1 /*	$NetBSD: vfs_vnode.c,v 1.53 2016/07/07 06:55:43 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
67  */
68 
69 /*
70  * The vnode cache subsystem.
71  *
72  * Life-cycle
73  *
74  *	Normally, there are two points where new vnodes are created:
75  *	VOP_CREATE(9) and VOP_LOOKUP(9).  The life-cycle of a vnode
76  *	starts in one of the following ways:
77  *
78  *	- Allocation, via vcache_get(9) or vcache_new(9).
79  *	- Reclamation of inactive vnode, via vget(9).
80  *
81  *	Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
82  *	was another, traditional way.  Currently, only the draining thread
83  *	recycles the vnodes.  This behaviour might be revisited.
84  *
85  *	The life-cycle ends when the last reference is dropped, usually
86  *	in VOP_REMOVE(9).  In such case, VOP_INACTIVE(9) is called to inform
87  *	the file system that vnode is inactive.  Via this call, file system
88  *	indicates whether vnode can be recycled (usually, it checks its own
89  *	references, e.g. count of links, whether the file was removed).
90  *
91  *	Depending on indication, vnode can be put into a free list (cache),
92  *	or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate
93  *	underlying file system from the vnode, and finally destroyed.
94  *
95  * Vnode state
96  *
97  *	Vnode is always in one of six states:
98  *	- MARKER	This is a marker vnode to help list traversal.  It
99  *			will never change its state.
100  *	- LOADING	Vnode is associating underlying file system and not
101  *			yet ready to use.
102  *	- ACTIVE	Vnode has associated underlying file system and is
103  *			ready to use.
104  *	- BLOCKED	Vnode is active but cannot get new references.
105  *	- RECLAIMING	Vnode is disassociating from the underlying file
106  *			system.
107  *	- RECLAIMED	Vnode has disassociated from underlying file system
108  *			and is dead.
109  *
110  *	Valid state changes are:
111  *	LOADING -> ACTIVE
112  *			Vnode has been initialised in vcache_get() or
113  *			vcache_new() and is ready to use.
114  *	ACTIVE -> RECLAIMING
115  *			Vnode starts disassociation from underlying file
116  *			system in vclean().
117  *	RECLAIMING -> RECLAIMED
118  *			Vnode finished disassociation from underlying file
119  *			system in vclean().
120  *	ACTIVE -> BLOCKED
121  *			Either vcache_rekey*() is changing the vnode key or
122  *			vrelel() is about to call VOP_INACTIVE().
123  *	BLOCKED -> ACTIVE
124  *			The block condition is over.
125  *	LOADING -> RECLAIMED
126  *			Either vcache_get() or vcache_new() failed to
127  *			associate the underlying file system or vcache_rekey*()
128  *			drops a vnode used as placeholder.
129  *
130  *	Of these states LOADING, BLOCKED and RECLAIMING are intermediate
131  *	and it is possible to wait for state change.
132  *
133  *	State is protected with v_interlock with one exception:
134  *	to change from LOADING both v_interlock and vcache.lock must be held
135  *	so it is possible to check "state == LOADING" without holding
136  *	v_interlock.  See vcache_get() for details.
137  *
138  * Reference counting
139  *
140  *	Vnode is considered active, if reference count (vnode_t::v_usecount)
141  *	is non-zero.  It is maintained using: vref(9) and vrele(9), as well
142  *	as vput(9), routines.  Common points holding references are e.g.
143  *	file openings, current working directory, mount points, etc.
144  *
145  * Note on v_usecount and its locking
146  *
147  *	At nearly all points it is known that v_usecount could be zero,
148  *	the vnode_t::v_interlock will be held.  To change v_usecount away
149  *	from zero, the interlock must be held.  To change from a non-zero
150  *	value to zero, again the interlock must be held.
151  *
152  *	Changing the usecount from a non-zero value to a non-zero value can
153  *	safely be done using atomic operations, without the interlock held.
154  *
155  */
156 
157 #include <sys/cdefs.h>
158 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.53 2016/07/07 06:55:43 msaitoh Exp $");
159 
160 #define _VFS_VNODE_PRIVATE
161 
162 #include <sys/param.h>
163 #include <sys/kernel.h>
164 
165 #include <sys/atomic.h>
166 #include <sys/buf.h>
167 #include <sys/conf.h>
168 #include <sys/device.h>
169 #include <sys/hash.h>
170 #include <sys/kauth.h>
171 #include <sys/kmem.h>
172 #include <sys/kthread.h>
173 #include <sys/module.h>
174 #include <sys/mount.h>
175 #include <sys/namei.h>
176 #include <sys/syscallargs.h>
177 #include <sys/sysctl.h>
178 #include <sys/systm.h>
179 #include <sys/vnode.h>
180 #include <sys/wapbl.h>
181 #include <sys/fstrans.h>
182 
183 #include <uvm/uvm.h>
184 #include <uvm/uvm_readahead.h>
185 
186 /* Flags to vrelel. */
187 #define	VRELEL_ASYNC_RELE	0x0001	/* Always defer to vrele thread. */
188 
189 enum vcache_state {
190 	VN_MARKER,	/* Stable, used as marker. Will not change. */
191 	VN_LOADING,	/* Intermediate, initialising the fs node. */
192 	VN_ACTIVE,	/* Stable, valid fs node attached. */
193 	VN_BLOCKED,	/* Intermediate, active, no new references allowed. */
194 	VN_RECLAIMING,	/* Intermediate, detaching the fs node. */
195 	VN_RECLAIMED	/* Stable, no fs node attached. */
196 };
197 struct vcache_key {
198 	struct mount *vk_mount;
199 	const void *vk_key;
200 	size_t vk_key_len;
201 };
202 struct vcache_node {
203 	struct vnode vn_vnode;
204 	enum vcache_state vn_state;
205 	SLIST_ENTRY(vcache_node) vn_hash;
206 	struct vcache_key vn_key;
207 };
208 
209 #define VN_TO_VP(node)	((vnode_t *)(node))
210 #define VP_TO_VN(vp)	((struct vcache_node *)(vp))
211 
212 u_int			numvnodes		__cacheline_aligned;
213 
214 /*
215  * There are two free lists: one is for vnodes which have no buffer/page
216  * references and one for those which do (i.e. v_holdcnt is non-zero).
217  * Vnode recycling mechanism first attempts to look into the former list.
218  */
219 static kmutex_t		vnode_free_list_lock	__cacheline_aligned;
220 static vnodelst_t	vnode_free_list		__cacheline_aligned;
221 static vnodelst_t	vnode_hold_list		__cacheline_aligned;
222 static kcondvar_t	vdrain_cv		__cacheline_aligned;
223 
224 static vnodelst_t	vrele_list		__cacheline_aligned;
225 static kmutex_t		vrele_lock		__cacheline_aligned;
226 static kcondvar_t	vrele_cv		__cacheline_aligned;
227 static lwp_t *		vrele_lwp		__cacheline_aligned;
228 static int		vrele_pending		__cacheline_aligned;
229 static int		vrele_gen		__cacheline_aligned;
230 
231 SLIST_HEAD(hashhead, vcache_node);
232 static struct {
233 	kmutex_t	lock;
234 	kcondvar_t	cv;
235 	u_long		hashmask;
236 	struct hashhead	*hashtab;
237 	pool_cache_t	pool;
238 }			vcache			__cacheline_aligned;
239 
240 static int		cleanvnode(void);
241 static struct vcache_node *vcache_alloc(void);
242 static void		vcache_free(struct vcache_node *);
243 static void		vcache_init(void);
244 static void		vcache_reinit(void);
245 static void		vclean(vnode_t *);
246 static void		vrelel(vnode_t *, int);
247 static void		vdrain_thread(void *);
248 static void		vrele_thread(void *);
249 static void		vnpanic(vnode_t *, const char *, ...)
