1 /*
2 * drm_irq.c IRQ and vblank support
3 *
4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
5 * \author Gareth Hughes <gareth@valinux.com>
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27 #include <drm/drm_vblank.h>
28 #include <drm/drmP.h>
29 #include <linux/export.h>
30
31 #include "drm_trace.h"
32 #include "drm_internal.h"
33
34 /**
35 * DOC: vblank handling
36 *
37 * Vertical blanking plays a major role in graphics rendering. To achieve
38 * tear-free display, users must synchronize page flips and/or rendering to
39 * vertical blanking. The DRM API offers ioctls to perform page flips
40 * synchronized to vertical blanking and wait for vertical blanking.
41 *
42 * The DRM core handles most of the vertical blanking management logic, which
43 * involves filtering out spurious interrupts, keeping race-free blanking
44 * counters, coping with counter wrap-around and resets and keeping use counts.
45 * It relies on the driver to generate vertical blanking interrupts and
46 * optionally provide a hardware vertical blanking counter.
47 *
48 * Drivers must initialize the vertical blanking handling core with a call to
49 * drm_vblank_init(). Minimally, a driver needs to implement
50 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
51 * drm_crtc_handle_vblank() in it's vblank interrupt handler for working vblank
52 * support.
53 *
54 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
55 * themselves (for instance to handle page flipping operations). The DRM core
56 * maintains a vertical blanking use count to ensure that the interrupts are not
57 * disabled while a user still needs them. To increment the use count, drivers
58 * call drm_crtc_vblank_get() and release the vblank reference again with
59 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
60 * guaranteed to be enabled.
61 *
62 * On many hardware disabling the vblank interrupt cannot be done in a race-free
63 * manner, see &drm_driver.vblank_disable_immediate and
64 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
65 * vblanks after a timer has expired, which can be configured through the
66 * ``vblankoffdelay`` module parameter.
67 */
68
69 /* Retry timestamp calculation up to 3 times to satisfy
70 * drm_timestamp_precision before giving up.
71 */
72 #define DRM_TIMESTAMP_MAXRETRIES 3
73
74 /* Threshold in nanoseconds for detection of redundant
75 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
76 */
77 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
78
79 static bool
80 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
81 ktime_t *tvblank, bool in_vblank_irq);
82
83 unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */
84
85 int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */
86
87 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
88 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
89 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
90 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
91
store_vblank(struct drm_device * dev,unsigned int pipe,u32 vblank_count_inc,ktime_t t_vblank,u32 last)92 static void store_vblank(struct drm_device *dev, unsigned int pipe,
93 u32 vblank_count_inc,
94 ktime_t t_vblank, u32 last)
95 {
96 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
97
98 assert_spin_locked(&dev->vblank_time_lock);
99
100 vblank->last = last;
101
102 write_seqlock(&vblank->seqlock);
103 vblank->time = t_vblank;
104 vblank->count += vblank_count_inc;
105 write_sequnlock(&vblank->seqlock);
106 }
107
108 /*
109 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
110 * if there is no useable hardware frame counter available.
111 */
drm_vblank_no_hw_counter(struct drm_device * dev,unsigned int pipe)112 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
113 {
114 WARN_ON_ONCE(dev->max_vblank_count != 0);
115 return 0;
116 }
117
__get_vblank_counter(struct drm_device * dev,unsigned int pipe)118 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
119 {
120 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
121 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
122
123 if (crtc->funcs->get_vblank_counter)
124 return crtc->funcs->get_vblank_counter(crtc);
125 }
126
127 if (dev->driver->get_vblank_counter)
128 return dev->driver->get_vblank_counter(dev, pipe);
129
130 return drm_vblank_no_hw_counter(dev, pipe);
131 }
132
133 /*
134 * Reset the stored timestamp for the current vblank count to correspond
135 * to the last vblank occurred.
136 *
137 * Only to be called from drm_crtc_vblank_on().
138 *
139 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
140 * device vblank fields.
141 */
drm_reset_vblank_timestamp(struct drm_device * dev,unsigned int pipe)142 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
143 {
144 u32 cur_vblank;
145 bool rc;
146 ktime_t t_vblank;
147 int count = DRM_TIMESTAMP_MAXRETRIES;
148
149 lockmgr(&dev->vblank_time_lock, LK_EXCLUSIVE);
150
151 /*
152 * sample the current counter to avoid random jumps
153 * when drm_vblank_enable() applies the diff
154 */
155 do {
156 cur_vblank = __get_vblank_counter(dev, pipe);
157 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
158 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
159
160 /*
161 * Only reinitialize corresponding vblank timestamp if high-precision query
162 * available and didn't fail. Otherwise reinitialize delayed at next vblank
163 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
164 */
165 if (!rc)
166 t_vblank = 0;
167
168 /*
169 * +1 to make sure user will never see the same
170 * vblank counter value before and after a modeset
171 */
172 store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
173
174 lockmgr(&dev->vblank_time_lock, LK_RELEASE);
175 }
176
177 /*
178 * Call back into the driver to update the appropriate vblank counter
179 * (specified by @pipe). Deal with wraparound, if it occurred, and
180 * update the last read value so we can deal with wraparound on the next
181 * call if necessary.
182 *
183 * Only necessary when going from off->on, to account for frames we
184 * didn't get an interrupt for.
185 *
186 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
187 * device vblank fields.
188 */
drm_update_vblank_count(struct drm_device * dev,unsigned int pipe,bool in_vblank_irq)189 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
190 bool in_vblank_irq)
191 {
192 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
193 u32 cur_vblank, diff;
194 bool rc;
195 ktime_t t_vblank;
196 int count = DRM_TIMESTAMP_MAXRETRIES;
197 int framedur_ns = vblank->framedur_ns;
198
199 /*
200 * Interrupts were disabled prior to this call, so deal with counter
201 * wrap if needed.
202 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events
203 * here if the register is small or we had vblank interrupts off for
204 * a long time.
205 *
206 * We repeat the hardware vblank counter & timestamp query until
207 * we get consistent results. This to prevent races between gpu
208 * updating its hardware counter while we are retrieving the
209 * corresponding vblank timestamp.
210 */
211 do {
212 cur_vblank = __get_vblank_counter(dev, pipe);
213 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
214 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
215
216 if (dev->max_vblank_count != 0) {
217 /* trust the hw counter when it's around */
218 diff = (cur_vblank - vblank->last) & dev->max_vblank_count;
219 } else if (rc && framedur_ns) {
220 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
221
222 /*
223 * Figure out how many vblanks we've missed based
224 * on the difference in the timestamps and the
225 * frame/field duration.
226 */
227 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
228
229 if (diff == 0 && in_vblank_irq)
230 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored."
231 " diff_ns = %lld, framedur_ns = %d)\n",
232 pipe, (long long) diff_ns, framedur_ns);
233 } else {
234 /* some kind of default for drivers w/o accurate vbl timestamping */
235 diff = in_vblank_irq ? 1 : 0;
236 }
237
238 /*
239 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
240 * interval? If so then vblank irqs keep running and it will likely
241 * happen that the hardware vblank counter is not trustworthy as it
242 * might reset at some point in that interval and vblank timestamps
243 * are not trustworthy either in that interval. Iow. this can result
244 * in a bogus diff >> 1 which must be avoided as it would cause
245 * random large forward jumps of the software vblank counter.
