into the specified map using the obj passed in
320  * => NOTE: we can return NULL even if we can wait if there is not enough
321  *	free VM space in the map... caller should be prepared to handle
322  *	this case.
323  * => we return KVA of memory allocated
324  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
325  *	lock the map
326  * => low, high, alignment, boundary, nsegs are the corresponding parameters
327  *	to uvm_pglistalloc
328  * => flags: ZERO - correspond to uvm_pglistalloc flags
329  */
330 vaddr_t
uvm_km_kmemalloc_pla(struct vm_map * map,struct uvm_object * obj,vsize_t size,vsize_t valign,int flags,paddr_t low,paddr_t high,paddr_t alignment,paddr_t boundary,int nsegs)331 uvm_km_kmemalloc_pla(struct vm_map *map, struct uvm_object *obj, vsize_t size,
332     vsize_t valign, int flags, paddr_t low, paddr_t high, paddr_t alignment,
333     paddr_t boundary, int nsegs)
334 {
335 	vaddr_t kva, loopva;
336 	voff_t offset;
337 	struct vm_page *pg;
338 	struct pglist pgl;
339 	int pla_flags;
340 
341 	KASSERT(vm_map_pmap(map) == pmap_kernel());
342 	/* UVM_KMF_VALLOC => !UVM_KMF_ZERO */
343 	KASSERT(!(flags & UVM_KMF_VALLOC) ||
344 	    !(flags & UVM_KMF_ZERO));
345 
346 	/* setup for call */
347 	size = round_page(size);
348 	kva = vm_map_min(map);	/* hint */
349 	if (nsegs == 0)
350 		nsegs = atop(size);
351 
352 	/* allocate some virtual space */
353 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
354 	    valign, UVM_MAPFLAG(PROT_READ | PROT_WRITE, PROT_READ | PROT_WRITE,
355 	    MAP_INHERIT_NONE, MADV_RANDOM, (flags & UVM_KMF_TRYLOCK))) != 0)) {
356 		return 0;
357 	}
358 
359 	/* if all we wanted was VA, return now */
360 	if (flags & UVM_KMF_VALLOC) {
361 		return kva;
362 	}
363 
364 	/* recover object offset from virtual address */
365 	if (obj != NULL)
366 		offset = kva - vm_map_min(kernel_map);
367 	else
368 		offset = 0;
369 
370 	/*
371 	 * now allocate and map in the memory... note that we are the only ones
372 	 * whom should ever get a handle on this area of VM.
373 	 */
374 	TAILQ_INIT(&pgl);
375 	pla_flags = 0;
376 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
377 	if ((flags & UVM_KMF_NOWAIT) ||
378 	    ((flags & UVM_KMF_CANFAIL) &&
379 	    uvmexp.swpages - uvmexp.swpgonly <= atop(size)))
380 		pla_flags |= UVM_PLA_NOWAIT;
381 	else
382 		pla_flags |= UVM_PLA_WAITOK;
383 	if (flags & UVM_KMF_ZERO)
384 		pla_flags |= UVM_PLA_ZERO;
385 	if (uvm_pglistalloc(size, low, high, alignment, boundary, &pgl, nsegs,
386 	    pla_flags) != 0) {
387 		/* Failed. */
388 		uvm_unmap(map, kva, kva + size);
389 		return (0);
390 	}
391 
392 	if (obj != NULL)
393 		rw_enter(obj->vmobjlock, RW_WRITE);
394 
395 	loopva = kva;
396 	while (loopva != kva + size) {
397 		pg = TAILQ_FIRST(&pgl);
398 		TAILQ_REMOVE(&pgl, pg, pageq);
399 		uvm_pagealloc_pg(pg, obj, offset, NULL);
400 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
401 		UVM_PAGE_OWN(pg, NULL);
402 
403 		/*
404 		 * map it in: note that we call pmap_enter with the map and
405 		 * object unlocked in case we are kmem_map.
