1 /*	$NetBSD: uvm_km.c,v 1.141 2016/07/27 16:45:00 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38  *
39  *
40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41  * All rights reserved.
42  *
43  * Permission to use, copy, modify and distribute this software and
44  * its documentation is hereby granted, provided that both the copyright
45  * notice and this permission notice appear in all copies of the
46  * software, derivative works or modified versions, and any portions
47  * thereof, and that both notices appear in supporting documentation.
48  *
49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52  *
53  * Carnegie Mellon requests users of this software to return to
54  *
55  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56  *  School of Computer Science
57  *  Carnegie Mellon University
58  *  Pittsburgh PA 15213-3890
59  *
60  * any improvements or extensions that they make and grant Carnegie the
61  * rights to redistribute these changes.
62  */
63 
64 /*
65  * uvm_km.c: handle kernel memory allocation and management
66  */
67 
68 /*
69  * overview of kernel memory management:
70  *
71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74  *
75  * the kernel_map has several "submaps."   submaps can only appear in
76  * the kernel_map (user processes can't use them).   submaps "take over"
77  * the management of a sub-range of the kernel's address space.  submaps
78  * are typically allocated at boot time and are never released.   kernel
79  * virtual address space that is mapped by a submap is locked by the
80  * submap's lock -- not the kernel_map's lock.
81  *
82  * thus, the useful feature of submaps is that they allow us to break
83  * up the locking and protection of the kernel address space into smaller
84  * chunks.
85  *
86  * the vm system has several standard kernel submaps/arenas, including:
87  *   kmem_arena => used for kmem/pool (memoryallocators(9))
88  *   pager_map => used to map "buf" structures into kernel space
89  *   exec_map => used during exec to handle exec args
90  *   etc...
91  *
92  * The kmem_arena is a "special submap", as it lives in a fixed map entry
93  * within the kernel_map and is controlled by vmem(9).
94  *
95  * the kernel allocates its private memory out of special uvm_objects whose
96  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97  * are "special" and never die).   all kernel objects should be thought of
98  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
99  * object is equal to the size of kernel virtual address space (i.e. the
100  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101  *
102  * note that just because a kernel object spans the entire kernel virtual
103  * address space doesn't mean that it has to be mapped into the entire space.
104  * large chunks of a kernel object's space go unused either because
105  * that area of kernel VM is unmapped, or there is some other type of
106  * object mapped into that range (e.g. a vnode).    for submap's kernel
107  * objects, the only part of the object that can ever be populated is the
108  * offsets that are managed by the submap.
109  *
110  * note that the "offset" in a kernel object is always the kernel virtual
111  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112  * example:
113  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
116  *   then that means that the page at offset 0x235000 in kernel_object is
117  *   mapped at 0xf8235000.
118  *
119  * kernel object have one other special property: when the kernel virtual
120  * memory mapping them is unmapped, the backing memory in the object is
121  * freed right away.   this is done with the uvm_km_pgremove() function.
122  * this has to be done because there is no backing store for kernel pages
123  * and no need to save them after they are no longer referenced.
124  *
125  * Generic arenas:
126  *
127  * kmem_arena:
128  *	Main arena controlling the kernel KVA used by other arenas.
129  *
130  * kmem_va_arena:
131  *	Implements quantum caching in order to speedup allocations and
132  *	reduce fragmentation.  The pool(9), unless created with a custom
133  *	meta-data allocator, and kmem(9) subsystems use this arena.
134  *
135  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
137  * compensates this by importing larger chunks from kmem_arena.
138  *
139  * kmem_va_meta_arena:
140  *	Space for meta-data.
141  *
142  * kmem_meta_arena:
143  *	Imports from kmem_va_meta_arena.  Allocations from this arena are
144  *	backed with the pages.
145  *
146  * Arena stacking:
147  *
148  *	kmem_arena
149  *		kmem_va_arena
150  *		kmem_va_meta_arena
151  *			kmem_meta_arena
152  */
153 
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.141 2016/07/27 16:45:00 maxv Exp $");
156 
157 #include "opt_uvmhist.h"
158 
159 #include "opt_kmempages.h"
160 
161 #ifndef NKMEMPAGES
162 #define NKMEMPAGES 0
163 #endif
164 
165 /*
166  * Defaults for lower and upper-bounds for the kmem_arena page count.