246 */
247 if (diff > 1 && (vblank->inmodeset & 0x2)) {
248 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
249 " due to pre-modeset.\n", pipe, diff);
250 diff = 1;
251 }
252
253 DRM_DEBUG_VBL("updating vblank count on crtc %u:"
254 " current=%llu, diff=%u, hw=%u hw_last=%u\n",
255 pipe, vblank->count, diff, cur_vblank, vblank->last);
256
257 if (diff == 0) {
258 WARN_ON_ONCE(cur_vblank != vblank->last);
259 return;
260 }
261
262 /*
263 * Only reinitialize corresponding vblank timestamp if high-precision query
264 * available and didn't fail, or we were called from the vblank interrupt.
265 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
266 * for now, to mark the vblanktimestamp as invalid.
267 */
268 if (!rc && !in_vblank_irq)
269 t_vblank = 0;
270
271 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
272 }
273
drm_vblank_count(struct drm_device * dev,unsigned int pipe)274 static u32 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
275 {
276 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
277
278 if (WARN_ON(pipe >= dev->num_crtcs))
279 return 0;
280
281 return vblank->count;
282 }
283
284 /**
285 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
286 * @crtc: which counter to retrieve
287 *
288 * This function is similar to drm_crtc_vblank_count() but this function
289 * interpolates to handle a race with vblank interrupts using the high precision
290 * timestamping support.
291 *
292 * This is mostly useful for hardware that can obtain the scanout position, but
293 * doesn't have a hardware frame counter.
294 */
drm_crtc_accurate_vblank_count(struct drm_crtc * crtc)295 u32 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
296 {
297 struct drm_device *dev = crtc->dev;
298 unsigned int pipe = drm_crtc_index(crtc);
299 u32 vblank;
300 unsigned long flags;
301
302 WARN_ONCE(drm_debug & DRM_UT_VBL && !dev->driver->get_vblank_timestamp,
303 "This function requires support for accurate vblank timestamps.");
304
305 spin_lock_irqsave(&dev->vblank_time_lock, flags);
306
307 drm_update_vblank_count(dev, pipe, false);
308 vblank = drm_vblank_count(dev, pipe);
309
310 spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
311
312 return vblank;
313 }
314 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
315
__disable_vblank(struct drm_device * dev,unsigned int pipe)316 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
317 {
318 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
319 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
320
321 if (crtc->funcs->disable_vblank) {
322 crtc->funcs->disable_vblank(crtc);
323 return;
324 }
325 }
326
327 dev->driver->disable_vblank(dev, pipe);
328 }
329
330 /*
331 * Disable vblank irq's on crtc, make sure that last vblank count
332 * of hardware and corresponding consistent software vblank counter
333 * are preserved, even if there are any spurious vblank irq's after
334 * disable.
335 */
drm_vblank_disable_and_save(struct drm_device * dev,unsigned int pipe)336 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
337 {
338 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
339 unsigned long irqflags;
340
341 assert_spin_locked(&dev->vbl_lock);
342
343 /* Prevent vblank irq processing while disabling vblank irqs,
344 * so no updates of timestamps or count can happen after we've
345 * disabled. Needed to prevent races in case of delayed irq's.
346 */
347 spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
348
349 /*
350 * Only disable vblank interrupts if they're enabled. This avoids
351 * calling the ->disable_vblank() operation in atomic context with the
352 * hardware potentially runtime suspended.
353 */
354 if (vblank->enabled) {
355 __disable_vblank(dev, pipe);
356 vblank->enabled = false;
357 }
358
359 /*
360 * Always update the count and timestamp to maintain the
361 * appearance that the counter has been ticking all along until
362 * this time. This makes the count account for the entire time
363 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
364 */
365 drm_update_vblank_count(dev, pipe, false);
366
367 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
368 }
369
vblank_disable_fn(struct timer_list * t)370 static void vblank_disable_fn(struct timer_list *t)
371 {
372 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
373 struct drm_device *dev = vblank->dev;
374 unsigned int pipe = vblank->pipe;
375 unsigned long irqflags;
376
377 spin_lock_irqsave(&dev->vbl_lock, irqflags);
378 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
379 DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
380 drm_vblank_disable_and_save(dev, pipe);
381 }
382 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
383 }
384
drm_vblank_cleanup(struct drm_device * dev)385 void drm_vblank_cleanup(struct drm_device *dev)
386 {
387 unsigned int pipe;
388
389 /* Bail if the driver didn't call drm_vblank_init() */
390 if (dev->num_crtcs == 0)
391 return;
392
393 for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
394 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
395
396 WARN_ON(READ_ONCE(vblank->enabled) &&
397 drm_core_check_feature(dev, DRIVER_MODESET));
398
399 del_timer_sync(&vblank->disable_timer);
400 }
401
402 kfree(dev->vblank);
403
404 dev->num_crtcs = 0;
405 }
406
407 /**
408 * drm_vblank_init - initialize vblank support
409 * @dev: DRM device
410 * @num_crtcs: number of CRTCs supported by @dev
411 *
412 * This function initializes vblank support for @num_crtcs display pipelines.
413 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
414 * drivers with a &drm_driver.release callback.
415 *
416 * Returns:
417 * Zero on success or a negative error code on failure.
418 */
drm_vblank_init(struct drm_device * dev,unsigned int num_crtcs)419 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
420 {
421 int ret = -ENOMEM;
422 unsigned int i;
423
424 lockinit(&dev->vbl_lock, "drmvbl", 0, 0);
425 lockinit(&dev->vblank_time_lock, "drmvtl", 0, 0);
426
427 dev->num_crtcs = num_crtcs;
428
429 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
430 if (!dev->vblank)
431 goto err;
432
433 for (i = 0; i < num_crtcs; i++) {
434 struct drm_vblank_crtc *vblank = &dev->vblank[i];
435
436 vblank->dev = dev;
437 vblank->pipe = i;
438 init_waitqueue_head(&vblank->queue);
439 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
440 seqlock_init(&vblank->seqlock);
441 }
442
443 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
444
445 /* Driver specific high-precision vblank timestamping supported? */
446 if (dev->driver->get_vblank_timestamp)
447 DRM_INFO("Driver supports precise vblank timestamp query.\n");
448 else
449 DRM_INFO("No driver support for vblank timestamp query.\n");
450
451 /* Must have precise timestamping for reliable vblank instant disable */
452 if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
453 dev->vblank_disable_immediate = false;
454 DRM_INFO("Setting vblank_disable_immediate to false because "
455 "get_vblank_timestamp == NULL\n");
456 }
457
458 return 0;
459
460 err:
461 dev->num_crtcs = 0;
462 return ret;
463 }
464 EXPORT_SYMBOL(drm_vblank_init);
465
466 /**
467 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
468 * @crtc: which CRTC's vblank waitqueue to retrieve
469 *
470 * This function returns a pointer to the vblank waitqueue for the CRTC.
471 * Drivers can use this to implement vblank waits using wait_event() and related
472 * functions.
473 */
drm_crtc_vblank_waitqueue(struct drm_crtc * crtc)474 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
475 {
476 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
477 }
478 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
479
480
481 /**
482 * drm_calc_timestamping_constants - calculate vblank timestamp constants
483 * @crtc: drm_crtc whose timestamp constants should be updated.