406 		 */
407 		if (obj == NULL) {
408 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
409 			    PROT_READ | PROT_WRITE);
410 		} else {
411 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
412 			    PROT_READ | PROT_WRITE,
413 			    PROT_READ | PROT_WRITE | PMAP_WIRED);
414 		}
415 		loopva += PAGE_SIZE;
416 		offset += PAGE_SIZE;
417 	}
418 	KASSERT(TAILQ_EMPTY(&pgl));
419 	pmap_update(pmap_kernel());
420 
421 	if (obj != NULL)
422 		rw_exit(obj->vmobjlock);
423 
424 	return kva;
425 }
426 
427 /*
428  * uvm_km_free: free an area of kernel memory
429  */
430 void
uvm_km_free(struct vm_map * map,vaddr_t addr,vsize_t size)431 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size)
432 {
433 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
434 }
435 
436 #if defined(__HAVE_PMAP_DIRECT)
437 /*
438  * uvm_km_page allocator, __HAVE_PMAP_DIRECT arch
439  * On architectures with machine memory direct mapped into a portion
440  * of KVM, we have very little work to do.  Just get a physical page,
441  * and find and return its VA.
442  */
443 void
uvm_km_page_init(void)444 uvm_km_page_init(void)
445 {
446 	/* nothing */
447 }
448 
449 void
uvm_km_page_lateinit(void)450 uvm_km_page_lateinit(void)
451 {
452 	/* nothing */
453 }
454 
455 #else
456 /*
457  * uvm_km_page allocator, non __HAVE_PMAP_DIRECT archs
458  * This is a special allocator that uses a reserve of free pages
459  * to fulfill requests.  It is fast and interrupt safe, but can only
460  * return page sized regions.  Its primary use is as a backend for pool.
461  *
462  * The memory returned is allocated from the larger kernel_map, sparing
463  * pressure on the small interrupt-safe kmem_map.  It is wired, but
464  * not zero filled.
465  */
466 
467 struct uvm_km_pages uvm_km_pages;
468 
469 void uvm_km_createthread(void *);
470 void uvm_km_thread(void *);
471 struct uvm_km_free_page *uvm_km_doputpage(struct uvm_km_free_page *);
472 
473 /*
474  * Allocate the initial reserve, and create the thread which will
475  * keep the reserve full.  For bootstrapping, we allocate more than
476  * the lowat amount, because it may be a while before the thread is
477  * running.
478  */
479 void
uvm_km_page_init(void)480 uvm_km_page_init(void)
481 {
482 	int	lowat_min;
483 	int	i;
484 	int	len, bulk;
485 	vaddr_t	addr;
486 
487 	if (!uvm_km_pages.lowat) {
488 		/* based on physmem, calculate a good value here */
489 		uvm_km_pages.lowat = physmem / 256;
490 		lowat_min = physmem < atop(16 * 1024 * 1024) ? 32 : 128;
