1 /*	$NetBSD: uvm_swap.c,v 1.174 2016/07/08 06:45:34 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.174 2016/07/08 06:45:34 skrll Exp $");
34 
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61 
62 #include <uvm/uvm.h>
63 
64 #include <miscfs/specfs/specdev.h>
65 
66 /*
67  * uvm_swap.c: manage configuration and i/o to swap space.
68  */
69 
70 /*
71  * swap space is managed in the following way:
72  *
73  * each swap partition or file is described by a "swapdev" structure.
74  * each "swapdev" structure contains a "swapent" structure which contains
75  * information that is passed up to the user (via system calls).
76  *
77  * each swap partition is assigned a "priority" (int) which controls
78  * swap parition usage.
79  *
80  * the system maintains a global data structure describing all swap
81  * partitions/files.   there is a sorted LIST of "swappri" structures
82  * which describe "swapdev"'s at that priority.   this LIST is headed
83  * by the "swap_priority" global var.    each "swappri" contains a
84  * TAILQ of "swapdev" structures at that priority.
85  *
86  * locking:
87  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88  *    system call and prevents the swap priority list from changing
89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
90  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91  *    structures including the priority list, the swapdev structures,
92  *    and the swapmap arena.
93  *
94  * each swap device has the following info:
95  *  - swap device in use (could be disabled, preventing future use)
96  *  - swap enabled (allows new allocations on swap)
97  *  - map info in /dev/drum
98  *  - vnode pointer
99  * for swap files only:
100  *  - block size
101  *  - max byte count in buffer
102  *  - buffer
103  *
104  * userland controls and configures swap with the swapctl(2) system call.
105  * the sys_swapctl performs the following operations:
106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
108  *	(passed in via "arg") of a size passed in via "misc" ... we load
109  *	the current swap config into the array. The actual work is done
110  *	in the uvm_swap_stats() function.
111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112  *	priority in "misc", start swapping on it.
113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
115  *	"misc")
116  */
117 
118 /*
119  * swapdev: describes a single swap partition/file
120  *
121  * note the following should be true:
122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
123  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124  */
125 struct swapdev {
126 	dev_t			swd_dev;	/* device id */
127 	int			swd_flags;	/* flags:inuse/enable/fake */
128 	int			swd_priority;	/* our priority */
129 	int			swd_nblks;	/* blocks in this device */
130 	char			*swd_path;	/* saved pathname of device */
131 	int			swd_pathlen;	/* length of pathname */
132 	int			swd_npages;	/* #pages we can use */
133 	int			swd_npginuse;	/* #pages in use */
134 	int			swd_npgbad;	/* #pages bad */
135 	int			swd_drumoffset;	/* page0 offset in drum */
136 	int			swd_drumsize;	/* #pages in drum */
137 	blist_t			swd_blist;	/* blist for this swapdev */
138 	struct vnode		*swd_vp;	/* backing vnode */
139 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
140 
141 	int			swd_bsize;	/* blocksize (bytes) */
142 	int			swd_maxactive;	/* max active i/o reqs */
143 	struct bufq_state	*swd_tab;	/* buffer list */
144 	int			swd_active;	/* number of active buffers */
145 };
146 
147 /*
148  * swap device priority entry; the list is kept sorted on `spi_priority'.
149  */
150 struct swappri {
151 	int			spi_priority;     /* priority */
152 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
153 	/* tailq of swapdevs at this priority */
154 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
155 };
156 
157 /*
158  * The following two structures are used to keep track of data transfers
159  * on swap devices associated with regular files.
160  * NOTE: this code is more or less a copy of vnd.c; we use the same
161  * structure names here to ease porting..
162  */
163 struct vndxfer {
164 	struct buf	*vx_bp;		/* Pointer to parent buffer */
165 	struct swapdev	*vx_sdp;
166 	int		vx_error;
167 	int		vx_pending;	/* # of pending aux buffers */
168 	int		vx_flags;
169 #define VX_BUSY		1
170 #define VX_DEAD		2
171 };
172 
173 struct vndbuf {
174 	struct buf	vb_buf;
175 	struct vndxfer	*vb_xfer;
176 };
177 
178 /*
179  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180  * dev_t and has no se_path[] member.
181  */
182 struct swapent13 {
183 	int32_t	se13_dev;		/* device id */
184 	int	se13_flags;		/* flags */
185 	int	se13_nblks;		/* total blocks */
186 	int	se13_inuse;		/* blocks in use */
187 	int	se13_priority;		/* priority of this device */
188 };
189 
190 /*
191  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192  * dev_t.
193  */
194 struct swapent50 {
195 	int32_t	se50_dev;		/* device id */
196 	int	se50_flags;		/* flags */
197 	int	se50_nblks;		/* total blocks */
198 	int	se50_inuse;		/* blocks in use */
199 	int	se50_priority;		/* priority of this device */
200 	char	se50_path[PATH_MAX+1];	/* path name */
201 };
202 
203 /*
204  * We keep a of pool vndbuf's and vndxfer structures.
205  */
206 static struct pool vndxfer_pool, vndbuf_pool;
207 
208 /*
209  * local variables
210  */
211 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
212 
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216 
217 /* locks */
218 static krwlock_t swap_syscall_lock;
219 
220 /* workqueue and use counter for swap to regular files */
221 static int sw_reg_count = 0;
222 static struct workqueue *sw_reg_workqueue;
223 
224 /* tuneables */
225 u_int uvm_swapisfull_factor = 99;
226 
227 /*
228  * prototypes
229  */
230 static struct swapdev	*swapdrum_getsdp(int);
231 
232 static struct swapdev	*swaplist_find(struct vnode *, bool);
233 static void		 swaplist_insert(struct swapdev *,
234 					 struct swappri *, int);
235 static void		 swaplist_trim(void);
236 
237 static int swap_on(struct lwp *, struct swapdev *);
238 static int swap_off(struct lwp *, struct swapdev *);
239 
240 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
241 static void sw_reg_biodone(struct buf *);
242 static void sw_reg_iodone(struct work *wk, void *dummy);
243 static void sw_reg_start(struct swapdev *);
244 
245 static int uvm_swap_io(struct vm_page **, int, int, int);
246 
247 /*
248  * uvm_swap_init: init the swap system data structures and locks
249  *
250  * => called at boot time from init_main.c after the filesystems
251  *	are brought up (which happens after uvm_init())
252  */
253 void
uvm_swap_init(void)254 uvm_swap_init(void)
255 {
256 	UVMHIST_FUNC("uvm_swap_init");
257 
258 	UVMHIST_CALLED(pdhist);
259 	/*
260 	 * first, init the swap list, its counter, and its lock.
261 	 * then get a handle on the vnode for /dev/drum by using
262 	 * the its dev_t number ("swapdev", from MD conf.c).
263 	 */
264 
265 	LIST_INIT(&swap_priority);
266 	uvmexp.nswapdev = 0;
267 	rw_init(&swap_syscall_lock);
268 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
269 
270 	if (bdevvp(swapdev, &swapdev_vp))
271 		panic("%s: can't get vnode for swap device", __func__);
272 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
273 		panic("%s: can't lock swap device", __func__);
274 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
275 		panic("%s: can't open swap device", __func__);
276 	VOP_UNLOCK(swapdev_vp);
277 
278 	/*
279 	 * create swap block resource map to map /dev/drum.   the range
280 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
281 	 * that block 0 is reserved (used to indicate an allocation
282 	 * failure, or no allocation).
