1 /*
2 * Copyright © 2006-2008 Intel Corporation
3 * Jesse Barnes <jesse.barnes@intel.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 *
27 */
28
29 /** @file
30 * Integrated TV-out support for the 915GM and 945GM.
31 */
32
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 enum tv_margin {
42 TV_MARGIN_LEFT, TV_MARGIN_TOP,
43 TV_MARGIN_RIGHT, TV_MARGIN_BOTTOM
44 };
45
46 /** Private structure for the integrated TV support */
47 struct intel_tv {
48 struct intel_encoder base;
49
50 int type;
51 };
52
53 struct video_levels {
54 u16 blank, black;
55 u8 burst;
56 };
57
58 struct color_conversion {
59 u16 ry, gy, by, ay;
60 u16 ru, gu, bu, au;
61 u16 rv, gv, bv, av;
62 };
63
64 static const u32 filter_table[] = {
65 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140,
66 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000,
67 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160,
68 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780,
69 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50,
70 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20,
71 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0,
72 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0,
73 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020,
74 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140,
75 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20,
76 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848,
77 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900,
78 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080,
79 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060,
80 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140,
81 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000,
82 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160,
83 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780,
84 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50,
85 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20,
86 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0,
87 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0,
88 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020,
89 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140,
90 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20,
91 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848,
92 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900,
93 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080,
94 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060,
95 0x36403000, 0x2D002CC0, 0x30003640, 0x2D0036C0,
96 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540,
97 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00,
98 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000,
99 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00,
100 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40,
101 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240,
102 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00,
103 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0,
104 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840,
105 0x28003100, 0x28002F00, 0x00003100, 0x36403000,
106 0x2D002CC0, 0x30003640, 0x2D0036C0,
107 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540,
108 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00,
109 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000,
110 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00,
111 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40,
112 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240,
113 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00,
114 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0,
115 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840,
116 0x28003100, 0x28002F00, 0x00003100,
117 };
118
119 /*
120 * Color conversion values have 3 separate fixed point formats:
121 *
122 * 10 bit fields (ay, au)
123 * 1.9 fixed point (b.bbbbbbbbb)
124 * 11 bit fields (ry, by, ru, gu, gv)
125 * exp.mantissa (ee.mmmmmmmmm)
126 * ee = 00 = 10^-1 (0.mmmmmmmmm)
127 * ee = 01 = 10^-2 (0.0mmmmmmmmm)
128 * ee = 10 = 10^-3 (0.00mmmmmmmmm)
129 * ee = 11 = 10^-4 (0.000mmmmmmmmm)
130 * 12 bit fields (gy, rv, bu)
131 * exp.mantissa (eee.mmmmmmmmm)
132 * eee = 000 = 10^-1 (0.mmmmmmmmm)
133 * eee = 001 = 10^-2 (0.0mmmmmmmmm)
134 * eee = 010 = 10^-3 (0.00mmmmmmmmm)
135 * eee = 011 = 10^-4 (0.000mmmmmmmmm)
136 * eee = 100 = reserved
137 * eee = 101 = reserved
138 * eee = 110 = reserved
139 * eee = 111 = 10^0 (m.mmmmmmmm) (only usable for 1.0 representation)
140 *
141 * Saturation and contrast are 8 bits, with their own representation:
142 * 8 bit field (saturation, contrast)
143 * exp.mantissa (ee.mmmmmm)
144 * ee = 00 = 10^-1 (0.mmmmmm)
145 * ee = 01 = 10^0 (m.mmmmm)
146 * ee = 10 = 10^1 (mm.mmmm)
147 * ee = 11 = 10^2 (mmm.mmm)
148 *
149 * Simple conversion function:
150 *
151 * static u32
152 * float_to_csc_11(float f)
153 * {
154 * u32 exp;
155 * u32 mant;
156 * u32 ret;
157 *
158 * if (f < 0)
159 * f = -f;
160 *
161 * if (f >= 1) {
162 * exp = 0x7;
163 * mant = 1 << 8;
164 * } else {
165 * for (exp = 0; exp < 3 && f < 0.5; exp++)
166 * f *= 2.0;
167 * mant = (f * (1 << 9) + 0.5);
168 * if (mant >= (1 << 9))
169 * mant = (1 << 9) - 1;
170 * }
171 * ret = (exp << 9) | mant;
172 * return ret;
173 * }
174 */
175
176 /*
177 * Behold, magic numbers! If we plant them they might grow a big
178 * s-video cable to the sky... or something.
179 *
180 * Pre-converted to appropriate hex value.
181 */
182
183 /*
184 * PAL & NTSC values for composite & s-video connections
185 */
186 static const struct color_conversion ntsc_m_csc_composite = {
187 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104,
188 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200,
189 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200,
190 };
191
192 static const struct video_levels ntsc_m_levels_composite = {
193 .blank = 225, .black = 267, .burst = 113,
194 };
195
196 static const struct color_conversion ntsc_m_csc_svideo = {
197 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133,
198 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200,
199 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200,
200 };
201
202 static const struct video_levels ntsc_m_levels_svideo = {
203 .blank = 266, .black = 316, .burst = 133,
204 };
205
206 static const struct color_conversion ntsc_j_csc_composite = {
207 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0119,
208 .ru = 0x074c, .gu = 0x0546, .bu = 0x05ec, .au = 0x0200,
209 .rv = 0x035a, .gv = 0x0322, .bv = 0x06e1, .av = 0x0200,