491 		if (uvm_km_pages.lowat < lowat_min)
492 			uvm_km_pages.lowat = lowat_min;
493 	}
494 	if (uvm_km_pages.lowat > UVM_KM_PAGES_LOWAT_MAX)
495 		uvm_km_pages.lowat = UVM_KM_PAGES_LOWAT_MAX;
496 	uvm_km_pages.hiwat = 4 * uvm_km_pages.lowat;
497 	if (uvm_km_pages.hiwat > UVM_KM_PAGES_HIWAT_MAX)
498 		uvm_km_pages.hiwat = UVM_KM_PAGES_HIWAT_MAX;
499 
500 	/* Allocate all pages in as few allocations as possible. */
501 	len = 0;
502 	bulk = uvm_km_pages.hiwat;
503 	while (len < uvm_km_pages.hiwat && bulk > 0) {
504 		bulk = MIN(bulk, uvm_km_pages.hiwat - len);
505 		addr = vm_map_min(kernel_map);
506 		if (uvm_map(kernel_map, &addr, (vsize_t)bulk << PAGE_SHIFT,
507 		    NULL, UVM_UNKNOWN_OFFSET, 0,
508 		    UVM_MAPFLAG(PROT_READ | PROT_WRITE,
509 		    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
510 		    MADV_RANDOM, UVM_KMF_TRYLOCK)) != 0) {
511 			bulk /= 2;
512 			continue;
513 		}
514 
515 		for (i = len; i < len + bulk; i++, addr += PAGE_SIZE)
516 			uvm_km_pages.page[i] = addr;
517 		len += bulk;
518 	}
519 
520 	uvm_km_pages.free = len;
521 	for (i = len; i < UVM_KM_PAGES_HIWAT_MAX; i++)
522 		uvm_km_pages.page[i] = 0;
523 
524 	/* tone down if really high */
525 	if (uvm_km_pages.lowat > 512)
526 		uvm_km_pages.lowat = 512;
527 }
528 
529 void
uvm_km_page_lateinit(void)530 uvm_km_page_lateinit(void)
531 {
532 	kthread_create_deferred(uvm_km_createthread, NULL);
533 }
534 
535 void
uvm_km_createthread(void * arg)536 uvm_km_createthread(void *arg)
537 {
538 	kthread_create(uvm_km_thread, NULL, &uvm_km_pages.km_proc, "kmthread");
539 }
540 
541 /*
542  * Endless loop.  We grab pages in increments of 16 pages, then
543  * quickly swap them into the list.
544  */
545 void
uvm_km_thread(void * arg)546 uvm_km_thread(void *arg)
547 {
548 	vaddr_t pg[16];
549 	int i;
550 	int allocmore = 0;
551 	int flags;
552 	struct uvm_km_free_page *fp = NULL;
553 
554 	KERNEL_UNLOCK();
555 
556 	for (;;) {
557 		mtx_enter(&uvm_km_pages.mtx);
558 		if (uvm_km_pages.free >= uvm_km_pages.lowat &&
559 		    uvm_km_pages.freelist == NULL) {
560 			msleep_nsec(&uvm_km_pages.km_proc, &uvm_km_pages.mtx,
561 			    PVM, "kmalloc", INFSLP);
562 		}
563 		allocmore = uvm_km_pages.free < uvm_km_pages.lowat;
564 		fp = uvm_km_pages.freelist;
565 		uvm_km_pages.freelist = NULL;
566 		uvm_km_pages.freelistlen = 0;
567 		mtx_leave(&uvm_km_pages.mtx);
568 
569 		if (allocmore) {
570 			/*
571 			 * If there was nothing on the freelist, then we
572 			 * must obtain at least one page to make progress.