250     __printflike(2, 3);
251 
252 /* Routines having to do with the management of the vnode table. */
253 extern struct mount	*dead_rootmount;
254 extern int		(**dead_vnodeop_p)(void *);
255 extern struct vfsops	dead_vfsops;
256 
257 /* Vnode state operations and diagnostics. */
258 
259 static const char *
vstate_name(enum vcache_state state)260 vstate_name(enum vcache_state state)
261 {
262 
263 	switch (state) {
264 	case VN_MARKER:
265 		return "MARKER";
266 	case VN_LOADING:
267 		return "LOADING";
268 	case VN_ACTIVE:
269 		return "ACTIVE";
270 	case VN_BLOCKED:
271 		return "BLOCKED";
272 	case VN_RECLAIMING:
273 		return "RECLAIMING";
274 	case VN_RECLAIMED:
275 		return "RECLAIMED";
276 	default:
277 		return "ILLEGAL";
278 	}
279 }
280 
281 #if defined(DIAGNOSTIC)
282 
283 #define VSTATE_GET(vp) \
284 	vstate_assert_get((vp), __func__, __LINE__)
285 #define VSTATE_CHANGE(vp, from, to) \
286 	vstate_assert_change((vp), (from), (to), __func__, __LINE__)
287 #define VSTATE_WAIT_STABLE(vp) \
288 	vstate_assert_wait_stable((vp), __func__, __LINE__)
289 #define VSTATE_ASSERT(vp, state) \
290 	vstate_assert((vp), (state), __func__, __LINE__)
291 
292 static void
vstate_assert(vnode_t * vp,enum vcache_state state,const char * func,int line)293 vstate_assert(vnode_t *vp, enum vcache_state state, const char *func, int line)
294 {
295 	struct vcache_node *node = VP_TO_VN(vp);
296 
297 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
298 
299 	if (__predict_true(node->vn_state == state))
300 		return;
301 	vnpanic(vp, "state is %s, expected %s at %s:%d",
302 	    vstate_name(node->vn_state), vstate_name(state), func, line);
303 }
304 
305 static enum vcache_state
vstate_assert_get(vnode_t * vp,const char * func,int line)306 vstate_assert_get(vnode_t *vp, const char *func, int line)
307 {
308 	struct vcache_node *node = VP_TO_VN(vp);
309 
310 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
311 	if (node->vn_state == VN_MARKER)
312 		vnpanic(vp, "state is %s at %s:%d",
313 		    vstate_name(node->vn_state), func, line);
314 
315 	return node->vn_state;
316 }
317 
318 static void
vstate_assert_wait_stable(vnode_t * vp,const char * func,int line)319 vstate_assert_wait_stable(vnode_t *vp, const char *func, int line)
320 {
321 	struct vcache_node *node = VP_TO_VN(vp);
322 
323 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
324 	if (node->vn_state == VN_MARKER)
325 		vnpanic(vp, "state is %s at %s:%d",
326 		    vstate_name(node->vn_state), func, line);
327 
328 	while (node->vn_state != VN_ACTIVE && node->vn_state != VN_RECLAIMED)
329 		cv_wait(&vp->v_cv, vp->v_interlock);
330 
331 	if (node->vn_state == VN_MARKER)
332 		vnpanic(vp, "state is %s at %s:%d",
333 		    vstate_name(node->vn_state), func, line);
334 }
335 
336 static void
vstate_assert_change(vnode_t * vp,enum vcache_state from,enum vcache_state to,const char * func,int line)337 vstate_assert_change(vnode_t *vp, enum vcache_state from, enum vcache_state to,
338     const char *func, int line)
339 {
340 	struct vcache_node *node = VP_TO_VN(vp);
341 
342 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
343 	if (from == VN_LOADING)
344 		KASSERTMSG(mutex_owned(&vcache.lock), "at %s:%d", func, line);
345 
346 	if (from == VN_MARKER)
347 		vnpanic(vp, "from is %s at %s:%d",
348 		    vstate_name(from), func, line);
349 	if (to == VN_MARKER)
350 		vnpanic(vp, "to is %s at %s:%d",
351 		    vstate_name(to), func, line);
352 	if (node->vn_state != from)
353 		vnpanic(vp, "from is %s, expected %s at %s:%d\n",
354 		    vstate_name(node->vn_state), vstate_name(from), func, line);
355 
356 	node->vn_state = to;
357 	if (from == VN_LOADING)
358 		cv_broadcast(&vcache.cv);
359 	if (to == VN_ACTIVE || to == VN_RECLAIMED)
360 		cv_broadcast(&vp->v_cv);
361 }
362 
363 #else /* defined(DIAGNOSTIC) */
364 
365 #define VSTATE_GET(vp) \
366 	(VP_TO_VN((vp))->vn_state)
367 #define VSTATE_CHANGE(vp, from, to) \
368 	vstate_change((vp), (from), (to))
369 #define VSTATE_WAIT_STABLE(vp) \
370 	vstate_wait_stable((vp))
371 #define VSTATE_ASSERT(vp, state)
372 
373 static void
vstate_wait_stable(vnode_t * vp)374 vstate_wait_stable(vnode_t *vp)
375 {
376 	struct vcache_node *node = VP_TO_VN(vp);
377 
378 	while (node->vn_state != VN_ACTIVE && node->vn_state != VN_RECLAIMED)
379 		cv_wait(&vp->v_cv, vp->v_interlock);
380 }
381 
382 static void
vstate_change(vnode_t * vp,enum vcache_state from,enum vcache_state to)383 vstate_change(vnode_t *vp, enum vcache_state from, enum vcache_state to)
384 {
385 	struct vcache_node *node = VP_TO_VN(vp);
386 
387 	node->vn_state = to;
388 	if (from == VN_LOADING)
389 		cv_broadcast(&vcache.cv);
390 	if (to == VN_ACTIVE || to == VN_RECLAIMED)
391 		cv_broadcast(&vp->v_cv);
392 }
393 
394 #endif /* defined(DIAGNOSTIC) */
395 
396 void
vfs_vnode_sysinit(void)397 vfs_vnode_sysinit(void)
398 {
399 	int error __diagused;
400 
401 	dead_rootmount = vfs_mountalloc(&dead_vfsops, NULL);
402 	KASSERT(dead_rootmount != NULL);
403 	dead_rootmount->mnt_iflag = IMNT_MPSAFE;
404 
405 	mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
406 	TAILQ_INIT(&vnode_free_list);
407 	TAILQ_INIT(&vnode_hold_list);
408 	TAILQ_INIT(&vrele_list);
409 
410 	vcache_init();
411 
412 	mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
413 	cv_init(&vdrain_cv, "vdrain");
414 	cv_init(&vrele_cv, "vrele");
415 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
416 	    NULL, NULL, "vdrain");
417 	KASSERTMSG((error == 0), "kthread_create(vdrain) failed: %d", error);
418 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
419 	    NULL, &vrele_lwp, "vrele");
420 	KASSERTMSG((error == 0), "kthread_create(vrele) failed: %d", error);
421 }
422 
423 /*
424  * Allocate a new marker vnode.
425  */
426 vnode_t *
vnalloc_marker(struct mount * mp)427 vnalloc_marker(struct mount *mp)
428 {
429 	struct vcache_node *node;
430 	vnode_t *vp;
431 
432 	node = pool_cache_get(vcache.pool, PR_WAITOK);
433 	memset(node, 0, sizeof(*node));
434 	vp = VN_TO_VP(node);
435 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
436 	vp->v_mount = mp;
437 	vp->v_type = VBAD;
438 	node->vn_state = VN_MARKER;
439 
440 	return vp;
441 }
442 
443 /*
444  * Free a marker vnode.