210 };
211
212 static const struct video_levels ntsc_j_levels_composite = {
213 .blank = 225, .black = 225, .burst = 113,
214 };
215
216 static const struct color_conversion ntsc_j_csc_svideo = {
217 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x014c,
218 .ru = 0x0788, .gu = 0x0581, .bu = 0x0322, .au = 0x0200,
219 .rv = 0x0399, .gv = 0x0356, .bv = 0x070a, .av = 0x0200,
220 };
221
222 static const struct video_levels ntsc_j_levels_svideo = {
223 .blank = 266, .black = 266, .burst = 133,
224 };
225
226 static const struct color_conversion pal_csc_composite = {
227 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0113,
228 .ru = 0x0745, .gu = 0x053f, .bu = 0x05e1, .au = 0x0200,
229 .rv = 0x0353, .gv = 0x031c, .bv = 0x06dc, .av = 0x0200,
230 };
231
232 static const struct video_levels pal_levels_composite = {
233 .blank = 237, .black = 237, .burst = 118,
234 };
235
236 static const struct color_conversion pal_csc_svideo = {
237 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145,
238 .ru = 0x0780, .gu = 0x0579, .bu = 0x031c, .au = 0x0200,
239 .rv = 0x0390, .gv = 0x034f, .bv = 0x0705, .av = 0x0200,
240 };
241
242 static const struct video_levels pal_levels_svideo = {
243 .blank = 280, .black = 280, .burst = 139,
244 };
245
246 static const struct color_conversion pal_m_csc_composite = {
247 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104,
248 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200,
249 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200,
250 };
251
252 static const struct video_levels pal_m_levels_composite = {
253 .blank = 225, .black = 267, .burst = 113,
254 };
255
256 static const struct color_conversion pal_m_csc_svideo = {
257 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133,
258 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200,
259 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200,
260 };
261
262 static const struct video_levels pal_m_levels_svideo = {
263 .blank = 266, .black = 316, .burst = 133,
264 };
265
266 static const struct color_conversion pal_n_csc_composite = {
267 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104,
268 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200,
269 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200,
270 };
271
272 static const struct video_levels pal_n_levels_composite = {
273 .blank = 225, .black = 267, .burst = 118,
274 };
275
276 static const struct color_conversion pal_n_csc_svideo = {
277 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133,
278 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200,
279 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200,
280 };
281
282 static const struct video_levels pal_n_levels_svideo = {
283 .blank = 266, .black = 316, .burst = 139,
284 };
285
286 /*
287 * Component connections
288 */
289 static const struct color_conversion sdtv_csc_yprpb = {
290 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145,
291 .ru = 0x0559, .gu = 0x0353, .bu = 0x0100, .au = 0x0200,
292 .rv = 0x0100, .gv = 0x03ad, .bv = 0x074d, .av = 0x0200,
293 };
294
295 static const struct color_conversion hdtv_csc_yprpb = {
296 .ry = 0x05b3, .gy = 0x016e, .by = 0x0728, .ay = 0x0145,
297 .ru = 0x07d5, .gu = 0x038b, .bu = 0x0100, .au = 0x0200,
298 .rv = 0x0100, .gv = 0x03d1, .bv = 0x06bc, .av = 0x0200,
299 };
300
301 static const struct video_levels component_levels = {
302 .blank = 279, .black = 279, .burst = 0,
303 };
304
305
306 struct tv_mode {
307 const char *name;
308
309 u32 clock;
310 u16 refresh; /* in millihertz (for precision) */
311 u32 oversample;
312 u8 hsync_end;
313 u16 hblank_start, hblank_end, htotal;
314 bool progressive : 1, trilevel_sync : 1, component_only : 1;
315 u8 vsync_start_f1, vsync_start_f2, vsync_len;
316 bool veq_ena : 1;
317 u8 veq_start_f1, veq_start_f2, veq_len;
318 u8 vi_end_f1, vi_end_f2;
319 u16 nbr_end;
320 bool burst_ena : 1;
321 u8 hburst_start, hburst_len;
322 u8 vburst_start_f1;
323 u16 vburst_end_f1;
324 u8 vburst_start_f2;
325 u16 vburst_end_f2;
326 u8 vburst_start_f3;
327 u16 vburst_end_f3;
328 u8 vburst_start_f4;
329 u16 vburst_end_f4;
330 /*
331 * subcarrier programming
332 */
333 u16 dda2_size, dda3_size;
334 u8 dda1_inc;
335 u16 dda2_inc, dda3_inc;
336 u32 sc_reset;
337 bool pal_burst : 1;
338 /*
339 * blank/black levels
340 */
341 const struct video_levels *composite_levels, *svideo_levels;
342 const struct color_conversion *composite_color, *svideo_color;
343 const u32 *filter_table;
344 u16 max_srcw;
345 };
346
347
348 /*
349 * Sub carrier DDA
350 *
351 * I think this works as follows:
352 *
353 * subcarrier freq = pixel_clock * (dda1_inc + dda2_inc / dda2_size) / 4096
354 *
355 * Presumably, when dda3 is added in, it gets to adjust the dda2_inc value
356 *
357 * So,
358 * dda1_ideal = subcarrier/pixel * 4096
359 * dda1_inc = floor (dda1_ideal)
360 * dda2 = dda1_ideal - dda1_inc
361 *
362 * then pick a ratio for dda2 that gives the closest approximation. If
363 * you can't get close enough, you can play with dda3 as well. This
364 * seems likely to happen when dda2 is small as the jumps would be larger
365 *
366 * To invert this,
367 *
368 * pixel_clock = subcarrier * 4096 / (dda1_inc + dda2_inc / dda2_size)
369 *
370 * The constants below were all computed using a 107.520MHz clock
371 */
372
373 /**
374 * Register programming values for TV modes.
375 *
376 * These values account for -1s required.
377 */
378
379 static const struct tv_mode tv_modes[] = {
380 {
381 .name = "NTSC-M",
382 .clock = 108000,
383 .refresh = 59940,
384 .oversample = TV_OVERSAMPLE_8X,
385 .component_only = 0,
386 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */
387
388 .hsync_end = 64, .hblank_end = 124,
389 .hblank_start = 836, .htotal = 857,
390
391 .progressive = false, .trilevel_sync = false,
392
393 .vsync_start_f1 = 6, .vsync_start_f2 = 7,
394 .vsync_len = 6,
395
396 .veq_ena = true, .veq_start_f1 = 0,
397 .veq_start_f2 = 1, .veq_len = 18,
398
399 .vi_end_f1 = 20, .vi_end_f2 = 21,
400 .nbr_end = 240,
401
402 .burst_ena = true,
403 .hburst_start = 72, .hburst_len = 34,
404 .vburst_start_f1 = 9, .vburst_end_f1 = 240,
405 .vburst_start_f2 = 10, .vburst_end_f2 = 240,
406 .vburst_start_f3 = 9, .vburst_end_f3 = 240,
407 .vburst_start_f4 = 10, .vburst_end_f4 = 240,
408
409 /* desired 3.5800000 actual 3.5800000 clock 107.52 */
410 .dda1_inc = 135,
411 .dda2_inc = 20800, .dda2_size = 27456,
412 .dda3_inc = 0, .dda3_size = 0,
413 .sc_reset = TV_SC_RESET_EVERY_4,
414 .pal_burst = false,
415
416 .composite_levels = &ntsc_m_levels_composite,
417 .composite_color = &ntsc_m_csc_composite,
418 .svideo_levels = &ntsc_m_levels_svideo,
