xref: /freebsd/sys/arm64/vmm/vmm.c (revision a03354b0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2015 Mihai Carabas <mihai.carabas@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/cpuset.h>
32 #include <sys/kernel.h>
33 #include <sys/linker.h>
34 #include <sys/lock.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/mutex.h>
38 #include <sys/pcpu.h>
39 #include <sys/proc.h>
40 #include <sys/queue.h>
41 #include <sys/rwlock.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sysctl.h>
45 
46 #include <vm/vm.h>
47 #include <vm/vm_object.h>
48 #include <vm/vm_page.h>
49 #include <vm/pmap.h>
50 #include <vm/vm_map.h>
51 #include <vm/vm_extern.h>
52 #include <vm/vm_param.h>
53 
54 #include <machine/armreg.h>
55 #include <machine/cpu.h>
56 #include <machine/fpu.h>
57 #include <machine/machdep.h>
58 #include <machine/pcb.h>
59 #include <machine/smp.h>
60 #include <machine/vm.h>
61 #include <machine/vmparam.h>
62 #include <machine/vmm.h>
63 #include <machine/vmm_dev.h>
64 #include <machine/vmm_instruction_emul.h>
65 
66 #include <dev/pci/pcireg.h>
67 
68 #include "vmm_ktr.h"
69 #include "vmm_stat.h"
70 #include "arm64.h"
71 #include "mmu.h"
72 
73 #include "io/vgic.h"
74 #include "io/vtimer.h"
75 
76 struct vcpu {
77 	int		flags;
78 	enum vcpu_state	state;
79 	struct mtx	mtx;
80 	int		hostcpu;	/* host cpuid this vcpu last ran on */
81 	int		vcpuid;
82 	void		*stats;
83 	struct vm_exit	exitinfo;
84 	uint64_t	nextpc;		/* (x) next instruction to execute */
85 	struct vm	*vm;		/* (o) */
86 	void		*cookie;	/* (i) cpu-specific data */
87 	struct vfpstate	*guestfpu;	/* (a,i) guest fpu state */
88 };
89 
90 #define	vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
91 #define	vcpu_lock_init(v)	mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
92 #define	vcpu_lock_destroy(v)	mtx_destroy(&((v)->mtx))
93 #define	vcpu_lock(v)		mtx_lock_spin(&((v)->mtx))
94 #define	vcpu_unlock(v)		mtx_unlock_spin(&((v)->mtx))
95 #define	vcpu_assert_locked(v)	mtx_assert(&((v)->mtx), MA_OWNED)
96 
97 struct mem_seg {
98 	uint64_t	gpa;
99 	size_t		len;
100 	bool		wired;
101 	bool		sysmem;
102 	vm_object_t	object;
103 };
104 #define	VM_MAX_MEMSEGS	3
105 
106 struct mem_map {
107 	vm_paddr_t	gpa;
108 	size_t		len;
109 	vm_ooffset_t	segoff;
110 	int		segid;
111 	int		prot;
112 	int		flags;
113 };
114 #define	VM_MAX_MEMMAPS	4
115 
116 struct vmm_mmio_region {
117 	uint64_t start;
118 	uint64_t end;
119 	mem_region_read_t read;
120 	mem_region_write_t write;
121 };
122 #define	VM_MAX_MMIO_REGIONS	4
123 
124 struct vmm_special_reg {
125 	uint32_t	esr_iss;
126 	uint32_t	esr_mask;
127 	reg_read_t	reg_read;
128 	reg_write_t	reg_write;
129 	void		*arg;
130 };
131 #define	VM_MAX_SPECIAL_REGS	16
132 
133 /*
134  * Initialization:
135  * (o) initialized the first time the VM is created
136  * (i) initialized when VM is created and when it is reinitialized
137  * (x) initialized before use
138  */
139 struct vm {
140 	void		*cookie;		/* (i) cpu-specific data */
141 	volatile cpuset_t active_cpus;		/* (i) active vcpus */
142 	volatile cpuset_t debug_cpus;		/* (i) vcpus stopped for debug */
143 	int		suspend;		/* (i) stop VM execution */
144 	bool		dying;			/* (o) is dying */
145 	volatile cpuset_t suspended_cpus; 	/* (i) suspended vcpus */
146 	volatile cpuset_t halted_cpus;		/* (x) cpus in a hard halt */
147 	struct mem_map	mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
148 	struct mem_seg	mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
149 	struct vmspace	*vmspace;		/* (o) guest's address space */
150 	char		name[VM_MAX_NAMELEN];	/* (o) virtual machine name */
151 	struct vcpu	**vcpu;			/* (i) guest vcpus */
152 	struct vmm_mmio_region mmio_region[VM_MAX_MMIO_REGIONS];
153 						/* (o) guest MMIO regions */
154 	struct vmm_special_reg special_reg[VM_MAX_SPECIAL_REGS];
155 	/* The following describe the vm cpu topology */
156 	uint16_t	sockets;		/* (o) num of sockets */
157 	uint16_t	cores;			/* (o) num of cores/socket */
158 	uint16_t	threads;		/* (o) num of threads/core */
159 	uint16_t	maxcpus;		/* (o) max pluggable cpus */
160 	struct sx	mem_segs_lock;		/* (o) */
161 	struct sx	vcpus_init_lock;	/* (o) */
162 };
163 
164 static bool vmm_initialized = false;
165 
166 static int vm_handle_wfi(struct vcpu *vcpu,
167 			 struct vm_exit *vme, bool *retu);
168 
169 static MALLOC_DEFINE(M_VMM, "vmm", "vmm");
170 
171 /* statistics */
172 static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
173 
174 SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
175 
176 static int vmm_ipinum;
177 SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
178     "IPI vector used for vcpu notifications");
179 
180 struct vmm_regs {
181 	uint64_t	id_aa64afr0;
182 	uint64_t	id_aa64afr1;
183 	uint64_t	id_aa64dfr0;
184 	uint64_t	id_aa64dfr1;
185 	uint64_t	id_aa64isar0;
186 	uint64_t	id_aa64isar1;
187 	uint64_t	id_aa64isar2;
188 	uint64_t	id_aa64mmfr0;
189 	uint64_t	id_aa64mmfr1;
190 	uint64_t	id_aa64mmfr2;
191 	uint64_t	id_aa64pfr0;
192 	uint64_t	id_aa64pfr1;
193 };
194 
195 static const struct vmm_regs vmm_arch_regs_masks = {
196 	.id_aa64dfr0 =
197 	    ID_AA64DFR0_CTX_CMPs_MASK |
198 	    ID_AA64DFR0_WRPs_MASK |
199 	    ID_AA64DFR0_BRPs_MASK |
200 	    ID_AA64DFR0_PMUVer_3 |
201 	    ID_AA64DFR0_DebugVer_8,
202 	.id_aa64isar0 =
203 	    ID_AA64ISAR0_TLB_TLBIOSR |
204 	    ID_AA64ISAR0_SHA3_IMPL |
205 	    ID_AA64ISAR0_RDM_IMPL |
206 	    ID_AA64ISAR0_Atomic_IMPL |
207 	    ID_AA64ISAR0_CRC32_BASE |
208 	    ID_AA64ISAR0_SHA2_512 |
209 	    ID_AA64ISAR0_SHA1_BASE |
210 	    ID_AA64ISAR0_AES_PMULL,
211 	.id_aa64mmfr0 =
212 	    ID_AA64MMFR0_TGran4_IMPL |
213 	    ID_AA64MMFR0_TGran64_IMPL |
214 	    ID_AA64MMFR0_TGran16_IMPL |
215 	    ID_AA64MMFR0_ASIDBits_16 |
216 	    ID_AA64MMFR0_PARange_4P,
217 	.id_aa64mmfr1 =
218 	    ID_AA64MMFR1_SpecSEI_IMPL |
219 	    ID_AA64MMFR1_PAN_ATS1E1 |
220 	    ID_AA64MMFR1_HAFDBS_AF,
221 	.id_aa64pfr0 =
222 	    ID_AA64PFR0_GIC_CPUIF_NONE |
223 	    ID_AA64PFR0_AdvSIMD_HP |
224 	    ID_AA64PFR0_FP_HP |
225 	    ID_AA64PFR0_EL3_64 |
226 	    ID_AA64PFR0_EL2_64 |
227 	    ID_AA64PFR0_EL1_64 |
228 	    ID_AA64PFR0_EL0_64,
229 };
230 
231 /* Host registers masked by vmm_arch_regs_masks. */
232 static struct vmm_regs vmm_arch_regs;
233 
234 u_int vm_maxcpu;
235 SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
236     &vm_maxcpu, 0, "Maximum number of vCPUs");
237 
238 static void vm_free_memmap(struct vm *vm, int ident);
239 static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
240 static void vcpu_notify_event_locked(struct vcpu *vcpu);
241 
242 /*
243  * Upper limit on vm_maxcpu. We could increase this to 28 bits, but this
244  * is a safe value for now.
