1 /*
2 * QEMU Hypervisor.framework support for Apple Silicon
3
4 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
5 * Copyright 2020 Google LLC
6 *
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
9 *
10 */
11
12 #include "qemu/osdep.h"
13 #include "qemu/error-report.h"
14
15 #include "sysemu/runstate.h"
16 #include "sysemu/hvf.h"
17 #include "sysemu/hvf_int.h"
18 #include "sysemu/hw_accel.h"
19 #include "hvf_arm.h"
20 #include "cpregs.h"
21
22 #include <mach/mach_time.h>
23
24 #include "exec/address-spaces.h"
25 #include "hw/boards.h"
26 #include "hw/irq.h"
27 #include "qemu/main-loop.h"
28 #include "sysemu/cpus.h"
29 #include "arm-powerctl.h"
30 #include "target/arm/cpu.h"
31 #include "target/arm/internals.h"
32 #include "target/arm/multiprocessing.h"
33 #include "target/arm/gtimer.h"
34 #include "trace/trace-target_arm_hvf.h"
35 #include "migration/vmstate.h"
36
37 #include "gdbstub/enums.h"
38
39 #define MDSCR_EL1_SS_SHIFT 0
40 #define MDSCR_EL1_MDE_SHIFT 15
41
42 static const uint16_t dbgbcr_regs[] = {
43 HV_SYS_REG_DBGBCR0_EL1,
44 HV_SYS_REG_DBGBCR1_EL1,
45 HV_SYS_REG_DBGBCR2_EL1,
46 HV_SYS_REG_DBGBCR3_EL1,
47 HV_SYS_REG_DBGBCR4_EL1,
48 HV_SYS_REG_DBGBCR5_EL1,
49 HV_SYS_REG_DBGBCR6_EL1,
50 HV_SYS_REG_DBGBCR7_EL1,
51 HV_SYS_REG_DBGBCR8_EL1,
52 HV_SYS_REG_DBGBCR9_EL1,
53 HV_SYS_REG_DBGBCR10_EL1,
54 HV_SYS_REG_DBGBCR11_EL1,
55 HV_SYS_REG_DBGBCR12_EL1,
56 HV_SYS_REG_DBGBCR13_EL1,
57 HV_SYS_REG_DBGBCR14_EL1,
58 HV_SYS_REG_DBGBCR15_EL1,
59 };
60
61 static const uint16_t dbgbvr_regs[] = {
62 HV_SYS_REG_DBGBVR0_EL1,
63 HV_SYS_REG_DBGBVR1_EL1,
64 HV_SYS_REG_DBGBVR2_EL1,
65 HV_SYS_REG_DBGBVR3_EL1,
66 HV_SYS_REG_DBGBVR4_EL1,
67 HV_SYS_REG_DBGBVR5_EL1,
68 HV_SYS_REG_DBGBVR6_EL1,
69 HV_SYS_REG_DBGBVR7_EL1,
70 HV_SYS_REG_DBGBVR8_EL1,
71 HV_SYS_REG_DBGBVR9_EL1,
72 HV_SYS_REG_DBGBVR10_EL1,
73 HV_SYS_REG_DBGBVR11_EL1,
74 HV_SYS_REG_DBGBVR12_EL1,
75 HV_SYS_REG_DBGBVR13_EL1,
76 HV_SYS_REG_DBGBVR14_EL1,
77 HV_SYS_REG_DBGBVR15_EL1,
78 };
79
80 static const uint16_t dbgwcr_regs[] = {
81 HV_SYS_REG_DBGWCR0_EL1,
82 HV_SYS_REG_DBGWCR1_EL1,
83 HV_SYS_REG_DBGWCR2_EL1,
84 HV_SYS_REG_DBGWCR3_EL1,
85 HV_SYS_REG_DBGWCR4_EL1,
86 HV_SYS_REG_DBGWCR5_EL1,
87 HV_SYS_REG_DBGWCR6_EL1,
88 HV_SYS_REG_DBGWCR7_EL1,
89 HV_SYS_REG_DBGWCR8_EL1,
90 HV_SYS_REG_DBGWCR9_EL1,
91 HV_SYS_REG_DBGWCR10_EL1,
92 HV_SYS_REG_DBGWCR11_EL1,
93 HV_SYS_REG_DBGWCR12_EL1,
94 HV_SYS_REG_DBGWCR13_EL1,
95 HV_SYS_REG_DBGWCR14_EL1,
96 HV_SYS_REG_DBGWCR15_EL1,
97 };
98
99 static const uint16_t dbgwvr_regs[] = {
100 HV_SYS_REG_DBGWVR0_EL1,
101 HV_SYS_REG_DBGWVR1_EL1,
102 HV_SYS_REG_DBGWVR2_EL1,
103 HV_SYS_REG_DBGWVR3_EL1,
104 HV_SYS_REG_DBGWVR4_EL1,
105 HV_SYS_REG_DBGWVR5_EL1,
106 HV_SYS_REG_DBGWVR6_EL1,
107 HV_SYS_REG_DBGWVR7_EL1,
108 HV_SYS_REG_DBGWVR8_EL1,
109 HV_SYS_REG_DBGWVR9_EL1,
110 HV_SYS_REG_DBGWVR10_EL1,
111 HV_SYS_REG_DBGWVR11_EL1,
112 HV_SYS_REG_DBGWVR12_EL1,
113 HV_SYS_REG_DBGWVR13_EL1,
114 HV_SYS_REG_DBGWVR14_EL1,
115 HV_SYS_REG_DBGWVR15_EL1,
116 };
117
hvf_arm_num_brps(hv_vcpu_config_t config)118 static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
119 {
120 uint64_t val;
121 hv_return_t ret;
122 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
123 &val);
124 assert_hvf_ok(ret);
125 return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
126 }
127
hvf_arm_num_wrps(hv_vcpu_config_t config)128 static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