419 .svideo_color = &ntsc_m_csc_svideo,
420
421 .filter_table = filter_table,
422 },
423 {
424 .name = "NTSC-443",
425 .clock = 108000,
426 .refresh = 59940,
427 .oversample = TV_OVERSAMPLE_8X,
428 .component_only = 0,
429 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 4.43MHz */
430 .hsync_end = 64, .hblank_end = 124,
431 .hblank_start = 836, .htotal = 857,
432
433 .progressive = false, .trilevel_sync = false,
434
435 .vsync_start_f1 = 6, .vsync_start_f2 = 7,
436 .vsync_len = 6,
437
438 .veq_ena = true, .veq_start_f1 = 0,
439 .veq_start_f2 = 1, .veq_len = 18,
440
441 .vi_end_f1 = 20, .vi_end_f2 = 21,
442 .nbr_end = 240,
443
444 .burst_ena = true,
445 .hburst_start = 72, .hburst_len = 34,
446 .vburst_start_f1 = 9, .vburst_end_f1 = 240,
447 .vburst_start_f2 = 10, .vburst_end_f2 = 240,
448 .vburst_start_f3 = 9, .vburst_end_f3 = 240,
449 .vburst_start_f4 = 10, .vburst_end_f4 = 240,
450
451 /* desired 4.4336180 actual 4.4336180 clock 107.52 */
452 .dda1_inc = 168,
453 .dda2_inc = 4093, .dda2_size = 27456,
454 .dda3_inc = 310, .dda3_size = 525,
455 .sc_reset = TV_SC_RESET_NEVER,
456 .pal_burst = false,
457
458 .composite_levels = &ntsc_m_levels_composite,
459 .composite_color = &ntsc_m_csc_composite,
460 .svideo_levels = &ntsc_m_levels_svideo,
461 .svideo_color = &ntsc_m_csc_svideo,
462
463 .filter_table = filter_table,
464 },
465 {
466 .name = "NTSC-J",
467 .clock = 108000,
468 .refresh = 59940,
469 .oversample = TV_OVERSAMPLE_8X,
470 .component_only = 0,
471
472 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */
473 .hsync_end = 64, .hblank_end = 124,
474 .hblank_start = 836, .htotal = 857,
475
476 .progressive = false, .trilevel_sync = false,
477
478 .vsync_start_f1 = 6, .vsync_start_f2 = 7,
479 .vsync_len = 6,
480
481 .veq_ena = true, .veq_start_f1 = 0,
482 .veq_start_f2 = 1, .veq_len = 18,
483
484 .vi_end_f1 = 20, .vi_end_f2 = 21,
485 .nbr_end = 240,
486
487 .burst_ena = true,
488 .hburst_start = 72, .hburst_len = 34,
489 .vburst_start_f1 = 9, .vburst_end_f1 = 240,
490 .vburst_start_f2 = 10, .vburst_end_f2 = 240,
491 .vburst_start_f3 = 9, .vburst_end_f3 = 240,
492 .vburst_start_f4 = 10, .vburst_end_f4 = 240,
493
494 /* desired 3.5800000 actual 3.5800000 clock 107.52 */
495 .dda1_inc = 135,
496 .dda2_inc = 20800, .dda2_size = 27456,
497 .dda3_inc = 0, .dda3_size = 0,
498 .sc_reset = TV_SC_RESET_EVERY_4,
499 .pal_burst = false,
500
501 .composite_levels = &ntsc_j_levels_composite,
502 .composite_color = &ntsc_j_csc_composite,
503 .svideo_levels = &ntsc_j_levels_svideo,
504 .svideo_color = &ntsc_j_csc_svideo,
505
506 .filter_table = filter_table,
507 },
508 {
509 .name = "PAL-M",
510 .clock = 108000,
511 .refresh = 59940,
512 .oversample = TV_OVERSAMPLE_8X,
513 .component_only = 0,
514
515 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */
516 .hsync_end = 64, .hblank_end = 124,
517 .hblank_start = 836, .htotal = 857,
518
519 .progressive = false, .trilevel_sync = false,
520
521 .vsync_start_f1 = 6, .vsync_start_f2 = 7,
522 .vsync_len = 6,
523
524 .veq_ena = true, .veq_start_f1 = 0,
525 .veq_start_f2 = 1, .veq_len = 18,
526
527 .vi_end_f1 = 20, .vi_end_f2 = 21,
528 .nbr_end = 240,
529
530 .burst_ena = true,
531 .hburst_start = 72, .hburst_len = 34,
532 .vburst_start_f1 = 9, .vburst_end_f1 = 240,
533 .vburst_start_f2 = 10, .vburst_end_f2 = 240,
534 .vburst_start_f3 = 9, .vburst_end_f3 = 240,
535 .vburst_start_f4 = 10, .vburst_end_f4 = 240,
536
537 /* desired 3.5800000 actual 3.5800000 clock 107.52 */
538 .dda1_inc = 135,
539 .dda2_inc = 16704, .dda2_size = 27456,
540 .dda3_inc = 0, .dda3_size = 0,
541 .sc_reset = TV_SC_RESET_EVERY_8,
542 .pal_burst = true,
543
544 .composite_levels = &pal_m_levels_composite,
545 .composite_color = &pal_m_csc_composite,
546 .svideo_levels = &pal_m_levels_svideo,
547 .svideo_color = &pal_m_csc_svideo,
548
549 .filter_table = filter_table,
550 },
551 {
552 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */
553 .name = "PAL-N",
554 .clock = 108000,
555 .refresh = 50000,
556 .oversample = TV_OVERSAMPLE_8X,
557 .component_only = 0,
558
559 .hsync_end = 64, .hblank_end = 128,
560 .hblank_start = 844, .htotal = 863,
561
562 .progressive = false, .trilevel_sync = false,
563
564
565 .vsync_start_f1 = 6, .vsync_start_f2 = 7,
566 .vsync_len = 6,
567
568 .veq_ena = true, .veq_start_f1 = 0,
569 .veq_start_f2 = 1, .veq_len = 18,
570
571 .vi_end_f1 = 24, .vi_end_f2 = 25,
572 .nbr_end = 286,
573
574 .burst_ena = true,
575 .hburst_start = 73, .hburst_len = 34,
576 .vburst_start_f1 = 8, .vburst_end_f1 = 285,
577 .vburst_start_f2 = 8, .vburst_end_f2 = 286,
578 .vburst_start_f3 = 9, .vburst_end_f3 = 286,
579 .vburst_start_f4 = 9, .vburst_end_f4 = 285,
580
581
582 /* desired 4.4336180 actual 4.4336180 clock 107.52 */
583 .dda1_inc = 135,
584 .dda2_inc = 23578, .dda2_size = 27648,
585 .dda3_inc = 134, .dda3_size = 625,
586 .sc_reset = TV_SC_RESET_EVERY_8,
587 .pal_burst = true,
588
589 .composite_levels = &pal_n_levels_composite,
590 .composite_color = &pal_n_csc_composite,
591 .svideo_levels = &pal_n_levels_svideo,
592 .svideo_color = &pal_n_csc_svideo,
593
594 .filter_table = filter_table,
595 },
596 {
597 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */
598 .name = "PAL",
599 .clock = 108000,
600 .refresh = 50000,
601 .oversample = TV_OVERSAMPLE_8X,
602 .component_only = 0,
603
604 .hsync_end = 64, .hblank_end = 142,
605 .hblank_start = 844, .htotal = 863,
606
607 .progressive = false, .trilevel_sync = false,
608
609 .vsync_start_f1 = 5, .vsync_start_f2 = 6,
610 .vsync_len = 5,
611
612 .veq_ena = true, .veq_start_f1 = 0,
613 .veq_start_f2 = 1, .veq_len = 15,
614
615 .vi_end_f1 = 24, .vi_end_f2 = 25,
616 .nbr_end = 286,
617
618 .burst_ena = true,
619 .hburst_start = 73, .hburst_len = 32,
620 .vburst_start_f1 = 8, .vburst_end_f1 = 285,
621 .vburst_start_f2 = 8, .vburst_end_f2 = 286,
622 .vburst_start_f3 = 9, .vburst_end_f3 = 286,
623 .vburst_start_f4 = 9, .vburst_end_f4 = 285,
624
625 /* desired 4.4336180 actual 4.4336180 clock 107.52 */
626 .dda1_inc = 168,
627 .dda2_inc = 4122, .dda2_size = 27648,
628 .dda3_inc = 67, .dda3_size = 625,
629 .sc_reset = TV_SC_RESET_EVERY_8,
630 .pal_burst = true,
631
632 .composite_levels = &pal_levels_composite,
633 .composite_color = &pal_csc_composite,
634 .svideo_levels = &pal_levels_svideo,
635 .svideo_color = &pal_csc_svideo,
636
637 .filter_table = filter_table,
638 },
639 {
640 .name = "480p",
641 .clock = 107520,
642 .refresh = 59940,
643 .oversample = TV_OVERSAMPLE_4X,
644 .component_only = 1,
645
646 .hsync_end = 64, .hblank_end = 122,
647 .hblank_start = 842, .htotal = 857,
648
649 .progressive = true, .trilevel_sync = false,