484 * @mode: display mode containing the scanout timings
485 *
486 * Calculate and store various constants which are later needed by vblank and
487 * swap-completion timestamping, e.g, by
488 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
489 * scanout timing, so they take things like panel scaling or other adjustments
490 * into account.
491 */
drm_calc_timestamping_constants(struct drm_crtc * crtc,const struct drm_display_mode * mode)492 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
493 const struct drm_display_mode *mode)
494 {
495 struct drm_device *dev = crtc->dev;
496 unsigned int pipe = drm_crtc_index(crtc);
497 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
498 int linedur_ns = 0, framedur_ns = 0;
499 int dotclock = mode->crtc_clock;
500
501 if (!dev->num_crtcs)
502 return;
503
504 if (WARN_ON(pipe >= dev->num_crtcs))
505 return;
506
507 /* Valid dotclock? */
508 if (dotclock > 0) {
509 int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
510
511 /*
512 * Convert scanline length in pixels and video
513 * dot clock to line duration and frame duration
514 * in nanoseconds:
515 */
516 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
517 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
518
519 /*
520 * Fields of interlaced scanout modes are only half a frame duration.
521 */
522 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
523 framedur_ns /= 2;
524 } else
525 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
526 crtc->base.id);
527
528 vblank->linedur_ns = linedur_ns;
529 vblank->framedur_ns = framedur_ns;
530 vblank->hwmode = *mode;
531
532 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
533 crtc->base.id, mode->crtc_htotal,
534 mode->crtc_vtotal, mode->crtc_vdisplay);
535 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
536 crtc->base.id, dotclock, framedur_ns, linedur_ns);
537 }
538 EXPORT_SYMBOL(drm_calc_timestamping_constants);
539
540 /**
541 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
542 * @dev: DRM device
543 * @pipe: index of CRTC whose vblank timestamp to retrieve
544 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
545 * On return contains true maximum error of timestamp
546 * @vblank_time: Pointer to time which should receive the timestamp
547 * @in_vblank_irq:
548 * True when called from drm_crtc_handle_vblank(). Some drivers
549 * need to apply some workarounds for gpu-specific vblank irq quirks
550 * if flag is set.
551 *
552 * Implements calculation of exact vblank timestamps from given drm_display_mode
553 * timings and current video scanout position of a CRTC. This can be directly
554 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
555 * if &drm_driver.get_scanout_position is implemented.
556 *
557 * The current implementation only handles standard video modes. For double scan
558 * and interlaced modes the driver is supposed to adjust the hardware mode
559 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
560 * match the scanout position reported.
561 *
562 * Note that atomic drivers must call drm_calc_timestamping_constants() before
563 * enabling a CRTC. The atomic helpers already take care of that in
564 * drm_atomic_helper_update_legacy_modeset_state().
565 *
566 * Returns:
567 *
568 * Returns true on success, and false on failure, i.e. when no accurate
569 * timestamp could be acquired.
570 */
drm_calc_vbltimestamp_from_scanoutpos(struct drm_device * dev,unsigned int pipe,int * max_error,ktime_t * vblank_time,bool in_vblank_irq)571 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
572 unsigned int pipe,
573 int *max_error,
574 ktime_t *vblank_time,
575 bool in_vblank_irq)
576 {
577 struct timespec64 ts_etime, ts_vblank_time;
578 ktime_t stime, etime;
579 bool vbl_status;
580 struct drm_crtc *crtc;
581 const struct drm_display_mode *mode;
582 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
583 int vpos, hpos, i;
584 int delta_ns, duration_ns;
585
586 if (!drm_core_check_feature(dev, DRIVER_MODESET))
587 return false;
588
589 crtc = drm_crtc_from_index(dev, pipe);
590
591 if (pipe >= dev->num_crtcs || !crtc) {
592 DRM_ERROR("Invalid crtc %u\n", pipe);
593 return false;
594 }
595
596 /* Scanout position query not supported? Should not happen. */
597 if (!dev->driver->get_scanout_position) {
598 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
599 return false;
600 }
601
602 if (drm_drv_uses_atomic_modeset(dev))
603 mode = &vblank->hwmode;
604 else
605 mode = &crtc->hwmode;
606
607 /* If mode timing undefined, just return as no-op:
608 * Happens during initial modesetting of a crtc.
609 */
610 if (mode->crtc_clock == 0) {
611 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
612 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
613
614 return false;
615 }
616
617 /* Get current scanout position with system timestamp.
618 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
619 * if single query takes longer than max_error nanoseconds.
620 *
621 * This guarantees a tight bound on maximum error if
622 * code gets preempted or delayed for some reason.
623 */
624 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
625 /*
626 * Get vertical and horizontal scanout position vpos, hpos,
627 * and bounding timestamps stime, etime, pre/post query.
628 */
629 vbl_status = dev->driver->get_scanout_position(dev, pipe,
630 in_vblank_irq,
631 &vpos, &hpos,
632 &stime, &etime,
633 mode);
634
635 /* Return as no-op if scanout query unsupported or failed. */
636 if (!vbl_status) {
637 DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
638 pipe);
639 return false;
640 }
641
642 /* Compute uncertainty in timestamp of scanout position query. */
643 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
644
645 /* Accept result with < max_error nsecs timing uncertainty. */
646 if (duration_ns <= *max_error)
647 break;
648 }
649
650 /* Noisy system timing? */
651 if (i == DRM_TIMESTAMP_MAXRETRIES) {
652 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
653 pipe, duration_ns/1000, *max_error/1000, i);
654 }
655
656 /* Return upper bound of timestamp precision error. */
657 *max_error = duration_ns;
658
659 /* Convert scanout position into elapsed time at raw_time query
660 * since start of scanout at first display scanline. delta_ns
661 * can be negative if start of scanout hasn't happened yet.
662 */
663 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
664 mode->crtc_clock);
665
666 /* Subtract time delta from raw timestamp to get final
667 * vblank_time timestamp for end of vblank.
668 */
669 *vblank_time = ktime_sub_ns(etime, delta_ns);
670
671 if ((drm_debug & DRM_UT_VBL) == 0)
672 return true;
673
674 ts_etime = ktime_to_timespec64(etime);
675 ts_vblank_time = ktime_to_timespec64(*vblank_time);
676
677 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
678 pipe, hpos, vpos,
679 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
680 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
681 duration_ns / 1000, i);
682
683 return true;
684 }
685 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
686
687 /**
688 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
689 * vblank interval
690 * @dev: DRM device
691 * @pipe: index of CRTC whose vblank timestamp to retrieve
692 * @tvblank: Pointer to target time which should receive the timestamp
693 * @in_vblank_irq:
694 * True when called from drm_crtc_handle_vblank(). Some drivers
695 * need to apply some workarounds for gpu-specific vblank irq quirks
696 * if flag is set.
697 *
698 * Fetches the system timestamp corresponding to the time of the most recent
699 * vblank interval on specified CRTC. May call into kms-driver to
700 * compute the timestamp with a high-precision GPU specific method.
701 *
702 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
703 * call, i.e., it isn't very precisely locked to the true vblank.
704 *
705 * Returns:
706 * True if timestamp is considered to be very precise, false otherwise.