129 {
130 uint64_t val;
131 hv_return_t ret;
132 ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
133 &val);
134 assert_hvf_ok(ret);
135 return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
136 }
137
hvf_arm_init_debug(void)138 void hvf_arm_init_debug(void)
139 {
140 hv_vcpu_config_t config;
141 config = hv_vcpu_config_create();
142
143 max_hw_bps = hvf_arm_num_brps(config);
144 hw_breakpoints =
145 g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);
146
147 max_hw_wps = hvf_arm_num_wrps(config);
148 hw_watchpoints =
149 g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
150 }
151
152 #define HVF_SYSREG(crn, crm, op0, op1, op2) \
153 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
154
155 #define SYSREG_OP0_SHIFT 20
156 #define SYSREG_OP0_MASK 0x3
157 #define SYSREG_OP0(sysreg) ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
158 #define SYSREG_OP1_SHIFT 14
159 #define SYSREG_OP1_MASK 0x7
160 #define SYSREG_OP1(sysreg) ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
161 #define SYSREG_CRN_SHIFT 10
162 #define SYSREG_CRN_MASK 0xf
163 #define SYSREG_CRN(sysreg) ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
164 #define SYSREG_CRM_SHIFT 1
165 #define SYSREG_CRM_MASK 0xf
166 #define SYSREG_CRM(sysreg) ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
167 #define SYSREG_OP2_SHIFT 17
168 #define SYSREG_OP2_MASK 0x7
169 #define SYSREG_OP2(sysreg) ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)
170
171 #define SYSREG(op0, op1, crn, crm, op2) \
172 ((op0 << SYSREG_OP0_SHIFT) | \
173 (op1 << SYSREG_OP1_SHIFT) | \
174 (crn << SYSREG_CRN_SHIFT) | \
175 (crm << SYSREG_CRM_SHIFT) | \
176 (op2 << SYSREG_OP2_SHIFT))
177 #define SYSREG_MASK \
178 SYSREG(SYSREG_OP0_MASK, \
179 SYSREG_OP1_MASK, \
180 SYSREG_CRN_MASK, \
181 SYSREG_CRM_MASK, \
182 SYSREG_OP2_MASK)
183 #define SYSREG_OSLAR_EL1 SYSREG(2, 0, 1, 0, 4)
184 #define SYSREG_OSLSR_EL1 SYSREG(2, 0, 1, 1, 4)
185 #define SYSREG_OSDLR_EL1 SYSREG(2, 0, 1, 3, 4)
186 #define SYSREG_CNTPCT_EL0 SYSREG(3, 3, 14, 0, 1)
187 #define SYSREG_PMCR_EL0 SYSREG(3, 3, 9, 12, 0)
188 #define SYSREG_PMUSERENR_EL0 SYSREG(3, 3, 9, 14, 0)
189 #define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
190 #define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
191 #define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
192 #define SYSREG_PMOVSCLR_EL0 SYSREG(3, 3, 9, 12, 3)
193 #define SYSREG_PMSWINC_EL0 SYSREG(3, 3, 9, 12, 4)
194 #define SYSREG_PMSELR_EL0 SYSREG(3, 3, 9, 12, 5)
195 #define SYSREG_PMCEID0_EL0 SYSREG(3, 3, 9, 12, 6)
196 #define SYSREG_PMCEID1_EL0 SYSREG(3, 3, 9, 12, 7)
197 #define SYSREG_PMCCNTR_EL0 SYSREG(3, 3, 9, 13, 0)
198 #define SYSREG_PMCCFILTR_EL0 SYSREG(3, 3, 14, 15, 7)
199
200 #define SYSREG_ICC_AP0R0_EL1 SYSREG(3, 0, 12, 8, 4)
201 #define SYSREG_ICC_AP0R1_EL1 SYSREG(3, 0, 12, 8, 5)
202 #define SYSREG_ICC_AP0R2_EL1 SYSREG(3, 0, 12, 8, 6)
203 #define SYSREG_ICC_AP0R3_EL1 SYSREG(3, 0, 12, 8, 7)
204 #define SYSREG_ICC_AP1R0_EL1 SYSREG(3, 0, 12, 9, 0)
205 #define SYSREG_ICC_AP1R1_EL1 SYSREG(3, 0, 12, 9, 1)
206 #define SYSREG_ICC_AP1R2_EL1 SYSREG(3, 0, 12, 9, 2)
207 #define SYSREG_ICC_AP1R3_EL1 SYSREG(3, 0, 12, 9, 3)
208 #define SYSREG_ICC_ASGI1R_EL1 SYSREG(3, 0, 12, 11, 6)
209 #define SYSREG_ICC_BPR0_EL1 SYSREG(3, 0, 12, 8, 3)
210 #define SYSREG_ICC_BPR1_EL1 SYSREG(3, 0, 12, 12, 3)