650
651 .vsync_start_f1 = 12, .vsync_start_f2 = 12,
652 .vsync_len = 12,
653
654 .veq_ena = false,
655
656 .vi_end_f1 = 44, .vi_end_f2 = 44,
657 .nbr_end = 479,
658
659 .burst_ena = false,
660
661 .filter_table = filter_table,
662 },
663 {
664 .name = "576p",
665 .clock = 107520,
666 .refresh = 50000,
667 .oversample = TV_OVERSAMPLE_4X,
668 .component_only = 1,
669
670 .hsync_end = 64, .hblank_end = 139,
671 .hblank_start = 859, .htotal = 863,
672
673 .progressive = true, .trilevel_sync = false,
674
675 .vsync_start_f1 = 10, .vsync_start_f2 = 10,
676 .vsync_len = 10,
677
678 .veq_ena = false,
679
680 .vi_end_f1 = 48, .vi_end_f2 = 48,
681 .nbr_end = 575,
682
683 .burst_ena = false,
684
685 .filter_table = filter_table,
686 },
687 {
688 .name = "720p@60Hz",
689 .clock = 148800,
690 .refresh = 60000,
691 .oversample = TV_OVERSAMPLE_2X,
692 .component_only = 1,
693
694 .hsync_end = 80, .hblank_end = 300,
695 .hblank_start = 1580, .htotal = 1649,
696
697 .progressive = true, .trilevel_sync = true,
698
699 .vsync_start_f1 = 10, .vsync_start_f2 = 10,
700 .vsync_len = 10,
701
702 .veq_ena = false,
703
704 .vi_end_f1 = 29, .vi_end_f2 = 29,
705 .nbr_end = 719,
706
707 .burst_ena = false,
708
709 .filter_table = filter_table,
710 },
711 {
712 .name = "720p@50Hz",
713 .clock = 148800,
714 .refresh = 50000,
715 .oversample = TV_OVERSAMPLE_2X,
716 .component_only = 1,
717
718 .hsync_end = 80, .hblank_end = 300,
719 .hblank_start = 1580, .htotal = 1979,
720
721 .progressive = true, .trilevel_sync = true,
722
723 .vsync_start_f1 = 10, .vsync_start_f2 = 10,
724 .vsync_len = 10,
725
726 .veq_ena = false,
727
728 .vi_end_f1 = 29, .vi_end_f2 = 29,
729 .nbr_end = 719,
730
731 .burst_ena = false,
732
733 .filter_table = filter_table,
734 .max_srcw = 800
735 },
736 {
737 .name = "1080i@50Hz",
738 .clock = 148800,
739 .refresh = 50000,
740 .oversample = TV_OVERSAMPLE_2X,
741 .component_only = 1,
742
743 .hsync_end = 88, .hblank_end = 235,
744 .hblank_start = 2155, .htotal = 2639,
745
746 .progressive = false, .trilevel_sync = true,
747
748 .vsync_start_f1 = 4, .vsync_start_f2 = 5,
749 .vsync_len = 10,
750
751 .veq_ena = true, .veq_start_f1 = 4,
752 .veq_start_f2 = 4, .veq_len = 10,
753
754
755 .vi_end_f1 = 21, .vi_end_f2 = 22,
756 .nbr_end = 539,
757
758 .burst_ena = false,
759
760 .filter_table = filter_table,
761 },
762 {
763 .name = "1080i@60Hz",
764 .clock = 148800,
765 .refresh = 60000,
766 .oversample = TV_OVERSAMPLE_2X,
767 .component_only = 1,
768
769 .hsync_end = 88, .hblank_end = 235,
770 .hblank_start = 2155, .htotal = 2199,
771
772 .progressive = false, .trilevel_sync = true,
773
774 .vsync_start_f1 = 4, .vsync_start_f2 = 5,
775 .vsync_len = 10,
776
777 .veq_ena = true, .veq_start_f1 = 4,
778 .veq_start_f2 = 4, .veq_len = 10,
779
780
781 .vi_end_f1 = 21, .vi_end_f2 = 22,
782 .nbr_end = 539,
783
784 .burst_ena = false,
785
786 .filter_table = filter_table,
787 },
788 };
789
enc_to_tv(struct intel_encoder * encoder)790 static struct intel_tv *enc_to_tv(struct intel_encoder *encoder)
791 {
792 return container_of(encoder, struct intel_tv, base);
793 }
794
intel_attached_tv(struct drm_connector * connector)795 static struct intel_tv *intel_attached_tv(struct drm_connector *connector)
796 {
797 return enc_to_tv(intel_attached_encoder(connector));
798 }
799
800 static bool
intel_tv_get_hw_state(struct intel_encoder * encoder,enum i915_pipe * pipe)801 intel_tv_get_hw_state(struct intel_encoder *encoder, enum i915_pipe *pipe)
802 {
803 struct drm_device *dev = encoder->base.dev;
804 struct drm_i915_private *dev_priv = to_i915(dev);
805 u32 tmp = I915_READ(TV_CTL);
806
807 if (!(tmp & TV_ENC_ENABLE))
808 return false;
809
810 *pipe = PORT_TO_PIPE(tmp);
811
812 return true;
813 }
814
815 static void
intel_enable_tv(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)816 intel_enable_tv(struct intel_encoder *encoder,
817 const struct intel_crtc_state *pipe_config,
818 const struct drm_connector_state *conn_state)
819 {
820 struct drm_device *dev = encoder->base.dev;
821 struct drm_i915_private *dev_priv = to_i915(dev);
822
823 /* Prevents vblank waits from timing out in intel_tv_detect_type() */
824 intel_wait_for_vblank(dev_priv,
825 to_intel_crtc(encoder->base.crtc)->pipe);
826
827 I915_WRITE(TV_CTL, I915_READ(TV_CTL) | TV_ENC_ENABLE);
828 }
829
830 static void
intel_disable_tv(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)831 intel_disable_tv(struct intel_encoder *encoder,
832 const struct intel_crtc_state *old_crtc_state,
833 const struct drm_connector_state *old_conn_state)
834 {
835 struct drm_device *dev = encoder->base.dev;
836 struct drm_i915_private *dev_priv = to_i915(dev);
837
838 I915_WRITE(TV_CTL, I915_READ(TV_CTL) & ~TV_ENC_ENABLE);
839 }
840
intel_tv_mode_find(const struct drm_connector_state * conn_state)841 static const struct tv_mode *intel_tv_mode_find(const struct drm_connector_state *conn_state)
842 {
843 int format = conn_state->tv.mode;
844
845 return &tv_modes[format];
846 }
847
848 static enum drm_mode_status
intel_tv_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)849 intel_tv_mode_valid(struct drm_connector *connector,
850 struct drm_display_mode *mode)
851 {
852 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state);
853 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
854
855 if (mode->clock > max_dotclk)
856 return MODE_CLOCK_HIGH;
857
858 /* Ensure TV refresh is close to desired refresh */
859 if (tv_mode && abs(tv_mode->refresh - drm_mode_vrefresh(mode) * 1000)
860 < 1000)
861 return MODE_OK;
862
863 return MODE_CLOCK_RANGE;
864 }
865
866
867 static void
intel_tv_get_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)868 intel_tv_get_config(struct intel_encoder *encoder,
869 struct intel_crtc_state *pipe_config)
870 {
871 pipe_config->base.adjusted_mode.crtc_clock = pipe_config->port_clock;
872 }
873
874 static bool
intel_tv_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)875 intel_tv_compute_config(struct intel_encoder *encoder,
876 struct intel_crtc_state *pipe_config,
877 struct drm_connector_state *conn_state)
878 {
879 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state);
880
881 if (!tv_mode)
882 return false;
883
884 pipe_config->base.adjusted_mode.crtc_clock = tv_mode->clock;
885 DRM_DEBUG_KMS("forcing bpc to 8 for TV\n");
886 pipe_config->pipe_bpp = 8*3;
887
888 /* TV has it's own notion of sync and other mode flags, so clear them. */
889 pipe_config->base.adjusted_mode.flags = 0;
890
891 /*
892 * FIXME: We don't check whether the input mode is actually what we want
893 * or whether userspace is doing something stupid.