167  * Can be overridden by kernel config options.
168  */
169 #ifndef NKMEMPAGES_MIN
170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171 #endif
172 
173 #ifndef NKMEMPAGES_MAX
174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175 #endif
176 
177 
178 #include <sys/param.h>
179 #include <sys/systm.h>
180 #include <sys/proc.h>
181 #include <sys/pool.h>
182 #include <sys/vmem.h>
183 #include <sys/vmem_impl.h>
184 #include <sys/kmem.h>
185 
186 #include <uvm/uvm.h>
187 
188 /*
189  * global data structures
190  */
191 
192 struct vm_map *kernel_map = NULL;
193 
194 /*
195  * local data structues
196  */
197 
198 static struct vm_map		kernel_map_store;
199 static struct vm_map_entry	kernel_image_mapent_store;
200 static struct vm_map_entry	kernel_kmem_mapent_store;
201 
202 int nkmempages = 0;
203 vaddr_t kmembase;
204 vsize_t kmemsize;
205 
206 static struct vmem kmem_arena_store;
207 vmem_t *kmem_arena = NULL;
208 static struct vmem kmem_va_arena_store;
209 vmem_t *kmem_va_arena;
210 
211 /*
212  * kmeminit_nkmempages: calculate the size of kmem_arena.
213  */
214 void
kmeminit_nkmempages(void)215 kmeminit_nkmempages(void)
216 {
217 	int npages;
218 
219 	if (nkmempages != 0) {
220 		/*
221 		 * It's already been set (by us being here before)
222 		 * bail out now;
223 		 */
224 		return;
225 	}
226 
227 #if defined(PMAP_MAP_POOLPAGE)
228 	npages = (physmem / 4);
229 #else
230 	npages = (physmem / 3) * 2;
231 #endif /* defined(PMAP_MAP_POOLPAGE) */
232 
233 #ifndef NKMEMPAGES_MAX_UNLIMITED
234 	if (npages > NKMEMPAGES_MAX)
235 		npages = NKMEMPAGES_MAX;
236 #endif
237 
238 	if (npages < NKMEMPAGES_MIN)
239 		npages = NKMEMPAGES_MIN;
240 
241 	nkmempages = npages;
242 }
243 
244 /*
245  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
246  * KVM already allocated for text, data, bss, and static data structures).
247  *
248  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
249  *    we assume that [vmin -> start] has already been allocated and that
250  *    "end" is the end.
251  */
252 
253 void
uvm_km_bootstrap(vaddr_t start,vaddr_t end)254 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
255 {
256 	bool kmem_arena_small;
257 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
258 	struct uvm_map_args args;
259 	int error;
260 
261 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
262 	UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
263 	    start, end, 0,0);
264 
265 	kmeminit_nkmempages();
266 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
267 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
268 
269 	UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
270 
271 	/*
272 	 * next, init kernel memory objects.
273 	 */
274 
275 	/* kernel_object: for pageable anonymous kernel memory */
276 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
277 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
278 
279 	/*
280 	 * init the map and reserve any space that might already
281 	 * have been allocated kernel space before installing.
282 	 */
283 
284 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
285 	kernel_map_store.pmap = pmap_kernel();
286 	if (start != base) {
287 		error = uvm_map_prepare(&kernel_map_store,
288 		    base, start - base,
289 		    NULL, UVM_UNKNOWN_OFFSET, 0,
290 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
291 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
292 		if (!error) {
293 			kernel_image_mapent_store.flags =
294 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
295 			error = uvm_map_enter(&kernel_map_store, &args,
296 			    &kernel_image_mapent_store);
297 		}
298 
299 		if (error)
300 			panic(
301 			    "uvm_km_bootstrap: could not reserve space for kernel");
302 
303 		kmembase = args.uma_start + args.uma_size;
304 	} else {
305 		kmembase = base;
306 	}
307 
308 	error = uvm_map_prepare(&kernel_map_store,
309 	    kmembase, kmemsize,
310 	    NULL, UVM_UNKNOWN_OFFSET, 0,
311 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
312 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
313 	if (!error) {
314 		kernel_kmem_mapent_store.flags =
315 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
316 		error = uvm_map_enter(&kernel_map_store, &args,
317 		    &kernel_kmem_mapent_store);
318 	}
319 
320 	if (error)
321 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
322 
323 	/*
324 	 * install!