211 #define SYSREG_ICC_CTLR_EL1 SYSREG(3, 0, 12, 12, 4)
212 #define SYSREG_ICC_DIR_EL1 SYSREG(3, 0, 12, 11, 1)
213 #define SYSREG_ICC_EOIR0_EL1 SYSREG(3, 0, 12, 8, 1)
214 #define SYSREG_ICC_EOIR1_EL1 SYSREG(3, 0, 12, 12, 1)
215 #define SYSREG_ICC_HPPIR0_EL1 SYSREG(3, 0, 12, 8, 2)
216 #define SYSREG_ICC_HPPIR1_EL1 SYSREG(3, 0, 12, 12, 2)
217 #define SYSREG_ICC_IAR0_EL1 SYSREG(3, 0, 12, 8, 0)
218 #define SYSREG_ICC_IAR1_EL1 SYSREG(3, 0, 12, 12, 0)
219 #define SYSREG_ICC_IGRPEN0_EL1 SYSREG(3, 0, 12, 12, 6)
220 #define SYSREG_ICC_IGRPEN1_EL1 SYSREG(3, 0, 12, 12, 7)
221 #define SYSREG_ICC_PMR_EL1 SYSREG(3, 0, 4, 6, 0)
222 #define SYSREG_ICC_RPR_EL1 SYSREG(3, 0, 12, 11, 3)
223 #define SYSREG_ICC_SGI0R_EL1 SYSREG(3, 0, 12, 11, 7)
224 #define SYSREG_ICC_SGI1R_EL1 SYSREG(3, 0, 12, 11, 5)
225 #define SYSREG_ICC_SRE_EL1 SYSREG(3, 0, 12, 12, 5)
226
227 #define SYSREG_MDSCR_EL1 SYSREG(2, 0, 0, 2, 2)
228 #define SYSREG_DBGBVR0_EL1 SYSREG(2, 0, 0, 0, 4)
229 #define SYSREG_DBGBCR0_EL1 SYSREG(2, 0, 0, 0, 5)
230 #define SYSREG_DBGWVR0_EL1 SYSREG(2, 0, 0, 0, 6)
231 #define SYSREG_DBGWCR0_EL1 SYSREG(2, 0, 0, 0, 7)
232 #define SYSREG_DBGBVR1_EL1 SYSREG(2, 0, 0, 1, 4)
233 #define SYSREG_DBGBCR1_EL1 SYSREG(2, 0, 0, 1, 5)
234 #define SYSREG_DBGWVR1_EL1 SYSREG(2, 0, 0, 1, 6)
235 #define SYSREG_DBGWCR1_EL1 SYSREG(2, 0, 0, 1, 7)
236 #define SYSREG_DBGBVR2_EL1 SYSREG(2, 0, 0, 2, 4)
237 #define SYSREG_DBGBCR2_EL1 SYSREG(2, 0, 0, 2, 5)
238 #define SYSREG_DBGWVR2_EL1 SYSREG(2, 0, 0, 2, 6)
239 #define SYSREG_DBGWCR2_EL1 SYSREG(2, 0, 0, 2, 7)
240 #define SYSREG_DBGBVR3_EL1 SYSREG(2, 0, 0, 3, 4)
241 #define SYSREG_DBGBCR3_EL1 SYSREG(2, 0, 0, 3, 5)
242 #define SYSREG_DBGWVR3_EL1 SYSREG(2, 0, 0, 3, 6)
243 #define SYSREG_DBGWCR3_EL1 SYSREG(2, 0, 0, 3, 7)
244 #define SYSREG_DBGBVR4_EL1 SYSREG(2, 0, 0, 4, 4)
245 #define SYSREG_DBGBCR4_EL1 SYSREG(2, 0, 0, 4, 5)
246 #define SYSREG_DBGWVR4_EL1 SYSREG(2, 0, 0, 4, 6)
247 #define SYSREG_DBGWCR4_EL1 SYSREG(2, 0, 0, 4, 7)
248 #define SYSREG_DBGBVR5_EL1 SYSREG(2, 0, 0, 5, 4)
249 #define SYSREG_DBGBCR5_EL1 SYSREG(2, 0, 0, 5, 5)
250 #define SYSREG_DBGWVR5_EL1 SYSREG(2, 0, 0, 5, 6)
251 #define SYSREG_DBGWCR5_EL1 SYSREG(2, 0, 0, 5, 7)
252 #define SYSREG_DBGBVR6_EL1 SYSREG(2, 0, 0, 6, 4)
253 #define SYSREG_DBGBCR6_EL1 SYSREG(2, 0, 0, 6, 5)
254 #define SYSREG_DBGWVR6_EL1 SYSREG(2, 0, 0, 6, 6)
255 #define SYSREG_DBGWCR6_EL1 SYSREG(2, 0, 0, 6, 7)
256 #define SYSREG_DBGBVR7_EL1 SYSREG(2, 0, 0, 7, 4)
257 #define SYSREG_DBGBCR7_EL1 SYSREG(2, 0, 0, 7, 5)
258 #define SYSREG_DBGWVR7_EL1 SYSREG(2, 0, 0, 7, 6)
259 #define SYSREG_DBGWCR7_EL1 SYSREG(2, 0, 0, 7, 7)
260 #define SYSREG_DBGBVR8_EL1 SYSREG(2, 0, 0, 8, 4)
261 #define SYSREG_DBGBCR8_EL1 SYSREG(2, 0, 0, 8, 5)
262 #define SYSREG_DBGWVR8_EL1 SYSREG(2, 0, 0, 8, 6)
263 #define SYSREG_DBGWCR8_EL1 SYSREG(2, 0, 0, 8, 7)
264 #define SYSREG_DBGBVR9_EL1 SYSREG(2, 0, 0, 9, 4)
265 #define SYSREG_DBGBCR9_EL1 SYSREG(2, 0, 0, 9, 5)
266 #define SYSREG_DBGWVR9_EL1 SYSREG(2, 0, 0, 9, 6)
267 #define SYSREG_DBGWCR9_EL1 SYSREG(2, 0, 0, 9, 7)
268 #define SYSREG_DBGBVR10_EL1 SYSREG(2, 0, 0, 10, 4)
269 #define SYSREG_DBGBCR10_EL1 SYSREG(2, 0, 0, 10, 5)
270 #define SYSREG_DBGWVR10_EL1 SYSREG(2, 0, 0, 10, 6)
271 #define SYSREG_DBGWCR10_EL1 SYSREG(2, 0, 0, 10, 7)
272 #define SYSREG_DBGBVR11_EL1 SYSREG(2, 0, 0, 11, 4)
273 #define SYSREG_DBGBCR11_EL1 SYSREG(2, 0, 0, 11, 5)