707 */
708 static bool
drm_get_last_vbltimestamp(struct drm_device * dev,unsigned int pipe,ktime_t * tvblank,bool in_vblank_irq)709 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
710 ktime_t *tvblank, bool in_vblank_irq)
711 {
712 bool ret = false;
713
714 /* Define requested maximum error on timestamps (nanoseconds). */
715 int max_error = (int) drm_timestamp_precision * 1000;
716
717 /* Query driver if possible and precision timestamping enabled. */
718 if (dev->driver->get_vblank_timestamp && (max_error > 0))
719 ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
720 tvblank, in_vblank_irq);
721
722 /* GPU high precision timestamp query unsupported or failed.
723 * Return current monotonic/gettimeofday timestamp as best estimate.
724 */
725 if (!ret)
726 *tvblank = ktime_get();
727
728 return ret;
729 }
730
731 /**
732 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
733 * @crtc: which counter to retrieve
734 *
735 * Fetches the "cooked" vblank count value that represents the number of
736 * vblank events since the system was booted, including lost events due to
737 * modesetting activity. Note that this timer isn't correct against a racing
738 * vblank interrupt (since it only reports the software vblank counter), see
739 * drm_crtc_accurate_vblank_count() for such use-cases.
740 *
741 * Returns:
742 * The software vblank counter.
743 */
drm_crtc_vblank_count(struct drm_crtc * crtc)744 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
745 {
746 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
747 }
748 EXPORT_SYMBOL(drm_crtc_vblank_count);
749
750 /**
751 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
752 * system timestamp corresponding to that vblank counter value.
753 * @dev: DRM device
754 * @pipe: index of CRTC whose counter to retrieve
755 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
756 *
757 * Fetches the "cooked" vblank count value that represents the number of
758 * vblank events since the system was booted, including lost events due to
759 * modesetting activity. Returns corresponding system timestamp of the time
760 * of the vblank interval that corresponds to the current vblank counter value.
761 *
762 * This is the legacy version of drm_crtc_vblank_count_and_time().
763 */
drm_vblank_count_and_time(struct drm_device * dev,unsigned int pipe,ktime_t * vblanktime)764 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
765 ktime_t *vblanktime)
766 {
767 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
768 u64 vblank_count;
769 unsigned int seq;
770
771 if (WARN_ON(pipe >= dev->num_crtcs)) {
772 *vblanktime = 0;
773 return 0;
774 }
775
776 do {
777 seq = read_seqbegin(&vblank->seqlock);
778 vblank_count = vblank->count;
779 *vblanktime = vblank->time;
780 } while (read_seqretry(&vblank->seqlock, seq));
781
782 return vblank_count;
783 }
784
785 /**
786 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
787 * and the system timestamp corresponding to that vblank counter value
788 * @crtc: which counter to retrieve
789 * @vblanktime: Pointer to time to receive the vblank timestamp.
790 *
791 * Fetches the "cooked" vblank count value that represents the number of
792 * vblank events since the system was booted, including lost events due to
793 * modesetting activity. Returns corresponding system timestamp of the time
794 * of the vblank interval that corresponds to the current vblank counter value.
795 */
drm_crtc_vblank_count_and_time(struct drm_crtc * crtc,ktime_t * vblanktime)796 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
797 ktime_t *vblanktime)
798 {
799 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
800 vblanktime);
801 }
802 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
803
send_vblank_event(struct drm_device * dev,struct drm_pending_vblank_event * e,u64 seq,ktime_t now)804 static void send_vblank_event(struct drm_device *dev,
805 struct drm_pending_vblank_event *e,
806 u64 seq, ktime_t now)
807 {
808 struct timespec64 tv;
809
810 switch (e->event.base.type) {
811 case DRM_EVENT_VBLANK:
812 case DRM_EVENT_FLIP_COMPLETE:
813 tv = ktime_to_timespec64(now);
814 e->event.vbl.sequence = seq;
815 /*
816 * e->event is a user space structure, with hardcoded unsigned
817 * 32-bit seconds/microseconds. This is safe as we always use
818 * monotonic timestamps since linux-4.15
819 */
820 e->event.vbl.tv_sec = tv.tv_sec;
821 e->event.vbl.tv_usec = tv.tv_nsec / 1000;
822 break;
823 case DRM_EVENT_CRTC_SEQUENCE:
824 if (seq)
825 e->event.seq.sequence = seq;
826 e->event.seq.time_ns = ktime_to_ns(now);
827 break;
828 }
829 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
830 drm_send_event_locked(dev, &e->base);
831 }
832
833 /**
834 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
835 * @crtc: the source CRTC of the vblank event
836 * @e: the event to send
837 *
838 * A lot of drivers need to generate vblank events for the very next vblank
839 * interrupt. For example when the page flip interrupt happens when the page
840 * flip gets armed, but not when it actually executes within the next vblank
841 * period. This helper function implements exactly the required vblank arming
842 * behaviour.
843 *
844 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
845 * atomic commit must ensure that the next vblank happens at exactly the same
846 * time as the atomic commit is committed to the hardware. This function itself
847 * does **not** protect against the next vblank interrupt racing with either this
848 * function call or the atomic commit operation. A possible sequence could be:
849 *
850 * 1. Driver commits new hardware state into vblank-synchronized registers.
851 * 2. A vblank happens, committing the hardware state. Also the corresponding
852 * vblank interrupt is fired off and fully processed by the interrupt
853 * handler.
854 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
855 * 4. The event is only send out for the next vblank, which is wrong.
856 *
857 * An equivalent race can happen when the driver calls
858 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
859 *
860 * The only way to make this work safely is to prevent the vblank from firing
861 * (and the hardware from committing anything else) until the entire atomic
862 * commit sequence has run to completion. If the hardware does not have such a
863 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
864 * Instead drivers need to manually send out the event from their interrupt
865 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
866 * possible race with the hardware committing the atomic update.
867 *
868 * Caller must hold a vblank reference for the event @e, which will be dropped
869 * when the next vblank arrives.
870 */
drm_crtc_arm_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)871 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
872 struct drm_pending_vblank_event *e)
873 {
874 struct drm_device *dev = crtc->dev;
875 unsigned int pipe = drm_crtc_index(crtc);
876
877 assert_spin_locked(&dev->event_lock);
878
879 e->pipe = pipe;
880 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
881 list_add_tail(&e->base.link, &dev->vblank_event_list);
882 }
883 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
884
885 /**
886 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
887 * @crtc: the source CRTC of the vblank event
888 * @e: the event to send
889 *
890 * Updates sequence # and timestamp on event for the most recently processed
891 * vblank, and sends it to userspace. Caller must hold event lock.
892 *
893 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
894 * situation, especially to send out events for atomic commit operations.
895 */
drm_crtc_send_vblank_event(struct drm_crtc * crtc,struct drm_pending_vblank_event * e)896 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
897 struct drm_pending_vblank_event *e)
898 {
899 struct drm_device *dev = crtc->dev;
900 u64 seq;
901 unsigned int pipe = drm_crtc_index(crtc);
902 ktime_t now;
903
904 if (dev->num_crtcs > 0) {
905 seq = drm_vblank_count_and_time(dev, pipe, &now);
906 } else {
907 seq = 0;
908
909 now = ktime_get();
910 }
911 e->pipe = pipe;
912 send_vblank_event(dev, e, seq, now);
913 }
914 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
915
__enable_vblank(struct drm_device * dev,unsigned int pipe)916 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
917 {
918 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
919 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
920
921 if (crtc->funcs->enable_vblank)
922 return crtc->funcs->enable_vblank(crtc);
923 }
924
925 return dev->driver->enable_vblank(dev, pipe);
926 }
927
drm_vblank_enable(struct drm_device * dev,unsigned int pipe)928 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
929 {
930 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
931 int ret = 0;
932
933 assert_spin_locked(&dev->vbl_lock);
934
935 lockmgr(&dev->vblank_time_lock, LK_EXCLUSIVE);
936
937 if (!vblank->enabled) {
938 /*
939 * Enable vblank irqs under vblank_time_lock protection.