573 			 * So, only use UVM_KMF_TRYLOCK for the first page
574 			 * if fp != NULL
575 			 */
576 			flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
577 			    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
578 			    MADV_RANDOM, fp != NULL ? UVM_KMF_TRYLOCK : 0);
579 			memset(pg, 0, sizeof(pg));
580 			for (i = 0; i < nitems(pg); i++) {
581 				pg[i] = vm_map_min(kernel_map);
582 				if (uvm_map(kernel_map, &pg[i], PAGE_SIZE,
583 				    NULL, UVM_UNKNOWN_OFFSET, 0, flags) != 0) {
584 					pg[i] = 0;
585 					break;
586 				}
587 
588 				/* made progress, so don't sleep for more */
589 				flags = UVM_MAPFLAG(PROT_READ | PROT_WRITE,
590 				    PROT_READ | PROT_WRITE, MAP_INHERIT_NONE,
591 				    MADV_RANDOM, UVM_KMF_TRYLOCK);
592 			}
593 
594 			mtx_enter(&uvm_km_pages.mtx);
595 			for (i = 0; i < nitems(pg); i++) {
596 				if (uvm_km_pages.free ==
597 				    nitems(uvm_km_pages.page))
598 					break;
599 				else if (pg[i] != 0)
600 					uvm_km_pages.page[uvm_km_pages.free++]
601 					    = pg[i];
602 			}
603 			wakeup(&uvm_km_pages.free);
604 			mtx_leave(&uvm_km_pages.mtx);
605 
606 			/* Cleanup left-over pages (if any). */
607 			for (; i < nitems(pg); i++) {
608 				if (pg[i] != 0) {
609 					uvm_unmap(kernel_map,
610 					    pg[i], pg[i] + PAGE_SIZE);
611 				}
612 			}
613 		}
614 		while (fp) {
615 			fp = uvm_km_doputpage(fp);
616 		}
617 	}
618 }
619 
620 struct uvm_km_free_page *
uvm_km_doputpage(struct uvm_km_free_page * fp)621 uvm_km_doputpage(struct uvm_km_free_page *fp)
622 {
623 	vaddr_t va = (vaddr_t)fp;
624 	struct vm_page *pg;
625 	int	freeva = 1;
626 	struct uvm_km_free_page *nextfp = fp->next;
627 
628 	pg = uvm_atopg(va);
629 
630 	pmap_kremove(va, PAGE_SIZE);
631 	pmap_update(kernel_map->pmap);
632 
633 	mtx_enter(&uvm_km_pages.mtx);
634 	if (uvm_km_pages.free < uvm_km_pages.hiwat) {
635 		uvm_km_pages.page[uvm_km_pages.free++] = va;
636 		freeva = 0;
637 	}
638 	mtx_leave(&uvm_km_pages.mtx);
639 
640 	if (freeva)
641 		uvm_unmap(kernel_map, va, va + PAGE_SIZE);
642 
643 	uvm_pagefree(pg);
644 	return (nextfp);
645 }
646 #endif	/* !__HAVE_PMAP_DIRECT */
647 
648 void *
km_alloc(size_t sz,const struct kmem_va_mode * kv,const struct kmem_pa_mode * kp,const struct kmem_dyn_mode * kd)649 km_alloc(size_t sz, const struct kmem_va_mode *kv,
650     const struct kmem_pa_mode *kp, const struct kmem_dyn_mode *kd)
651 {
652 	struct vm_map *map;
653 	struct vm_page *pg;
654 	struct pglist pgl;
655 	int mapflags = 0;
656 	vm_prot_t prot;
657 	paddr_t pla_align;
658 	int pla_flags;
659 	int pla_maxseg;
660 	vaddr_t va, sva = 0;
661 
662 	KASSERT(sz == round_page(sz));
663 
664 	TAILQ_INIT(&pgl);
665 
666 	if (kp->kp_nomem || kp->kp_pageable)
667 		goto alloc_va;
668 
669 	pla_flags = kd->kd_waitok ? UVM_PLA_WAITOK : UVM_PLA_NOWAIT;
670 	pla_flags |= UVM_PLA_TRYCONTIG;
671 	if (kp->kp_zero)
672 		pla_flags |= UVM_PLA_ZERO;
673 
674 	pla_align = kp->kp_align;
675 #ifdef __HAVE_PMAP_DIRECT
676 	if (pla_align < kv->kv_align)
677 		pla_align = kv->kv_align;
678 #endif
679 	pla_maxseg = kp->kp_maxseg;
680 	if (pla_maxseg == 0)
681 		pla_maxseg = sz / PAGE_SIZE;
682 
683 	if (uvm_pglistalloc(sz, kp->kp_constraint->ucr_low,
684 	    kp->kp_constraint->ucr_high, pla_align, kp->kp_boundary,
685 	    &pgl, pla_maxseg, pla_flags)) {
686 		return (NULL);
687 	}
688 
689 #ifdef __HAVE_PMAP_DIRECT
690 	/*
691 	 * Only use direct mappings for single page or single segment
692 	 * allocations.