274 #define SYSREG_DBGWVR11_EL1 SYSREG(2, 0, 0, 11, 6)
275 #define SYSREG_DBGWCR11_EL1 SYSREG(2, 0, 0, 11, 7)
276 #define SYSREG_DBGBVR12_EL1 SYSREG(2, 0, 0, 12, 4)
277 #define SYSREG_DBGBCR12_EL1 SYSREG(2, 0, 0, 12, 5)
278 #define SYSREG_DBGWVR12_EL1 SYSREG(2, 0, 0, 12, 6)
279 #define SYSREG_DBGWCR12_EL1 SYSREG(2, 0, 0, 12, 7)
280 #define SYSREG_DBGBVR13_EL1 SYSREG(2, 0, 0, 13, 4)
281 #define SYSREG_DBGBCR13_EL1 SYSREG(2, 0, 0, 13, 5)
282 #define SYSREG_DBGWVR13_EL1 SYSREG(2, 0, 0, 13, 6)
283 #define SYSREG_DBGWCR13_EL1 SYSREG(2, 0, 0, 13, 7)
284 #define SYSREG_DBGBVR14_EL1 SYSREG(2, 0, 0, 14, 4)
285 #define SYSREG_DBGBCR14_EL1 SYSREG(2, 0, 0, 14, 5)
286 #define SYSREG_DBGWVR14_EL1 SYSREG(2, 0, 0, 14, 6)
287 #define SYSREG_DBGWCR14_EL1 SYSREG(2, 0, 0, 14, 7)
288 #define SYSREG_DBGBVR15_EL1 SYSREG(2, 0, 0, 15, 4)
289 #define SYSREG_DBGBCR15_EL1 SYSREG(2, 0, 0, 15, 5)
290 #define SYSREG_DBGWVR15_EL1 SYSREG(2, 0, 0, 15, 6)
291 #define SYSREG_DBGWCR15_EL1 SYSREG(2, 0, 0, 15, 7)
292
293 #define WFX_IS_WFE (1 << 0)
294
295 #define TMR_CTL_ENABLE (1 << 0)
296 #define TMR_CTL_IMASK (1 << 1)
297 #define TMR_CTL_ISTATUS (1 << 2)
298
299 static void hvf_wfi(CPUState *cpu);
300
301 static uint32_t chosen_ipa_bit_size;
302
303 typedef struct HVFVTimer {
304 /* Vtimer value during migration and paused state */
305 uint64_t vtimer_val;
306 } HVFVTimer;
307
308 static HVFVTimer vtimer;
309
310 typedef struct ARMHostCPUFeatures {
311 ARMISARegisters isar;
312 uint64_t features;
313 uint64_t midr;
314 uint32_t reset_sctlr;
315 const char *dtb_compatible;
316 } ARMHostCPUFeatures;
317
318 static ARMHostCPUFeatures arm_host_cpu_features;
319
320 struct hvf_reg_match {
321 int reg;
322 uint64_t offset;
323 };
324
325 static const struct hvf_reg_match hvf_reg_match[] = {
326 { HV_REG_X0, offsetof(CPUARMState, xregs[0]) },
327 { HV_REG_X1, offsetof(CPUARMState, xregs[1]) },
328 { HV_REG_X2, offsetof(CPUARMState, xregs[2]) },
329 { HV_REG_X3, offsetof(CPUARMState, xregs[3]) },
330 { HV_REG_X4, offsetof(CPUARMState, xregs[4]) },
331 { HV_REG_X5, offsetof(CPUARMState, xregs[5]) },
332 { HV_REG_X6, offsetof(CPUARMState, xregs[6]) },
333 { HV_REG_X7, offsetof(CPUARMState, xregs[7]) },
334 { HV_REG_X8, offsetof(CPUARMState, xregs[8]) },
335 { HV_REG_X9, offsetof(CPUARMState, xregs[9]) },
336 { HV_REG_X10, offsetof(CPUARMState, xregs[10]) },
337 { HV_REG_X11, offsetof(CPUARMState, xregs[11]) },
338 { HV_REG_X12, offsetof(CPUARMState, xregs[12]) },
339 { HV_REG_X13, offsetof(CPUARMState, xregs[13]) },
340 { HV_REG_X14, offsetof(CPUARMState, xregs[14]) },
341 { HV_REG_X15, offsetof(CPUARMState, xregs[15]) },
342 { HV_REG_X16, offsetof(CPUARMState, xregs[16]) },
343 { HV_REG_X17, offsetof(CPUARMState, xregs[17]) },
344 { HV_REG_X18, offsetof(CPUARMState, xregs[18]) },
345 { HV_REG_X19, offsetof(CPUARMState, xregs[19]) },
346 { HV_REG_X20, offsetof(CPUARMState, xregs[20]) },
347 { HV_REG_X21, offsetof(CPUARMState, xregs[21]) },
348 { HV_REG_X22, offsetof(CPUARMState, xregs[22]) },
349 { HV_REG_X23, offsetof(CPUARMState, xregs[23]) },
350 { HV_REG_X24, offsetof(CPUARMState, xregs[24]) },
351 { HV_REG_X25, offsetof(CPUARMState, xregs[25]) },
352 { HV_REG_X26, offsetof(CPUARMState, xregs[26]) },
353 { HV_REG_X27, offsetof(CPUARMState, xregs[27]) },
354 { HV_REG_X28, offsetof(CPUARMState, xregs[28]) },