245  */
246 #define	VM_MAXCPU	MIN(0xffff - 1, CPU_SETSIZE)
247 
248 static int
vmm_regs_init(struct vmm_regs * regs,const struct vmm_regs * masks)249 vmm_regs_init(struct vmm_regs *regs, const struct vmm_regs *masks)
250 {
251 #define	_FETCH_KERN_REG(reg, field) do {				\
252 	regs->field = vmm_arch_regs_masks.field;			\
253 	if (!get_kernel_reg_masked(reg, &regs->field, masks->field))	\
254 		regs->field = 0;					\
255 } while (0)
256 	_FETCH_KERN_REG(ID_AA64AFR0_EL1, id_aa64afr0);
257 	_FETCH_KERN_REG(ID_AA64AFR1_EL1, id_aa64afr1);
258 	_FETCH_KERN_REG(ID_AA64DFR0_EL1, id_aa64dfr0);
259 	_FETCH_KERN_REG(ID_AA64DFR1_EL1, id_aa64dfr1);
260 	_FETCH_KERN_REG(ID_AA64ISAR0_EL1, id_aa64isar0);
261 	_FETCH_KERN_REG(ID_AA64ISAR1_EL1, id_aa64isar1);
262 	_FETCH_KERN_REG(ID_AA64ISAR2_EL1, id_aa64isar2);
263 	_FETCH_KERN_REG(ID_AA64MMFR0_EL1, id_aa64mmfr0);
264 	_FETCH_KERN_REG(ID_AA64MMFR1_EL1, id_aa64mmfr1);
265 	_FETCH_KERN_REG(ID_AA64MMFR2_EL1, id_aa64mmfr2);
266 	_FETCH_KERN_REG(ID_AA64PFR0_EL1, id_aa64pfr0);
267 	_FETCH_KERN_REG(ID_AA64PFR1_EL1, id_aa64pfr1);
268 #undef _FETCH_KERN_REG
269 	return (0);
270 }
271 
272 static void
vcpu_cleanup(struct vcpu * vcpu,bool destroy)273 vcpu_cleanup(struct vcpu *vcpu, bool destroy)
274 {
275 	vmmops_vcpu_cleanup(vcpu->cookie);
276 	vcpu->cookie = NULL;
277 	if (destroy) {
278 		vmm_stat_free(vcpu->stats);
279 		fpu_save_area_free(vcpu->guestfpu);
280 		vcpu_lock_destroy(vcpu);
281 	}
282 }
283 
284 static struct vcpu *
vcpu_alloc(struct vm * vm,int vcpu_id)285 vcpu_alloc(struct vm *vm, int vcpu_id)
286 {
287 	struct vcpu *vcpu;
288 
289 	KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
290 	    ("vcpu_alloc: invalid vcpu %d", vcpu_id));
291 
292 	vcpu = malloc(sizeof(*vcpu), M_VMM, M_WAITOK | M_ZERO);
293 	vcpu_lock_init(vcpu);
294 	vcpu->state = VCPU_IDLE;
295 	vcpu->hostcpu = NOCPU;
296 	vcpu->vcpuid = vcpu_id;
297 	vcpu->vm = vm;
298 	vcpu->guestfpu = fpu_save_area_alloc();
299 	vcpu->stats = vmm_stat_alloc();
300 	return (vcpu);
301 }
302 
303 static void
vcpu_init(struct vcpu * vcpu)304 vcpu_init(struct vcpu *vcpu)
305 {
306 	vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
307 	MPASS(vcpu->cookie != NULL);
308 	fpu_save_area_reset(vcpu->guestfpu);
309 	vmm_stat_init(vcpu->stats);
310 }
311 
312 struct vm_exit *
vm_exitinfo(struct vcpu * vcpu)313 vm_exitinfo(struct vcpu *vcpu)
314 {
315 	return (&vcpu->exitinfo);
316 }
317 
318 static int
vmm_init(void)319 vmm_init(void)
320 {
321 	int error;
322 
323 	vm_maxcpu = mp_ncpus;
324 	TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
325 
326 	if (vm_maxcpu > VM_MAXCPU) {
327 		printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
328 		vm_maxcpu = VM_MAXCPU;
329 	}
330 	if (vm_maxcpu == 0)
331 		vm_maxcpu = 1;
332 
333 	error = vmm_regs_init(&vmm_arch_regs, &vmm_arch_regs_masks);
334 	if (error != 0)
335 		return (error);
336 
337 	return (vmmops_modinit(0));
338 }
339 
340 static int
vmm_handler(module_t mod,int what,void * arg)341 vmm_handler(module_t mod, int what, void *arg)
342 {
343 	int error;
344 
345 	switch (what) {
346 	case MOD_LOAD:
347 		/* TODO: if (vmm_is_hw_supported()) { */
348 		vmmdev_init();
349 		error = vmm_init();
350 		if (error == 0)
351 			vmm_initialized = true;
352 		break;
353 	case MOD_UNLOAD:
354 		/* TODO: if (vmm_is_hw_supported()) { */
355 		error = vmmdev_cleanup();
356 		if (error == 0 && vmm_initialized) {
357 			error = vmmops_modcleanup();
358 			if (error)
359 				vmm_initialized = false;
360 		}
361 		break;
362 	default:
363 		error = 0;
364 		break;
365 	}
366 	return (error);
367 }
368 
369 static moduledata_t vmm_kmod = {
370 	"vmm",
371 	vmm_handler,
372 	NULL
373 };
374 
375 /*
376  * vmm initialization has the following dependencies:
377  *
378  * - HYP initialization requires smp_rendezvous() and therefore must happen
379  *   after SMP is fully functional (after SI_SUB_SMP).
380  */
381 DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
382 MODULE_VERSION(vmm, 1);
383 
384 static void
vm_init(struct vm * vm,bool create)385 vm_init(struct vm *vm, bool create)
386 {
387 	int i;
388 
389 	vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace));
390 	MPASS(vm->cookie != NULL);
391 
392 	CPU_ZERO(&vm->active_cpus);
393 	CPU_ZERO(&vm->debug_cpus);
394 
395 	vm->suspend = 0;
396 	CPU_ZERO(&vm->suspended_cpus);
397 
398 	memset(vm->mmio_region, 0, sizeof(vm->mmio_region));
399 	memset(vm->special_reg, 0, sizeof(vm->special_reg));
400 
401 	if (!create) {
402 		for (i = 0; i < vm->maxcpus; i++) {
403 			if (vm->vcpu[i] != NULL)
404 				vcpu_init(vm->vcpu[i]);
405 		}
406 	}
407 }
408 
409 void
vm_disable_vcpu_creation(struct vm * vm)410 vm_disable_vcpu_creation(struct vm *vm)
411 {
412 	sx_xlock(&vm->vcpus_init_lock);
413 	vm->dying = true;
414 	sx_xunlock(&vm->vcpus_init_lock);
415 }
416 
417 struct vcpu *
vm_alloc_vcpu(struct vm * vm,int vcpuid)418 vm_alloc_vcpu(struct vm *vm, int vcpuid)
419 {
420 	struct vcpu *vcpu;
421 
422 	if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
423 		return (NULL);
424 
425 	/* Some interrupt controllers may have a CPU limit */
426 	if (vcpuid >= vgic_max_cpu_count(vm->cookie))
427 		return (NULL);
428 
429 	vcpu = atomic_load_ptr(&vm->vcpu[vcpuid]);
430 	if (__predict_true(vcpu != NULL))
431 		return (vcpu);
432 
433 	sx_xlock(&vm->vcpus_init_lock);
434 	vcpu = vm->vcpu[vcpuid];
435 	if (vcpu == NULL && !vm->dying) {
436 		vcpu = vcpu_alloc(vm, vcpuid);
437 		vcpu_init(vcpu);
438 
439 		/*
440 		 * Ensure vCPU is fully created before updating pointer
441 		 * to permit unlocked reads above.