445  */
446 void
vnfree_marker(vnode_t * vp)447 vnfree_marker(vnode_t *vp)
448 {
449 	struct vcache_node *node;
450 
451 	node = VP_TO_VN(vp);
452 	KASSERT(node->vn_state == VN_MARKER);
453 	uvm_obj_destroy(&vp->v_uobj, true);
454 	pool_cache_put(vcache.pool, node);
455 }
456 
457 /*
458  * Test a vnode for being a marker vnode.
459  */
460 bool
vnis_marker(vnode_t * vp)461 vnis_marker(vnode_t *vp)
462 {
463 
464 	return (VP_TO_VN(vp)->vn_state == VN_MARKER);
465 }
466 
467 /*
468  * cleanvnode: grab a vnode from freelist, clean and free it.
469  *
470  * => Releases vnode_free_list_lock.
471  */
472 static int
cleanvnode(void)473 cleanvnode(void)
474 {
475 	vnode_t *vp;
476 	vnodelst_t *listhd;
477 	struct mount *mp;
478 
479 	KASSERT(mutex_owned(&vnode_free_list_lock));
480 
481 	listhd = &vnode_free_list;
482 try_nextlist:
483 	TAILQ_FOREACH(vp, listhd, v_freelist) {
484 		/*
485 		 * It's safe to test v_usecount and v_iflag
486 		 * without holding the interlock here, since
487 		 * these vnodes should never appear on the
488 		 * lists.
489 		 */
490 		KASSERT(vp->v_usecount == 0);
491 		KASSERT(vp->v_freelisthd == listhd);
492 
493 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
494 			continue;
495 		if (!mutex_tryenter(vp->v_interlock)) {
496 			VOP_UNLOCK(vp);
497 			continue;
498 		}
499 		mp = vp->v_mount;
500 		if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) {
501 			mutex_exit(vp->v_interlock);
502 			VOP_UNLOCK(vp);
503 			continue;
504 		}
505 		break;
506 	}
507 
508 	if (vp == NULL) {
509 		if (listhd == &vnode_free_list) {
510 			listhd = &vnode_hold_list;
511 			goto try_nextlist;
512 		}
513 		mutex_exit(&vnode_free_list_lock);
514 		return EBUSY;
515 	}
516 
517 	/* Remove it from the freelist. */
518 	TAILQ_REMOVE(listhd, vp, v_freelist);
519 	vp->v_freelisthd = NULL;
520 	mutex_exit(&vnode_free_list_lock);
521 
522 	KASSERT(vp->v_usecount == 0);
523 
524 	/*
525 	 * The vnode is still associated with a file system, so we must
526 	 * clean it out before freeing it.  We need to add a reference
527 	 * before doing this.
528 	 */
529 	vp->v_usecount = 1;
530 	vclean(vp);
531 	vrelel(vp, 0);
532 	fstrans_done(mp);
533 
534 	return 0;
535 }
536 
537 /*
538  * Helper thread to keep the number of vnodes below desiredvnodes.
539  */
540 static void
vdrain_thread(void * cookie)541 vdrain_thread(void *cookie)
542 {
543 	int error;
544 
545 	mutex_enter(&vnode_free_list_lock);
546 
547 	for (;;) {
548 		cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz);
549 		while (numvnodes > desiredvnodes) {
550 			error = cleanvnode();
551 			if (error)
552 				kpause("vndsbusy", false, hz, NULL);
553 			mutex_enter(&vnode_free_list_lock);
554 			if (error)
555 				break;
556 		}
557 	}
558 }
559 
560 /*
561  * Remove a vnode from its freelist.
562  */
563 void
vremfree(vnode_t * vp)564 vremfree(vnode_t *vp)
565 {
566 
567 	KASSERT(mutex_owned(vp->v_interlock));
568 	KASSERT(vp->v_usecount == 0);
569 
570 	/*
571 	 * Note that the reference count must not change until
572 	 * the vnode is removed.
573 	 */
574 	mutex_enter(&vnode_free_list_lock);
575 	if (vp->v_holdcnt > 0) {
576 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
577 	} else {
578 		KASSERT(vp->v_freelisthd == &vnode_free_list);
579 	}
580 	TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
581 	vp->v_freelisthd = NULL;
582 	mutex_exit(&vnode_free_list_lock);
583 }
584 
585 /*
586  * vget: get a particular vnode from the free list, increment its reference
587  * count and return it.
588  *
589  * => Must be called with v_interlock held.
590  *
591  * If state is VN_RECLAIMING, the vnode may be eliminated in vgone()/vclean().
592  * In that case, we cannot grab the vnode, so the process is awakened when
593  * the transition is completed, and an error returned to indicate that the
594  * vnode is no longer usable.
595  *
596  * If state is VN_LOADING or VN_BLOCKED, wait until the vnode enters a
597  * stable state (VN_ACTIVE or VN_RECLAIMED).
598  */
599 int
vget(vnode_t * vp,int flags,bool waitok)600 vget(vnode_t *vp, int flags, bool waitok)
601 {
602 
603 	KASSERT(mutex_owned(vp->v_interlock));
604 	KASSERT((flags & ~LK_NOWAIT) == 0);
605 	KASSERT(waitok == ((flags & LK_NOWAIT) == 0));
606 
607 	/*
608 	 * Before adding a reference, we must remove the vnode
609 	 * from its freelist.
610 	 */
611 	if (vp->v_usecount == 0) {
612 		vremfree(vp);
613 		vp->v_usecount = 1;
614 	} else {
615 		atomic_inc_uint(&vp->v_usecount);
616 	}
617 
618 	/*
619 	 * If the vnode is in the process of changing state we wait
620 	 * for the change to complete and take care not to return
621 	 * a clean vnode.
622 	 */
623 	if (! ISSET(flags, LK_NOWAIT))
624 		VSTATE_WAIT_STABLE(vp);
625 	if (VSTATE_GET(vp) == VN_RECLAIMED) {
626 		vrelel(vp, 0);
627 		return ENOENT;
628 	} else if (VSTATE_GET(vp) != VN_ACTIVE) {
629 		KASSERT(ISSET(flags, LK_NOWAIT));
630 		vrelel(vp, 0);
631 		return EBUSY;
632 	}
633 
634 	/*
635 	 * Ok, we got it in good shape.
636 	 */
637 	VSTATE_ASSERT(vp, VN_ACTIVE);
638 	mutex_exit(vp->v_interlock);
639 
640 	return 0;
641 }
642 
643 /*
644  * vput: unlock and release the reference.
645  */
646 void
vput(vnode_t * vp)647 vput(vnode_t *vp)
648 {
649 
650 	VOP_UNLOCK(vp);
651 	vrele(vp);
652 }
653 
654 /*
655  * Try to drop reference on a vnode.  Abort if we are releasing the
656  * last reference.  Note: this _must_ succeed if not the last reference.
657  */
658 static inline bool
vtryrele(vnode_t * vp)659 vtryrele(vnode_t *vp)
660 {
661 	u_int use, next;
662 
663 	for (use = vp->v_usecount;; use = next) {
664 		if (use == 1) {
665 			return false;
666 		}
667 		KASSERT(use > 1);
668 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
669 		if (__predict_true(next == use)) {
670 			return true;
671 		}
672 	}
673 }
674 
675 /*
676  * Vnode release.  If reference count drops to zero, call inactive
677  * routine and either return to freelist or free to the pool.