355 { HV_REG_X29, offsetof(CPUARMState, xregs[29]) },
356 { HV_REG_X30, offsetof(CPUARMState, xregs[30]) },
357 { HV_REG_PC, offsetof(CPUARMState, pc) },
358 };
359
360 static const struct hvf_reg_match hvf_fpreg_match[] = {
361 { HV_SIMD_FP_REG_Q0, offsetof(CPUARMState, vfp.zregs[0]) },
362 { HV_SIMD_FP_REG_Q1, offsetof(CPUARMState, vfp.zregs[1]) },
363 { HV_SIMD_FP_REG_Q2, offsetof(CPUARMState, vfp.zregs[2]) },
364 { HV_SIMD_FP_REG_Q3, offsetof(CPUARMState, vfp.zregs[3]) },
365 { HV_SIMD_FP_REG_Q4, offsetof(CPUARMState, vfp.zregs[4]) },
366 { HV_SIMD_FP_REG_Q5, offsetof(CPUARMState, vfp.zregs[5]) },
367 { HV_SIMD_FP_REG_Q6, offsetof(CPUARMState, vfp.zregs[6]) },
368 { HV_SIMD_FP_REG_Q7, offsetof(CPUARMState, vfp.zregs[7]) },
369 { HV_SIMD_FP_REG_Q8, offsetof(CPUARMState, vfp.zregs[8]) },
370 { HV_SIMD_FP_REG_Q9, offsetof(CPUARMState, vfp.zregs[9]) },
371 { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
372 { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
373 { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
374 { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
375 { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
376 { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
377 { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
378 { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
379 { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
380 { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
381 { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
382 { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
383 { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
384 { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
385 { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
386 { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
387 { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
388 { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
389 { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
390 { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
391 { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
392 { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
393 };
394
395 struct hvf_sreg_match {
396 int reg;
397 uint32_t key;
398 uint32_t cp_idx;
399 };
400
401 static struct hvf_sreg_match hvf_sreg_match[] = {
402 { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 4) },
403 { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 5) },
404 { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 6) },
405 { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 7) },
406
407 { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 4) },
408 { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 5) },
409 { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 6) },
410 { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 7) },
411
412 { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 4) },
413 { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 5) },
414 { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 6) },
415 { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 7) },
416
417 { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 4) },
418 { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 5) },
419 { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 6) },
420 { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 7) },