894 */
895
896 return true;
897 }
898
899 static void
set_tv_mode_timings(struct drm_i915_private * dev_priv,const struct tv_mode * tv_mode,bool burst_ena)900 set_tv_mode_timings(struct drm_i915_private *dev_priv,
901 const struct tv_mode *tv_mode,
902 bool burst_ena)
903 {
904 u32 hctl1, hctl2, hctl3;
905 u32 vctl1, vctl2, vctl3, vctl4, vctl5, vctl6, vctl7;
906
907 hctl1 = (tv_mode->hsync_end << TV_HSYNC_END_SHIFT) |
908 (tv_mode->htotal << TV_HTOTAL_SHIFT);
909
910 hctl2 = (tv_mode->hburst_start << 16) |
911 (tv_mode->hburst_len << TV_HBURST_LEN_SHIFT);
912
913 if (burst_ena)
914 hctl2 |= TV_BURST_ENA;
915
916 hctl3 = (tv_mode->hblank_start << TV_HBLANK_START_SHIFT) |
917 (tv_mode->hblank_end << TV_HBLANK_END_SHIFT);
918
919 vctl1 = (tv_mode->nbr_end << TV_NBR_END_SHIFT) |
920 (tv_mode->vi_end_f1 << TV_VI_END_F1_SHIFT) |
921 (tv_mode->vi_end_f2 << TV_VI_END_F2_SHIFT);
922
923 vctl2 = (tv_mode->vsync_len << TV_VSYNC_LEN_SHIFT) |
924 (tv_mode->vsync_start_f1 << TV_VSYNC_START_F1_SHIFT) |
925 (tv_mode->vsync_start_f2 << TV_VSYNC_START_F2_SHIFT);
926
927 vctl3 = (tv_mode->veq_len << TV_VEQ_LEN_SHIFT) |
928 (tv_mode->veq_start_f1 << TV_VEQ_START_F1_SHIFT) |
929 (tv_mode->veq_start_f2 << TV_VEQ_START_F2_SHIFT);
930
931 if (tv_mode->veq_ena)
932 vctl3 |= TV_EQUAL_ENA;
933
934 vctl4 = (tv_mode->vburst_start_f1 << TV_VBURST_START_F1_SHIFT) |
935 (tv_mode->vburst_end_f1 << TV_VBURST_END_F1_SHIFT);
936
937 vctl5 = (tv_mode->vburst_start_f2 << TV_VBURST_START_F2_SHIFT) |
938 (tv_mode->vburst_end_f2 << TV_VBURST_END_F2_SHIFT);
939
940 vctl6 = (tv_mode->vburst_start_f3 << TV_VBURST_START_F3_SHIFT) |
941 (tv_mode->vburst_end_f3 << TV_VBURST_END_F3_SHIFT);
942
943 vctl7 = (tv_mode->vburst_start_f4 << TV_VBURST_START_F4_SHIFT) |
944 (tv_mode->vburst_end_f4 << TV_VBURST_END_F4_SHIFT);
945
946 I915_WRITE(TV_H_CTL_1, hctl1);
947 I915_WRITE(TV_H_CTL_2, hctl2);
948 I915_WRITE(TV_H_CTL_3, hctl3);
949 I915_WRITE(TV_V_CTL_1, vctl1);
950 I915_WRITE(TV_V_CTL_2, vctl2);
951 I915_WRITE(TV_V_CTL_3, vctl3);
952 I915_WRITE(TV_V_CTL_4, vctl4);
953 I915_WRITE(TV_V_CTL_5, vctl5);
954 I915_WRITE(TV_V_CTL_6, vctl6);
955 I915_WRITE(TV_V_CTL_7, vctl7);
956 }
957
set_color_conversion(struct drm_i915_private * dev_priv,const struct color_conversion * color_conversion)958 static void set_color_conversion(struct drm_i915_private *dev_priv,
959 const struct color_conversion *color_conversion)
960 {
961 if (!color_conversion)
962 return;
963
964 I915_WRITE(TV_CSC_Y, (color_conversion->ry << 16) |
965 color_conversion->gy);
966 I915_WRITE(TV_CSC_Y2, (color_conversion->by << 16) |
967 color_conversion->ay);
968 I915_WRITE(TV_CSC_U, (color_conversion->ru << 16) |
969 color_conversion->gu);
970 I915_WRITE(TV_CSC_U2, (color_conversion->bu << 16) |
971 color_conversion->au);
972 I915_WRITE(TV_CSC_V, (color_conversion->rv << 16) |
973 color_conversion->gv);
974 I915_WRITE(TV_CSC_V2, (color_conversion->bv << 16) |
975 color_conversion->av);
976 }
977
intel_tv_pre_enable(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)978 static void intel_tv_pre_enable(struct intel_encoder *encoder,
979 const struct intel_crtc_state *pipe_config,
980 const struct drm_connector_state *conn_state)
981 {
982 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
983 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
984 struct intel_tv *intel_tv = enc_to_tv(encoder);
985 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state);
986 u32 tv_ctl;
987 u32 scctl1, scctl2, scctl3;
988 int i, j;
989 const struct video_levels *video_levels;
990 const struct color_conversion *color_conversion;
991 bool burst_ena;
992 int xpos = 0x0, ypos = 0x0;
993 unsigned int xsize, ysize;
994
995 if (!tv_mode)
996 return; /* can't happen (mode_prepare prevents this) */
997
998 tv_ctl = I915_READ(TV_CTL);
999 tv_ctl &= TV_CTL_SAVE;
1000
1001 switch (intel_tv->type) {
1002 default:
1003 case DRM_MODE_CONNECTOR_Unknown:
1004 case DRM_MODE_CONNECTOR_Composite:
1005 tv_ctl |= TV_ENC_OUTPUT_COMPOSITE;
1006 video_levels = tv_mode->composite_levels;
1007 color_conversion = tv_mode->composite_color;
1008 burst_ena = tv_mode->burst_ena;
1009 break;
1010 case DRM_MODE_CONNECTOR_Component:
1011 tv_ctl |= TV_ENC_OUTPUT_COMPONENT;
1012 video_levels = &component_levels;
1013 if (tv_mode->burst_ena)
1014 color_conversion = &sdtv_csc_yprpb;
1015 else
1016 color_conversion = &hdtv_csc_yprpb;
1017 burst_ena = false;
1018 break;
1019 case DRM_MODE_CONNECTOR_SVIDEO:
1020 tv_ctl |= TV_ENC_OUTPUT_SVIDEO;
1021 video_levels = tv_mode->svideo_levels;
1022 color_conversion = tv_mode->svideo_color;
1023 burst_ena = tv_mode->burst_ena;
1024 break;
1025 }
1026
1027 if (intel_crtc->pipe == 1)
1028 tv_ctl |= TV_ENC_PIPEB_SELECT;
1029 tv_ctl |= tv_mode->oversample;
1030
1031 if (tv_mode->progressive)