678  */
679 static void
vrelel(vnode_t * vp,int flags)680 vrelel(vnode_t *vp, int flags)
681 {
682 	bool recycle, defer;
683 	int error;
684 
685 	KASSERT(mutex_owned(vp->v_interlock));
686 	KASSERT(vp->v_freelisthd == NULL);
687 
688 	if (__predict_false(vp->v_op == dead_vnodeop_p &&
689 	    VSTATE_GET(vp) != VN_RECLAIMED)) {
690 		vnpanic(vp, "dead but not clean");
691 	}
692 
693 	/*
694 	 * If not the last reference, just drop the reference count
695 	 * and unlock.
696 	 */
697 	if (vtryrele(vp)) {
698 		mutex_exit(vp->v_interlock);
699 		return;
700 	}
701 	if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
702 		vnpanic(vp, "%s: bad ref count", __func__);
703 	}
704 
705 #ifdef DIAGNOSTIC
706 	if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
707 	    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
708 		vprint("vrelel: missing VOP_CLOSE()", vp);
709 	}
710 #endif
711 
712 	/*
713 	 * If not clean, deactivate the vnode, but preserve
714 	 * our reference across the call to VOP_INACTIVE().
715 	 */
716 	if (VSTATE_GET(vp) != VN_RECLAIMED) {
717 		recycle = false;
718 
719 		/*
720 		 * XXX This ugly block can be largely eliminated if
721 		 * locking is pushed down into the file systems.
722 		 *
723 		 * Defer vnode release to vrele_thread if caller
724 		 * requests it explicitly or is the pagedaemon.
725 		 */
726 		if ((curlwp == uvm.pagedaemon_lwp) ||
727 		    (flags & VRELEL_ASYNC_RELE) != 0) {
728 			defer = true;
729 		} else if (curlwp == vrele_lwp) {
730 			/*
731 			 * We have to try harder.
732 			 */
733 			mutex_exit(vp->v_interlock);
734 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
735 			KASSERTMSG((error == 0), "vn_lock failed: %d", error);
736 			mutex_enter(vp->v_interlock);
737 			defer = false;
738 		} else {
739 			/* If we can't acquire the lock, then defer. */
740 			mutex_exit(vp->v_interlock);
741 			error = vn_lock(vp,
742 			    LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
743 			defer = (error != 0);
744 			mutex_enter(vp->v_interlock);
745 		}
746 
747 		KASSERT(mutex_owned(vp->v_interlock));
748 		KASSERT(! (curlwp == vrele_lwp && defer));
749 
750 		if (defer) {
751 			/*
752 			 * Defer reclaim to the kthread; it's not safe to
753 			 * clean it here.  We donate it our last reference.
754 			 */
755 			mutex_enter(&vrele_lock);
756 			TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
757 			if (++vrele_pending > (desiredvnodes >> 8))
758 				cv_signal(&vrele_cv);
759 			mutex_exit(&vrele_lock);
760 			mutex_exit(vp->v_interlock);
761 			return;
762 		}
763 
764 		/*
765 		 * If the node got another reference while we
766 		 * released the interlock, don't try to inactivate it yet.
767 		 */
768 		if (__predict_false(vtryrele(vp))) {
769 			VOP_UNLOCK(vp);
770 			mutex_exit(vp->v_interlock);
771 			return;
772 		}
773 		VSTATE_CHANGE(vp, VN_ACTIVE, VN_BLOCKED);
774 		mutex_exit(vp->v_interlock);
775 
776 		/*
777 		 * The vnode must not gain another reference while being
778 		 * deactivated.  If VOP_INACTIVE() indicates that
779 		 * the described file has been deleted, then recycle
780 		 * the vnode.
781 		 *
782 		 * Note that VOP_INACTIVE() will drop the vnode lock.
783 		 */
784 		VOP_INACTIVE(vp, &recycle);
785 		if (recycle) {
786 			/* vclean() below will drop the lock. */
787 			if (vn_lock(vp, LK_EXCLUSIVE) != 0)
788 				recycle = false;
789 		}
790 		mutex_enter(vp->v_interlock);
791 		VSTATE_CHANGE(vp, VN_BLOCKED, VN_ACTIVE);
792 		if (!recycle) {
793 			if (vtryrele(vp)) {
794 				mutex_exit(vp->v_interlock);
795 				return;
796 			}
797 		}
798 
799 		/* Take care of space accounting. */
800 		if (vp->v_iflag & VI_EXECMAP) {
801 			atomic_add_int(&uvmexp.execpages,
802 			    -vp->v_uobj.uo_npages);
803 			atomic_add_int(&uvmexp.filepages,
804 			    vp->v_uobj.uo_npages);
805 		}
806 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
807 		vp->v_vflag &= ~VV_MAPPED;
808 
809 		/*
810 		 * Recycle the vnode if the file is now unused (unlinked),
811 		 * otherwise just free it.
812 		 */
813 		if (recycle) {
814 			VSTATE_ASSERT(vp, VN_ACTIVE);
815 			vclean(vp);
816 		}
817 		KASSERT(vp->v_usecount > 0);
818 	}
819 
820 	if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
821 		/* Gained another reference while being reclaimed. */
822 		mutex_exit(vp->v_interlock);
823 		return;
824 	}
825 
826 	if (VSTATE_GET(vp) == VN_RECLAIMED) {
827 		/*
828 		 * It's clean so destroy it.  It isn't referenced
829 		 * anywhere since it has been reclaimed.
830 		 */
831 		KASSERT(vp->v_holdcnt == 0);
832 		KASSERT(vp->v_writecount == 0);
833 		mutex_exit(vp->v_interlock);
834 		vfs_insmntque(vp, NULL);
835 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
836 			spec_node_destroy(vp);
837 		}
838 		vcache_free(VP_TO_VN(vp));
839 	} else {
840 		/*
841 		 * Otherwise, put it back onto the freelist.  It
842 		 * can't be destroyed while still associated with
843 		 * a file system.
844 		 */
845 		mutex_enter(&vnode_free_list_lock);
846 		if (vp->v_holdcnt > 0) {
847 			vp->v_freelisthd = &vnode_hold_list;
848 		} else {
849 			vp->v_freelisthd = &vnode_free_list;
850 		}
851 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
852 		mutex_exit(&vnode_free_list_lock);
853 		mutex_exit(vp->v_interlock);
854 	}
855 }
856 
857 void
vrele(vnode_t * vp)858 vrele(vnode_t *vp)
859 {
860 
861 	if (vtryrele(vp)) {
862 		return;
863 	}
864 	mutex_enter(vp->v_interlock);
865 	vrelel(vp, 0);
866 }
867 
868 /*
869  * Asynchronous vnode release, vnode is released in different context.
870  */
871 void
vrele_async(vnode_t * vp)872 vrele_async(vnode_t *vp)
873 {
874 
875 	if (vtryrele(vp)) {
876 		return;
877 	}
878 	mutex_enter(vp->v_interlock);
879 	vrelel(vp, VRELEL_ASYNC_RELE);
880 }
881 
882 static void
vrele_thread(void * cookie)883 vrele_thread(void *cookie)
884 {
885 	vnodelst_t skip_list;
886 	vnode_t *vp;
887 	struct mount *mp;
888 
889 	TAILQ_INIT(&skip_list);
890 
891 	mutex_enter(&vrele_lock);
892 	for (;;) {
893 		while (TAILQ_EMPTY(&vrele_list)) {
894 			vrele_gen++;
895 			cv_broadcast(&vrele_cv);
896 			cv_timedwait(&vrele_cv, &vrele_lock, hz);
897 			TAILQ_CONCAT(&vrele_list, &skip_list, v_freelist);
898 		}
899 		vp = TAILQ_FIRST(&vrele_list);
900 		mp = vp->v_mount;
901 		TAILQ_REMOVE(&vrele_list, vp, v_freelist);
902 		if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0) {
903 			TAILQ_INSERT_TAIL(&skip_list, vp, v_freelist);
904 			continue;
905 		}
906 		vrele_pending--;
907 		mutex_exit(&vrele_lock);
908 
909 		/*
910 		 * If not the last reference, then ignore the vnode
911 		 * and look for more work.