421
422 { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 4) },
423 { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 5) },
424 { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 6) },
425 { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 7) },
426
427 { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 4) },
428 { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 5) },
429 { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 6) },
430 { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 7) },
431
432 { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 4) },
433 { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 5) },
434 { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 6) },
435 { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 7) },
436
437 { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 4) },
438 { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 5) },
439 { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 6) },
440 { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 7) },
441
442 { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 4) },
443 { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 5) },
444 { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 6) },
445 { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 7) },
446
447 { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 4) },
448 { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 5) },
449 { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 6) },
450 { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 7) },
451
452 { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 4) },
453 { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 5) },
454 { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 6) },
455 { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 7) },
456
457 { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 4) },
458 { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 5) },
459 { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 6) },
460 { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 7) },
461
462 { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 4) },
463 { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 5) },
464 { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 6) },
465 { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 7) },
466
467 { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 4) },
468 { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 5) },
469 { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 6) },
470 { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 7) },
471
472 { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 4) },
473 { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 5) },
474 { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 6) },
475 { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 7) },
476
477 { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 4) },
478 { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 5) },
479 { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 6) },
480 { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 7) },
481
482 #ifdef SYNC_NO_RAW_REGS
483 /*
484 * The registers below are manually synced on init because they are
485 * marked as NO_RAW. We still list them to make number space sync easier.