283 	 */
284 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
285 	    VM_NOSLEEP, IPL_NONE);
286 	if (swapmap == 0) {
287 		panic("%s: vmem_create failed", __func__);
288 	}
289 
290 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
291 	    NULL, IPL_BIO);
292 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
293 	    NULL, IPL_BIO);
294 
295 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
296 }
297 
298 /*
299  * swaplist functions: functions that operate on the list of swap
300  * devices on the system.
301  */
302 
303 /*
304  * swaplist_insert: insert swap device "sdp" into the global list
305  *
306  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
307  * => caller must provide a newly allocated swappri structure (we will
308  *	FREE it if we don't need it... this it to prevent allocation
309  *	blocking here while adding swap)
310  */
311 static void
swaplist_insert(struct swapdev * sdp,struct swappri * newspp,int priority)312 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
313 {
314 	struct swappri *spp, *pspp;
315 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
316 
317 	/*
318 	 * find entry at or after which to insert the new device.
319 	 */
320 	pspp = NULL;
321 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
322 		if (priority <= spp->spi_priority)
323 			break;
324 		pspp = spp;
325 	}
326 
327 	/*
328 	 * new priority?
329 	 */
330 	if (spp == NULL || spp->spi_priority != priority) {
331 		spp = newspp;  /* use newspp! */
332 		UVMHIST_LOG(pdhist, "created new swappri = %d",
333 			    priority, 0, 0, 0);
334 
335 		spp->spi_priority = priority;
336 		TAILQ_INIT(&spp->spi_swapdev);
337 
338 		if (pspp)
339 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
340 		else
341 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
342 	} else {
343 	  	/* we don't need a new priority structure, free it */
344 		kmem_free(newspp, sizeof(*newspp));
345 	}
346 
347 	/*
348 	 * priority found (or created).   now insert on the priority's
349 	 * tailq list and bump the total number of swapdevs.
350 	 */
351 	sdp->swd_priority = priority;
352 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
353 	uvmexp.nswapdev++;
354 }
355 
356 /*
357  * swaplist_find: find and optionally remove a swap device from the
358  *	global list.
359  *
360  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
361  * => we return the swapdev we found (and removed)
362  */
363 static struct swapdev *
swaplist_find(struct vnode * vp,bool remove)364 swaplist_find(struct vnode *vp, bool remove)
365 {
366 	struct swapdev *sdp;
367 	struct swappri *spp;
368 
369 	/*
370 	 * search the lists for the requested vp
371 	 */
372 
373 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
374 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
375 			if (sdp->swd_vp == vp) {
376 				if (remove) {
377 					TAILQ_REMOVE(&spp->spi_swapdev,
378 					    sdp, swd_next);
379 					uvmexp.nswapdev--;
380 				}
381 				return(sdp);
382 			}
383 		}
384 	}
385 	return (NULL);
386 }
387 
388 /*
389  * swaplist_trim: scan priority list for empty priority entries and kill
390  *	them.
391  *
392  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
393  */
394 static void
swaplist_trim(void)395 swaplist_trim(void)
396 {
397 	struct swappri *spp, *nextspp;
398 
399 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
400 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
401 			continue;
402 		LIST_REMOVE(spp, spi_swappri);
403 		kmem_free(spp, sizeof(*spp));
404 	}
405 }
406 
407 /*
408  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
409  *	to the "swapdev" that maps that section of the drum.
410  *
411  * => each swapdev takes one big contig chunk of the drum
412  * => caller must hold uvm_swap_data_lock
413  */
414 static struct swapdev *
swapdrum_getsdp(int pgno)415 swapdrum_getsdp(int pgno)
416 {
417 	struct swapdev *sdp;
418 	struct swappri *spp;
419 
420 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
421 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
422 			if (sdp->swd_flags & SWF_FAKE)
423 				continue;
424 			if (pgno >= sdp->swd_drumoffset &&
425 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
426 				return sdp;
427 			}
428 		}
429 	}
430 	return NULL;
431 }
432 
swapsys_lock(krw_t op)433 void swapsys_lock(krw_t op)
434 {
435 	rw_enter(&swap_syscall_lock, op);
436 }
437 
swapsys_unlock(void)438 void swapsys_unlock(void)
439 {
440 	rw_exit(&swap_syscall_lock);
441 }
442 
443 /*
444  * sys_swapctl: main entry point for swapctl(2) system call
445  * 	[with two helper functions: swap_on and swap_off]
446  */
447 int
sys_swapctl(struct lwp * l,const struct sys_swapctl_args * uap,register_t * retval)448 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
449 {
450 	/* {
451 		syscallarg(int) cmd;
452 		syscallarg(void *) arg;
453 		syscallarg(int) misc;
454 	} */
455 	struct vnode *vp;
456 	struct nameidata nd;
457 	struct swappri *spp;
458 	struct swapdev *sdp;
459 	struct swapent *sep;
460 #define SWAP_PATH_MAX (PATH_MAX + 1)
461 	char	*userpath;
462 	size_t	len = 0;
463 	int	error, misc;
464 	int	priority;
465 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
466 
467 	/*
468 	 * we handle the non-priv NSWAP and STATS request first.
469 	 *
470 	 * SWAP_NSWAP: return number of config'd swap devices
471 	 * [can also be obtained with uvmexp sysctl]
472 	 */
473 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
474 		const int nswapdev = uvmexp.nswapdev;
475 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
476 		*retval = nswapdev;
477 		return 0;
478 	}
479 
480 	misc = SCARG(uap, misc);
481 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
482 
483 	/*
484 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
485 	 */
486 	rw_enter(&swap_syscall_lock, RW_WRITER);
487 
488 	/*
489 	 * SWAP_STATS: get stats on current # of configured swap devs
490 	 *
491 	 * note that the swap_priority list can't change as long
492 	 * as we are holding the swap_syscall_lock.  we don't want
493 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
494 	 * copyout() and we don't want to be holding that lock then!
495 	 */
496 	if (SCARG(uap, cmd) == SWAP_STATS
497 #if defined(COMPAT_50)
498 	    || SCARG(uap, cmd) == SWAP_STATS50
499 #endif
500 #if defined(COMPAT_13)
501 	    || SCARG(uap, cmd) == SWAP_STATS13
502 #endif
503 	    ) {
504 		if (misc < 0) {
505 			error = EINVAL;
506 			goto out;
507 		}
508 		if (misc == 0 || uvmexp.nswapdev == 0) {
509 			error = 0;
510 			goto out;
511 		}
512 		/* Make sure userland cannot exhaust kernel memory */
513 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
514 			misc = uvmexp.nswapdev;
515 		KASSERT(misc > 0);
516 #if defined(COMPAT_13)
517 		if (SCARG(uap, cmd) == SWAP_STATS13)
518 			len = sizeof(struct swapent13) * misc;
519 		else
520 #endif
521 #if defined(COMPAT_50)
522 		if (SCARG(uap, cmd) == SWAP_STATS50)
523 			len = sizeof(struct swapent50) * misc;
524 		else
525 #endif
526 			len = sizeof(struct swapent) * misc;
527 		sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
528 
529 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
530 		error = copyout(sep, SCARG(uap, arg), len);
531 
532 		kmem_free(sep, len);
533 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
534 		goto out;
535 	}
536 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
537 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
538 
539 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
540 		goto out;
541 	}
542 
543 	/*
544 	 * all other requests require superuser privs.   verify.