693 	 */
694 	if (kv->kv_singlepage || kp->kp_maxseg == 1) {
695 		TAILQ_FOREACH(pg, &pgl, pageq) {
696 			va = pmap_map_direct(pg);
697 			if (pg == TAILQ_FIRST(&pgl))
698 				sva = va;
699 		}
700 		return ((void *)sva);
701 	}
702 #endif
703 alloc_va:
704 	prot = PROT_READ | PROT_WRITE;
705 
706 	if (kp->kp_pageable) {
707 		KASSERT(kp->kp_object);
708 		KASSERT(!kv->kv_singlepage);
709 	} else {
710 		KASSERT(kp->kp_object == NULL);
711 	}
712 
713 	if (kv->kv_singlepage) {
714 		KASSERT(sz == PAGE_SIZE);
715 #ifdef __HAVE_PMAP_DIRECT
716 		panic("km_alloc: DIRECT single page");
717 #else
718 		mtx_enter(&uvm_km_pages.mtx);
719 		while (uvm_km_pages.free == 0) {
720 			if (kd->kd_waitok == 0) {
721 				mtx_leave(&uvm_km_pages.mtx);
722 				uvm_pglistfree(&pgl);
723 				return NULL;
724 			}
725 			msleep_nsec(&uvm_km_pages.free, &uvm_km_pages.mtx,
726 			    PVM, "getpage", INFSLP);
727 		}
728 		va = uvm_km_pages.page[--uvm_km_pages.free];
729 		if (uvm_km_pages.free < uvm_km_pages.lowat &&
730 		    curproc != uvm_km_pages.km_proc) {
731 			if (kd->kd_slowdown)
732 				*kd->kd_slowdown = 1;
733 			wakeup(&uvm_km_pages.km_proc);
734 		}
735 		mtx_leave(&uvm_km_pages.mtx);
736 #endif
737 	} else {
738 		struct uvm_object *uobj = NULL;
739 
740 		if (kd->kd_trylock)
741 			mapflags |= UVM_KMF_TRYLOCK;
742 
743 		if (kp->kp_object)
744 			uobj = *kp->kp_object;
745 try_map:
746 		map = *kv->kv_map;
747 		va = vm_map_min(map);
748 		if (uvm_map(map, &va, sz, uobj, kd->kd_prefer,
749 		    kv->kv_align, UVM_MAPFLAG(prot, prot, MAP_INHERIT_NONE,
750 		    MADV_RANDOM, mapflags))) {
751 			if (kv->kv_wait && kd->kd_waitok) {
752 				tsleep_nsec(map, PVM, "km_allocva", INFSLP);
753 				goto try_map;
754 			}
755 			uvm_pglistfree(&pgl);
756 			return (NULL);
757 		}
758 	}
759 	sva = va;
760 	TAILQ_FOREACH(pg, &pgl, pageq) {
761 		if (kp->kp_pageable)
762 			pmap_enter(pmap_kernel(), va, VM_PAGE_TO_PHYS(pg),
763 			    prot, prot | PMAP_WIRED);
764 		else
765 			pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), prot);
766 		va += PAGE_SIZE;
767 	}
768 	pmap_update(pmap_kernel());
769 	return ((void *)sva);
770 }
771 
772 void
km_free(void * v,size_t sz,const struct kmem_va_mode * kv,const struct kmem_pa_mode * kp)773 km_free(void *v, size_t sz, const struct kmem_va_mode *kv,
774     const struct kmem_pa_mode *kp)
775 {
776 	vaddr_t sva, eva, va;
777 	struct vm_page *pg;
778 	struct pglist pgl;
779 
780 	sva = (vaddr_t)v;
781 	eva = sva + sz;
782 
783 	if (kp->kp_nomem)
784 		goto free_va;
785 
786 #ifdef __HAVE_PMAP_DIRECT
787 	if (kv->kv_singlepage || kp->kp_maxseg == 1) {