442 		 */
443 		atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
444 		    (uintptr_t)vcpu);
445 	}
446 	sx_xunlock(&vm->vcpus_init_lock);
447 	return (vcpu);
448 }
449 
450 void
vm_slock_vcpus(struct vm * vm)451 vm_slock_vcpus(struct vm *vm)
452 {
453 	sx_slock(&vm->vcpus_init_lock);
454 }
455 
456 void
vm_unlock_vcpus(struct vm * vm)457 vm_unlock_vcpus(struct vm *vm)
458 {
459 	sx_unlock(&vm->vcpus_init_lock);
460 }
461 
462 int
vm_create(const char * name,struct vm ** retvm)463 vm_create(const char *name, struct vm **retvm)
464 {
465 	struct vm *vm;
466 	struct vmspace *vmspace;
467 
468 	/*
469 	 * If vmm.ko could not be successfully initialized then don't attempt
470 	 * to create the virtual machine.
471 	 */
472 	if (!vmm_initialized)
473 		return (ENXIO);
474 
475 	if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
476 		return (EINVAL);
477 
478 	vmspace = vmmops_vmspace_alloc(0, 1ul << 39);
479 	if (vmspace == NULL)
480 		return (ENOMEM);
481 
482 	vm = malloc(sizeof(struct vm), M_VMM, M_WAITOK | M_ZERO);
483 	strcpy(vm->name, name);
484 	vm->vmspace = vmspace;
485 	sx_init(&vm->mem_segs_lock, "vm mem_segs");
486 	sx_init(&vm->vcpus_init_lock, "vm vcpus");
487 
488 	vm->sockets = 1;
489 	vm->cores = 1;			/* XXX backwards compatibility */
490 	vm->threads = 1;		/* XXX backwards compatibility */
491 	vm->maxcpus = vm_maxcpu;
492 
493 	vm->vcpu = malloc(sizeof(*vm->vcpu) * vm->maxcpus, M_VMM,
494 	    M_WAITOK | M_ZERO);
495 
496 	vm_init(vm, true);
497 
498 	*retvm = vm;
499 	return (0);
500 }
501 
502 void
vm_get_topology(struct vm * vm,uint16_t * sockets,uint16_t * cores,uint16_t * threads,uint16_t * maxcpus)503 vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
504     uint16_t *threads, uint16_t *maxcpus)
505 {
506 	*sockets = vm->sockets;
507 	*cores = vm->cores;
508 	*threads = vm->threads;
509 	*maxcpus = vm->maxcpus;
510 }
511 
512 uint16_t
vm_get_maxcpus(struct vm * vm)513 vm_get_maxcpus(struct vm *vm)
514 {
515 	return (vm->maxcpus);
516 }
517 
518 int
vm_set_topology(struct vm * vm,uint16_t sockets,uint16_t cores,uint16_t threads,uint16_t maxcpus)519 vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
520     uint16_t threads, uint16_t maxcpus)
521 {
522 	/* Ignore maxcpus. */
523 	if ((sockets * cores * threads) > vm->maxcpus)
524 		return (EINVAL);
525 	vm->sockets = sockets;
526 	vm->cores = cores;
527 	vm->threads = threads;
528 	return(0);
529 }
530 
531 static void
vm_cleanup(struct vm * vm,bool destroy)532 vm_cleanup(struct vm *vm, bool destroy)
533 {
534 	struct mem_map *mm;
535 	pmap_t pmap __diagused;
536 	int i;
537 
538 	if (destroy) {
539 		pmap = vmspace_pmap(vm->vmspace);
540 		sched_pin();
541 		PCPU_SET(curvmpmap, NULL);
542 		sched_unpin();
543 		CPU_FOREACH(i) {
544 			MPASS(cpuid_to_pcpu[i]->pc_curvmpmap != pmap);
545 		}
546 	}
547 
548 	vgic_detach_from_vm(vm->cookie);
549 
550 	for (i = 0; i < vm->maxcpus; i++) {
551 		if (vm->vcpu[i] != NULL)
552 			vcpu_cleanup(vm->vcpu[i], destroy);
553 	}
554 
555 	vmmops_cleanup(vm->cookie);
556 
557 	/*
558 	 * System memory is removed from the guest address space only when
559 	 * the VM is destroyed. This is because the mapping remains the same
560 	 * across VM reset.
561 	 *
562 	 * Device memory can be relocated by the guest (e.g. using PCI BARs)
563 	 * so those mappings are removed on a VM reset.
564 	 */
565 	if (!destroy) {
566 		for (i = 0; i < VM_MAX_MEMMAPS; i++) {
567 			mm = &vm->mem_maps[i];
568 			if (destroy || !sysmem_mapping(vm, mm))
569 				vm_free_memmap(vm, i);
570 		}
571 	}
572 
573 	if (destroy) {
574 		for (i = 0; i < VM_MAX_MEMSEGS; i++)
575 			vm_free_memseg(vm, i);
576 
577 		vmmops_vmspace_free(vm->vmspace);
578 		vm->vmspace = NULL;
579 
580 		for (i = 0; i < vm->maxcpus; i++)
581 			free(vm->vcpu[i], M_VMM);
582 		free(vm->vcpu, M_VMM);
583 		sx_destroy(&vm->vcpus_init_lock);
584 		sx_destroy(&vm->mem_segs_lock);
585 	}
586 }
587 
588 void
vm_destroy(struct vm * vm)589 vm_destroy(struct vm *vm)
590 {
591 	vm_cleanup(vm, true);
592 	free(vm, M_VMM);
593 }
594 
595 int
vm_reinit(struct vm * vm)596 vm_reinit(struct vm *vm)
597 {
598 	int error;
599 
600 	/*
601 	 * A virtual machine can be reset only if all vcpus are suspended.
602 	 */
603 	if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
604 		vm_cleanup(vm, false);
605 		vm_init(vm, false);
606 		error = 0;
607 	} else {
608 		error = EBUSY;
609 	}
610 
611 	return (error);
612 }
613 
614 const char *
vm_name(struct vm * vm)615 vm_name(struct vm *vm)
616 {
617 	return (vm->name);
618 }
619 
620 void
vm_slock_memsegs(struct vm * vm)621 vm_slock_memsegs(struct vm *vm)
622 {
623 	sx_slock(&vm->mem_segs_lock);
624 }
625 
626 void
vm_xlock_memsegs(struct vm * vm)627 vm_xlock_memsegs(struct vm *vm)
628 {
629 	sx_xlock(&vm->mem_segs_lock);
630 }
631 
632 void
vm_unlock_memsegs(struct vm * vm)633 vm_unlock_memsegs(struct vm *vm)
634 {
635 	sx_unlock(&vm->mem_segs_lock);
636 }
637 
638 /*
639  * Return 'true' if 'gpa' is allocated in the guest address space.
640  *
641  * This function is called in the context of a running vcpu which acts as
642  * an implicit lock on 'vm->mem_maps[]'.