325 	 */
326 
327 	kernel_map = &kernel_map_store;
328 
329 	pool_subsystem_init();
330 
331 	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
332 	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
333 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
334 #ifdef PMAP_GROWKERNEL
335 	/*
336 	 * kmem_arena VA allocations happen independently of uvm_map.
337 	 * grow kernel to accommodate the kmem_arena.
338 	 */
339 	if (uvm_maxkaddr < kmembase + kmemsize) {
340 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
341 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
342 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
343 		    uvm_maxkaddr, kmembase, kmemsize);
344 	}
345 #endif
346 
347 	vmem_subsystem_init(kmem_arena);
348 
349 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
350 	    ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
351 
352 	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
353 	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
354 	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
355 	    VM_NOSLEEP, IPL_VM);
356 
357 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
358 }
359 
360 /*
361  * uvm_km_init: init the kernel maps virtual memory caches
362  * and start the pool/kmem allocator.
363  */
364 void
uvm_km_init(void)365 uvm_km_init(void)
366 {
367 	kmem_init();
368 }
369 
370 /*
371  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
372  * is allocated all references to that area of VM must go through it.  this
373  * allows the locking of VAs in kernel_map to be broken up into regions.
374  *
375  * => if `fixed' is true, *vmin specifies where the region described
376  *   pager_map => used to map "buf" structures into kernel space
377  *      by the submap must start
378  * => if submap is non NULL we use that as the submap, otherwise we
379  *	alloc a new map
380  */
381 
382 struct vm_map *
uvm_km_suballoc(struct vm_map * map,vaddr_t * vmin,vaddr_t * vmax,vsize_t size,int flags,bool fixed,struct vm_map * submap)383 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
384     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
385     struct vm_map *submap)
386 {
387 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
388 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
389 
390 	KASSERT(vm_map_pmap(map) == pmap_kernel());
391 
392 	size = round_page(size);	/* round up to pagesize */
393 
394 	/*
395 	 * first allocate a blank spot in the parent map
396 	 */
397 
398 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
399 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
400 	    UVM_ADV_RANDOM, mapflags)) != 0) {
401 		panic("%s: unable to allocate space in parent map", __func__);
402 	}
403 
404 	/*
405 	 * set VM bounds (vmin is filled in by uvm_map)
406 	 */
407 
408 	*vmax = *vmin + size;
409 
410 	/*
411 	 * add references to pmap and create or init the submap
412 	 */
413 
414 	pmap_reference(vm_map_pmap(map));
415 	if (submap == NULL) {
416 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
417 		if (submap == NULL)
418 			panic("uvm_km_suballoc: unable to create submap");
419 	}
420 	uvm_map_setup(submap, *vmin, *vmax, flags);
421 	submap->pmap = vm_map_pmap(map);
422 
423 	/*
424 	 * now let uvm_map_submap plug in it...
425 	 */
426 
427 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
428 		panic("uvm_km_suballoc: submap allocation failed");
429 
430 	return(submap);
431 }
432 
433 /*
434  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
435  */
436 
437 void
uvm_km_pgremove(vaddr_t startva,vaddr_t endva)438 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
439 {
440 	struct uvm_object * const uobj = uvm_kernel_object;
441 	const voff_t start = startva - vm_map_min(kernel_map);
442 	const voff_t end = endva - vm_map_min(kernel_map);
443 	struct vm_page *pg;
444 	voff_t curoff, nextoff;
445 	int swpgonlydelta = 0;
446 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
447 
448 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
449 	KASSERT(startva < endva);
450 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
451 
452 	mutex_enter(uobj->vmobjlock);
453 	pmap_remove(pmap_kernel(), startva, endva);
454 	for (curoff = start; curoff < end; curoff = nextoff) {
455 		nextoff = curoff + PAGE_SIZE;
456 		pg = uvm_pagelookup(uobj, curoff);
457 		if (pg != NULL && pg->flags & PG_BUSY) {
458 			pg->flags |= PG_WANTED;
459 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
460 				    "km_pgrm", 0);
461 			mutex_enter(uobj->vmobjlock);
462 			nextoff = curoff;
463 			continue;
464 		}
465 
466 		/*
467 		 * free the swap slot, then the page.