1032 tv_ctl |= TV_PROGRESSIVE;
1033 if (tv_mode->trilevel_sync)
1034 tv_ctl |= TV_TRILEVEL_SYNC;
1035 if (tv_mode->pal_burst)
1036 tv_ctl |= TV_PAL_BURST;
1037
1038 scctl1 = 0;
1039 if (tv_mode->dda1_inc)
1040 scctl1 |= TV_SC_DDA1_EN;
1041 if (tv_mode->dda2_inc)
1042 scctl1 |= TV_SC_DDA2_EN;
1043 if (tv_mode->dda3_inc)
1044 scctl1 |= TV_SC_DDA3_EN;
1045 scctl1 |= tv_mode->sc_reset;
1046 if (video_levels)
1047 scctl1 |= video_levels->burst << TV_BURST_LEVEL_SHIFT;
1048 scctl1 |= tv_mode->dda1_inc << TV_SCDDA1_INC_SHIFT;
1049
1050 scctl2 = tv_mode->dda2_size << TV_SCDDA2_SIZE_SHIFT |
1051 tv_mode->dda2_inc << TV_SCDDA2_INC_SHIFT;
1052
1053 scctl3 = tv_mode->dda3_size << TV_SCDDA3_SIZE_SHIFT |
1054 tv_mode->dda3_inc << TV_SCDDA3_INC_SHIFT;
1055
1056 /* Enable two fixes for the chips that need them. */
1057 if (IS_I915GM(dev_priv))
1058 tv_ctl |= TV_ENC_C0_FIX | TV_ENC_SDP_FIX;
1059
1060 set_tv_mode_timings(dev_priv, tv_mode, burst_ena);
1061
1062 I915_WRITE(TV_SC_CTL_1, scctl1);
1063 I915_WRITE(TV_SC_CTL_2, scctl2);
1064 I915_WRITE(TV_SC_CTL_3, scctl3);
1065
1066 set_color_conversion(dev_priv, color_conversion);
1067
1068 if (INTEL_GEN(dev_priv) >= 4)
1069 I915_WRITE(TV_CLR_KNOBS, 0x00404000);
1070 else
1071 I915_WRITE(TV_CLR_KNOBS, 0x00606000);
1072
1073 if (video_levels)
1074 I915_WRITE(TV_CLR_LEVEL,
1075 ((video_levels->black << TV_BLACK_LEVEL_SHIFT) |
1076 (video_levels->blank << TV_BLANK_LEVEL_SHIFT)));
1077
1078 assert_pipe_disabled(dev_priv, intel_crtc->pipe);
1079
1080 /* Filter ctl must be set before TV_WIN_SIZE */
1081 I915_WRITE(TV_FILTER_CTL_1, TV_AUTO_SCALE);
1082 xsize = tv_mode->hblank_start - tv_mode->hblank_end;
1083 if (tv_mode->progressive)
1084 ysize = tv_mode->nbr_end + 1;
1085 else
1086 ysize = 2*tv_mode->nbr_end + 1;
1087
1088 xpos += conn_state->tv.margins.left;
1089 ypos += conn_state->tv.margins.top;
1090 xsize -= (conn_state->tv.margins.left +
1091 conn_state->tv.margins.right);
1092 ysize -= (conn_state->tv.margins.top +
1093 conn_state->tv.margins.bottom);
1094 I915_WRITE(TV_WIN_POS, (xpos<<16)|ypos);
1095 I915_WRITE(TV_WIN_SIZE, (xsize<<16)|ysize);
1096
1097 j = 0;
1098 for (i = 0; i < 60; i++)
1099 I915_WRITE(TV_H_LUMA(i), tv_mode->filter_table[j++]);
1100 for (i = 0; i < 60; i++)
1101 I915_WRITE(TV_H_CHROMA(i), tv_mode->filter_table[j++]);
1102 for (i = 0; i < 43; i++)
1103 I915_WRITE(TV_V_LUMA(i), tv_mode->filter_table[j++]);
1104 for (i = 0; i < 43; i++)
1105 I915_WRITE(TV_V_CHROMA(i), tv_mode->filter_table[j++]);
1106 I915_WRITE(TV_DAC, I915_READ(TV_DAC) & TV_DAC_SAVE);
1107 I915_WRITE(TV_CTL, tv_ctl);
1108 }
1109
1110 static const struct drm_display_mode reported_modes[] = {
1111 {
1112 .name = "NTSC 480i",
1113 .clock = 107520,
1114 .hdisplay = 1280,
1115 .hsync_start = 1368,
1116 .hsync_end = 1496,
1117 .htotal = 1712,
1118
1119 .vdisplay = 1024,
1120 .vsync_start = 1027,
1121 .vsync_end = 1034,
1122 .vtotal = 1104,
1123 .type = DRM_MODE_TYPE_DRIVER,
1124 },
1125 };
1126
1127 /**
1128 * Detects TV presence by checking for load.
1129 *
1130 * Requires that the current pipe's DPLL is active.
1131
1132 * \return true if TV is connected.
1133 * \return false if TV is disconnected.
1134 */
1135 static int
intel_tv_detect_type(struct intel_tv * intel_tv,struct drm_connector * connector)1136 intel_tv_detect_type(struct intel_tv *intel_tv,
1137 struct drm_connector *connector)
1138 {
1139 struct drm_crtc *crtc = connector->state->crtc;
1140 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1141 struct drm_device *dev = connector->dev;
1142 struct drm_i915_private *dev_priv = to_i915(dev);
1143 u32 tv_ctl, save_tv_ctl;
1144 u32 tv_dac, save_tv_dac;
1145 int type;
1146
1147 /* Disable TV interrupts around load detect or we'll recurse */
1148 if (connector->polled & DRM_CONNECTOR_POLL_HPD) {
1149 spin_lock_irq(&dev_priv->irq_lock);
1150 i915_disable_pipestat(dev_priv, 0,
1151 PIPE_HOTPLUG_INTERRUPT_STATUS |
1152 PIPE_HOTPLUG_TV_INTERRUPT_STATUS);
1153 spin_unlock_irq(&dev_priv->irq_lock);
1154 }
1155
1156 save_tv_dac = tv_dac = I915_READ(TV_DAC);
1157 save_tv_ctl = tv_ctl = I915_READ(TV_CTL);
1158
1159 /* Poll for TV detection */
1160 tv_ctl &= ~(TV_ENC_ENABLE | TV_TEST_MODE_MASK);
1161 tv_ctl |= TV_TEST_MODE_MONITOR_DETECT;
1162 if (intel_crtc->pipe == 1)
1163 tv_ctl |= TV_ENC_PIPEB_SELECT;
1164 else
1165 tv_ctl &= ~TV_ENC_PIPEB_SELECT;
1166
1167 tv_dac &= ~(TVDAC_SENSE_MASK | DAC_A_MASK | DAC_B_MASK | DAC_C_MASK);
1168 tv_dac |= (TVDAC_STATE_CHG_EN |
1169 TVDAC_A_SENSE_CTL |
1170 TVDAC_B_SENSE_CTL |
1171 TVDAC_C_SENSE_CTL |
1172 DAC_CTL_OVERRIDE |
1173 DAC_A_0_7_V |
1174 DAC_B_0_7_V |
1175 DAC_C_0_7_V);
1176
1177
1178 /*
1179 * The TV sense state should be cleared to zero on cantiga platform. Otherwise
1180 * the TV is misdetected. This is hardware requirement.