643  */
644 bool
vm_mem_allocated(struct vcpu * vcpu,vm_paddr_t gpa)645 vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa)
646 {
647 	struct vm *vm = vcpu->vm;
648 	struct mem_map *mm;
649 	int i;
650 
651 #ifdef INVARIANTS
652 	int hostcpu, state;
653 	state = vcpu_get_state(vcpu, &hostcpu);
654 	KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
655 	    ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
656 #endif
657 
658 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
659 		mm = &vm->mem_maps[i];
660 		if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
661 			return (true);		/* 'gpa' is sysmem or devmem */
662 	}
663 
664 	return (false);
665 }
666 
667 int
vm_alloc_memseg(struct vm * vm,int ident,size_t len,bool sysmem)668 vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
669 {
670 	struct mem_seg *seg;
671 	vm_object_t obj;
672 
673 	sx_assert(&vm->mem_segs_lock, SX_XLOCKED);
674 
675 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
676 		return (EINVAL);
677 
678 	if (len == 0 || (len & PAGE_MASK))
679 		return (EINVAL);
680 
681 	seg = &vm->mem_segs[ident];
682 	if (seg->object != NULL) {
683 		if (seg->len == len && seg->sysmem == sysmem)
684 			return (EEXIST);
685 		else
686 			return (EINVAL);
687 	}
688 
689 	obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
690 	if (obj == NULL)
691 		return (ENOMEM);
692 
693 	seg->len = len;
694 	seg->object = obj;
695 	seg->sysmem = sysmem;
696 	return (0);
697 }
698 
699 int
vm_get_memseg(struct vm * vm,int ident,size_t * len,bool * sysmem,vm_object_t * objptr)700 vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
701     vm_object_t *objptr)
702 {
703 	struct mem_seg *seg;
704 
705 	sx_assert(&vm->mem_segs_lock, SX_LOCKED);
706 
707 	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
708 		return (EINVAL);
709 
710 	seg = &vm->mem_segs[ident];
711 	if (len)
712 		*len = seg->len;
713 	if (sysmem)
714 		*sysmem = seg->sysmem;
715 	if (objptr)
716 		*objptr = seg->object;
717 	return (0);
718 }
719 
720 void
vm_free_memseg(struct vm * vm,int ident)721 vm_free_memseg(struct vm *vm, int ident)
722 {
723 	struct mem_seg *seg;
724 
725 	KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
726 	    ("%s: invalid memseg ident %d", __func__, ident));
727 
728 	seg = &vm->mem_segs[ident];
729 	if (seg->object != NULL) {
730 		vm_object_deallocate(seg->object);
731 		bzero(seg, sizeof(struct mem_seg));
732 	}
733 }
734 
735 int
vm_mmap_memseg(struct vm * vm,vm_paddr_t gpa,int segid,vm_ooffset_t first,size_t len,int prot,int flags)736 vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
737     size_t len, int prot, int flags)
738 {
739 	struct mem_seg *seg;
740 	struct mem_map *m, *map;
741 	vm_ooffset_t last;
742 	int i, error;
743 
744 	if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
745 		return (EINVAL);
746 
747 	if (flags & ~VM_MEMMAP_F_WIRED)
748 		return (EINVAL);
749 
750 	if (segid < 0 || segid >= VM_MAX_MEMSEGS)
751 		return (EINVAL);
752 
753 	seg = &vm->mem_segs[segid];
754 	if (seg->object == NULL)
755 		return (EINVAL);
756 
757 	last = first + len;
758 	if (first < 0 || first >= last || last > seg->len)
759 		return (EINVAL);
760 
761 	if ((gpa | first | last) & PAGE_MASK)
762 		return (EINVAL);
763 
764 	map = NULL;
765 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
766 		m = &vm->mem_maps[i];
767 		if (m->len == 0) {
768 			map = m;
769 			break;
770 		}
771 	}
772 
773 	if (map == NULL)
774 		return (ENOSPC);
775 
776 	error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
777 	    len, 0, VMFS_NO_SPACE, prot, prot, 0);
778 	if (error != KERN_SUCCESS)
779 		return (EFAULT);
780 
781 	vm_object_reference(seg->object);
782 
783 	if (flags & VM_MEMMAP_F_WIRED) {
784 		error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
785 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
786 		if (error != KERN_SUCCESS) {
787 			vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
788 			return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM :
789 			    EFAULT);
790 		}
791 	}
792 
793 	map->gpa = gpa;
794 	map->len = len;
795 	map->segoff = first;
796 	map->segid = segid;
797 	map->prot = prot;
798 	map->flags = flags;
799 	return (0);
800 }
801 
802 int
vm_munmap_memseg(struct vm * vm,vm_paddr_t gpa,size_t len)803 vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len)
804 {
805 	struct mem_map *m;
806 	int i;
807 
808 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
809 		m = &vm->mem_maps[i];
810 		if (m->gpa == gpa && m->len == len) {
811 			vm_free_memmap(vm, i);
812 			return (0);
813 		}
814 	}
815 
816 	return (EINVAL);
817 }
818 
819 int
vm_mmap_getnext(struct vm * vm,vm_paddr_t * gpa,int * segid,vm_ooffset_t * segoff,size_t * len,int * prot,int * flags)820 vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
821     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
822 {
823 	struct mem_map *mm, *mmnext;
824 	int i;
825 
826 	mmnext = NULL;
827 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
828 		mm = &vm->mem_maps[i];
829 		if (mm->len == 0 || mm->gpa < *gpa)
830 			continue;
831 		if (mmnext == NULL || mm->gpa < mmnext->gpa)
832 			mmnext = mm;
833 	}
834 
835 	if (mmnext != NULL) {
836 		*gpa = mmnext->gpa;
837 		if (segid)
838 			*segid = mmnext->segid;
839 		if (segoff)
840 			*segoff = mmnext->segoff;
841 		if (len)
842 			*len = mmnext->len;
843 		if (prot)
844 			*prot = mmnext->prot;
845 		if (flags)
846 			*flags = mmnext->flags;
847 		return (0);
848 	} else {
849 		return (ENOENT);
850 	}
851 }
852 
853 static void
vm_free_memmap(struct vm * vm,int ident)854 vm_free_memmap(struct vm *vm, int ident)
855 {
856 	struct mem_map *mm;
857 	int error __diagused;
858 
859 	mm = &vm->mem_maps[ident];
860 	if (mm->len) {
861 		error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
862 		    mm->gpa + mm->len);
863 		KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
864 		    __func__, error));
865 		bzero(mm, sizeof(struct mem_map));
866 	}
867 }
868 
869 static __inline bool
sysmem_mapping(struct vm * vm,struct mem_map * mm)870 sysmem_mapping(struct vm *vm, struct mem_map *mm)
871 {
872 
873 	if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
874 		return (true);
875 	else
876 		return (false);
877 }
878 
879 vm_paddr_t
vmm_sysmem_maxaddr(struct vm * vm)880 vmm_sysmem_maxaddr(struct vm *vm)
881 {
882 	struct mem_map *mm;
883 	vm_paddr_t maxaddr;
884 	int i;
885 
886 	maxaddr = 0;
887 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
888 		mm = &vm->mem_maps[i];
889 		if (sysmem_mapping(vm, mm)) {
890 			if (maxaddr < mm->gpa + mm->len)
891 				maxaddr = mm->gpa + mm->len;
892 		}
893 	}
894 	return (maxaddr);
895 }
896 
897 int
vm_gla2gpa_nofault(struct vcpu * vcpu,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * is_fault)898 vm_gla2gpa_nofault(struct vcpu *vcpu, struct vm_guest_paging *paging,
899     uint64_t gla, int prot, uint64_t *gpa, int *is_fault)
900 {
901 
902 	vmmops_gla2gpa(vcpu->cookie, paging, gla, prot, gpa, is_fault);
903 	return (0);
904 }
905 
906 static int
vmm_reg_raz(struct vcpu * vcpu,uint64_t * rval,void * arg)907 vmm_reg_raz(struct vcpu *vcpu, uint64_t *rval, void *arg)
908 {
909 	*rval = 0;
910 	return (0);
911 }
912 
913 static int
vmm_reg_read_arg(struct vcpu * vcpu,uint64_t * rval,void * arg)914 vmm_reg_read_arg(struct vcpu *vcpu, uint64_t *rval, void *arg)
915 {
916 	*rval = *(uint64_t *)arg;
917 	return (0);
918 }
919 
920 static int
vmm_reg_wi(struct vcpu * vcpu,uint64_t wval,void * arg)921 vmm_reg_wi(struct vcpu *vcpu, uint64_t wval, void *arg)
922 {
923 	return (0);
924 }
925 
926 static const struct vmm_special_reg vmm_special_regs[] = {
927 #define	SPECIAL_REG(_reg, _read, _write)				\
928 	{								\
929 		.esr_iss = ((_reg ## _op0) << ISS_MSR_OP0_SHIFT) |	\
930 		    ((_reg ## _op1) << ISS_MSR_OP1_SHIFT) |		\
931 		    ((_reg ## _CRn) << ISS_MSR_CRn_SHIFT) |		\
932 		    ((_reg ## _CRm) << ISS_MSR_CRm_SHIFT) |		\
933 		    ((_reg ## _op2) << ISS_MSR_OP2_SHIFT),		\
934 		.esr_mask = ISS_MSR_REG_MASK,				\
935 		.reg_read = (_read),					\
936 		.reg_write = (_write),					\
937 		.arg = NULL,						\
938 	}
939 #define	ID_SPECIAL_REG(_reg, _name)					\
940 	{								\
941 		.esr_iss = ((_reg ## _op0) << ISS_MSR_OP0_SHIFT) |	\
942 		    ((_reg ## _op1) << ISS_MSR_OP1_SHIFT) |		\
943 		    ((_reg ## _CRn) << ISS_MSR_CRn_SHIFT) |		\
944 		    ((_reg ## _CRm) << ISS_MSR_CRm_SHIFT) |		\
945 		    ((_reg ## _op2) << ISS_MSR_OP2_SHIFT),		\
946 		.esr_mask = ISS_MSR_REG_MASK,				\
947 		.reg_read = vmm_reg_read_arg,				\
948 		.reg_write = vmm_reg_wi,				\
949 		.arg = &(vmm_arch_regs._name),				\
950 	}
951 
952 	/* ID registers */
953 	ID_SPECIAL_REG(ID_AA64PFR0_EL1, id_aa64pfr0),
954 	ID_SPECIAL_REG(ID_AA64DFR0_EL1, id_aa64dfr0),
955 	ID_SPECIAL_REG(ID_AA64ISAR0_EL1, id_aa64isar0),
956 	ID_SPECIAL_REG(ID_AA64MMFR0_EL1, id_aa64mmfr0),
957 	ID_SPECIAL_REG(ID_AA64MMFR1_EL1, id_aa64mmfr1),
958 
959 	/*
960 	 * All other ID registers are read as zero.