545 	 */
546 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
547 	    0, NULL, NULL, NULL)))
548 		goto out;
549 
550 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
551 		/* drop the current dump device */
552 		dumpdev = NODEV;
553 		dumpcdev = NODEV;
554 		cpu_dumpconf();
555 		goto out;
556 	}
557 
558 	/*
559 	 * at this point we expect a path name in arg.   we will
560 	 * use namei() to gain a vnode reference (vref), and lock
561 	 * the vnode (VOP_LOCK).
562 	 *
563 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
564 	 * miniroot)
565 	 */
566 	if (SCARG(uap, arg) == NULL) {
567 		vp = rootvp;		/* miniroot */
568 		vref(vp);
569 		if (vn_lock(vp, LK_EXCLUSIVE)) {
570 			vrele(vp);
571 			error = EBUSY;
572 			goto out;
573 		}
574 		if (SCARG(uap, cmd) == SWAP_ON &&
575 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
576 			panic("swapctl: miniroot copy failed");
577 	} else {
578 		struct pathbuf *pb;
579 
580 		/*
581 		 * This used to allow copying in one extra byte
582 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
583 		 * This was completely pointless because if anyone
584 		 * used that extra byte namei would fail with
585 		 * ENAMETOOLONG anyway, so I've removed the excess
586 		 * logic. - dholland 20100215
587 		 */
588 
589 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
590 		if (error) {
591 			goto out;
592 		}
593 		if (SCARG(uap, cmd) == SWAP_ON) {
594 			/* get a copy of the string */
595 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
596 			len = strlen(userpath) + 1;
597 		}
598 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
599 		if ((error = namei(&nd))) {
600 			pathbuf_destroy(pb);
601 			goto out;
602 		}
603 		vp = nd.ni_vp;
604 		pathbuf_destroy(pb);
605 	}
606 	/* note: "vp" is referenced and locked */
607 
608 	error = 0;		/* assume no error */
609 	switch(SCARG(uap, cmd)) {
610 
611 	case SWAP_DUMPDEV:
612 		if (vp->v_type != VBLK) {
613 			error = ENOTBLK;
614 			break;
615 		}
616 		if (bdevsw_lookup(vp->v_rdev)) {
617 			dumpdev = vp->v_rdev;
618 			dumpcdev = devsw_blk2chr(dumpdev);
619 		} else
620 			dumpdev = NODEV;
621 		cpu_dumpconf();
622 		break;
623 
624 	case SWAP_CTL:
625 		/*
626 		 * get new priority, remove old entry (if any) and then
627 		 * reinsert it in the correct place.  finally, prune out
628 		 * any empty priority structures.
629 		 */
630 		priority = SCARG(uap, misc);
631 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
632 		mutex_enter(&uvm_swap_data_lock);
633 		if ((sdp = swaplist_find(vp, true)) == NULL) {
634 			error = ENOENT;
635 		} else {
636 			swaplist_insert(sdp, spp, priority);
637 			swaplist_trim();
638 		}
639 		mutex_exit(&uvm_swap_data_lock);
640 		if (error)
641 			kmem_free(spp, sizeof(*spp));
642 		break;
643 
644 	case SWAP_ON:
645 
646 		/*
647 		 * check for duplicates.   if none found, then insert a
648 		 * dummy entry on the list to prevent someone else from
649 		 * trying to enable this device while we are working on
650 		 * it.
651 		 */
652 
653 		priority = SCARG(uap, misc);
654 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
655 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
656 		sdp->swd_flags = SWF_FAKE;
657 		sdp->swd_vp = vp;
658 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
659 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
660 		mutex_enter(&uvm_swap_data_lock);
661 		if (swaplist_find(vp, false) != NULL) {
662 			error = EBUSY;
663 			mutex_exit(&uvm_swap_data_lock);
664 			bufq_free(sdp->swd_tab);
665 			kmem_free(sdp, sizeof(*sdp));
666 			kmem_free(spp, sizeof(*spp));
667 			break;
668 		}
669 		swaplist_insert(sdp, spp, priority);
670 		mutex_exit(&uvm_swap_data_lock);
671 
672 		KASSERT(len > 0);
673 		sdp->swd_pathlen = len;
674 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
675 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
676 			panic("swapctl: copystr");
677 
678 		/*
679 		 * we've now got a FAKE placeholder in the swap list.
680 		 * now attempt to enable swap on it.  if we fail, undo
681 		 * what we've done and kill the fake entry we just inserted.
682 		 * if swap_on is a success, it will clear the SWF_FAKE flag
683 		 */
684 
685 		if ((error = swap_on(l, sdp)) != 0) {
686 			mutex_enter(&uvm_swap_data_lock);
687 			(void) swaplist_find(vp, true);  /* kill fake entry */
688 			swaplist_trim();
689 			mutex_exit(&uvm_swap_data_lock);
690 			bufq_free(sdp->swd_tab);
691 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
692 			kmem_free(sdp, sizeof(*sdp));
693 			break;
694 		}
695 		break;
696 
697 	case SWAP_OFF:
698 		mutex_enter(&uvm_swap_data_lock);
699 		if ((sdp = swaplist_find(vp, false)) == NULL) {
700 			mutex_exit(&uvm_swap_data_lock);
701 			error = ENXIO;
702 			break;
703 		}
704 
705 		/*
706 		 * If a device isn't in use or enabled, we
707 		 * can't stop swapping from it (again).
708 		 */
709 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
710 			mutex_exit(&uvm_swap_data_lock);
711 			error = EBUSY;
712 			break;
713 		}
714 
715 		/*
716 		 * do the real work.
717 		 */
718 		error = swap_off(l, sdp);
719 		break;
720 
721 	default:
722 		error = EINVAL;
723 	}
724 
725 	/*
726 	 * done!  release the ref gained by namei() and unlock.
727 	 */
728 	vput(vp);
729 out:
730 	rw_exit(&swap_syscall_lock);
731 	kmem_free(userpath, SWAP_PATH_MAX);
732 
733 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
734 	return (error);
735 }
736 
737 /*
738  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
739  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
740  * emulation to use it directly without going through sys_swapctl().
741  * The problem with using sys_swapctl() there is that it involves
742  * copying the swapent array to the stackgap, and this array's size
743  * is not known at build time. Hence it would not be possible to
744  * ensure it would fit in the stackgap in any case.
745  */
746 void
uvm_swap_stats(int cmd,struct swapent * sep,int sec,register_t * retval)747 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
748 {
749 	struct swappri *spp;
750 	struct swapdev *sdp;
751 	int count = 0;
752 
753 	KASSERT(rw_lock_held(&swap_syscall_lock));
754 
755 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
756 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
757 			int inuse;
758 
759 			if (sec-- <= 0)
760 				break;
761 
762 			/*
763 			 * backwards compatibility for system call.
764 			 * For NetBSD 1.3 and 5.0, we have to use
765 			 * the 32 bit dev_t.  For 5.0 and -current
766 			 * we have to add the path.