940 * All vblank count & timestamp updates are held off
941 * until we are done reinitializing master counter and
942 * timestamps. Filtercode in drm_handle_vblank() will
943 * prevent double-accounting of same vblank interval.
944 */
945 ret = __enable_vblank(dev, pipe);
946 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
947 if (ret) {
948 atomic_dec(&vblank->refcount);
949 } else {
950 drm_update_vblank_count(dev, pipe, 0);
951 /* drm_update_vblank_count() includes a wmb so we just
952 * need to ensure that the compiler emits the write
953 * to mark the vblank as enabled after the call
954 * to drm_update_vblank_count().
955 */
956 WRITE_ONCE(vblank->enabled, true);
957 }
958 }
959
960 lockmgr(&dev->vblank_time_lock, LK_RELEASE);
961
962 return ret;
963 }
964
drm_vblank_get(struct drm_device * dev,unsigned int pipe)965 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
966 {
967 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
968 unsigned long irqflags;
969 int ret = 0;
970
971 if (!dev->num_crtcs)
972 return -EINVAL;
973
974 if (WARN_ON(pipe >= dev->num_crtcs))
975 return -EINVAL;
976
977 spin_lock_irqsave(&dev->vbl_lock, irqflags);
978 /* Going from 0->1 means we have to enable interrupts again */
979 if (atomic_add_return(1, &vblank->refcount) == 1) {
980 ret = drm_vblank_enable(dev, pipe);
981 } else {
982 if (!vblank->enabled) {
983 atomic_dec(&vblank->refcount);
984 ret = -EINVAL;
985 }
986 }
987 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
988
989 return ret;
990 }
991
992 /**
993 * drm_crtc_vblank_get - get a reference count on vblank events
994 * @crtc: which CRTC to own
995 *
996 * Acquire a reference count on vblank events to avoid having them disabled
997 * while in use.
998 *
999 * Returns:
1000 * Zero on success or a negative error code on failure.
1001 */
drm_crtc_vblank_get(struct drm_crtc * crtc)1002 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1003 {
1004 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1005 }
1006 EXPORT_SYMBOL(drm_crtc_vblank_get);
1007
drm_vblank_put(struct drm_device * dev,unsigned int pipe)1008 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1009 {
1010 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1011
1012 if (WARN_ON(pipe >= dev->num_crtcs))
1013 return;
1014
1015 if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1016 return;
1017
1018 /* Last user schedules interrupt disable */
1019 if (atomic_dec_and_test(&vblank->refcount)) {
1020 if (drm_vblank_offdelay == 0)
1021 return;
1022 else if (drm_vblank_offdelay < 0)
1023 vblank_disable_fn(&vblank->disable_timer);
1024 else if (!dev->vblank_disable_immediate)
1025 mod_timer(&vblank->disable_timer,
1026 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1027 }
1028 }
1029
1030 /**
1031 * drm_crtc_vblank_put - give up ownership of vblank events
1032 * @crtc: which counter to give up
1033 *
1034 * Release ownership of a given vblank counter, turning off interrupts
1035 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1036 */
drm_crtc_vblank_put(struct drm_crtc * crtc)1037 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1038 {
1039 drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1040 }
1041 EXPORT_SYMBOL(drm_crtc_vblank_put);
1042
1043 /**
1044 * drm_wait_one_vblank - wait for one vblank
1045 * @dev: DRM device
1046 * @pipe: CRTC index
1047 *
1048 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1049 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1050 * due to lack of driver support or because the crtc is off.
1051 *
1052 * This is the legacy version of drm_crtc_wait_one_vblank().
1053 */
drm_wait_one_vblank(struct drm_device * dev,unsigned int pipe)1054 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1055 {
1056 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1057 int ret;
1058 u32 last;
1059
1060 if (WARN_ON(pipe >= dev->num_crtcs))
1061 return;
1062
1063 ret = drm_vblank_get(dev, pipe);
1064 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1065 return;
1066
1067 last = drm_vblank_count(dev, pipe);
1068
1069 ret = wait_event_timeout(vblank->queue,
1070 last != drm_vblank_count(dev, pipe),
1071 msecs_to_jiffies(100));
1072
1073 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1074
1075 drm_vblank_put(dev, pipe);
1076 }
1077 EXPORT_SYMBOL(drm_wait_one_vblank);
1078
1079 /**
1080 * drm_crtc_wait_one_vblank - wait for one vblank
1081 * @crtc: DRM crtc
1082 *
1083 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1084 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1085 * due to lack of driver support or because the crtc is off.
1086 */
drm_crtc_wait_one_vblank(struct drm_crtc * crtc)1087 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1088 {
1089 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1090 }
1091 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1092
1093 /**
1094 * drm_crtc_vblank_off - disable vblank events on a CRTC
1095 * @crtc: CRTC in question
1096 *
1097 * Drivers can use this function to shut down the vblank interrupt handling when
1098 * disabling a crtc. This function ensures that the latest vblank frame count is
1099 * stored so that drm_vblank_on can restore it again.
1100 *
1101 * Drivers must use this function when the hardware vblank counter can get
1102 * reset, e.g. when suspending or disabling the @crtc in general.
1103 */
drm_crtc_vblank_off(struct drm_crtc * crtc)1104 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1105 {
1106 struct drm_device *dev = crtc->dev;
1107 unsigned int pipe = drm_crtc_index(crtc);
1108 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1109 struct drm_pending_vblank_event *e, *t;
1110
1111 ktime_t now;
1112 unsigned long irqflags;
1113 u64 seq;
1114
1115 if (WARN_ON(pipe >= dev->num_crtcs))
1116 return;
1117
1118 spin_lock_irqsave(&dev->event_lock, irqflags);
1119
1120 lockmgr(&dev->vbl_lock, LK_EXCLUSIVE);
1121 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1122 pipe, vblank->enabled, vblank->inmodeset);
1123
1124 /* Avoid redundant vblank disables without previous
1125 * drm_crtc_vblank_on(). */
1126 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1127 drm_vblank_disable_and_save(dev, pipe);
1128
1129 wake_up(&vblank->queue);
1130
1131 /*
1132 * Prevent subsequent drm_vblank_get() from re-enabling
1133 * the vblank interrupt by bumping the refcount.