961 	 * They are all in the op0=3, op1=0, CRn=0, CRm={0..7} space.
962 	 */
963 	{
964 		.esr_iss = (3 << ISS_MSR_OP0_SHIFT) |
965 		    (0 << ISS_MSR_OP1_SHIFT) |
966 		    (0 << ISS_MSR_CRn_SHIFT) |
967 		    (0 << ISS_MSR_CRm_SHIFT),
968 		.esr_mask = ISS_MSR_OP0_MASK | ISS_MSR_OP1_MASK |
969 		    ISS_MSR_CRn_MASK | (0x8 << ISS_MSR_CRm_SHIFT),
970 		.reg_read = vmm_reg_raz,
971 		.reg_write = vmm_reg_wi,
972 		.arg = NULL,
973 	},
974 
975 	/* Counter physical registers */
976 	SPECIAL_REG(CNTP_CTL_EL0, vtimer_phys_ctl_read, vtimer_phys_ctl_write),
977 	SPECIAL_REG(CNTP_CVAL_EL0, vtimer_phys_cval_read,
978 	    vtimer_phys_cval_write),
979 	SPECIAL_REG(CNTP_TVAL_EL0, vtimer_phys_tval_read,
980 	    vtimer_phys_tval_write),
981 	SPECIAL_REG(CNTPCT_EL0, vtimer_phys_cnt_read, vtimer_phys_cnt_write),
982 #undef SPECIAL_REG
983 };
984 
985 void
vm_register_reg_handler(struct vm * vm,uint64_t iss,uint64_t mask,reg_read_t reg_read,reg_write_t reg_write,void * arg)986 vm_register_reg_handler(struct vm *vm, uint64_t iss, uint64_t mask,
987     reg_read_t reg_read, reg_write_t reg_write, void *arg)
988 {
989 	int i;
990 
991 	for (i = 0; i < nitems(vm->special_reg); i++) {
992 		if (vm->special_reg[i].esr_iss == 0 &&
993 		    vm->special_reg[i].esr_mask == 0) {
994 			vm->special_reg[i].esr_iss = iss;
995 			vm->special_reg[i].esr_mask = mask;
996 			vm->special_reg[i].reg_read = reg_read;
997 			vm->special_reg[i].reg_write = reg_write;
998 			vm->special_reg[i].arg = arg;
999 			return;
1000 		}
1001 	}
1002 
1003 	panic("%s: No free special register slot", __func__);
1004 }
1005 
1006 void
vm_deregister_reg_handler(struct vm * vm,uint64_t iss,uint64_t mask)1007 vm_deregister_reg_handler(struct vm *vm, uint64_t iss, uint64_t mask)
1008 {
1009 	int i;
1010 
1011 	for (i = 0; i < nitems(vm->special_reg); i++) {
1012 		if (vm->special_reg[i].esr_iss == iss &&
1013 		    vm->special_reg[i].esr_mask == mask) {
1014 			memset(&vm->special_reg[i], 0,
1015 			    sizeof(vm->special_reg[i]));
1016 			return;
1017 		}
1018 	}
1019 
1020 	panic("%s: Invalid special register: iss %lx mask %lx", __func__, iss,
1021 	    mask);
1022 }
1023 
1024 static int
vm_handle_reg_emul(struct vcpu * vcpu,bool * retu)1025 vm_handle_reg_emul(struct vcpu *vcpu, bool *retu)
1026 {
1027 	struct vm *vm;
1028 	struct vm_exit *vme;
1029 	struct vre *vre;
1030 	int i, rv;
1031 
1032 	vm = vcpu->vm;
1033 	vme = &vcpu->exitinfo;
1034 	vre = &vme->u.reg_emul.vre;
1035 
1036 	for (i = 0; i < nitems(vm->special_reg); i++) {
1037 		if (vm->special_reg[i].esr_iss == 0 &&
1038 		    vm->special_reg[i].esr_mask == 0)
1039 			continue;
1040 
1041 		if ((vre->inst_syndrome & vm->special_reg[i].esr_mask) ==
1042 		    vm->special_reg[i].esr_iss) {
1043 			rv = vmm_emulate_register(vcpu, vre,
1044 			    vm->special_reg[i].reg_read,
1045 			    vm->special_reg[i].reg_write,
1046 			    vm->special_reg[i].arg);
1047 			if (rv == 0) {
1048 				*retu = false;
1049 			}
1050 			return (rv);
1051 		}
1052 	}
1053 	for (i = 0; i < nitems(vmm_special_regs); i++) {
1054 		if ((vre->inst_syndrome & vmm_special_regs[i].esr_mask) ==
1055 		    vmm_special_regs[i].esr_iss) {
1056 			rv = vmm_emulate_register(vcpu, vre,
1057 			    vmm_special_regs[i].reg_read,
1058 			    vmm_special_regs[i].reg_write,
1059 			    vmm_special_regs[i].arg);
1060 			if (rv == 0) {
1061 				*retu = false;
1062 			}
1063 			return (rv);
1064 		}
1065 	}
1066 
1067 
1068 	*retu = true;
1069 	return (0);
1070 }
1071 
1072 void
vm_register_inst_handler(struct vm * vm,uint64_t start,uint64_t size,mem_region_read_t mmio_read,mem_region_write_t mmio_write)1073 vm_register_inst_handler(struct vm *vm, uint64_t start, uint64_t size,
1074     mem_region_read_t mmio_read, mem_region_write_t mmio_write)
1075 {
1076 	int i;
1077 
1078 	for (i = 0; i < nitems(vm->mmio_region); i++) {
1079 		if (vm->mmio_region[i].start == 0 &&
1080 		    vm->mmio_region[i].end == 0) {
1081 			vm->mmio_region[i].start = start;
1082 			vm->mmio_region[i].end = start + size;
1083 			vm->mmio_region[i].read = mmio_read;
1084 			vm->mmio_region[i].write = mmio_write;
1085 			return;
1086 		}
1087 	}
1088 
1089 	panic("%s: No free MMIO region", __func__);
1090 }
1091 
1092 void
vm_deregister_inst_handler(struct vm * vm,uint64_t start,uint64_t size)1093 vm_deregister_inst_handler(struct vm *vm, uint64_t start, uint64_t size)
1094 {
1095 	int i;
1096 
1097 	for (i = 0; i < nitems(vm->mmio_region); i++) {
1098 		if (vm->mmio_region[i].start == start &&
1099 		    vm->mmio_region[i].end == start + size) {
1100 			memset(&vm->mmio_region[i], 0,
1101 			    sizeof(vm->mmio_region[i]));
1102 			return;
1103 		}
1104 	}
1105 
1106 	panic("%s: Invalid MMIO region: %lx - %lx", __func__, start,
1107 	    start + size);
1108 }
1109 
1110 static int
vm_handle_inst_emul(struct vcpu * vcpu,bool * retu)1111 vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
1112 {
1113 	struct vm *vm;
1114 	struct vm_exit *vme;
1115 	struct vie *vie;
1116 	struct hyp *hyp;
1117 	uint64_t fault_ipa;
1118 	struct vm_guest_paging *paging;
1119 	struct vmm_mmio_region *vmr;
1120 	int error, i;
1121 
1122 	vm = vcpu->vm;
1123 	hyp = vm->cookie;
1124 	if (!hyp->vgic_attached)
1125 		goto out_user;
1126 
1127 	vme = &vcpu->exitinfo;
1128 	vie = &vme->u.inst_emul.vie;
1129 	paging = &vme->u.inst_emul.paging;
1130 
1131 	fault_ipa = vme->u.inst_emul.gpa;
1132 
1133 	vmr = NULL;
1134 	for (i = 0; i < nitems(vm->mmio_region); i++) {
1135 		if (vm->mmio_region[i].start <= fault_ipa &&
1136 		    vm->mmio_region[i].end > fault_ipa) {
1137 			vmr = &vm->mmio_region[i];
1138 			break;
1139 		}
1140 	}
1141 	if (vmr == NULL)
1142 		goto out_user;
1143 
1144 	error = vmm_emulate_instruction(vcpu, fault_ipa, vie, paging,
1145 	    vmr->read, vmr->write, retu);
1146 	return (error);
1147 
1148 out_user:
1149 	*retu = true;
1150 	return (0);
1151 }
1152 
1153 int
vm_suspend(struct vm * vm,enum vm_suspend_how how)1154 vm_suspend(struct vm *vm, enum vm_suspend_how how)
1155 {
1156 	int i;
1157 
1158 	if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1159 		return (EINVAL);
1160 
1161 	if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1162 		VM_CTR2(vm, "virtual machine already suspended %d/%d",
1163 		    vm->suspend, how);
1164 		return (EALREADY);
1165 	}
1166 
1167 	VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1168 
1169 	/*
1170 	 * Notify all active vcpus that they are now suspended.