767 			 */
768 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
769 			    PAGE_SHIFT);
770 
771 #if defined(COMPAT_13) || defined(COMPAT_50)
772 			if (cmd == SWAP_STATS) {
773 #endif
774 				sep->se_dev = sdp->swd_dev;
775 				sep->se_flags = sdp->swd_flags;
776 				sep->se_nblks = sdp->swd_nblks;
777 				sep->se_inuse = inuse;
778 				sep->se_priority = sdp->swd_priority;
779 				KASSERT(sdp->swd_pathlen <
780 				    sizeof(sep->se_path));
781 				strcpy(sep->se_path, sdp->swd_path);
782 				sep++;
783 #if defined(COMPAT_13)
784 			} else if (cmd == SWAP_STATS13) {
785 				struct swapent13 *sep13 =
786 				    (struct swapent13 *)sep;
787 
788 				sep13->se13_dev = sdp->swd_dev;
789 				sep13->se13_flags = sdp->swd_flags;
790 				sep13->se13_nblks = sdp->swd_nblks;
791 				sep13->se13_inuse = inuse;
792 				sep13->se13_priority = sdp->swd_priority;
793 				sep = (struct swapent *)(sep13 + 1);
794 #endif
795 #if defined(COMPAT_50)
796 			} else if (cmd == SWAP_STATS50) {
797 				struct swapent50 *sep50 =
798 				    (struct swapent50 *)sep;
799 
800 				sep50->se50_dev = sdp->swd_dev;
801 				sep50->se50_flags = sdp->swd_flags;
802 				sep50->se50_nblks = sdp->swd_nblks;
803 				sep50->se50_inuse = inuse;
804 				sep50->se50_priority = sdp->swd_priority;
805 				KASSERT(sdp->swd_pathlen <
806 				    sizeof(sep50->se50_path));
807 				strcpy(sep50->se50_path, sdp->swd_path);
808 				sep = (struct swapent *)(sep50 + 1);
809 #endif
810 #if defined(COMPAT_13) || defined(COMPAT_50)
811 			}
812 #endif
813 			count++;
814 		}
815 	}
816 	*retval = count;
817 }
818 
819 /*
820  * swap_on: attempt to enable a swapdev for swapping.   note that the
821  *	swapdev is already on the global list, but disabled (marked
822  *	SWF_FAKE).
823  *
824  * => we avoid the start of the disk (to protect disk labels)
825  * => we also avoid the miniroot, if we are swapping to root.
826  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
827  *	if needed.
828  */
829 static int
swap_on(struct lwp * l,struct swapdev * sdp)830 swap_on(struct lwp *l, struct swapdev *sdp)
831 {
832 	struct vnode *vp;
833 	int error, npages, nblocks, size;
834 	long addr;
835 	vmem_addr_t result;
836 	struct vattr va;
837 	dev_t dev;
838 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
839 
840 	/*
841 	 * we want to enable swapping on sdp.   the swd_vp contains
842 	 * the vnode we want (locked and ref'd), and the swd_dev
843 	 * contains the dev_t of the file, if it a block device.
844 	 */
845 
846 	vp = sdp->swd_vp;
847 	dev = sdp->swd_dev;
848 
849 	/*
850 	 * open the swap file (mostly useful for block device files to
851 	 * let device driver know what is up).
852 	 *
853 	 * we skip the open/close for root on swap because the root
854 	 * has already been opened when root was mounted (mountroot).
855 	 */
856 	if (vp != rootvp) {
857 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
858 			return (error);
859 	}
860 
861 	/* XXX this only works for block devices */
862 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
863 
864 	/*
865 	 * we now need to determine the size of the swap area.   for
866 	 * block specials we can call the d_psize function.
867 	 * for normal files, we must stat [get attrs].
868 	 *
869 	 * we put the result in nblks.
870 	 * for normal files, we also want the filesystem block size
871 	 * (which we get with statfs).
872 	 */
873 	switch (vp->v_type) {
874 	case VBLK:
875 		if ((nblocks = bdev_size(dev)) == -1) {
876 			error = ENXIO;
877 			goto bad;
878 		}
879 		break;
880 
881 	case VREG:
882 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
883 			goto bad;
884 		nblocks = (int)btodb(va.va_size);
885 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
886 		/*
887 		 * limit the max # of outstanding I/O requests we issue
888 		 * at any one time.   take it easy on NFS servers.
889 		 */
890 		if (vp->v_tag == VT_NFS)
891 			sdp->swd_maxactive = 2; /* XXX */
892 		else
893 			sdp->swd_maxactive = 8; /* XXX */
894 		break;
895 
896 	default:
897 		error = ENXIO;
898 		goto bad;
899 	}
900 
901 	/*
902 	 * save nblocks in a safe place and convert to pages.
903 	 */
904 
905 	sdp->swd_nblks = nblocks;
906 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
907 
908 	/*
909 	 * for block special files, we want to make sure that leave
910 	 * the disklabel and bootblocks alone, so we arrange to skip
911 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
912 	 * note that because of this the "size" can be less than the
913 	 * actual number of blocks on the device.
914 	 */
915 	if (vp->v_type == VBLK) {
916 		/* we use pages 1 to (size - 1) [inclusive] */
917 		size = npages - 1;
918 		addr = 1;
919 	} else {
920 		/* we use pages 0 to (size - 1) [inclusive] */
921 		size = npages;
922 		addr = 0;
923 	}
924 
925 	/*
926 	 * make sure we have enough blocks for a reasonable sized swap
927 	 * area.   we want at least one page.
928 	 */
929 
930 	if (size < 1) {
931 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
932 		error = EINVAL;
933 		goto bad;
934 	}
935 
936 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld", dev, size, addr, 0);
937 
938 	/*
939 	 * now we need to allocate an extent to manage this swap device
940 	 */
941 
942 	sdp->swd_blist = blist_create(npages);
943 	/* mark all expect the `saved' region free. */
944 	blist_free(sdp->swd_blist, addr, size);
945 
946 	/*
947 	 * if the vnode we are swapping to is the root vnode
948 	 * (i.e. we are swapping to the miniroot) then we want
949 	 * to make sure we don't overwrite it.   do a statfs to
950 	 * find its size and skip over it.
951 	 */
952 	if (vp == rootvp) {
953 		struct mount *mp;
954 		struct statvfs *sp;
955 		int rootblocks, rootpages;
956 
957 		mp = rootvnode->v_mount;
958 		sp = &mp->mnt_stat;
959 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
960 		/*
961 		 * XXX: sp->f_blocks isn't the total number of
962 		 * blocks in the filesystem, it's the number of
963 		 * data blocks.  so, our rootblocks almost
964 		 * definitely underestimates the total size
965 		 * of the filesystem - how badly depends on the
966 		 * details of the filesystem type.  there isn't
967 		 * an obvious way to deal with this cleanly
968 		 * and perfectly, so for now we just pad our
969 		 * rootblocks estimate with an extra 5 percent.
970 		 */
971 		rootblocks += (rootblocks >> 5) +
972 			(rootblocks >> 6) +
973 			(rootblocks >> 7);
974 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
975 		if (rootpages > size)
976 			panic("swap_on: miniroot larger than swap?");
977 
978 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
979 			panic("swap_on: unable to preserve miniroot");
980 		}
981 
982 		size -= rootpages;
983 		printf("Preserved %d pages of miniroot ", rootpages);
984 		printf("leaving %d pages of swap\n", size);
985 	}
986 
987 	/*
988 	 * add a ref to vp to reflect usage as a swap device.
989 	 */
990 	vref(vp);
991 
992 	/*
993 	 * now add the new swapdev to the drum and enable.
994 	 */
995 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
996 	if (error != 0)
997 		panic("swapdrum_add");
998 	/*
999 	 * If this is the first regular swap create the workqueue.
1000 	 * => Protected by swap_syscall_lock.