788 		TAILQ_INIT(&pgl);
789 		for (va = sva; va < eva; va += PAGE_SIZE) {
790 			pg = pmap_unmap_direct(va);
791 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
792 		}
793 		uvm_pglistfree(&pgl);
794 		return;
795 	}
796 #else
797 	if (kv->kv_singlepage) {
798 		struct uvm_km_free_page *fp = v;
799 
800 		mtx_enter(&uvm_km_pages.mtx);
801 		fp->next = uvm_km_pages.freelist;
802 		uvm_km_pages.freelist = fp;
803 		if (uvm_km_pages.freelistlen++ > 16)
804 			wakeup(&uvm_km_pages.km_proc);
805 		mtx_leave(&uvm_km_pages.mtx);
806 		return;
807 	}
808 #endif
809 
810 	if (kp->kp_pageable) {
811 		pmap_remove(pmap_kernel(), sva, eva);
812 		pmap_update(pmap_kernel());
813 	} else {
814 		TAILQ_INIT(&pgl);
815 		for (va = sva; va < eva; va += PAGE_SIZE) {
816 			paddr_t pa;
817 
818 			if (!pmap_extract(pmap_kernel(), va, &pa))
819 				continue;
820 
821 			pg = PHYS_TO_VM_PAGE(pa);
822 			if (pg == NULL) {
823 				panic("km_free: unmanaged page 0x%lx", pa);
824 			}
825 			TAILQ_INSERT_TAIL(&pgl, pg, pageq);
826 		}
827 		pmap_kremove(sva, sz);
828 		pmap_update(pmap_kernel());
829 		uvm_pglistfree(&pgl);
830 	}
831 free_va:
832 	uvm_unmap(*kv->kv_map, sva, eva);
833 	if (kv->kv_wait)
834 		wakeup(*kv->kv_map);
835 }
836 
837 const struct kmem_va_mode kv_any = {
838 	.kv_map = &kernel_map,
839 };
840 
841 const struct kmem_va_mode kv_intrsafe = {
842 	.kv_map = &kmem_map,
843 };
844 
845 const struct kmem_va_mode kv_page = {
846 	.kv_singlepage = 1
847 };
848 
849 const struct kmem_pa_mode kp_dirty = {
850 	.kp_constraint = &no_constraint
851 };
852 
853 const struct kmem_pa_mode kp_dma = {
854 	.kp_constraint = &dma_constraint
855 };
856 
857 const struct kmem_pa_mode kp_dma_contig = {
858 	.kp_constraint = &dma_constraint,
859 	.kp_maxseg = 1
860 };
861 
862 const struct kmem_pa_mode kp_dma_zero = {
863 	.kp_constraint = &dma_constraint,
864 	.kp_zero = 1
865 };
866 
867 const struct kmem_pa_mode kp_zero = {
868 	.kp_constraint = &no_constraint,
869 	.kp_zero = 1
870 };
871 
872 const struct kmem_pa_mode kp_pageable = {
873 	.kp_object = &uvm.kernel_object,
874 	.kp_pageable = 1
875 /* XXX - kp_nomem, maybe, but we'll need to fix km_free. */
876 };
877 
878 const struct kmem_pa_mode kp_none = {
879 	.kp_nomem = 1
880 };
881 
882 const struct kmem_dyn_mode kd_waitok = {
883 	.kd_waitok = 1,
884 	.kd_prefer = UVM_UNKNOWN_OFFSET
885 };
886 
887 const struct kmem_dyn_mode kd_nowait = {
888 	.kd_prefer = UVM_UNKNOWN_OFFSET
889 };
890 
891 const struct kmem_dyn_mode kd_trylock = {
892 	.kd_trylock = 1,
893 	.kd_prefer = UVM_UNKNOWN_OFFSET
894 };
895