1134 */
1135 if (!vblank->inmodeset) {
1136 atomic_inc(&vblank->refcount);
1137 vblank->inmodeset = 1;
1138 }
1139 lockmgr(&dev->vbl_lock, LK_RELEASE);
1140
1141 /* Send any queued vblank events, lest the natives grow disquiet */
1142 seq = drm_vblank_count_and_time(dev, pipe, &now);
1143
1144 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1145 if (e->pipe != pipe)
1146 continue;
1147 DRM_DEBUG("Sending premature vblank event on disable: "
1148 "wanted %llu, current %llu\n",
1149 e->sequence, seq);
1150 list_del(&e->base.link);
1151 drm_vblank_put(dev, pipe);
1152 send_vblank_event(dev, e, seq, now);
1153 }
1154 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1155
1156 /* Will be reset by the modeset helpers when re-enabling the crtc by
1157 * calling drm_calc_timestamping_constants(). */
1158 vblank->hwmode.crtc_clock = 0;
1159 }
1160 EXPORT_SYMBOL(drm_crtc_vblank_off);
1161
1162 /**
1163 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1164 * @crtc: CRTC in question
1165 *
1166 * Drivers can use this function to reset the vblank state to off at load time.
1167 * Drivers should use this together with the drm_crtc_vblank_off() and
1168 * drm_crtc_vblank_on() functions. The difference compared to
1169 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1170 * and hence doesn't need to call any driver hooks.
1171 *
1172 * This is useful for recovering driver state e.g. on driver load, or on resume.
1173 */
drm_crtc_vblank_reset(struct drm_crtc * crtc)1174 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1175 {
1176 struct drm_device *dev = crtc->dev;
1177 unsigned long irqflags;
1178 unsigned int pipe = drm_crtc_index(crtc);
1179 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1180
1181 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1182 /*
1183 * Prevent subsequent drm_vblank_get() from enabling the vblank
1184 * interrupt by bumping the refcount.
1185 */
1186 if (!vblank->inmodeset) {
1187 atomic_inc(&vblank->refcount);
1188 vblank->inmodeset = 1;
1189 }
1190 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1191
1192 WARN_ON(!list_empty(&dev->vblank_event_list));
1193 }
1194 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1195
1196 /**
1197 * drm_crtc_vblank_on - enable vblank events on a CRTC
1198 * @crtc: CRTC in question
1199 *
1200 * This functions restores the vblank interrupt state captured with
1201 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1202 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1203 * unbalanced and so can also be unconditionally called in driver load code to
1204 * reflect the current hardware state of the crtc.
1205 */
drm_crtc_vblank_on(struct drm_crtc * crtc)1206 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1207 {
1208 struct drm_device *dev = crtc->dev;
1209 unsigned int pipe = drm_crtc_index(crtc);
1210 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1211 unsigned long irqflags;
1212
1213 if (WARN_ON(pipe >= dev->num_crtcs))
1214 return;
1215
1216 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1217 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1218 pipe, vblank->enabled, vblank->inmodeset);
1219
1220 /* Drop our private "prevent drm_vblank_get" refcount */
1221 if (vblank->inmodeset) {
1222 atomic_dec(&vblank->refcount);
1223 vblank->inmodeset = 0;
1224 }
1225
1226 drm_reset_vblank_timestamp(dev, pipe);
1227
1228 /*
1229 * re-enable interrupts if there are users left, or the
1230 * user wishes vblank interrupts to be enabled all the time.
1231 */
1232 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1233 WARN_ON(drm_vblank_enable(dev, pipe));
1234 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1235 }
1236 EXPORT_SYMBOL(drm_crtc_vblank_on);
1237
drm_legacy_vblank_pre_modeset(struct drm_device * dev,unsigned int pipe)1238 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1239 unsigned int pipe)
1240 {
1241 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1242
1243 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1244 if (!dev->num_crtcs)
1245 return;
1246
1247 if (WARN_ON(pipe >= dev->num_crtcs))
1248 return;
1249
1250 /*
1251 * To avoid all the problems that might happen if interrupts
1252 * were enabled/disabled around or between these calls, we just
1253 * have the kernel take a reference on the CRTC (just once though
1254 * to avoid corrupting the count if multiple, mismatch calls occur),
1255 * so that interrupts remain enabled in the interim.
1256 */
1257 if (!vblank->inmodeset) {
1258 vblank->inmodeset = 0x1;
1259 if (drm_vblank_get(dev, pipe) == 0)
1260 vblank->inmodeset |= 0x2;
1261 }
1262 }
1263
drm_legacy_vblank_post_modeset(struct drm_device * dev,unsigned int pipe)1264 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1265 unsigned int pipe)
1266 {
1267 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1268 unsigned long irqflags;
1269
1270 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1271 if (!dev->num_crtcs)
1272 return;
1273
1274 if (WARN_ON(pipe >= dev->num_crtcs))
1275 return;
1276
1277 if (vblank->inmodeset) {
1278 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1279 drm_reset_vblank_timestamp(dev, pipe);
1280 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1281
1282 if (vblank->inmodeset & 0x2)
1283 drm_vblank_put(dev, pipe);
1284
1285 vblank->inmodeset = 0;
1286 }
1287 }
1288
drm_legacy_modeset_ctl_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1289 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1290 struct drm_file *file_priv)
1291 {
1292 struct drm_modeset_ctl *modeset = data;
1293 unsigned int pipe;
1294
1295 /* If drm_vblank_init() hasn't been called yet, just no-op */
1296 if (!dev->num_crtcs)
1297 return 0;
1298
1299 /* KMS drivers handle this internally */
1300 if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1301 return 0;
1302
1303 pipe = modeset->crtc;
1304 if (pipe >= dev->num_crtcs)
1305 return -EINVAL;
1306
1307 switch (modeset->cmd) {
1308 case _DRM_PRE_MODESET:
1309 drm_legacy_vblank_pre_modeset(dev, pipe);
1310 break;
1311 case _DRM_POST_MODESET:
1312 drm_legacy_vblank_post_modeset(dev, pipe);
1313 break;
1314 default:
1315 return -EINVAL;
1316 }
1317
1318 return 0;
1319 }
1320
vblank_passed(u64 seq,u64 ref)1321 static inline bool vblank_passed(u64 seq, u64 ref)
1322 {
1323 return (seq - ref) <= (1 << 23);
1324 }
1325
drm_queue_vblank_event(struct drm_device * dev,unsigned int pipe,u64 req_seq,union drm_wait_vblank * vblwait,struct drm_file * file_priv)1326 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1327 u64 req_seq,
1328 union drm_wait_vblank *vblwait,
1329 struct drm_file *file_priv)
1330 {
1331 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1332 struct drm_pending_vblank_event *e;
1333 ktime_t now;
1334 unsigned long flags;
1335 u64 seq;
1336 int ret;
1337
1338 e = kzalloc(sizeof(*e), GFP_KERNEL);
1339 if (e == NULL) {
1340 ret = -ENOMEM;
1341 goto err_put;
1342 }
1343
1344 e->pipe = pipe;
1345 e->event.base.type = DRM_EVENT_VBLANK;
1346 e->event.base.length = sizeof(e->event.vbl);
1347 e->event.vbl.user_data = vblwait->request.signal;
1348 e->event.vbl.crtc_id = 0;
1349 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1350 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1351 if (crtc)
1352 e->event.vbl.crtc_id = crtc->base.id;
1353 }
1354
1355 spin_lock_irqsave(&dev->event_lock, flags);
1356
1357 /*
1358 * drm_crtc_vblank_off() might have been called after we called
1359 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1360 * vblank disable, so no need for further locking. The reference from
1361 * drm_vblank_get() protects against vblank disable from another source.