468 		 */
469 
470 		if (pg == NULL &&
471 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
472 			swpgonlydelta++;
473 		}
474 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
475 		if (pg != NULL) {
476 			mutex_enter(&uvm_pageqlock);
477 			uvm_pagefree(pg);
478 			mutex_exit(&uvm_pageqlock);
479 		}
480 	}
481 	mutex_exit(uobj->vmobjlock);
482 
483 	if (swpgonlydelta > 0) {
484 		mutex_enter(&uvm_swap_data_lock);
485 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
486 		uvmexp.swpgonly -= swpgonlydelta;
487 		mutex_exit(&uvm_swap_data_lock);
488 	}
489 }
490 
491 
492 /*
493  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
494  *    regions.
495  *
496  * => when you unmap a part of anonymous kernel memory you want to toss
497  *    the pages right away.    (this is called from uvm_unmap_...).
498  * => none of the pages will ever be busy, and none of them will ever
499  *    be on the active or inactive queues (because they have no object).
500  */
501 
502 void
uvm_km_pgremove_intrsafe(struct vm_map * map,vaddr_t start,vaddr_t end)503 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
504 {
505 #define __PGRM_BATCH 16
506 	struct vm_page *pg;
507 	paddr_t pa[__PGRM_BATCH];
508 	int npgrm, i;
509 	vaddr_t va, batch_vastart;
510 
511 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
512 
513 	KASSERT(VM_MAP_IS_KERNEL(map));
514 	KASSERTMSG(vm_map_min(map) <= start,
515 	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
516 	    " (size=%#"PRIxVSIZE")",
517 	    vm_map_min(map), start, end - start);
518 	KASSERT(start < end);
519 	KASSERT(end <= vm_map_max(map));
520 
521 	for (va = start; va < end;) {
522 		batch_vastart = va;
523 		/* create a batch of at most __PGRM_BATCH pages to free */
524 		for (i = 0;
525 		     i < __PGRM_BATCH && va < end;
526 		     va += PAGE_SIZE) {
527 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
528 				continue;
529 			}
530 			i++;
531 		}
532 		npgrm = i;
533 		/* now remove the mappings */
534 		pmap_kremove(batch_vastart, va - batch_vastart);
535 		/* and free the pages */
536 		for (i = 0; i < npgrm; i++) {
537 			pg = PHYS_TO_VM_PAGE(pa[i]);
538 			KASSERT(pg);
539 			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
540 			KASSERT((pg->flags & PG_BUSY) == 0);
541 			uvm_pagefree(pg);
542 		}
543 	}
544 #undef __PGRM_BATCH
545 }
546 
547 #if defined(DEBUG)
548 void
uvm_km_check_empty(struct vm_map * map,vaddr_t start,vaddr_t end)549 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
550 {
551 	struct vm_page *pg;
552 	vaddr_t va;
553 	paddr_t pa;
554 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
555 
556 	KDASSERT(VM_MAP_IS_KERNEL(map));
557 	KDASSERT(vm_map_min(map) <= start);
558 	KDASSERT(start < end);
559 	KDASSERT(end <= vm_map_max(map));
560 
561 	for (va = start; va < end; va += PAGE_SIZE) {
562 		if (pmap_extract(pmap_kernel(), va, &pa)) {
563 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
564 			    (void *)va, (long long)pa);
565 		}
566 		mutex_enter(uvm_kernel_object->vmobjlock);
567 		pg = uvm_pagelookup(uvm_kernel_object,
568 		    va - vm_map_min(kernel_map));
569 		mutex_exit(uvm_kernel_object->vmobjlock);
570 		if (pg) {
571 			panic("uvm_km_check_empty: "
572 			    "has page hashed at %p", (const void *)va);
573 		}
574 	}
575 }
576 #endif /* defined(DEBUG) */
577 
578 /*
579  * uvm_km_alloc: allocate an area of kernel memory.
580  *
581  * => NOTE: we can return 0 even if we can wait if there is not enough
582  *	free VM space in the map... caller should be prepared to handle
583  *	this case.