912 		 */
913 		mutex_enter(vp->v_interlock);
914 		vrelel(vp, 0);
915 		fstrans_done(mp);
916 		mutex_enter(&vrele_lock);
917 	}
918 }
919 
920 void
vrele_flush(void)921 vrele_flush(void)
922 {
923 	int gen;
924 
925 	mutex_enter(&vrele_lock);
926 	gen = vrele_gen;
927 	while (vrele_pending && gen == vrele_gen) {
928 		cv_broadcast(&vrele_cv);
929 		cv_wait(&vrele_cv, &vrele_lock);
930 	}
931 	mutex_exit(&vrele_lock);
932 }
933 
934 /*
935  * Vnode reference, where a reference is already held by some other
936  * object (for example, a file structure).
937  */
938 void
vref(vnode_t * vp)939 vref(vnode_t *vp)
940 {
941 
942 	KASSERT(vp->v_usecount != 0);
943 
944 	atomic_inc_uint(&vp->v_usecount);
945 }
946 
947 /*
948  * Page or buffer structure gets a reference.
949  * Called with v_interlock held.
950  */
951 void
vholdl(vnode_t * vp)952 vholdl(vnode_t *vp)
953 {
954 
955 	KASSERT(mutex_owned(vp->v_interlock));
956 
957 	if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
958 		mutex_enter(&vnode_free_list_lock);
959 		KASSERT(vp->v_freelisthd == &vnode_free_list);
960 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
961 		vp->v_freelisthd = &vnode_hold_list;
962 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
963 		mutex_exit(&vnode_free_list_lock);
964 	}
965 }
966 
967 /*
968  * Page or buffer structure frees a reference.
969  * Called with v_interlock held.
970  */
971 void
holdrelel(vnode_t * vp)972 holdrelel(vnode_t *vp)
973 {
974 
975 	KASSERT(mutex_owned(vp->v_interlock));
976 
977 	if (vp->v_holdcnt <= 0) {
978 		vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
979 	}
980 
981 	vp->v_holdcnt--;
982 	if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
983 		mutex_enter(&vnode_free_list_lock);
984 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
985 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
986 		vp->v_freelisthd = &vnode_free_list;
987 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
988 		mutex_exit(&vnode_free_list_lock);
989 	}
990 }
991 
992 /*
993  * Disassociate the underlying file system from a vnode.
994  *
995  * Must be called with vnode locked and will return unlocked.
996  * Must be called with the interlock held, and will return with it held.
997  */
998 static void
vclean(vnode_t * vp)999 vclean(vnode_t *vp)
1000 {
1001 	lwp_t *l = curlwp;
1002 	bool recycle, active;
1003 	int error;
1004 
1005 	KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
1006 	    VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
1007 	KASSERT(mutex_owned(vp->v_interlock));
1008 	KASSERT(vp->v_usecount != 0);
1009 
1010 	active = (vp->v_usecount > 1);
1011 	/*
1012 	 * Prevent the vnode from being recycled or brought into use
1013 	 * while we clean it out.
1014 	 */
1015 	VSTATE_CHANGE(vp, VN_ACTIVE, VN_RECLAIMING);
1016 	if (vp->v_iflag & VI_EXECMAP) {
1017 		atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
1018 		atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
1019 	}
1020 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
1021 	mutex_exit(vp->v_interlock);
1022 
1023 	/*
1024 	 * Clean out any cached data associated with the vnode.
1025 	 * If purging an active vnode, it must be closed and
1026 	 * deactivated before being reclaimed. Note that the
1027 	 * VOP_INACTIVE will unlock the vnode.
1028 	 */
1029 	error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
1030 	if (error != 0) {
1031 		if (wapbl_vphaswapbl(vp))
1032 			WAPBL_DISCARD(wapbl_vptomp(vp));
1033 		error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
1034 	}
1035 	KASSERTMSG((error == 0), "vinvalbuf failed: %d", error);
1036 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1037 	if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
1038 		 spec_node_revoke(vp);
1039 	}
1040 	if (active) {
1041 		VOP_INACTIVE(vp, &recycle);
1042 	} else {
1043 		/*
1044 		 * Any other processes trying to obtain this lock must first
1045 		 * wait for VN_RECLAIMED, then call the new lock operation.
1046 		 */
1047 		VOP_UNLOCK(vp);
1048 	}
1049 
1050 	/* Disassociate the underlying file system from the vnode. */
1051 	if (VOP_RECLAIM(vp)) {
1052 		vnpanic(vp, "%s: cannot reclaim", __func__);
1053 	}
1054 
1055 	KASSERT(vp->v_data == NULL);
1056 	KASSERT(vp->v_uobj.uo_npages == 0);
1057 
1058 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
1059 		uvm_ra_freectx(vp->v_ractx);
1060 		vp->v_ractx = NULL;
1061 	}
1062 
1063 	/* Purge name cache. */
1064 	cache_purge(vp);
1065 
1066 	/* Move to dead mount. */
1067 	vp->v_vflag &= ~VV_ROOT;
1068 	atomic_inc_uint(&dead_rootmount->mnt_refcnt);
1069 	vfs_insmntque(vp, dead_rootmount);
1070 
1071 	/* Done with purge, notify sleepers of the grim news. */
1072 	mutex_enter(vp->v_interlock);
1073 	vp->v_op = dead_vnodeop_p;
1074 	vp->v_vflag |= VV_LOCKSWORK;
1075 	VSTATE_CHANGE(vp, VN_RECLAIMING, VN_RECLAIMED);
1076 	vp->v_tag = VT_NON;
1077 	KNOTE(&vp->v_klist, NOTE_REVOKE);
1078 
1079 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1080 }
1081 
1082 /*
1083  * Recycle an unused vnode if caller holds the last reference.
1084  */
1085 bool
vrecycle(vnode_t * vp)1086 vrecycle(vnode_t *vp)
1087 {
1088 
1089 	if (vn_lock(vp, LK_EXCLUSIVE) != 0)
1090 		return false;
1091 
1092 	mutex_enter(vp->v_interlock);
1093 
1094 	if (vp->v_usecount != 1) {
1095 		mutex_exit(vp->v_interlock);
1096 		VOP_UNLOCK(vp);
1097 		return false;
1098 	}
1099 	vclean(vp);
1100 	vrelel(vp, 0);
1101 	return true;
1102 }
1103 
1104 /*
1105  * Eliminate all activity associated with the requested vnode
1106  * and with all vnodes aliased to the requested vnode.
1107  */
1108 void
vrevoke(vnode_t * vp)1109 vrevoke(vnode_t *vp)
1110 {
1111 	vnode_t *vq;
1112 	enum vtype type;
1113 	dev_t dev;
1114 
1115 	KASSERT(vp->v_usecount > 0);
1116 
1117 	mutex_enter(vp->v_interlock);
1118 	VSTATE_WAIT_STABLE(vp);
1119 	if (VSTATE_GET(vp) == VN_RECLAIMED) {
1120 		mutex_exit(vp->v_interlock);
1121 		return;
1122 	} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
1123 		atomic_inc_uint(&vp->v_usecount);
1124 		mutex_exit(vp->v_interlock);
1125 		vgone(vp);
1126 		return;
1127 	} else {
1128 		dev = vp->v_rdev;
1129 		type = vp->v_type;
1130 		mutex_exit(vp->v_interlock);
1131 	}
1132 
1133 	while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
1134 		vgone(vq);
1135 	}
1136 }
1137 
1138 /*
1139  * Eliminate all activity associated with a vnode in preparation for
1140  * reuse.  Drops a reference from the vnode.