486 */
487 { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
488 { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
489 { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
490 { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
491 #endif
492 { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 1) },
493 { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
494 { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
495 { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
496 { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
497 #ifdef SYNC_NO_MMFR0
498 /* We keep the hardware MMFR0 around. HW limits are there anyway */
499 { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
500 #endif
501 { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
502 { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
503 /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
504
505 { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
506 { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
507 { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
508 { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
509 { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
510 { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },
511
512 { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
513 { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
514 { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
515 { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
516 { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
517 { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
518 { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
519 { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
520 { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
521 { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },
522
523 { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
524 { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
525 { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
526 { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
527 { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
528 { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
529 { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
530 { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
531 { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
532 { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
533 { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
534 { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
535 { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
536 { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
537 { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
538 { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
539 { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
540 { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
541 { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
542 { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
543 };
544
hvf_get_registers(CPUState * cpu)545 int hvf_get_registers(CPUState *cpu)
546 {
547 ARMCPU *arm_cpu = ARM_CPU(cpu);
548 CPUARMState *env = &arm_cpu->env;
549 hv_return_t ret;
550 uint64_t val;
551 hv_simd_fp_uchar16_t fpval;
552 int i;
553
554 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
555 ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
556 *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
557 assert_hvf_ok(ret);
558 }
559
560 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
561 ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
562 &fpval);
563 memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
564 assert_hvf_ok(ret);
565 }
566
567 val = 0;
568 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
569 assert_hvf_ok(ret);
570 vfp_set_fpcr(env, val);
571
572 val = 0;
573 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
574 assert_hvf_ok(ret);
575 vfp_set_fpsr(env, val);
576
577 ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
578 assert_hvf_ok(ret);
579 pstate_write(env, val);
580
581 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
582 if (hvf_sreg_match[i].cp_idx == -1) {
583 continue;
584 }
585
586 if (cpu->accel->guest_debug_enabled) {