1001 	 */
1002 	if (vp->v_type != VBLK) {
1003 		if (sw_reg_count++ == 0) {
1004 			KASSERT(sw_reg_workqueue == NULL);
1005 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
1006 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1007 				panic("%s: workqueue_create failed", __func__);
1008 		}
1009 	}
1010 
1011 	sdp->swd_drumoffset = (int)result;
1012 	sdp->swd_drumsize = npages;
1013 	sdp->swd_npages = size;
1014 	mutex_enter(&uvm_swap_data_lock);
1015 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
1016 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1017 	uvmexp.swpages += size;
1018 	uvmexp.swpgavail += size;
1019 	mutex_exit(&uvm_swap_data_lock);
1020 	return (0);
1021 
1022 	/*
1023 	 * failure: clean up and return error.
1024 	 */
1025 
1026 bad:
1027 	if (sdp->swd_blist) {
1028 		blist_destroy(sdp->swd_blist);
1029 	}
1030 	if (vp != rootvp) {
1031 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1032 	}
1033 	return (error);
1034 }
1035 
1036 /*
1037  * swap_off: stop swapping on swapdev
1038  *
1039  * => swap data should be locked, we will unlock.
1040  */
1041 static int
swap_off(struct lwp * l,struct swapdev * sdp)1042 swap_off(struct lwp *l, struct swapdev *sdp)
1043 {
1044 	int npages = sdp->swd_npages;
1045 	int error = 0;
1046 
1047 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1048 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1049 
1050 	/* disable the swap area being removed */
1051 	sdp->swd_flags &= ~SWF_ENABLE;
1052 	uvmexp.swpgavail -= npages;
1053 	mutex_exit(&uvm_swap_data_lock);
1054 
1055 	/*
1056 	 * the idea is to find all the pages that are paged out to this
1057 	 * device, and page them all in.  in uvm, swap-backed pageable
1058 	 * memory can take two forms: aobjs and anons.  call the
1059 	 * swapoff hook for each subsystem to bring in pages.
1060 	 */
1061 
1062 	if (uao_swap_off(sdp->swd_drumoffset,
1063 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1064 	    amap_swap_off(sdp->swd_drumoffset,
1065 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1066 		error = ENOMEM;
1067 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1068 		error = EBUSY;
1069 	}
1070 
1071 	if (error) {
1072 		mutex_enter(&uvm_swap_data_lock);
1073 		sdp->swd_flags |= SWF_ENABLE;
1074 		uvmexp.swpgavail += npages;
1075 		mutex_exit(&uvm_swap_data_lock);
1076 
1077 		return error;
1078 	}
1079 
1080 	/*
1081 	 * If this is the last regular swap destroy the workqueue.
1082 	 * => Protected by swap_syscall_lock.
1083 	 */
1084 	if (sdp->swd_vp->v_type != VBLK) {
1085 		KASSERT(sw_reg_count > 0);
1086 		KASSERT(sw_reg_workqueue != NULL);
1087 		if (--sw_reg_count == 0) {
1088 			workqueue_destroy(sw_reg_workqueue);
1089 			sw_reg_workqueue = NULL;
1090 		}
1091 	}
1092 
1093 	/*
1094 	 * done with the vnode.
1095 	 * drop our ref on the vnode before calling VOP_CLOSE()
1096 	 * so that spec_close() can tell if this is the last close.
1097 	 */
1098 	vrele(sdp->swd_vp);
1099 	if (sdp->swd_vp != rootvp) {
1100 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1101 	}
1102 
1103 	mutex_enter(&uvm_swap_data_lock);
1104 	uvmexp.swpages -= npages;
1105 	uvmexp.swpginuse -= sdp->swd_npgbad;
1106 
1107 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1108 		panic("%s: swapdev not in list", __func__);
1109 	swaplist_trim();
1110 	mutex_exit(&uvm_swap_data_lock);
1111 
1112 	/*
1113 	 * free all resources!
1114 	 */
1115 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1116 	blist_destroy(sdp->swd_blist);
1117 	bufq_free(sdp->swd_tab);
1118 	kmem_free(sdp, sizeof(*sdp));
1119 	return (0);
1120 }
1121 
1122 void
uvm_swap_shutdown(struct lwp * l)1123 uvm_swap_shutdown(struct lwp *l)
1124 {
1125 	struct swapdev *sdp;
1126 	struct swappri *spp;
1127 	struct vnode *vp;
1128 	int error;
1129 
1130 	printf("turning of swap...");
1131 	rw_enter(&swap_syscall_lock, RW_WRITER);
1132 	mutex_enter(&uvm_swap_data_lock);
1133 again:
1134 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
1135 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1136 			if (sdp->swd_flags & SWF_FAKE)
1137 				continue;
1138 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1139 				continue;
1140 #ifdef DEBUG
1141 			printf("\nturning off swap on %s...",
1142 			    sdp->swd_path);
1143 #endif
1144 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1145 				error = EBUSY;
1146 				vp = NULL;
1147 			} else
1148 				error = 0;
1149 			if (!error) {
1150 				error = swap_off(l, sdp);
1151 				mutex_enter(&uvm_swap_data_lock);
1152 			}
1153 			if (error) {
1154 				printf("stopping swap on %s failed "
1155 				    "with error %d\n", sdp->swd_path, error);
1156 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1157 				    swd_next);
1158 				uvmexp.nswapdev--;
1159 				swaplist_trim();
1160 				if (vp)
1161 					vput(vp);
1162 			}
1163 			goto again;
1164 		}
1165 	printf(" done\n");
1166 	mutex_exit(&uvm_swap_data_lock);
1167 	rw_exit(&swap_syscall_lock);
1168 }
1169 
1170 
1171 /*
1172  * /dev/drum interface and i/o functions
1173  */
1174 
1175 /*
1176  * swstrategy: perform I/O on the drum
1177  *
1178  * => we must map the i/o request from the drum to the correct swapdev.
1179  */
1180 static void
swstrategy(struct buf * bp)1181 swstrategy(struct buf *bp)
1182 {
1183 	struct swapdev *sdp;
1184 	struct vnode *vp;
1185 	int pageno, bn;
1186 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1187 
1188 	/*
1189 	 * convert block number to swapdev.   note that swapdev can't
1190 	 * be yanked out from under us because we are holding resources
1191 	 * in it (i.e. the blocks we are doing I/O on).
1192 	 */
1193 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1194 	mutex_enter(&uvm_swap_data_lock);
1195 	sdp = swapdrum_getsdp(pageno);
1196 	mutex_exit(&uvm_swap_data_lock);
1197 	if (sdp == NULL) {
1198 		bp->b_error = EINVAL;
1199 		bp->b_resid = bp->b_bcount;
1200 		biodone(bp);
1201 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1202 		return;
1203 	}
1204 
1205 	/*
1206 	 * convert drum page number to block number on this swapdev.
1207 	 */
1208 
1209 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1210 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1211 
1212 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1213 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1214 		sdp->swd_drumoffset, bn, bp->b_bcount);
1215 
1216 	/*
1217 	 * for block devices we finish up here.
1218 	 * for regular files we have to do more work which we delegate
1219 	 * to sw_reg_strategy().
1220 	 */
1221 
1222 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
1223 	switch (vp->v_type) {
1224 	default:
1225 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
1226 
1227 	case VBLK:
1228 
1229 		/*
1230 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1231 		 * on the swapdev (sdp).
1232 		 */
1233 		bp->b_blkno = bn;		/* swapdev block number */
1234 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1235 
1236 		/*
1237 		 * if we are doing a write, we have to redirect the i/o on
1238 		 * drum's v_numoutput counter to the swapdevs.