584  * => we return KVA of memory allocated
585  */
586 
587 vaddr_t
uvm_km_alloc(struct vm_map * map,vsize_t size,vsize_t align,uvm_flag_t flags)588 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
589 {
590 	vaddr_t kva, loopva;
591 	vaddr_t offset;
592 	vsize_t loopsize;
593 	struct vm_page *pg;
594 	struct uvm_object *obj;
595 	int pgaflags;
596 	vm_prot_t prot, vaprot;
597 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
598 
599 	KASSERT(vm_map_pmap(map) == pmap_kernel());
600 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
601 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
602 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
603 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
604 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
605 
606 	/*
607 	 * setup for call
608 	 */
609 
610 	kva = vm_map_min(map);	/* hint */
611 	size = round_page(size);
612 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
613 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
614 		    map, obj, size, flags);
615 
616 	/*
617 	 * allocate some virtual space
618 	 */
619 
620 	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
621 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
622 	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
623 	    UVM_ADV_RANDOM,
624 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
625 	     | UVM_KMF_COLORMATCH)))) != 0)) {
626 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
627 		return(0);
628 	}
629 
630 	/*
631 	 * if all we wanted was VA, return now
632 	 */
633 
634 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
635 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
636 		return(kva);
637 	}
638 
639 	/*
640 	 * recover object offset from virtual address
641 	 */
642 
643 	offset = kva - vm_map_min(kernel_map);
644 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
645 
646 	/*
647 	 * now allocate and map in the memory... note that we are the only ones
648 	 * whom should ever get a handle on this area of VM.
649 	 */
650 
651 	loopva = kva;
652 	loopsize = size;
653 
654 	pgaflags = UVM_FLAG_COLORMATCH;
655 	if (flags & UVM_KMF_NOWAIT)
656 		pgaflags |= UVM_PGA_USERESERVE;
657 	if (flags & UVM_KMF_ZERO)
658 		pgaflags |= UVM_PGA_ZERO;
659 	prot = VM_PROT_READ | VM_PROT_WRITE;
660 	if (flags & UVM_KMF_EXEC)
661 		prot |= VM_PROT_EXECUTE;
662 	while (loopsize) {
663 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
664 		    "loopva=%#"PRIxVADDR, loopva);
665 
666 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
667 #ifdef UVM_KM_VMFREELIST
668 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
669 #else
670 		   UVM_PGA_STRAT_NORMAL, 0
671 #endif
672 		   );
673 
674 		/*
675 		 * out of memory?
676 		 */
677 
678 		if (__predict_false(pg == NULL)) {
679 			if ((flags & UVM_KMF_NOWAIT) ||
680 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
681 				/* free everything! */
682 				uvm_km_free(map, kva, size,
683 				    flags & UVM_KMF_TYPEMASK);
684 				return (0);
685 			} else {
686 				uvm_wait("km_getwait2");	/* sleep here */
687 				continue;
688 			}
689 		}
690 
691 		pg->flags &= ~PG_BUSY;	/* new page */
692 		UVM_PAGE_OWN(pg, NULL);
693 
694 		/*
695 		 * map it in
696 		 */
697 
698 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
699 		    prot, PMAP_KMPAGE);
700 		loopva += PAGE_SIZE;
701 		offset += PAGE_SIZE;
702 		loopsize -= PAGE_SIZE;
703 	}
704 
705 	pmap_update(pmap_kernel());
706 
707 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
708 	return(kva);
709 }
710 
711 /*
712  * uvm_km_protect: change the protection of an allocated area
713  */
714 
715 int
uvm_km_protect(struct vm_map * map,vaddr_t addr,vsize_t size,vm_prot_t prot)716 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
717 {
718 	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
719 }
720 
721 /*
722  * uvm_km_free: free an area of kernel memory
723  */
724 
725 void
uvm_km_free(struct vm_map * map,vaddr_t addr,vsize_t size,uvm_flag_t flags)726 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
727 {
728 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
729 
730 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
731 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
732 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
733 	KASSERT((addr & PAGE_MASK) == 0);
734 	KASSERT(vm_map_pmap(map) == pmap_kernel());
735 
736 	size = round_page(size);
737 
738 	if (flags & UVM_KMF_PAGEABLE) {
739 		uvm_km_pgremove(addr, addr + size);
740 	} else if (flags & UVM_KMF_WIRED) {
741 		/*
742 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
743 		 * remove it after.  See comment below about KVA visibility.