1141  */
1142 void
vgone(vnode_t * vp)1143 vgone(vnode_t *vp)
1144 {
1145 
1146 	if (vn_lock(vp, LK_EXCLUSIVE) != 0) {
1147 		VSTATE_ASSERT(vp, VN_RECLAIMED);
1148 		vrele(vp);
1149 	}
1150 
1151 	mutex_enter(vp->v_interlock);
1152 	vclean(vp);
1153 	vrelel(vp, 0);
1154 }
1155 
1156 static inline uint32_t
vcache_hash(const struct vcache_key * key)1157 vcache_hash(const struct vcache_key *key)
1158 {
1159 	uint32_t hash = HASH32_BUF_INIT;
1160 
1161 	hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
1162 	hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
1163 	return hash;
1164 }
1165 
1166 static void
vcache_init(void)1167 vcache_init(void)
1168 {
1169 
1170 	vcache.pool = pool_cache_init(sizeof(struct vcache_node), 0, 0, 0,
1171 	    "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
1172 	KASSERT(vcache.pool != NULL);
1173 	mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE);
1174 	cv_init(&vcache.cv, "vcache");
1175 	vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
1176 	    &vcache.hashmask);
1177 }
1178 
1179 static void
vcache_reinit(void)1180 vcache_reinit(void)
1181 {
1182 	int i;
1183 	uint32_t hash;
1184 	u_long oldmask, newmask;
1185 	struct hashhead *oldtab, *newtab;
1186 	struct vcache_node *node;
1187 
1188 	newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
1189 	mutex_enter(&vcache.lock);
1190 	oldtab = vcache.hashtab;
1191 	oldmask = vcache.hashmask;
1192 	vcache.hashtab = newtab;
1193 	vcache.hashmask = newmask;
1194 	for (i = 0; i <= oldmask; i++) {
1195 		while ((node = SLIST_FIRST(&oldtab[i])) != NULL) {
1196 			SLIST_REMOVE(&oldtab[i], node, vcache_node, vn_hash);
1197 			hash = vcache_hash(&node->vn_key);
1198 			SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask],
1199 			    node, vn_hash);
1200 		}
1201 	}
1202 	mutex_exit(&vcache.lock);
1203 	hashdone(oldtab, HASH_SLIST, oldmask);
1204 }
1205 
1206 static inline struct vcache_node *
vcache_hash_lookup(const struct vcache_key * key,uint32_t hash)1207 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
1208 {
1209 	struct hashhead *hashp;
1210 	struct vcache_node *node;
1211 
1212 	KASSERT(mutex_owned(&vcache.lock));
1213 
1214 	hashp = &vcache.hashtab[hash & vcache.hashmask];
1215 	SLIST_FOREACH(node, hashp, vn_hash) {
1216 		if (key->vk_mount != node->vn_key.vk_mount)
1217 			continue;
1218 		if (key->vk_key_len != node->vn_key.vk_key_len)
1219 			continue;
1220 		if (memcmp(key->vk_key, node->vn_key.vk_key, key->vk_key_len))
1221 			continue;
1222 		return node;
1223 	}
1224 	return NULL;
1225 }
1226 
1227 /*
1228  * Allocate a new, uninitialized vcache node.
1229  */
1230 static struct vcache_node *
vcache_alloc(void)1231 vcache_alloc(void)
1232 {
1233 	struct vcache_node *node;
1234 	vnode_t *vp;
1235 
1236 	node = pool_cache_get(vcache.pool, PR_WAITOK);
1237 	memset(node, 0, sizeof(*node));
1238 
1239 	/* SLIST_INIT(&node->vn_hash); */
1240 
1241 	vp = VN_TO_VP(node);
1242 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
1243 	cv_init(&vp->v_cv, "vnode");
1244 	/* LIST_INIT(&vp->v_nclist); */
1245 	/* LIST_INIT(&vp->v_dnclist); */
1246 
1247 	mutex_enter(&vnode_free_list_lock);
1248 	numvnodes++;
1249 	if (numvnodes > desiredvnodes + desiredvnodes / 10)
1250 		cv_signal(&vdrain_cv);
1251 	mutex_exit(&vnode_free_list_lock);
1252 
1253 	rw_init(&vp->v_lock);
1254 	vp->v_usecount = 1;
1255 	vp->v_type = VNON;
1256 	vp->v_size = vp->v_writesize = VSIZENOTSET;
1257 
1258 	node->vn_state = VN_LOADING;
1259 
1260 	return node;
1261 }
1262 
1263 /*
1264  * Free an unused, unreferenced vcache node.
1265  */
1266 static void
vcache_free(struct vcache_node * node)1267 vcache_free(struct vcache_node *node)
1268 {
1269 	vnode_t *vp;
1270 
1271 	vp = VN_TO_VP(node);
1272 
1273 	KASSERT(vp->v_usecount == 0);
1274 
1275 	rw_destroy(&vp->v_lock);
1276 	mutex_enter(&vnode_free_list_lock);
1277 	numvnodes--;
1278 	mutex_exit(&vnode_free_list_lock);
1279 
1280 	uvm_obj_destroy(&vp->v_uobj, true);
1281 	cv_destroy(&vp->v_cv);
1282 	pool_cache_put(vcache.pool, node);
1283 }
1284 
1285 /*
1286  * Get a vnode / fs node pair by key and return it referenced through vpp.
1287  */
1288 int
vcache_get(struct mount * mp,const void * key,size_t key_len,struct vnode ** vpp)1289 vcache_get(struct mount *mp, const void *key, size_t key_len,
1290     struct vnode **vpp)
1291 {
1292 	int error;
1293 	uint32_t hash;
1294 	const void *new_key;
1295 	struct vnode *vp;
1296 	struct vcache_key vcache_key;
1297 	struct vcache_node *node, *new_node;
1298 
1299 	new_key = NULL;
1300 	*vpp = NULL;
1301 
1302 	vcache_key.vk_mount = mp;
1303 	vcache_key.vk_key = key;
1304 	vcache_key.vk_key_len = key_len;
1305 	hash = vcache_hash(&vcache_key);
1306 
1307 again:
1308 	mutex_enter(&vcache.lock);
1309 	node = vcache_hash_lookup(&vcache_key, hash);
1310 
1311 	/* If found, take a reference or retry. */
1312 	if (__predict_true(node != NULL)) {
1313 		/*
1314 		 * If the vnode is loading we cannot take the v_interlock
1315 		 * here as it might change during load (see uvm_obj_setlock()).
1316 		 * As changing state from VN_LOADING requires both vcache.lock
1317 		 * and v_interlock it is safe to test with vcache.lock held.
1318 		 *
1319 		 * Wait for vnodes changing state from VN_LOADING and retry.