1239 		 */
1240 		if ((bp->b_flags & B_READ) == 0) {
1241 			mutex_enter(bp->b_objlock);
1242 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1243 			mutex_exit(bp->b_objlock);
1244 			mutex_enter(vp->v_interlock);
1245 			vp->v_numoutput++;	/* put it on swapdev */
1246 			mutex_exit(vp->v_interlock);
1247 		}
1248 
1249 		/*
1250 		 * finally plug in swapdev vnode and start I/O
1251 		 */
1252 		bp->b_vp = vp;
1253 		bp->b_objlock = vp->v_interlock;
1254 		VOP_STRATEGY(vp, bp);
1255 		return;
1256 
1257 	case VREG:
1258 		/*
1259 		 * delegate to sw_reg_strategy function.
1260 		 */
1261 		sw_reg_strategy(sdp, bp, bn);
1262 		return;
1263 	}
1264 	/* NOTREACHED */
1265 }
1266 
1267 /*
1268  * swread: the read function for the drum (just a call to physio)
1269  */
1270 /*ARGSUSED*/
1271 static int
swread(dev_t dev,struct uio * uio,int ioflag)1272 swread(dev_t dev, struct uio *uio, int ioflag)
1273 {
1274 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1275 
1276 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1277 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1278 }
1279 
1280 /*
1281  * swwrite: the write function for the drum (just a call to physio)
1282  */
1283 /*ARGSUSED*/
1284 static int
swwrite(dev_t dev,struct uio * uio,int ioflag)1285 swwrite(dev_t dev, struct uio *uio, int ioflag)
1286 {
1287 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1288 
1289 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1290 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1291 }
1292 
1293 const struct bdevsw swap_bdevsw = {
1294 	.d_open = nullopen,
1295 	.d_close = nullclose,
1296 	.d_strategy = swstrategy,
1297 	.d_ioctl = noioctl,
1298 	.d_dump = nodump,
1299 	.d_psize = nosize,
1300 	.d_discard = nodiscard,
1301 	.d_flag = D_OTHER
1302 };
1303 
1304 const struct cdevsw swap_cdevsw = {
1305 	.d_open = nullopen,
1306 	.d_close = nullclose,
1307 	.d_read = swread,
1308 	.d_write = swwrite,
1309 	.d_ioctl = noioctl,
1310 	.d_stop = nostop,
1311 	.d_tty = notty,
1312 	.d_poll = nopoll,
1313 	.d_mmap = nommap,
1314 	.d_kqfilter = nokqfilter,
1315 	.d_discard = nodiscard,
1316 	.d_flag = D_OTHER,
1317 };
1318 
1319 /*
1320  * sw_reg_strategy: handle swap i/o to regular files
1321  */
1322 static void
sw_reg_strategy(struct swapdev * sdp,struct buf * bp,int bn)1323 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1324 {
1325 	struct vnode	*vp;
1326 	struct vndxfer	*vnx;
1327 	daddr_t		nbn;
1328 	char 		*addr;
1329 	off_t		byteoff;
1330 	int		s, off, nra, error, sz, resid;
1331 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1332 
1333 	/*
1334 	 * allocate a vndxfer head for this transfer and point it to
1335 	 * our buffer.
1336 	 */
1337 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1338 	vnx->vx_flags = VX_BUSY;
1339 	vnx->vx_error = 0;
1340 	vnx->vx_pending = 0;
1341 	vnx->vx_bp = bp;
1342 	vnx->vx_sdp = sdp;
1343 
1344 	/*
1345 	 * setup for main loop where we read filesystem blocks into
1346 	 * our buffer.
1347 	 */
1348 	error = 0;
1349 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1350 	addr = bp->b_data;		/* current position in buffer */
1351 	byteoff = dbtob((uint64_t)bn);
1352 
1353 	for (resid = bp->b_resid; resid; resid -= sz) {
1354 		struct vndbuf	*nbp;
1355 
1356 		/*
1357 		 * translate byteoffset into block number.  return values:
1358 		 *   vp = vnode of underlying device
1359 		 *  nbn = new block number (on underlying vnode dev)
1360 		 *  nra = num blocks we can read-ahead (excludes requested
1361 		 *	block)
1362 		 */
1363 		nra = 0;
1364 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1365 				 	&vp, &nbn, &nra);
1366 
1367 		if (error == 0 && nbn == (daddr_t)-1) {
1368 			/*
1369 			 * this used to just set error, but that doesn't
1370 			 * do the right thing.  Instead, it causes random
1371 			 * memory errors.  The panic() should remain until
1372 			 * this condition doesn't destabilize the system.
1373 			 */
1374 #if 1
1375 			panic("%s: swap to sparse file", __func__);
1376 #else
1377 			error = EIO;	/* failure */
1378 #endif
1379 		}
1380 
1381 		/*
1382 		 * punt if there was an error or a hole in the file.
1383 		 * we must wait for any i/o ops we have already started
1384 		 * to finish before returning.
1385 		 *
1386 		 * XXX we could deal with holes here but it would be
1387 		 * a hassle (in the write case).
1388 		 */
1389 		if (error) {
1390 			s = splbio();
1391 			vnx->vx_error = error;	/* pass error up */
1392 			goto out;
1393 		}
1394 
1395 		/*
1396 		 * compute the size ("sz") of this transfer (in bytes).
1397 		 */
1398 		off = byteoff % sdp->swd_bsize;
1399 		sz = (1 + nra) * sdp->swd_bsize - off;
1400 		if (sz > resid)
1401 			sz = resid;
1402 
1403 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1404 			    "vp %p/%p offset 0x%x/0x%x",
1405 			    sdp->swd_vp, vp, byteoff, nbn);
1406 
1407 		/*
1408 		 * now get a buf structure.   note that the vb_buf is
1409 		 * at the front of the nbp structure so that you can
1410 		 * cast pointers between the two structure easily.