1362 */
1363 if (!READ_ONCE(vblank->enabled)) {
1364 ret = -EINVAL;
1365 goto err_unlock;
1366 }
1367
1368 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1369 &e->event.base);
1370
1371 if (ret)
1372 goto err_unlock;
1373
1374 seq = drm_vblank_count_and_time(dev, pipe, &now);
1375
1376 DRM_DEBUG("event on vblank count %llu, current %llu, crtc %u\n",
1377 req_seq, seq, pipe);
1378
1379 trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1380
1381 e->sequence = req_seq;
1382 if (vblank_passed(seq, req_seq)) {
1383 drm_vblank_put(dev, pipe);
1384 send_vblank_event(dev, e, seq, now);
1385 vblwait->reply.sequence = seq;
1386 } else {
1387 /* drm_handle_vblank_events will call drm_vblank_put */
1388 list_add_tail(&e->base.link, &dev->vblank_event_list);
1389 vblwait->reply.sequence = req_seq;
1390 }
1391
1392 spin_unlock_irqrestore(&dev->event_lock, flags);
1393
1394 return 0;
1395
1396 err_unlock:
1397 spin_unlock_irqrestore(&dev->event_lock, flags);
1398 kfree(e);
1399 err_put:
1400 drm_vblank_put(dev, pipe);
1401 return ret;
1402 }
1403
drm_wait_vblank_is_query(union drm_wait_vblank * vblwait)1404 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1405 {
1406 if (vblwait->request.sequence)
1407 return false;
1408
1409 return _DRM_VBLANK_RELATIVE ==
1410 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1411 _DRM_VBLANK_EVENT |
1412 _DRM_VBLANK_NEXTONMISS));
1413 }
1414
1415 /*
1416 * Widen a 32-bit param to 64-bits.
1417 *
1418 * \param narrow 32-bit value (missing upper 32 bits)
1419 * \param near 64-bit value that should be 'close' to near
1420 *
1421 * This function returns a 64-bit value using the lower 32-bits from
1422 * 'narrow' and constructing the upper 32-bits so that the result is
1423 * as close as possible to 'near'.
1424 */
1425
widen_32_to_64(u32 narrow,u64 near)1426 static u64 widen_32_to_64(u32 narrow, u64 near)
1427 {
1428 return near + (s32) (narrow - near);
1429 }
1430
drm_wait_vblank_reply(struct drm_device * dev,unsigned int pipe,struct drm_wait_vblank_reply * reply)1431 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1432 struct drm_wait_vblank_reply *reply)
1433 {
1434 ktime_t now;
1435 struct timespec64 ts;
1436
1437 /*
1438 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1439 * to store the seconds. This is safe as we always use monotonic
1440 * timestamps since linux-4.15.
1441 */
1442 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1443 ts = ktime_to_timespec64(now);
1444 reply->tval_sec = (u32)ts.tv_sec;
1445 reply->tval_usec = ts.tv_nsec / 1000;
1446 }
1447
drm_wait_vblank_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1448 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1449 struct drm_file *file_priv)
1450 {
1451 struct drm_crtc *crtc;
1452 struct drm_vblank_crtc *vblank;
1453 union drm_wait_vblank *vblwait = data;
1454 int ret;
1455 u64 req_seq, seq;
1456 unsigned int pipe_index;
1457 unsigned int flags, pipe, high_pipe;
1458
1459 if (!dev->irq_enabled)
1460 return -EINVAL;
1461
1462 if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1463 return -EINVAL;
1464
1465 if (vblwait->request.type &
1466 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1467 _DRM_VBLANK_HIGH_CRTC_MASK)) {
1468 DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n",
1469 vblwait->request.type,
1470 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1471 _DRM_VBLANK_HIGH_CRTC_MASK));
1472 return -EINVAL;
1473 }
1474
1475 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1476 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1477 if (high_pipe)
1478 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1479 else
1480 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1481
1482 /* Convert lease-relative crtc index into global crtc index */
1483 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1484 pipe = 0;
1485 drm_for_each_crtc(crtc, dev) {
1486 if (drm_lease_held(file_priv, crtc->base.id)) {
1487 if (pipe_index == 0)
1488 break;
1489 pipe_index--;
1490 }
1491 pipe++;
1492 }
1493 } else {
1494 pipe = pipe_index;
1495 }
1496
1497 if (pipe >= dev->num_crtcs)
1498 return -EINVAL;
1499
1500 vblank = &dev->vblank[pipe];
1501
1502 /* If the counter is currently enabled and accurate, short-circuit
1503 * queries to return the cached timestamp of the last vblank.
1504 */
1505 if (dev->vblank_disable_immediate &&
1506 drm_wait_vblank_is_query(vblwait) &&
1507 READ_ONCE(vblank->enabled)) {
1508 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1509 return 0;
1510 }
1511
1512 ret = drm_vblank_get(dev, pipe);
1513 if (ret) {
1514 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1515 return ret;
1516 }
1517 seq = drm_vblank_count(dev, pipe);
1518
1519 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1520 case _DRM_VBLANK_RELATIVE:
1521 req_seq = seq + vblwait->request.sequence;
1522 vblwait->request.sequence = req_seq;
1523 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1524 break;
1525 case _DRM_VBLANK_ABSOLUTE:
1526 req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1527 break;
1528 default:
1529 ret = -EINVAL;
1530 goto done;
1531 }
1532
1533 if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1534 vblank_passed(seq, req_seq)) {
1535 req_seq = seq + 1;
1536 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1537 vblwait->request.sequence = req_seq;
1538 }
1539
1540 if (flags & _DRM_VBLANK_EVENT) {
1541 /* must hold on to the vblank ref until the event fires
1542 * drm_vblank_put will be called asynchronously
1543 */
1544 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1545 }
1546
1547 if (req_seq != seq) {
1548 DRM_DEBUG("waiting on vblank count %llu, crtc %u\n",
1549 req_seq, pipe);
1550 DRM_WAIT_ON(ret, vblank->queue, 3 * HZ,
1551 vblank_passed(drm_vblank_count(dev, pipe),
1552 req_seq) ||
1553 !READ_ONCE(vblank->enabled));
1554 }
1555
1556 if (ret != -EINTR) {
1557 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1558
1559 DRM_DEBUG("crtc %d returning %u to client\n",
1560 pipe, vblwait->reply.sequence);
1561 } else {
1562 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1563 }
1564
1565 done:
1566 drm_vblank_put(dev, pipe);
1567 return ret;
1568 }
1569
drm_handle_vblank_events(struct drm_device * dev,unsigned int pipe)1570 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1571 {
1572 struct drm_pending_vblank_event *e, *t;
1573 ktime_t now;
1574 u64 seq;
1575
1576 assert_spin_locked(&dev->event_lock);
1577
1578 seq = drm_vblank_count_and_time(dev, pipe, &now);
1579
1580 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1581 if (e->pipe != pipe)
1582 continue;
1583 if (!vblank_passed(seq, e->sequence))
1584 continue;
1585
1586 DRM_DEBUG("vblank event on %llu, current %llu\n",
1587 e->sequence, seq);
1588
1589 list_del(&e->base.link);
1590 drm_vblank_put(dev, pipe);
1591 send_vblank_event(dev, e, seq, now);
1592 }
1593
1594 trace_drm_vblank_event(pipe, seq);
1595 }
1596
1597 /**
1598 * drm_handle_vblank - handle a vblank event
1599 * @dev: DRM device
1600 * @pipe: index of CRTC where this event occurred
1601 *
1602 * Drivers should call this routine in their vblank interrupt handlers to
1603 * update the vblank counter and send any signals that may be pending.