1171 	 */
1172 	for (i = 0; i < vm->maxcpus; i++) {
1173 		if (CPU_ISSET(i, &vm->active_cpus))
1174 			vcpu_notify_event(vm_vcpu(vm, i));
1175 	}
1176 
1177 	return (0);
1178 }
1179 
1180 void
vm_exit_suspended(struct vcpu * vcpu,uint64_t pc)1181 vm_exit_suspended(struct vcpu *vcpu, uint64_t pc)
1182 {
1183 	struct vm *vm = vcpu->vm;
1184 	struct vm_exit *vmexit;
1185 
1186 	KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1187 	    ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1188 
1189 	vmexit = vm_exitinfo(vcpu);
1190 	vmexit->pc = pc;
1191 	vmexit->inst_length = 4;
1192 	vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1193 	vmexit->u.suspended.how = vm->suspend;
1194 }
1195 
1196 void
vm_exit_debug(struct vcpu * vcpu,uint64_t pc)1197 vm_exit_debug(struct vcpu *vcpu, uint64_t pc)
1198 {
1199 	struct vm_exit *vmexit;
1200 
1201 	vmexit = vm_exitinfo(vcpu);
1202 	vmexit->pc = pc;
1203 	vmexit->inst_length = 4;
1204 	vmexit->exitcode = VM_EXITCODE_DEBUG;
1205 }
1206 
1207 int
vm_activate_cpu(struct vcpu * vcpu)1208 vm_activate_cpu(struct vcpu *vcpu)
1209 {
1210 	struct vm *vm = vcpu->vm;
1211 
1212 	if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
1213 		return (EBUSY);
1214 
1215 	CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
1216 	return (0);
1217 
1218 }
1219 
1220 int
vm_suspend_cpu(struct vm * vm,struct vcpu * vcpu)1221 vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
1222 {
1223 	if (vcpu == NULL) {
1224 		vm->debug_cpus = vm->active_cpus;
1225 		for (int i = 0; i < vm->maxcpus; i++) {
1226 			if (CPU_ISSET(i, &vm->active_cpus))
1227 				vcpu_notify_event(vm_vcpu(vm, i));
1228 		}
1229 	} else {
1230 		if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
1231 			return (EINVAL);
1232 
1233 		CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
1234 		vcpu_notify_event(vcpu);
1235 	}
1236 	return (0);
1237 }
1238 
1239 int
vm_resume_cpu(struct vm * vm,struct vcpu * vcpu)1240 vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
1241 {
1242 
1243 	if (vcpu == NULL) {
1244 		CPU_ZERO(&vm->debug_cpus);
1245 	} else {
1246 		if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
1247 			return (EINVAL);
1248 
1249 		CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
1250 	}
1251 	return (0);
1252 }
1253 
1254 int
vcpu_debugged(struct vcpu * vcpu)1255 vcpu_debugged(struct vcpu *vcpu)
1256 {
1257 
1258 	return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
1259 }
1260 
1261 cpuset_t
vm_active_cpus(struct vm * vm)1262 vm_active_cpus(struct vm *vm)
1263 {
1264 
1265 	return (vm->active_cpus);
1266 }
1267 
1268 cpuset_t
vm_debug_cpus(struct vm * vm)1269 vm_debug_cpus(struct vm *vm)
1270 {
1271 
1272 	return (vm->debug_cpus);
1273 }
1274 
1275 cpuset_t
vm_suspended_cpus(struct vm * vm)1276 vm_suspended_cpus(struct vm *vm)
1277 {
1278 
1279 	return (vm->suspended_cpus);
1280 }
1281 
1282 
1283 void *
vcpu_stats(struct vcpu * vcpu)1284 vcpu_stats(struct vcpu *vcpu)
1285 {
1286 
1287 	return (vcpu->stats);
1288 }
1289 
1290 /*
1291  * This function is called to ensure that a vcpu "sees" a pending event
1292  * as soon as possible:
1293  * - If the vcpu thread is sleeping then it is woken up.
1294  * - If the vcpu is running on a different host_cpu then an IPI will be directed
1295  *   to the host_cpu to cause the vcpu to trap into the hypervisor.
1296  */
1297 static void
vcpu_notify_event_locked(struct vcpu * vcpu)1298 vcpu_notify_event_locked(struct vcpu *vcpu)
1299 {
1300 	int hostcpu;
1301 
1302 	hostcpu = vcpu->hostcpu;
1303 	if (vcpu->state == VCPU_RUNNING) {
1304 		KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
1305 		if (hostcpu != curcpu) {
1306 			ipi_cpu(hostcpu, vmm_ipinum);
1307 		} else {
1308 			/*
1309 			 * If the 'vcpu' is running on 'curcpu' then it must
1310 			 * be sending a notification to itself (e.g. SELF_IPI).
1311 			 * The pending event will be picked up when the vcpu
1312 			 * transitions back to guest context.
1313 			 */
1314 		}
1315 	} else {
1316 		KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
1317 		    "with hostcpu %d", vcpu->state, hostcpu));
1318 		if (vcpu->state == VCPU_SLEEPING)
1319 			wakeup_one(vcpu);
1320 	}
1321 }
1322 
1323 void
vcpu_notify_event(struct vcpu * vcpu)1324 vcpu_notify_event(struct vcpu *vcpu)
1325 {
1326 	vcpu_lock(vcpu);
1327 	vcpu_notify_event_locked(vcpu);
1328 	vcpu_unlock(vcpu);
1329 }
1330 
1331 static void
restore_guest_fpustate(struct vcpu * vcpu)1332 restore_guest_fpustate(struct vcpu *vcpu)
1333 {
1334 
1335 	/* flush host state to the pcb */
1336 	vfp_save_state(curthread, curthread->td_pcb);
1337 	/* Ensure the VFP state will be re-loaded when exiting the guest */
1338 	PCPU_SET(fpcurthread, NULL);
1339 
1340 	/* restore guest FPU state */
1341 	vfp_enable();
1342 	vfp_restore(vcpu->guestfpu);
1343 
1344 	/*
1345 	 * The FPU is now "dirty" with the guest's state so turn on emulation
1346 	 * to trap any access to the FPU by the host.
1347 	 */
1348 	vfp_disable();
1349 }
1350 
1351 static void
save_guest_fpustate(struct vcpu * vcpu)1352 save_guest_fpustate(struct vcpu *vcpu)
1353 {
1354 	if ((READ_SPECIALREG(cpacr_el1) & CPACR_FPEN_MASK) !=
1355 	    CPACR_FPEN_TRAP_ALL1)
1356 		panic("VFP not enabled in host!");
1357 
1358 	/* save guest FPU state */
1359 	vfp_enable();
1360 	vfp_store(vcpu->guestfpu);
1361 	vfp_disable();
1362 
1363 	KASSERT(PCPU_GET(fpcurthread) == NULL,
1364 	    ("%s: fpcurthread set with guest registers", __func__));
1365 }
1366 static int
vcpu_set_state_locked(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1367 vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
1368     bool from_idle)
1369 {
1370 	int error;
1371 
1372 	vcpu_assert_locked(vcpu);
1373 
1374 	/*
1375 	 * State transitions from the vmmdev_ioctl() must always begin from
1376 	 * the VCPU_IDLE state. This guarantees that there is only a single
1377 	 * ioctl() operating on a vcpu at any point.