1411 		 */
1412 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1413 		buf_init(&nbp->vb_buf);
1414 		nbp->vb_buf.b_flags    = bp->b_flags;
1415 		nbp->vb_buf.b_cflags   = bp->b_cflags;
1416 		nbp->vb_buf.b_oflags   = bp->b_oflags;
1417 		nbp->vb_buf.b_bcount   = sz;
1418 		nbp->vb_buf.b_bufsize  = sz;
1419 		nbp->vb_buf.b_error    = 0;
1420 		nbp->vb_buf.b_data     = addr;
1421 		nbp->vb_buf.b_lblkno   = 0;
1422 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1423 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1424 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1425 		nbp->vb_buf.b_vp       = vp;
1426 		nbp->vb_buf.b_objlock  = vp->v_interlock;
1427 		if (vp->v_type == VBLK) {
1428 			nbp->vb_buf.b_dev = vp->v_rdev;
1429 		}
1430 
1431 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1432 
1433 		/*
1434 		 * Just sort by block number
1435 		 */
1436 		s = splbio();
1437 		if (vnx->vx_error != 0) {
1438 			buf_destroy(&nbp->vb_buf);
1439 			pool_put(&vndbuf_pool, nbp);
1440 			goto out;
1441 		}
1442 		vnx->vx_pending++;
1443 
1444 		/* sort it in and start I/O if we are not over our limit */
1445 		/* XXXAD locking */
1446 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
1447 		sw_reg_start(sdp);
1448 		splx(s);
1449 
1450 		/*
1451 		 * advance to the next I/O
1452 		 */
1453 		byteoff += sz;
1454 		addr += sz;
1455 	}
1456 
1457 	s = splbio();
1458 
1459 out: /* Arrive here at splbio */
1460 	vnx->vx_flags &= ~VX_BUSY;
1461 	if (vnx->vx_pending == 0) {
1462 		error = vnx->vx_error;
1463 		pool_put(&vndxfer_pool, vnx);
1464 		bp->b_error = error;
1465 		biodone(bp);
1466 	}
1467 	splx(s);
1468 }
1469 
1470 /*
1471  * sw_reg_start: start an I/O request on the requested swapdev
1472  *
1473  * => reqs are sorted by b_rawblkno (above)
1474  */
1475 static void
sw_reg_start(struct swapdev * sdp)1476 sw_reg_start(struct swapdev *sdp)
1477 {
1478 	struct buf	*bp;
1479 	struct vnode	*vp;
1480 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1481 
1482 	/* recursion control */
1483 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1484 		return;
1485 
1486 	sdp->swd_flags |= SWF_BUSY;
1487 
1488 	while (sdp->swd_active < sdp->swd_maxactive) {
1489 		bp = bufq_get(sdp->swd_tab);
1490 		if (bp == NULL)
1491 			break;
1492 		sdp->swd_active++;
1493 
1494 		UVMHIST_LOG(pdhist,
1495 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1496 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1497 		vp = bp->b_vp;
1498 		KASSERT(bp->b_objlock == vp->v_interlock);
1499 		if ((bp->b_flags & B_READ) == 0) {
1500 			mutex_enter(vp->v_interlock);
1501 			vp->v_numoutput++;
1502 			mutex_exit(vp->v_interlock);
1503 		}
1504 		VOP_STRATEGY(vp, bp);
1505 	}
1506 	sdp->swd_flags &= ~SWF_BUSY;
1507 }
1508 
1509 /*
1510  * sw_reg_biodone: one of our i/o's has completed
1511  */
1512 static void
sw_reg_biodone(struct buf * bp)1513 sw_reg_biodone(struct buf *bp)
1514 {
1515 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1516 }
1517 
1518 /*
1519  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1520  *
1521  * => note that we can recover the vndbuf struct by casting the buf ptr
1522  */
1523 static void
sw_reg_iodone(struct work * wk,void * dummy)1524 sw_reg_iodone(struct work *wk, void *dummy)
1525 {
1526 	struct vndbuf *vbp = (void *)wk;
1527 	struct vndxfer *vnx = vbp->vb_xfer;
1528 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1529 	struct swapdev	*sdp = vnx->vx_sdp;
1530 	int s, resid, error;
1531 	KASSERT(&vbp->vb_buf.b_work == wk);
1532 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1533 
1534 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1535 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1536 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1537 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1538 
1539 	/*
1540 	 * protect vbp at splbio and update.
1541 	 */
1542 
1543 	s = splbio();
1544 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1545 	pbp->b_resid -= resid;
1546 	vnx->vx_pending--;
1547 
1548 	if (vbp->vb_buf.b_error != 0) {
1549 		/* pass error upward */
1550 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1551 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1552 		vnx->vx_error = error;
1553 	}
1554 
1555 	/*
1556 	 * kill vbp structure
1557 	 */
1558 	buf_destroy(&vbp->vb_buf);
1559 	pool_put(&vndbuf_pool, vbp);
1560 
1561 	/*
1562 	 * wrap up this transaction if it has run to completion or, in
1563 	 * case of an error, when all auxiliary buffers have returned.
1564 	 */
1565 	if (vnx->vx_error != 0) {
1566 		/* pass error upward */
1567 		error = vnx->vx_error;
1568 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1569 			pbp->b_error = error;
1570 			biodone(pbp);
1571 			pool_put(&vndxfer_pool, vnx);
1572 		}
1573 	} else if (pbp->b_resid == 0) {
1574 		KASSERT(vnx->vx_pending == 0);
1575 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1576 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1577 			    pbp, vnx->vx_error, 0, 0);
1578 			biodone(pbp);
1579 			pool_put(&vndxfer_pool, vnx);
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * done!   start next swapdev I/O if one is pending
1585 	 */
1586 	sdp->swd_active--;
1587 	sw_reg_start(sdp);
1588 	splx(s);
1589 }
1590 
1591 
1592 /*
1593  * uvm_swap_alloc: allocate space on swap
1594  *
1595  * => allocation is done "round robin" down the priority list, as we
1596  *	allocate in a priority we "rotate" the circle queue.
1597  * => space can be freed with uvm_swap_free
1598  * => we return the page slot number in /dev/drum (0 == invalid slot)
1599  * => we lock uvm_swap_data_lock
1600  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1601  */
1602 int
uvm_swap_alloc(int * nslots,bool lessok)1603 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1604 {
1605 	struct swapdev *sdp;
1606 	struct swappri *spp;
1607 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1608 
1609 	/*
1610 	 * no swap devices configured yet?   definite failure.
1611 	 */
1612 	if (uvmexp.nswapdev < 1)
1613 		return 0;
1614 
1615 	/*
1616 	 * XXXJAK: BEGIN HACK
1617 	 *
1618 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
1619 	 * too many slots.
1620 	 */
1621 	if (*nslots > BLIST_MAX_ALLOC) {
1622 		if (__predict_false(lessok == false))
1623 			return 0;
1624 		*nslots = BLIST_MAX_ALLOC;
1625 	}
1626 	/* XXXJAK: END HACK */
1627 
1628 	/*
1629 	 * lock data lock, convert slots into blocks, and enter loop
1630 	 */
1631 	mutex_enter(&uvm_swap_data_lock);
1632 
1633 ReTry:	/* XXXMRG */
1634 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1635 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1636 			uint64_t result;
1637 
1638 			/* if it's not enabled, then we can't swap from it */
1639 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1640 				continue;
1641 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1642 				continue;
1643 			result = blist_alloc(sdp->swd_blist, *nslots);
1644 			if (result == BLIST_NONE) {
1645 				continue;
1646 			}
1647 			KASSERT(result < sdp->swd_drumsize);
1648 
1649 			/*
1650 			 * successful allocation!  now rotate the tailq.
1651 			 */
1652 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1653 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1654 			sdp->swd_npginuse += *nslots;
1655 			uvmexp.swpginuse += *nslots;
1656 			mutex_exit(&uvm_swap_data_lock);
1657 			/* done!  return drum slot number */
1658 			UVMHIST_LOG(pdhist,
1659 			    "success!  returning %d slots starting at %d",
1660 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1661 			return (result + sdp->swd_drumoffset);
1662 		}
1663 	}
1664 
1665 	/* XXXMRG: BEGIN HACK */
1666 	if (*nslots > 1 && lessok) {
1667 		*nslots = 1;
1668 		/* XXXMRG: ugh!  blist should support this for us */
1669 		goto ReTry;
1670 	}
1671 	/* XXXMRG: END HACK */
1672 
1673 	mutex_exit(&uvm_swap_data_lock);
1674 	return 0;
1675 }
1676 
1677 /*
1678  * uvm_swapisfull: return true if most of available swap is allocated
1679  * and in use.  we don't count some small portion as it may be inaccessible
1680  * to us at any given moment, for example if there is lock contention or if
1681  * pages are busy.