1604 *
1605 * This is the legacy version of drm_crtc_handle_vblank().
1606 */
drm_handle_vblank(struct drm_device * dev,unsigned int pipe)1607 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1608 {
1609 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1610 unsigned long irqflags;
1611 bool disable_irq;
1612
1613 if (WARN_ON_ONCE(!dev->num_crtcs))
1614 return false;
1615
1616 if (WARN_ON(pipe >= dev->num_crtcs))
1617 return false;
1618
1619 spin_lock_irqsave(&dev->event_lock, irqflags);
1620
1621 /* Need timestamp lock to prevent concurrent execution with
1622 * vblank enable/disable, as this would cause inconsistent
1623 * or corrupted timestamps and vblank counts.
1624 */
1625 lockmgr(&dev->vblank_time_lock, LK_EXCLUSIVE);
1626
1627 /* Vblank irq handling disabled. Nothing to do. */
1628 if (!vblank->enabled) {
1629 lockmgr(&dev->vblank_time_lock, LK_RELEASE);
1630 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1631 return false;
1632 }
1633
1634 drm_update_vblank_count(dev, pipe, true);
1635
1636 lockmgr(&dev->vblank_time_lock, LK_RELEASE);
1637
1638 wake_up(&vblank->queue);
1639
1640 /* With instant-off, we defer disabling the interrupt until after
1641 * we finish processing the following vblank after all events have
1642 * been signaled. The disable has to be last (after
1643 * drm_handle_vblank_events) so that the timestamp is always accurate.
1644 */
1645 disable_irq = (dev->vblank_disable_immediate &&
1646 drm_vblank_offdelay > 0 &&
1647 !atomic_read(&vblank->refcount));
1648
1649 drm_handle_vblank_events(dev, pipe);
1650
1651 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1652
1653 if (disable_irq)
1654 vblank_disable_fn(&vblank->disable_timer);
1655
1656 return true;
1657 }
1658 EXPORT_SYMBOL(drm_handle_vblank);
1659
1660 /**
1661 * drm_crtc_handle_vblank - handle a vblank event
1662 * @crtc: where this event occurred
1663 *
1664 * Drivers should call this routine in their vblank interrupt handlers to
1665 * update the vblank counter and send any signals that may be pending.
1666 *
1667 * This is the native KMS version of drm_handle_vblank().
1668 *
1669 * Returns:
1670 * True if the event was successfully handled, false on failure.
1671 */
drm_crtc_handle_vblank(struct drm_crtc * crtc)1672 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1673 {
1674 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1675 }
1676 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1677
1678 /*
1679 * Get crtc VBLANK count.
1680 *
1681 * \param dev DRM device
1682 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1683 * \param file_priv drm file private for the user's open file descriptor
1684 */
1685
drm_crtc_get_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1686 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1687 struct drm_file *file_priv)
1688 {
1689 struct drm_crtc *crtc;
1690 struct drm_vblank_crtc *vblank;
1691 int pipe;
1692 struct drm_crtc_get_sequence *get_seq = data;
1693 ktime_t now;
1694 bool vblank_enabled;
1695 int ret;
1696
1697 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1698 return -EINVAL;
1699
1700 if (!dev->irq_enabled)
1701 return -EINVAL;
1702
1703 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1704 if (!crtc)
1705 return -ENOENT;
1706
1707 pipe = drm_crtc_index(crtc);
1708
1709 vblank = &dev->vblank[pipe];
1710 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1711
1712 if (!vblank_enabled) {
1713 ret = drm_crtc_vblank_get(crtc);
1714 if (ret) {
1715 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1716 return ret;
1717 }
1718 }
1719 drm_modeset_lock(&crtc->mutex, NULL);
1720 if (crtc->state)
1721 get_seq->active = crtc->state->enable;
1722 else
1723 get_seq->active = crtc->enabled;
1724 drm_modeset_unlock(&crtc->mutex);
1725 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1726 get_seq->sequence_ns = ktime_to_ns(now);
1727 if (!vblank_enabled)
1728 drm_crtc_vblank_put(crtc);
1729 return 0;
1730 }
1731
1732 /*
1733 * Queue a event for VBLANK sequence
1734 *
1735 * \param dev DRM device
1736 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1737 * \param file_priv drm file private for the user's open file descriptor
1738 */
1739
drm_crtc_queue_sequence_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1740 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1741 struct drm_file *file_priv)
1742 {
1743 struct drm_crtc *crtc;
1744 struct drm_vblank_crtc *vblank;
1745 int pipe;
1746 struct drm_crtc_queue_sequence *queue_seq = data;
1747 ktime_t now;
1748 struct drm_pending_vblank_event *e;
1749 u32 flags;
1750 u64 seq;
1751 u64 req_seq;
1752 int ret;
1753 unsigned long spin_flags;
1754
1755 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1756 return -EINVAL;
1757
1758 if (!dev->irq_enabled)
1759 return -EINVAL;
1760
1761 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
1762 if (!crtc)
1763 return -ENOENT;
1764
1765 flags = queue_seq->flags;
1766 /* Check valid flag bits */
1767 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
1768 DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
1769 return -EINVAL;
1770
1771 pipe = drm_crtc_index(crtc);
1772
1773 vblank = &dev->vblank[pipe];
1774
1775 e = kzalloc(sizeof(*e), GFP_KERNEL);
1776 if (e == NULL)
1777 return -ENOMEM;
1778
1779 ret = drm_crtc_vblank_get(crtc);
1780 if (ret) {
1781 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1782 goto err_free;
1783 }
1784
1785 seq = drm_vblank_count_and_time(dev, pipe, &now);
1786 req_seq = queue_seq->sequence;
1787
1788 if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
1789 req_seq += seq;
1790
1791 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
1792 req_seq = seq + 1;
1793
1794 e->pipe = pipe;
1795 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
1796 e->event.base.length = sizeof(e->event.seq);
1797 e->event.seq.user_data = queue_seq->user_data;
1798
1799 spin_lock_irqsave(&dev->event_lock, spin_flags);
1800
1801 /*
1802 * drm_crtc_vblank_off() might have been called after we called
1803 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1804 * vblank disable, so no need for further locking. The reference from
1805 * drm_crtc_vblank_get() protects against vblank disable from another source.
1806 */
1807 if (!READ_ONCE(vblank->enabled)) {
1808 ret = -EINVAL;
1809 goto err_unlock;
1810 }
1811
1812 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1813 &e->event.base);
1814
1815 if (ret)
1816 goto err_unlock;
1817
1818 e->sequence = req_seq;
1819
1820 if (vblank_passed(seq, req_seq)) {
1821 drm_crtc_vblank_put(crtc);
1822 send_vblank_event(dev, e, seq, now);
1823 queue_seq->sequence = seq;
1824 } else {
1825 /* drm_handle_vblank_events will call drm_vblank_put */
1826 list_add_tail(&e->base.link, &dev->vblank_event_list);
1827 queue_seq->sequence = req_seq;
1828 }
1829
1830 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1831 return 0;
1832
1833 err_unlock:
1834 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
1835 drm_crtc_vblank_put(crtc);
1836 err_free:
1837 kfree(e);
1838 return ret;
1839 }
1840