1378 	 */
1379 	if (from_idle) {
1380 		while (vcpu->state != VCPU_IDLE) {
1381 			vcpu_notify_event_locked(vcpu);
1382 			msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1383 		}
1384 	} else {
1385 		KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1386 		    "vcpu idle state"));
1387 	}
1388 
1389 	if (vcpu->state == VCPU_RUNNING) {
1390 		KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1391 		    "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1392 	} else {
1393 		KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1394 		    "vcpu that is not running", vcpu->hostcpu));
1395 	}
1396 
1397 	/*
1398 	 * The following state transitions are allowed:
1399 	 * IDLE -> FROZEN -> IDLE
1400 	 * FROZEN -> RUNNING -> FROZEN
1401 	 * FROZEN -> SLEEPING -> FROZEN
1402 	 */
1403 	switch (vcpu->state) {
1404 	case VCPU_IDLE:
1405 	case VCPU_RUNNING:
1406 	case VCPU_SLEEPING:
1407 		error = (newstate != VCPU_FROZEN);
1408 		break;
1409 	case VCPU_FROZEN:
1410 		error = (newstate == VCPU_FROZEN);
1411 		break;
1412 	default:
1413 		error = 1;
1414 		break;
1415 	}
1416 
1417 	if (error)
1418 		return (EBUSY);
1419 
1420 	vcpu->state = newstate;
1421 	if (newstate == VCPU_RUNNING)
1422 		vcpu->hostcpu = curcpu;
1423 	else
1424 		vcpu->hostcpu = NOCPU;
1425 
1426 	if (newstate == VCPU_IDLE)
1427 		wakeup(&vcpu->state);
1428 
1429 	return (0);
1430 }
1431 
1432 static void
vcpu_require_state(struct vcpu * vcpu,enum vcpu_state newstate)1433 vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
1434 {
1435 	int error;
1436 
1437 	if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
1438 		panic("Error %d setting state to %d\n", error, newstate);
1439 }
1440 
1441 static void
vcpu_require_state_locked(struct vcpu * vcpu,enum vcpu_state newstate)1442 vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
1443 {
1444 	int error;
1445 
1446 	if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
1447 		panic("Error %d setting state to %d", error, newstate);
1448 }
1449 
1450 int
vm_get_capability(struct vcpu * vcpu,int type,int * retval)1451 vm_get_capability(struct vcpu *vcpu, int type, int *retval)
1452 {
1453 	if (type < 0 || type >= VM_CAP_MAX)
1454 		return (EINVAL);
1455 
1456 	return (vmmops_getcap(vcpu->cookie, type, retval));
1457 }
1458 
1459 int
vm_set_capability(struct vcpu * vcpu,int type,int val)1460 vm_set_capability(struct vcpu *vcpu, int type, int val)
1461 {
1462 	if (type < 0 || type >= VM_CAP_MAX)
1463 		return (EINVAL);
1464 
1465 	return (vmmops_setcap(vcpu->cookie, type, val));
1466 }
1467 
1468 struct vm *
vcpu_vm(struct vcpu * vcpu)1469 vcpu_vm(struct vcpu *vcpu)
1470 {
1471 	return (vcpu->vm);
1472 }
1473 
1474 int
vcpu_vcpuid(struct vcpu * vcpu)1475 vcpu_vcpuid(struct vcpu *vcpu)
1476 {
1477 	return (vcpu->vcpuid);
1478 }
1479 
1480 void *
vcpu_get_cookie(struct vcpu * vcpu)1481 vcpu_get_cookie(struct vcpu *vcpu)
1482 {
1483 	return (vcpu->cookie);
1484 }
1485 
1486 struct vcpu *
vm_vcpu(struct vm * vm,int vcpuid)1487 vm_vcpu(struct vm *vm, int vcpuid)
1488 {
1489 	return (vm->vcpu[vcpuid]);
1490 }
1491 
1492 int
vcpu_set_state(struct vcpu * vcpu,enum vcpu_state newstate,bool from_idle)1493 vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
1494 {
1495 	int error;
1496 
1497 	vcpu_lock(vcpu);
1498 	error = vcpu_set_state_locked(vcpu, newstate, from_idle);
1499 	vcpu_unlock(vcpu);
1500 
1501 	return (error);
1502 }
1503 
1504 enum vcpu_state
vcpu_get_state(struct vcpu * vcpu,int * hostcpu)1505 vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
1506 {
1507 	enum vcpu_state state;
1508 
1509 	vcpu_lock(vcpu);
1510 	state = vcpu->state;
1511 	if (hostcpu != NULL)
1512 		*hostcpu = vcpu->hostcpu;
1513 	vcpu_unlock(vcpu);
1514 
1515 	return (state);
1516 }
1517 
1518 static void *
_vm_gpa_hold(struct vm * vm,vm_paddr_t gpa,size_t len,int reqprot,void ** cookie)1519 _vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
1520     void **cookie)
1521 {
1522 	int i, count, pageoff;
1523 	struct mem_map *mm;
1524 	vm_page_t m;
1525 
1526 	pageoff = gpa & PAGE_MASK;
1527 	if (len > PAGE_SIZE - pageoff)
1528 		panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
1529 
1530 	count = 0;
1531 	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
1532 		mm = &vm->mem_maps[i];
1533 		if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
1534 		    gpa < mm->gpa + mm->len) {
1535 			count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
1536 			    trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
1537 			break;
1538 		}
1539 	}
1540 
1541 	if (count == 1) {
1542 		*cookie = m;
1543 		return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
1544 	} else {
1545 		*cookie = NULL;
1546 		return (NULL);
1547 	}
1548 }
1549 
1550 void *
vm_gpa_hold(struct vcpu * vcpu,vm_paddr_t gpa,size_t len,int reqprot,void ** cookie)1551 vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot,
1552 	    void **cookie)
1553 {
1554 #ifdef INVARIANTS
1555 	/*
1556 	 * The current vcpu should be frozen to ensure 'vm_memmap[]'
1557 	 * stability.
1558 	 */
1559 	int state = vcpu_get_state(vcpu, NULL);
1560 	KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
1561 	    __func__, state));
1562 #endif
1563 	return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie));
1564 }
1565 
1566 void *
vm_gpa_hold_global(struct vm * vm,vm_paddr_t gpa,size_t len,int reqprot,void ** cookie)1567 vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
1568     void **cookie)
1569 {
1570 	sx_assert(&vm->mem_segs_lock, SX_LOCKED);
1571 	return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie));
1572 }
1573 
1574 void
vm_gpa_release(void * cookie)1575 vm_gpa_release(void *cookie)
1576 {
1577 	vm_page_t m = cookie;
1578 
1579 	vm_page_unwire(m, PQ_ACTIVE);
1580 }
1581 
1582 int
vm_get_register(struct vcpu * vcpu,int reg,uint64_t * retval)1583 vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
1584 {
1585 
1586 	if (reg >= VM_REG_LAST)
1587 		return (EINVAL);
1588 
1589 	return (vmmops_getreg(vcpu->cookie, reg, retval));
1590 }
1591 
1592 int
vm_set_register(struct vcpu * vcpu,int reg,uint64_t val)1593 vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
1594 {
1595 	int error;
1596 
1597 	if (reg >= VM_REG_LAST)
1598 		return (EINVAL);
1599 	error = vmmops_setreg(vcpu->cookie, reg, val);
1600 	if (error || reg != VM_REG_GUEST_PC)
1601 		return (error);
1602 
1603 	vcpu->nextpc = val;
1604 
1605 	return (0);
1606 }
1607 
1608 void *
vm_get_cookie(struct vm * vm)1609 vm_get_cookie(struct vm *vm)
1610 {
1611 	return (vm->cookie);
1612 }
1613 
1614 int
vm_inject_exception(struct vcpu * vcpu,uint64_t esr,uint64_t far)1615 vm_inject_exception(struct vcpu *vcpu, uint64_t esr, uint64_t far)
1616 {
1617 	return (vmmops_exception(vcpu->cookie, esr, far));
1618 }
1619 
1620 int
vm_attach_vgic(struct vm * vm,struct vm_vgic_descr * descr)1621 vm_attach_vgic(struct vm *vm, struct vm_vgic_descr *descr)
1622 {
1623 	return (vgic_attach_to_vm(vm->cookie, descr));
1624 }
1625 
1626 int
vm_assert_irq(struct vm * vm,uint32_t irq)1627 vm_assert_irq(struct vm *vm, uint32_t irq)
1628 {
1629 	return (vgic_inject_irq(vm->cookie, -1, irq, true));
1630 }
1631 
1632 int
vm_deassert_irq(struct vm * vm,uint32_t irq)1633 vm_deassert_irq(struct vm *vm, uint32_t irq)
1634 {
1635 	return (vgic_inject_irq(vm->cookie, -1, irq, false));
1636 }
1637 
1638 int
vm_raise_msi(struct vm * vm,uint64_t msg,uint64_t addr,int bus,int slot,int func)1639 vm_raise_msi(struct vm *vm, uint64_t msg, uint64_t addr, int bus, int slot,
1640     int func)
1641 {
1642 	/* TODO: Should we raise an SError? */
1643 	return (vgic_inject_msi(vm->cookie, msg, addr));
1644 }
1645 
1646 static int
vm_handle_smccc_call(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1647 vm_handle_smccc_call(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1648 {
1649 	struct hypctx *hypctx;
1650 	int i;
1651 
1652 	hypctx = vcpu_get_cookie(vcpu);
1653 
1654 	if ((hypctx->tf.tf_esr & ESR_ELx_ISS_MASK) != 0)
1655 		return (1);
1656 
1657 	vme->exitcode = VM_EXITCODE_SMCCC;
1658 	vme->u.smccc_call.func_id = hypctx->tf.tf_x[0];
1659 	for (i = 0; i < nitems(vme->u.smccc_call.args); i++)
1660 		vme->u.smccc_call.args[i] = hypctx->tf.tf_x[i + 1];
1661 
1662 	*retu = true;
1663 	return (0);
1664 }
1665 
1666 static int
vm_handle_wfi(struct vcpu * vcpu,struct vm_exit * vme,bool * retu)1667 vm_handle_wfi(struct vcpu *vcpu, struct vm_exit *vme, bool *retu)
1668 {
1669 	vcpu_lock(vcpu);
1670 	while (1) {
1671 		if (vgic_has_pending_irq(vcpu->cookie))
1672 			break;
1673 
1674 		if (vcpu_should_yield(vcpu))
1675 			break;
1676 
1677 		vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1678 		/*
1679 		 * XXX msleep_spin() cannot be interrupted by signals so
1680 		 * wake up periodically to check pending signals.