1320 		 */
1321 		if (__predict_false(node->vn_state == VN_LOADING)) {
1322 			cv_wait(&vcache.cv, &vcache.lock);
1323 			mutex_exit(&vcache.lock);
1324 			goto again;
1325 		}
1326 		vp = VN_TO_VP(node);
1327 		mutex_enter(vp->v_interlock);
1328 		mutex_exit(&vcache.lock);
1329 		error = vget(vp, 0, true /* wait */);
1330 		if (error == ENOENT)
1331 			goto again;
1332 		if (error == 0)
1333 			*vpp = vp;
1334 		KASSERT((error != 0) == (*vpp == NULL));
1335 		return error;
1336 	}
1337 	mutex_exit(&vcache.lock);
1338 
1339 	/* Allocate and initialize a new vcache / vnode pair. */
1340 	error = vfs_busy(mp, NULL);
1341 	if (error)
1342 		return error;
1343 	new_node = vcache_alloc();
1344 	new_node->vn_key = vcache_key;
1345 	vp = VN_TO_VP(new_node);
1346 	mutex_enter(&vcache.lock);
1347 	node = vcache_hash_lookup(&vcache_key, hash);
1348 	if (node == NULL) {
1349 		SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
1350 		    new_node, vn_hash);
1351 		node = new_node;
1352 	}
1353 
1354 	/* If another thread beat us inserting this node, retry. */
1355 	if (node != new_node) {
1356 		mutex_enter(vp->v_interlock);
1357 		VSTATE_CHANGE(vp, VN_LOADING, VN_RECLAIMED);
1358 		mutex_exit(&vcache.lock);
1359 		vrelel(vp, 0);
1360 		vfs_unbusy(mp, false, NULL);
1361 		goto again;
1362 	}
1363 	mutex_exit(&vcache.lock);
1364 
1365 	/* Load the fs node.  Exclusive as new_node is VN_LOADING. */
1366 	error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
1367 	if (error) {
1368 		mutex_enter(&vcache.lock);
1369 		SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
1370 		    new_node, vcache_node, vn_hash);
1371 		mutex_enter(vp->v_interlock);
1372 		VSTATE_CHANGE(vp, VN_LOADING, VN_RECLAIMED);
1373 		mutex_exit(&vcache.lock);
1374 		vrelel(vp, 0);
1375 		vfs_unbusy(mp, false, NULL);
1376 		KASSERT(*vpp == NULL);
1377 		return error;
1378 	}
1379 	KASSERT(new_key != NULL);
1380 	KASSERT(memcmp(key, new_key, key_len) == 0);
1381 	KASSERT(vp->v_op != NULL);
1382 	vfs_insmntque(vp, mp);
1383 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1384 		vp->v_vflag |= VV_MPSAFE;
1385 	vfs_unbusy(mp, true, NULL);
1386 
1387 	/* Finished loading, finalize node. */
1388 	mutex_enter(&vcache.lock);
1389 	new_node->vn_key.vk_key = new_key;
1390 	mutex_enter(vp->v_interlock);
1391 	VSTATE_CHANGE(vp, VN_LOADING, VN_ACTIVE);
1392 	mutex_exit(vp->v_interlock);
1393 	mutex_exit(&vcache.lock);
1394 	*vpp = vp;
1395 	return 0;
1396 }
1397 
1398 /*
1399  * Create a new vnode / fs node pair and return it referenced through vpp.
1400  */
1401 int
vcache_new(struct mount * mp,struct vnode * dvp,struct vattr * vap,kauth_cred_t cred,struct vnode ** vpp)1402 vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap,
1403     kauth_cred_t cred, struct vnode **vpp)
1404 {
1405 	int error;
1406 	uint32_t hash;
1407 	struct vnode *ovp, *vp;
1408 	struct vcache_node *new_node;
1409 	struct vcache_node *old_node __diagused;
1410 
1411 	*vpp = NULL;
1412 
1413 	/* Allocate and initialize a new vcache / vnode pair. */
1414 	error = vfs_busy(mp, NULL);
1415 	if (error)
1416 		return error;
1417 	new_node = vcache_alloc();
1418 	new_node->vn_key.vk_mount = mp;
1419 	vp = VN_TO_VP(new_node);
1420 
1421 	/* Create and load the fs node. */
1422 	error = VFS_NEWVNODE(mp, dvp, vp, vap, cred,
1423 	    &new_node->vn_key.vk_key_len, &new_node->vn_key.vk_key);
1424 	if (error) {
1425 		mutex_enter(&vcache.lock);
1426 		mutex_enter(vp->v_interlock);
1427 		VSTATE_CHANGE(vp, VN_LOADING, VN_RECLAIMED);
1428 		mutex_exit(&vcache.lock);
1429 		vrelel(vp, 0);
1430 		vfs_unbusy(mp, false, NULL);
1431 		KASSERT(*vpp == NULL);
1432 		return error;
1433 	}
1434 	KASSERT(new_node->vn_key.vk_key != NULL);
1435 	KASSERT(vp->v_op != NULL);
1436 	hash = vcache_hash(&new_node->vn_key);
1437 
1438 	/* Wait for previous instance to be reclaimed, then insert new node. */
1439 	mutex_enter(&vcache.lock);
1440 	while ((old_node = vcache_hash_lookup(&new_node->vn_key, hash))) {
1441 		ovp = VN_TO_VP(old_node);
1442 		mutex_enter(ovp->v_interlock);
1443 		mutex_exit(&vcache.lock);
1444 		error = vget(ovp, 0, true /* wait */);
1445 		KASSERT(error == ENOENT);
1446 		mutex_enter(&vcache.lock);
1447 	}
1448 	SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
1449 	    new_node, vn_hash);
1450 	mutex_exit(&vcache.lock);
1451 	vfs_insmntque(vp, mp);
1452 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1453 		vp->v_vflag |= VV_MPSAFE;
1454 	vfs_unbusy(mp, true, NULL);
1455 
1456 	/* Finished loading, finalize node. */
1457 	mutex_enter(&vcache.lock);
1458 	mutex_enter(vp->v_interlock);
1459 	VSTATE_CHANGE(vp, VN_LOADING, VN_ACTIVE);
1460 	mutex_exit(&vcache.lock);
1461 	mutex_exit(vp->v_interlock);
1462 	*vpp = vp;
1463 	return 0;
1464 }
1465 
1466 /*
1467  * Prepare key change: lock old and new cache node.
1468  * Return an error if the new node already exists.
1469  */
1470 int
vcache_rekey_enter(struct mount * mp,struct vnode * vp,const void * old_key,size_t old_key_len,const void * new_key,size_t new_key_len)1471 vcache_rekey_enter(struct mount *mp, struct vnode *vp,
1472     const void *old_key, size_t old_key_len,
1473     const void *new_key, size_t new_key_len)
1474 {
1475 	uint32_t old_hash, new_hash;
1476 	struct vcache_key old_vcache_key, new_vcache_key;
1477 	struct vcache_node *node, *new_node;
1478 	struct vnode *tvp;
1479 
1480 	old_vcache_key.vk_mount = mp;
1481 	old_vcache_key.vk_key = old_key;
1482 	old_vcache_key.vk_key_len = old_key_len;
1483 	old_hash = vcache_hash(&old_vcache_key);
1484 
1485 	new_vcache_key.vk_mount = mp;
1486 	new_vcache_key.vk_key = new_key;
1487 	new_vcache_key.vk_key_len = new_key_len;
1488 	new_hash = vcache_hash(&new_vcache_key);
1489 
1490 	new_node = vcache_alloc();
1491 	new_node->vn_key = new_vcache_key;
1492 	tvp = VN_TO_VP(new_node);
1493 
1494 	/* Insert locked new node used as placeholder. */
1495 	mutex_enter(&vcache.lock);
1496 	node = vcache_hash_lookup(&new_vcache_key, new_hash);
1497 	if (node != NULL) {
1498 		mutex_enter(tvp->v_interlock);
1499 		VSTATE_CHANGE(tvp, VN_LOADING, VN_RECLAIMED);
1500 		mutex_exit(&vcache.lock);
1501 		vrelel(tvp, 0);
1502 		return EEXIST;
1503 	}
1504 	SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
1505 	    new_node, vn_hash);
1506 
1507 	/* Lock old node. */
1508 	node = vcache_hash_lookup(&old_vcache_key, old_hash);
1509 	KASSERT(node != NULL);
1510 	KASSERT(VN_TO_VP(node) == vp);
1511 	mutex_enter(vp->v_interlock);
1512 	VSTATE_CHANGE(vp, VN_ACTIVE, VN_BLOCKED);
1513 	node->vn_key = old_vcache_key;
1514 	mutex_exit(vp->v_interlock);
1515 	mutex_exit(&vcache.lock);
1516 	return 0;
1517 }
1518 
1519 /*
1520  * Key change complete: remove old node and unlock new node.