1181 */
1182 if (IS_GM45(dev_priv))
1183 tv_dac &= ~(TVDAC_STATE_CHG_EN | TVDAC_A_SENSE_CTL |
1184 TVDAC_B_SENSE_CTL | TVDAC_C_SENSE_CTL);
1185
1186 I915_WRITE(TV_CTL, tv_ctl);
1187 I915_WRITE(TV_DAC, tv_dac);
1188 POSTING_READ(TV_DAC);
1189
1190 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
1191
1192 type = -1;
1193 tv_dac = I915_READ(TV_DAC);
1194 DRM_DEBUG_KMS("TV detected: %x, %x\n", tv_ctl, tv_dac);
1195 /*
1196 * A B C
1197 * 0 1 1 Composite
1198 * 1 0 X svideo
1199 * 0 0 0 Component
1200 */
1201 if ((tv_dac & TVDAC_SENSE_MASK) == (TVDAC_B_SENSE | TVDAC_C_SENSE)) {
1202 DRM_DEBUG_KMS("Detected Composite TV connection\n");
1203 type = DRM_MODE_CONNECTOR_Composite;
1204 } else if ((tv_dac & (TVDAC_A_SENSE|TVDAC_B_SENSE)) == TVDAC_A_SENSE) {
1205 DRM_DEBUG_KMS("Detected S-Video TV connection\n");
1206 type = DRM_MODE_CONNECTOR_SVIDEO;
1207 } else if ((tv_dac & TVDAC_SENSE_MASK) == 0) {
1208 DRM_DEBUG_KMS("Detected Component TV connection\n");
1209 type = DRM_MODE_CONNECTOR_Component;
1210 } else {
1211 DRM_DEBUG_KMS("Unrecognised TV connection\n");
1212 type = -1;
1213 }
1214
1215 I915_WRITE(TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN);
1216 I915_WRITE(TV_CTL, save_tv_ctl);
1217 POSTING_READ(TV_CTL);
1218
1219 /* For unknown reasons the hw barfs if we don't do this vblank wait. */
1220 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
1221
1222 /* Restore interrupt config */
1223 if (connector->polled & DRM_CONNECTOR_POLL_HPD) {
1224 spin_lock_irq(&dev_priv->irq_lock);
1225 i915_enable_pipestat(dev_priv, 0,
1226 PIPE_HOTPLUG_INTERRUPT_STATUS |
1227 PIPE_HOTPLUG_TV_INTERRUPT_STATUS);
1228 spin_unlock_irq(&dev_priv->irq_lock);
1229 }
1230
1231 return type;
1232 }
1233
1234 /*
1235 * Here we set accurate tv format according to connector type
1236 * i.e Component TV should not be assigned by NTSC or PAL
1237 */
intel_tv_find_better_format(struct drm_connector * connector)1238 static void intel_tv_find_better_format(struct drm_connector *connector)
1239 {
1240 struct intel_tv *intel_tv = intel_attached_tv(connector);
1241 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state);
1242 int i;
1243
1244 if ((intel_tv->type == DRM_MODE_CONNECTOR_Component) ==
1245 tv_mode->component_only)
1246 return;
1247
1248
1249 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) {
1250 tv_mode = tv_modes + i;
1251
1252 if ((intel_tv->type == DRM_MODE_CONNECTOR_Component) ==
1253 tv_mode->component_only)
1254 break;
1255 }
1256
1257 connector->state->tv.mode = i;
1258 }
1259
1260 /**
1261 * Detect the TV connection.
1262 *
1263 * Currently this always returns CONNECTOR_STATUS_UNKNOWN, as we need to be sure
1264 * we have a pipe programmed in order to probe the TV.
1265 */
1266 static int
intel_tv_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)1267 intel_tv_detect(struct drm_connector *connector,
1268 struct drm_modeset_acquire_ctx *ctx,
1269 bool force)
1270 {
1271 struct drm_display_mode mode;
1272 struct intel_tv *intel_tv = intel_attached_tv(connector);
1273 enum drm_connector_status status;
1274 int type;
1275
1276 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] force=%d\n",
1277 connector->base.id, connector->name,
1278 force);
1279
1280 mode = reported_modes[0];
1281
1282 if (force) {
1283 struct intel_load_detect_pipe tmp;
1284 int ret;
1285
1286 ret = intel_get_load_detect_pipe(connector, &mode, &tmp, ctx);
1287 if (ret < 0)
1288 return ret;
1289
1290 if (ret > 0) {
1291 type = intel_tv_detect_type(intel_tv, connector);
1292 intel_release_load_detect_pipe(connector, &tmp, ctx);
1293 status = type < 0 ?
1294 connector_status_disconnected :
1295 connector_status_connected;
1296 } else
1297 status = connector_status_unknown;
1298
1299 if (status == connector_status_connected) {
1300 intel_tv->type = type;
1301 intel_tv_find_better_format(connector);
1302 }
1303
1304 return status;
1305 } else
1306 return connector->status;
1307 }
1308
1309 static const struct input_res {
1310 const char *name;
1311 int w, h;
1312 } input_res_table[] = {
1313 {"640x480", 640, 480},
1314 {"800x600", 800, 600},
1315 {"1024x768", 1024, 768},
1316 {"1280x1024", 1280, 1024},
1317 {"848x480", 848, 480},
1318 {"1280x720", 1280, 720},
1319 {"1920x1080", 1920, 1080},
1320 };
1321
1322 /*
1323 * Chose preferred mode according to line number of TV format
1324 */
1325 static void
intel_tv_choose_preferred_modes(const struct tv_mode * tv_mode,struct drm_display_mode * mode_ptr)1326 intel_tv_choose_preferred_modes(const struct tv_mode *tv_mode,
1327 struct drm_display_mode *mode_ptr)
1328 {
1329 if (tv_mode->nbr_end < 480 && mode_ptr->vdisplay == 480)
1330 mode_ptr->type |= DRM_MODE_TYPE_PREFERRED;
1331 else if (tv_mode->nbr_end > 480) {
1332 if (tv_mode->progressive == true && tv_mode->nbr_end < 720) {
1333 if (mode_ptr->vdisplay == 720)
1334 mode_ptr->type |= DRM_MODE_TYPE_PREFERRED;
1335 } else if (mode_ptr->vdisplay == 1080)
1336 mode_ptr->type |= DRM_MODE_TYPE_PREFERRED;
1337 }
1338 }
1339
1340 /**
1341 * Stub get_modes function.
1342 *
1343 * This should probably return a set of fixed modes, unless we can figure out
1344 * how to probe modes off of TV connections.
1345 */
1346
1347 static int
intel_tv_get_modes(struct drm_connector * connector)1348 intel_tv_get_modes(struct drm_connector *connector)
1349 {
1350 struct drm_display_mode *mode_ptr;
1351 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state);
1352 int j, count = 0;
1353 u64 tmp;
1354
1355 for (j = 0; j < ARRAY_SIZE(input_res_table);
1356 j++) {
1357 const struct input_res *input = &input_res_table[j];
1358 unsigned int hactive_s = input->w;
1359 unsigned int vactive_s = input->h;
1360
1361 if (tv_mode->max_srcw && input->w > tv_mode->max_srcw)
1362 continue;
1363
1364 if (input->w > 1024 && (!tv_mode->progressive
1365 && !tv_mode->component_only))
1366 continue;
1367
1368 mode_ptr = drm_mode_create(connector->dev);
1369 if (!mode_ptr)
1370 continue;
1371 strncpy(mode_ptr->name, input->name, DRM_DISPLAY_MODE_LEN);
1372 mode_ptr->name[DRM_DISPLAY_MODE_LEN - 1] = '\0';
1373
1374 mode_ptr->hdisplay = hactive_s;
1375 mode_ptr->hsync_start = hactive_s + 1;
1376 mode_ptr->hsync_end = hactive_s + 64;
1377 if (mode_ptr->hsync_end <= mode_ptr->hsync_start)
1378 mode_ptr->hsync_end = mode_ptr->hsync_start + 1;
1379 mode_ptr->htotal = hactive_s + 96;
1380
1381 mode_ptr->vdisplay = vactive_s;
1382 mode_ptr->vsync_start = vactive_s + 1;
1383 mode_ptr->vsync_end = vactive_s + 32;
1384 if (mode_ptr->vsync_end <= mode_ptr->vsync_start)
1385 mode_ptr->vsync_end = mode_ptr->vsync_start + 1;
1386 mode_ptr->vtotal = vactive_s + 33;
1387
1388 tmp = mul_u32_u32(tv_mode->refresh, mode_ptr->vtotal);
1389 tmp *= mode_ptr->htotal;
1390 tmp = div_u64(tmp, 1000000);
1391 mode_ptr->clock = (int) tmp;
1392