1681 		 */
1682 		msleep_spin(vcpu, &vcpu->mtx, "vmidle", hz);
1683 		vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1684 	}
1685 	vcpu_unlock(vcpu);
1686 
1687 	*retu = false;
1688 	return (0);
1689 }
1690 
1691 static int
vm_handle_paging(struct vcpu * vcpu,bool * retu)1692 vm_handle_paging(struct vcpu *vcpu, bool *retu)
1693 {
1694 	struct vm *vm = vcpu->vm;
1695 	struct vm_exit *vme;
1696 	struct vm_map *map;
1697 	uint64_t addr, esr;
1698 	pmap_t pmap;
1699 	int ftype, rv;
1700 
1701 	vme = &vcpu->exitinfo;
1702 
1703 	pmap = vmspace_pmap(vcpu->vm->vmspace);
1704 	addr = vme->u.paging.gpa;
1705 	esr = vme->u.paging.esr;
1706 
1707 	/* The page exists, but the page table needs to be updated. */
1708 	if (pmap_fault(pmap, esr, addr) == KERN_SUCCESS)
1709 		return (0);
1710 
1711 	switch (ESR_ELx_EXCEPTION(esr)) {
1712 	case EXCP_INSN_ABORT_L:
1713 	case EXCP_DATA_ABORT_L:
1714 		ftype = VM_PROT_EXECUTE | VM_PROT_READ | VM_PROT_WRITE;
1715 		break;
1716 	default:
1717 		panic("%s: Invalid exception (esr = %lx)", __func__, esr);
1718 	}
1719 
1720 	map = &vm->vmspace->vm_map;
1721 	rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
1722 	if (rv != KERN_SUCCESS)
1723 		return (EFAULT);
1724 
1725 	return (0);
1726 }
1727 
1728 static int
vm_handle_suspend(struct vcpu * vcpu,bool * retu)1729 vm_handle_suspend(struct vcpu *vcpu, bool *retu)
1730 {
1731 	struct vm *vm = vcpu->vm;
1732 	int error, i;
1733 	struct thread *td;
1734 
1735 	error = 0;
1736 	td = curthread;
1737 
1738 	CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
1739 
1740 	/*
1741 	 * Wait until all 'active_cpus' have suspended themselves.
1742 	 *
1743 	 * Since a VM may be suspended at any time including when one or
1744 	 * more vcpus are doing a rendezvous we need to call the rendezvous
1745 	 * handler while we are waiting to prevent a deadlock.
1746 	 */
1747 	vcpu_lock(vcpu);
1748 	while (error == 0) {
1749 		if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0)
1750 			break;
1751 
1752 		vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
1753 		msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1754 		vcpu_require_state_locked(vcpu, VCPU_FROZEN);
1755 		if (td_ast_pending(td, TDA_SUSPEND)) {
1756 			vcpu_unlock(vcpu);
1757 			error = thread_check_susp(td, false);
1758 			vcpu_lock(vcpu);
1759 		}
1760 	}
1761 	vcpu_unlock(vcpu);
1762 
1763 	/*
1764 	 * Wakeup the other sleeping vcpus and return to userspace.
1765 	 */
1766 	for (i = 0; i < vm->maxcpus; i++) {
1767 		if (CPU_ISSET(i, &vm->suspended_cpus)) {
1768 			vcpu_notify_event(vm_vcpu(vm, i));
1769 		}
1770 	}
1771 
1772 	*retu = true;
1773 	return (error);
1774 }
1775 
1776 int
vm_run(struct vcpu * vcpu)1777 vm_run(struct vcpu *vcpu)
1778 {
1779 	struct vm *vm = vcpu->vm;
1780 	struct vm_eventinfo evinfo;
1781 	int error, vcpuid;
1782 	struct vm_exit *vme;
1783 	bool retu;
1784 	pmap_t pmap;
1785 
1786 	vcpuid = vcpu->vcpuid;
1787 
1788 	if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1789 		return (EINVAL);
1790 
1791 	if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1792 		return (EINVAL);
1793 
1794 	pmap = vmspace_pmap(vm->vmspace);
1795 	vme = &vcpu->exitinfo;
1796 	evinfo.rptr = NULL;
1797 	evinfo.sptr = &vm->suspend;
1798 	evinfo.iptr = NULL;
1799 restart:
1800 	critical_enter();
1801 
1802 	restore_guest_fpustate(vcpu);
1803 
1804 	vcpu_require_state(vcpu, VCPU_RUNNING);
1805 	error = vmmops_run(vcpu->cookie, vcpu->nextpc, pmap, &evinfo);
1806 	vcpu_require_state(vcpu, VCPU_FROZEN);
1807 
1808 	save_guest_fpustate(vcpu);
1809 
1810 	critical_exit();
1811 
1812 	if (error == 0) {
1813 		retu = false;
1814 		switch (vme->exitcode) {
1815 		case VM_EXITCODE_INST_EMUL:
1816 			vcpu->nextpc = vme->pc + vme->inst_length;
1817 			error = vm_handle_inst_emul(vcpu, &retu);
1818 			break;
1819 
1820 		case VM_EXITCODE_REG_EMUL:
1821 			vcpu->nextpc = vme->pc + vme->inst_length;
1822 			error = vm_handle_reg_emul(vcpu, &retu);
1823 			break;
1824 
1825 		case VM_EXITCODE_HVC:
1826 			/*
1827 			 * The HVC instruction saves the address for the
1828 			 * next instruction as the return address.
1829 			 */
1830 			vcpu->nextpc = vme->pc;
1831 			/*
1832 			 * The PSCI call can change the exit information in the
1833 			 * case of suspend/reset/poweroff/cpu off/cpu on.
1834 			 */
1835 			error = vm_handle_smccc_call(vcpu, vme, &retu);
1836 			break;
1837 
1838 		case VM_EXITCODE_WFI:
1839 			vcpu->nextpc = vme->pc + vme->inst_length;
1840 			error = vm_handle_wfi(vcpu, vme, &retu);
1841 			break;
1842 
1843 		case VM_EXITCODE_PAGING:
1844 			vcpu->nextpc = vme->pc;
1845 			error = vm_handle_paging(vcpu, &retu);
1846 			break;
1847 
1848 		case VM_EXITCODE_SUSPENDED:
1849 			vcpu->nextpc = vme->pc;
1850 			error = vm_handle_suspend(vcpu, &retu);
1851 			break;
1852 
1853 		default:
1854 			/* Handle in userland */
1855 			vcpu->nextpc = vme->pc;
1856 			retu = true;
1857 			break;
1858 		}
1859 	}
1860 
1861 	if (error == 0 && retu == false)
1862 		goto restart;
1863 
1864 	return (error);
1865 }
1866