1682  */
1683 bool
uvm_swapisfull(void)1684 uvm_swapisfull(void)
1685 {
1686 	int swpgonly;
1687 	bool rv;
1688 
1689 	mutex_enter(&uvm_swap_data_lock);
1690 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1691 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1692 	    uvm_swapisfull_factor);
1693 	rv = (swpgonly >= uvmexp.swpgavail);
1694 	mutex_exit(&uvm_swap_data_lock);
1695 
1696 	return (rv);
1697 }
1698 
1699 /*
1700  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1701  *
1702  * => we lock uvm_swap_data_lock
1703  */
1704 void
uvm_swap_markbad(int startslot,int nslots)1705 uvm_swap_markbad(int startslot, int nslots)
1706 {
1707 	struct swapdev *sdp;
1708 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1709 
1710 	mutex_enter(&uvm_swap_data_lock);
1711 	sdp = swapdrum_getsdp(startslot);
1712 	KASSERT(sdp != NULL);
1713 
1714 	/*
1715 	 * we just keep track of how many pages have been marked bad
1716 	 * in this device, to make everything add up in swap_off().
1717 	 * we assume here that the range of slots will all be within
1718 	 * one swap device.
1719 	 */
1720 
1721 	KASSERT(uvmexp.swpgonly >= nslots);
1722 	uvmexp.swpgonly -= nslots;
1723 	sdp->swd_npgbad += nslots;
1724 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1725 	mutex_exit(&uvm_swap_data_lock);
1726 }
1727 
1728 /*
1729  * uvm_swap_free: free swap slots
1730  *
1731  * => this can be all or part of an allocation made by uvm_swap_alloc
1732  * => we lock uvm_swap_data_lock
1733  */
1734 void
uvm_swap_free(int startslot,int nslots)1735 uvm_swap_free(int startslot, int nslots)
1736 {
1737 	struct swapdev *sdp;
1738 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1739 
1740 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1741 	    startslot, 0, 0);
1742 
1743 	/*
1744 	 * ignore attempts to free the "bad" slot.
1745 	 */
1746 
1747 	if (startslot == SWSLOT_BAD) {
1748 		return;
1749 	}
1750 
1751 	/*
1752 	 * convert drum slot offset back to sdp, free the blocks
1753 	 * in the extent, and return.   must hold pri lock to do
1754 	 * lookup and access the extent.
1755 	 */
1756 
1757 	mutex_enter(&uvm_swap_data_lock);
1758 	sdp = swapdrum_getsdp(startslot);
1759 	KASSERT(uvmexp.nswapdev >= 1);
1760 	KASSERT(sdp != NULL);
1761 	KASSERT(sdp->swd_npginuse >= nslots);
1762 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1763 	sdp->swd_npginuse -= nslots;
1764 	uvmexp.swpginuse -= nslots;
1765 	mutex_exit(&uvm_swap_data_lock);
1766 }
1767 
1768 /*
1769  * uvm_swap_put: put any number of pages into a contig place on swap
1770  *
1771  * => can be sync or async
1772  */
1773 
1774 int
uvm_swap_put(int swslot,struct vm_page ** ppsp,int npages,int flags)1775 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1776 {
1777 	int error;
1778 
1779 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1780 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1781 	return error;
1782 }
1783 
1784 /*
1785  * uvm_swap_get: get a single page from swap
1786  *
1787  * => usually a sync op (from fault)
1788  */
1789 
1790 int
uvm_swap_get(struct vm_page * page,int swslot,int flags)1791 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1792 {
1793 	int error;
1794 
1795 	uvmexp.nswget++;
1796 	KASSERT(flags & PGO_SYNCIO);
1797 	if (swslot == SWSLOT_BAD) {
1798 		return EIO;
1799 	}
1800 
1801 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1802 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1803 	if (error == 0) {
1804 
1805 		/*
1806 		 * this page is no longer only in swap.
1807 		 */
1808 
1809 		mutex_enter(&uvm_swap_data_lock);
1810 		KASSERT(uvmexp.swpgonly > 0);
1811 		uvmexp.swpgonly--;
1812 		mutex_exit(&uvm_swap_data_lock);
1813 	}
1814 	return error;
1815 }
1816 
1817 /*
1818  * uvm_swap_io: do an i/o operation to swap
1819  */
1820 
1821 static int
uvm_swap_io(struct vm_page ** pps,int startslot,int npages,int flags)1822 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1823 {
1824 	daddr_t startblk;
1825 	struct	buf *bp;
1826 	vaddr_t kva;
1827 	int	error, mapinflags;
1828 	bool write, async;
1829 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1830 
1831 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1832 	    startslot, npages, flags, 0);
1833 
1834 	write = (flags & B_READ) == 0;
1835 	async = (flags & B_ASYNC) != 0;
1836 
1837 	/*
1838 	 * allocate a buf for the i/o.
1839 	 */
1840 
1841 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1842 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1843 	if (bp == NULL) {
1844 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1845 		return ENOMEM;
1846 	}
1847 
1848 	/*
1849 	 * convert starting drum slot to block number
1850 	 */
1851 
1852 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1853 
1854 	/*
1855 	 * first, map the pages into the kernel.
1856 	 */
1857 
1858 	mapinflags = !write ?
1859 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1860 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1861 	kva = uvm_pagermapin(pps, npages, mapinflags);
1862 
1863 	/*
1864 	 * fill in the bp/sbp.   we currently route our i/o through
1865 	 * /dev/drum's vnode [swapdev_vp].
1866 	 */
1867 
1868 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
1869 	bp->b_flags = (flags & (B_READ|B_ASYNC));
1870 	bp->b_proc = &proc0;	/* XXX */
1871 	bp->b_vnbufs.le_next = NOLIST;
1872 	bp->b_data = (void *)kva;
1873 	bp->b_blkno = startblk;
1874 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1875 
1876 	/*
1877 	 * bump v_numoutput (counter of number of active outputs).
1878 	 */
1879 
1880 	if (write) {
1881 		mutex_enter(swapdev_vp->v_interlock);
1882 		swapdev_vp->v_numoutput++;
1883 		mutex_exit(swapdev_vp->v_interlock);
1884 	}
1885 
1886 	/*
1887 	 * for async ops we must set up the iodone handler.
1888 	 */
1889 
1890 	if (async) {
1891 		bp->b_iodone = uvm_aio_biodone;
1892 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1893 		if (curlwp == uvm.pagedaemon_lwp)
1894 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1895 		else
1896 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1897 	} else {
1898 		bp->b_iodone = NULL;
1899 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1900 	}
1901 	UVMHIST_LOG(pdhist,
1902 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1903 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1904 
1905 	/*
1906 	 * now we start the I/O, and if async, return.
1907 	 */
1908 
1909 	VOP_STRATEGY(swapdev_vp, bp);
1910 	if (async)
1911 		return 0;
1912 
1913 	/*
1914 	 * must be sync i/o.   wait for it to finish
1915 	 */
1916 
1917 	error = biowait(bp);
1918 
1919 	/*
1920 	 * kill the pager mapping
1921 	 */
1922 
1923 	uvm_pagermapout(kva, npages);
1924 
1925 	/*
1926 	 * now dispose of the buf and we're done.
1927 	 */
1928 
1929 	if (write) {
1930 		mutex_enter(swapdev_vp->v_interlock);
1931 		vwakeup(bp);
1932 		mutex_exit(swapdev_vp->v_interlock);
1933 	}
1934 	putiobuf(bp);
1935 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1936 
1937 	return (error);
1938 }
1939