1393 mode_ptr->type = DRM_MODE_TYPE_DRIVER;
1394 intel_tv_choose_preferred_modes(tv_mode, mode_ptr);
1395 drm_mode_probed_add(connector, mode_ptr);
1396 count++;
1397 }
1398
1399 return count;
1400 }
1401
1402 static void
intel_tv_destroy(struct drm_connector * connector)1403 intel_tv_destroy(struct drm_connector *connector)
1404 {
1405 drm_connector_cleanup(connector);
1406 kfree(connector);
1407 }
1408
1409 static const struct drm_connector_funcs intel_tv_connector_funcs = {
1410 .late_register = intel_connector_register,
1411 .early_unregister = intel_connector_unregister,
1412 .destroy = intel_tv_destroy,
1413 .fill_modes = drm_helper_probe_single_connector_modes,
1414 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1415 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1416 };
1417
intel_tv_atomic_check(struct drm_connector * connector,struct drm_connector_state * new_state)1418 static int intel_tv_atomic_check(struct drm_connector *connector,
1419 struct drm_connector_state *new_state)
1420 {
1421 struct drm_crtc_state *new_crtc_state;
1422 struct drm_connector_state *old_state;
1423
1424 if (!new_state->crtc)
1425 return 0;
1426
1427 old_state = drm_atomic_get_old_connector_state(new_state->state, connector);
1428 new_crtc_state = drm_atomic_get_new_crtc_state(new_state->state, new_state->crtc);
1429
1430 if (old_state->tv.mode != new_state->tv.mode ||
1431 old_state->tv.margins.left != new_state->tv.margins.left ||
1432 old_state->tv.margins.right != new_state->tv.margins.right ||
1433 old_state->tv.margins.top != new_state->tv.margins.top ||
1434 old_state->tv.margins.bottom != new_state->tv.margins.bottom) {
1435 /* Force a modeset. */
1436
1437 new_crtc_state->connectors_changed = true;
1438 }
1439
1440 return 0;
1441 }
1442
1443 static const struct drm_connector_helper_funcs intel_tv_connector_helper_funcs = {
1444 .detect_ctx = intel_tv_detect,
1445 .mode_valid = intel_tv_mode_valid,
1446 .get_modes = intel_tv_get_modes,
1447 .atomic_check = intel_tv_atomic_check,
1448 };
1449
1450 static const struct drm_encoder_funcs intel_tv_enc_funcs = {
1451 .destroy = intel_encoder_destroy,
1452 };
1453
1454 void
intel_tv_init(struct drm_i915_private * dev_priv)1455 intel_tv_init(struct drm_i915_private *dev_priv)
1456 {
1457 struct drm_device *dev = &dev_priv->drm;
1458 struct drm_connector *connector;
1459 struct intel_tv *intel_tv;
1460 struct intel_encoder *intel_encoder;
1461 struct intel_connector *intel_connector;
1462 u32 tv_dac_on, tv_dac_off, save_tv_dac;
1463 const char *tv_format_names[ARRAY_SIZE(tv_modes)];
1464 int i, initial_mode = 0;
1465 struct drm_connector_state *state;
1466
1467 if ((I915_READ(TV_CTL) & TV_FUSE_STATE_MASK) == TV_FUSE_STATE_DISABLED)
1468 return;
1469
1470 if (!intel_bios_is_tv_present(dev_priv)) {
1471 DRM_DEBUG_KMS("Integrated TV is not present.\n");
1472 return;
1473 }
1474
1475 /*
1476 * Sanity check the TV output by checking to see if the
1477 * DAC register holds a value
1478 */
1479 save_tv_dac = I915_READ(TV_DAC);
1480
1481 I915_WRITE(TV_DAC, save_tv_dac | TVDAC_STATE_CHG_EN);
1482 tv_dac_on = I915_READ(TV_DAC);
1483
1484 I915_WRITE(TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN);
1485 tv_dac_off = I915_READ(TV_DAC);
1486
1487 I915_WRITE(TV_DAC, save_tv_dac);
1488
1489 /*
1490 * If the register does not hold the state change enable
1491 * bit, (either as a 0 or a 1), assume it doesn't really
1492 * exist
1493 */
1494 if ((tv_dac_on & TVDAC_STATE_CHG_EN) == 0 ||
1495 (tv_dac_off & TVDAC_STATE_CHG_EN) != 0)
1496 return;
1497
1498 intel_tv = kzalloc(sizeof(*intel_tv), GFP_KERNEL);
1499 if (!intel_tv) {
1500 return;
1501 }
1502
1503 intel_connector = intel_connector_alloc();
1504 if (!intel_connector) {
1505 kfree(intel_tv);
1506 return;
1507 }
1508
1509 intel_encoder = &intel_tv->base;
1510 connector = &intel_connector->base;
1511 state = connector->state;
1512
1513 /* The documentation, for the older chipsets at least, recommend
1514 * using a polling method rather than hotplug detection for TVs.
1515 * This is because in order to perform the hotplug detection, the PLLs
1516 * for the TV must be kept alive increasing power drain and starving
1517 * bandwidth from other encoders. Notably for instance, it causes
1518 * pipe underruns on Crestline when this encoder is supposedly idle.
1519 *
1520 * More recent chipsets favour HDMI rather than integrated S-Video.
1521 */
1522 intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT;
1523
1524 drm_connector_init(dev, connector, &intel_tv_connector_funcs,
1525 DRM_MODE_CONNECTOR_SVIDEO);
1526
1527 drm_encoder_init(dev, &intel_encoder->base, &intel_tv_enc_funcs,
1528 DRM_MODE_ENCODER_TVDAC, "TV");
1529
1530 intel_encoder->compute_config = intel_tv_compute_config;
1531 intel_encoder->get_config = intel_tv_get_config;
1532 intel_encoder->pre_enable = intel_tv_pre_enable;
1533 intel_encoder->enable = intel_enable_tv;
1534 intel_encoder->disable = intel_disable_tv;
1535 intel_encoder->get_hw_state = intel_tv_get_hw_state;
1536 intel_connector->get_hw_state = intel_connector_get_hw_state;
1537
1538 intel_connector_attach_encoder(intel_connector, intel_encoder);
1539
1540 intel_encoder->type = INTEL_OUTPUT_TVOUT;
1541 intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER;
1542 intel_encoder->port = PORT_NONE;
1543 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1544 intel_encoder->cloneable = 0;
1545 intel_encoder->base.possible_crtcs = ((1 << 0) | (1 << 1));
1546 intel_tv->type = DRM_MODE_CONNECTOR_Unknown;
1547
1548 /* BIOS margin values */
1549 state->tv.margins.left = 54;
1550 state->tv.margins.top = 36;
1551 state->tv.margins.right = 46;
1552 state->tv.margins.bottom = 37;
1553
1554 state->tv.mode = initial_mode;
1555
1556 drm_connector_helper_add(connector, &intel_tv_connector_helper_funcs);
1557 connector->interlace_allowed = false;
1558 connector->doublescan_allowed = false;
1559
1560 /* Create TV properties then attach current values */
1561 for (i = 0; i < ARRAY_SIZE(tv_modes); i++)
1562 tv_format_names[i] = tv_modes[i].name;
1563 drm_mode_create_tv_properties(dev,
1564 ARRAY_SIZE(tv_modes),
1565 tv_format_names);
1566
1567 drm_object_attach_property(&connector->base, dev->mode_config.tv_mode_property,
1568 state->tv.mode);
1569 drm_object_attach_property(&connector->base,
1570 dev->mode_config.tv_left_margin_property,
1571 state->tv.margins.left);
1572 drm_object_attach_property(&connector->base,
1573 dev->mode_config.tv_top_margin_property,
1574 state->tv.margins.top);
1575 drm_object_attach_property(&connector->base,
1576 dev->mode_config.tv_right_margin_property,
1577 state->tv.margins.right);
1578 drm_object_attach_property(&connector->base,
1579 dev->mode_config.tv_bottom_margin_property,
1580 state->tv.margins.bottom);
1581 }
1582