744 		 */
745 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
746 	}
747 
748 	/*
749 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
750 	 * KVA becomes globally available.
751 	 */
752 
753 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
754 }
755 
756 /* Sanity; must specify both or none. */
757 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
758     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
759 #error Must specify MAP and UNMAP together.
760 #endif
761 
762 int
uvm_km_kmem_alloc(vmem_t * vm,vmem_size_t size,vm_flag_t flags,vmem_addr_t * addr)763 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
764     vmem_addr_t *addr)
765 {
766 	struct vm_page *pg;
767 	vmem_addr_t va;
768 	int rc;
769 	vaddr_t loopva;
770 	vsize_t loopsize;
771 
772 	size = round_page(size);
773 
774 #if defined(PMAP_MAP_POOLPAGE)
775 	if (size == PAGE_SIZE) {
776 again:
777 #ifdef PMAP_ALLOC_POOLPAGE
778 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
779 		   0 : UVM_PGA_USERESERVE);
780 #else
781 		pg = uvm_pagealloc(NULL, 0, NULL,
782 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
783 #endif /* PMAP_ALLOC_POOLPAGE */
784 		if (__predict_false(pg == NULL)) {
785 			if (flags & VM_SLEEP) {
786 				uvm_wait("plpg");
787 				goto again;
788 			}
789 			return ENOMEM;
790 		}
791 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
792 		if (__predict_false(va == 0)) {
793 			uvm_pagefree(pg);
794 			return ENOMEM;
795 		}
796 		*addr = va;
797 		return 0;
798 	}
799 #endif /* PMAP_MAP_POOLPAGE */
800 
801 	rc = vmem_alloc(vm, size, flags, &va);
802 	if (rc != 0)
803 		return rc;
804 
805 #ifdef PMAP_GROWKERNEL
806 	/*
807 	 * These VA allocations happen independently of uvm_map
808 	 * so this allocation must not extend beyond the current limit.
809 	 */
810 	KASSERTMSG(uvm_maxkaddr >= va + size,
811 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
812 	    uvm_maxkaddr, va, size);
813 #endif
814 
815 	loopva = va;
816 	loopsize = size;
817 
818 	while (loopsize) {
819 #ifdef DIAGNOSTIC
820 		paddr_t pa;
821 #endif
822 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
823 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
824 		    " pa=%#"PRIxPADDR" vmem=%p",
825 		    loopva, loopsize, pa, vm);
826 
827 		pg = uvm_pagealloc(NULL, loopva, NULL,
828 		    UVM_FLAG_COLORMATCH
829 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
830 		if (__predict_false(pg == NULL)) {
831 			if (flags & VM_SLEEP) {
832 				uvm_wait("plpg");
833 				continue;
834 			} else {
835 				uvm_km_pgremove_intrsafe(kernel_map, va,
836 				    va + size);
837 				vmem_free(vm, va, size);
838 				return ENOMEM;
839 			}
840 		}
841 
842 		pg->flags &= ~PG_BUSY;	/* new page */
843 		UVM_PAGE_OWN(pg, NULL);
844 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
845 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
846 
847 		loopva += PAGE_SIZE;
848 		loopsize -= PAGE_SIZE;
849 	}
850 	pmap_update(pmap_kernel());
851 
852 	*addr = va;
853 
854 	return 0;
855 }
856 
857 void
uvm_km_kmem_free(vmem_t * vm,vmem_addr_t addr,size_t size)858 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
859 {
860 
861 	size = round_page(size);
862 #if defined(PMAP_UNMAP_POOLPAGE)
863 	if (size == PAGE_SIZE) {
864 		paddr_t pa;
865 
866 		pa = PMAP_UNMAP_POOLPAGE(addr);
867 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
868 		return;
869 	}
870 #endif /* PMAP_UNMAP_POOLPAGE */
871 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
872 	pmap_update(pmap_kernel());
873 
874 	vmem_free(vm, addr, size);
875 }
876 
877 bool
uvm_km_va_starved_p(void)878 uvm_km_va_starved_p(void)
879 {
880 	vmem_size_t total;
881 	vmem_size_t free;
882 
883 	if (kmem_arena == NULL)
884 		return false;
885 
886 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
887 	free = vmem_size(kmem_arena, VMEM_FREE);
888 
889 	return (free < (total / 10));
890 }
891