1521  */
1522 void
vcache_rekey_exit(struct mount * mp,struct vnode * vp,const void * old_key,size_t old_key_len,const void * new_key,size_t new_key_len)1523 vcache_rekey_exit(struct mount *mp, struct vnode *vp,
1524     const void *old_key, size_t old_key_len,
1525     const void *new_key, size_t new_key_len)
1526 {
1527 	uint32_t old_hash, new_hash;
1528 	struct vcache_key old_vcache_key, new_vcache_key;
1529 	struct vcache_node *old_node, *new_node;
1530 	struct vnode *tvp;
1531 
1532 	old_vcache_key.vk_mount = mp;
1533 	old_vcache_key.vk_key = old_key;
1534 	old_vcache_key.vk_key_len = old_key_len;
1535 	old_hash = vcache_hash(&old_vcache_key);
1536 
1537 	new_vcache_key.vk_mount = mp;
1538 	new_vcache_key.vk_key = new_key;
1539 	new_vcache_key.vk_key_len = new_key_len;
1540 	new_hash = vcache_hash(&new_vcache_key);
1541 
1542 	mutex_enter(&vcache.lock);
1543 
1544 	/* Lookup old and new node. */
1545 	old_node = vcache_hash_lookup(&old_vcache_key, old_hash);
1546 	KASSERT(old_node != NULL);
1547 	KASSERT(VN_TO_VP(old_node) == vp);
1548 	mutex_enter(vp->v_interlock);
1549 	VSTATE_ASSERT(vp, VN_BLOCKED);
1550 
1551 	new_node = vcache_hash_lookup(&new_vcache_key, new_hash);
1552 	KASSERT(new_node != NULL);
1553 	KASSERT(new_node->vn_key.vk_key_len == new_key_len);
1554 	tvp = VN_TO_VP(new_node);
1555 	mutex_enter(tvp->v_interlock);
1556 	VSTATE_ASSERT(VN_TO_VP(new_node), VN_LOADING);
1557 
1558 	/* Rekey old node and put it onto its new hashlist. */
1559 	old_node->vn_key = new_vcache_key;
1560 	if (old_hash != new_hash) {
1561 		SLIST_REMOVE(&vcache.hashtab[old_hash & vcache.hashmask],
1562 		    old_node, vcache_node, vn_hash);
1563 		SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
1564 		    old_node, vn_hash);
1565 	}
1566 	VSTATE_CHANGE(vp, VN_BLOCKED, VN_ACTIVE);
1567 	mutex_exit(vp->v_interlock);
1568 
1569 	/* Remove new node used as placeholder. */
1570 	SLIST_REMOVE(&vcache.hashtab[new_hash & vcache.hashmask],
1571 	    new_node, vcache_node, vn_hash);
1572 	VSTATE_CHANGE(tvp, VN_LOADING, VN_RECLAIMED);
1573 	mutex_exit(&vcache.lock);
1574 	vrelel(tvp, 0);
1575 }
1576 
1577 /*
1578  * Remove a vnode / fs node pair from the cache.
1579  */
1580 void
vcache_remove(struct mount * mp,const void * key,size_t key_len)1581 vcache_remove(struct mount *mp, const void *key, size_t key_len)
1582 {
1583 	uint32_t hash;
1584 	struct vcache_key vcache_key;
1585 	struct vcache_node *node;
1586 
1587 	vcache_key.vk_mount = mp;
1588 	vcache_key.vk_key = key;
1589 	vcache_key.vk_key_len = key_len;
1590 	hash = vcache_hash(&vcache_key);
1591 
1592 	mutex_enter(&vcache.lock);
1593 	node = vcache_hash_lookup(&vcache_key, hash);
1594 	KASSERT(node != NULL);
1595 	SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
1596 	    node, vcache_node, vn_hash);
1597 	mutex_exit(&vcache.lock);
1598 }
1599 
1600 /*
1601  * Print a vcache node.
1602  */
1603 void
vcache_print(vnode_t * vp,const char * prefix,void (* pr)(const char *,...))1604 vcache_print(vnode_t *vp, const char *prefix, void (*pr)(const char *, ...))
1605 {
1606 	int n;
1607 	const uint8_t *cp;
1608 	struct vcache_node *node;
1609 
1610 	node = VP_TO_VN(vp);
1611 	n = node->vn_key.vk_key_len;
1612 	cp = node->vn_key.vk_key;
1613 
1614 	(*pr)("%sstate %s, key(%d)", prefix, vstate_name(node->vn_state), n);
1615 
1616 	while (n-- > 0)
1617 		(*pr)(" %02x", *cp++);
1618 	(*pr)("\n");
1619 }
1620 
1621 /*
1622  * Update outstanding I/O count and do wakeup if requested.
1623  */
1624 void
vwakeup(struct buf * bp)1625 vwakeup(struct buf *bp)
1626 {
1627 	vnode_t *vp;
1628 
1629 	if ((vp = bp->b_vp) == NULL)
1630 		return;
1631 
1632 	KASSERT(bp->b_objlock == vp->v_interlock);
1633 	KASSERT(mutex_owned(bp->b_objlock));
1634 
1635 	if (--vp->v_numoutput < 0)
1636 		vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
1637 	if (vp->v_numoutput == 0)
1638 		cv_broadcast(&vp->v_cv);
1639 }
1640 
1641 /*
1642  * Test a vnode for being or becoming dead.  Returns one of:
1643  * EBUSY:  vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
1644  * ENOENT: vnode is dead.
1645  * 0:      otherwise.
1646  *
1647  * Whenever this function returns a non-zero value all future
1648  * calls will also return a non-zero value.
1649  */
1650 int
vdead_check(struct vnode * vp,int flags)1651 vdead_check(struct vnode *vp, int flags)
1652 {
1653 
1654 	KASSERT(mutex_owned(vp->v_interlock));
1655 
1656 	if (! ISSET(flags, VDEAD_NOWAIT))
1657 		VSTATE_WAIT_STABLE(vp);
1658 
1659 	if (VSTATE_GET(vp) == VN_RECLAIMING) {
1660 		KASSERT(ISSET(flags, VDEAD_NOWAIT));
1661 		return EBUSY;
1662 	} else if (VSTATE_GET(vp) == VN_RECLAIMED) {
1663 		return ENOENT;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 int
vfs_drainvnodes(long target)1670 vfs_drainvnodes(long target)
1671 {
1672 	int error;
1673 
1674 	mutex_enter(&vnode_free_list_lock);
1675 
1676 	while (numvnodes > target) {
1677 		error = cleanvnode();
1678 		if (error != 0)
1679 			return error;
1680 		mutex_enter(&vnode_free_list_lock);
1681 	}
1682 
1683 	mutex_exit(&vnode_free_list_lock);
1684 
1685 	vcache_reinit();
1686 
1687 	return 0;
1688 }
1689 
1690 void
vnpanic(vnode_t * vp,const char * fmt,...)1691 vnpanic(vnode_t *vp, const char *fmt, ...)
1692 {
1693 	va_list ap;
1694 
1695 #ifdef DIAGNOSTIC
1696 	vprint(NULL, vp);
1697 #endif
1698 	va_start(ap, fmt);
1699 	vpanic(fmt, ap);
1700 	va_end(ap);
1701 }
1702