587 /* Handle debug registers */
588 switch (hvf_sreg_match[i].reg) {
589 case HV_SYS_REG_DBGBVR0_EL1:
590 case HV_SYS_REG_DBGBCR0_EL1:
591 case HV_SYS_REG_DBGWVR0_EL1:
592 case HV_SYS_REG_DBGWCR0_EL1:
593 case HV_SYS_REG_DBGBVR1_EL1:
594 case HV_SYS_REG_DBGBCR1_EL1:
595 case HV_SYS_REG_DBGWVR1_EL1:
596 case HV_SYS_REG_DBGWCR1_EL1:
597 case HV_SYS_REG_DBGBVR2_EL1:
598 case HV_SYS_REG_DBGBCR2_EL1:
599 case HV_SYS_REG_DBGWVR2_EL1:
600 case HV_SYS_REG_DBGWCR2_EL1:
601 case HV_SYS_REG_DBGBVR3_EL1:
602 case HV_SYS_REG_DBGBCR3_EL1:
603 case HV_SYS_REG_DBGWVR3_EL1:
604 case HV_SYS_REG_DBGWCR3_EL1:
605 case HV_SYS_REG_DBGBVR4_EL1:
606 case HV_SYS_REG_DBGBCR4_EL1:
607 case HV_SYS_REG_DBGWVR4_EL1:
608 case HV_SYS_REG_DBGWCR4_EL1:
609 case HV_SYS_REG_DBGBVR5_EL1:
610 case HV_SYS_REG_DBGBCR5_EL1:
611 case HV_SYS_REG_DBGWVR5_EL1:
612 case HV_SYS_REG_DBGWCR5_EL1:
613 case HV_SYS_REG_DBGBVR6_EL1:
614 case HV_SYS_REG_DBGBCR6_EL1:
615 case HV_SYS_REG_DBGWVR6_EL1:
616 case HV_SYS_REG_DBGWCR6_EL1:
617 case HV_SYS_REG_DBGBVR7_EL1:
618 case HV_SYS_REG_DBGBCR7_EL1:
619 case HV_SYS_REG_DBGWVR7_EL1:
620 case HV_SYS_REG_DBGWCR7_EL1:
621 case HV_SYS_REG_DBGBVR8_EL1:
622 case HV_SYS_REG_DBGBCR8_EL1:
623 case HV_SYS_REG_DBGWVR8_EL1:
624 case HV_SYS_REG_DBGWCR8_EL1:
625 case HV_SYS_REG_DBGBVR9_EL1:
626 case HV_SYS_REG_DBGBCR9_EL1:
627 case HV_SYS_REG_DBGWVR9_EL1:
628 case HV_SYS_REG_DBGWCR9_EL1:
629 case HV_SYS_REG_DBGBVR10_EL1:
630 case HV_SYS_REG_DBGBCR10_EL1:
631 case HV_SYS_REG_DBGWVR10_EL1:
632 case HV_SYS_REG_DBGWCR10_EL1:
633 case HV_SYS_REG_DBGBVR11_EL1:
634 case HV_SYS_REG_DBGBCR11_EL1:
635 case HV_SYS_REG_DBGWVR11_EL1:
636 case HV_SYS_REG_DBGWCR11_EL1:
637 case HV_SYS_REG_DBGBVR12_EL1:
638 case HV_SYS_REG_DBGBCR12_EL1:
639 case HV_SYS_REG_DBGWVR12_EL1:
640 case HV_SYS_REG_DBGWCR12_EL1:
641 case HV_SYS_REG_DBGBVR13_EL1:
642 case HV_SYS_REG_DBGBCR13_EL1:
643 case HV_SYS_REG_DBGWVR13_EL1:
644 case HV_SYS_REG_DBGWCR13_EL1:
645 case HV_SYS_REG_DBGBVR14_EL1:
646 case HV_SYS_REG_DBGBCR14_EL1:
647 case HV_SYS_REG_DBGWVR14_EL1:
648 case HV_SYS_REG_DBGWCR14_EL1:
649 case HV_SYS_REG_DBGBVR15_EL1:
650 case HV_SYS_REG_DBGBCR15_EL1:
651 case HV_SYS_REG_DBGWVR15_EL1:
652 case HV_SYS_REG_DBGWCR15_EL1: {
653 /*
654 * If the guest is being debugged, the vCPU's debug registers
655 * are holding the gdbstub's view of the registers (set in
656 * hvf_arch_update_guest_debug()).
657 * Since the environment is used to store only the guest's view
658 * of the registers, don't update it with the values from the
659 * vCPU but simply keep the values from the previous
660 * environment.
661 */
662 const ARMCPRegInfo *ri;
663 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
664 val = read_raw_cp_reg(env, ri);
665
666 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
667 continue;
668 }
669 }
670 }
671
672 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
673 assert_hvf_ok(ret);
674
675 arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
676 }
677 assert(write_list_to_cpustate(arm_cpu));
678
679 aarch64_restore_sp(env, arm_current_el(env));
680
681 return 0;
682 }
683
hvf_put_registers(CPUState * cpu)684 int hvf_put_registers(CPUState *cpu)
685 {
686 ARMCPU *arm_cpu = ARM_CPU(cpu);
687 CPUARMState *env = &arm_cpu->env;
688 hv_return_t ret;
689 uint64_t val;
690 hv_simd_fp_uchar16_t fpval;
691 int i;
692
693 for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
694 val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
695 ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
696 assert_hvf_ok(ret);
697 }
698
699 for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
700 memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
701 ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
702 fpval);
703 assert_hvf_ok(ret);
704 }
705
706 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
707 assert_hvf_ok(ret);
708
709 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
710 assert_hvf_ok(ret);
711
712 ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
713 assert_hvf_ok(ret);
714
715 aarch64_save_sp(env, arm_current_el(env));
716
717 assert(write_cpustate_to_list(arm_cpu, false));
718 for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
719 if (hvf_sreg_match[i].cp_idx == -1) {
720 continue;
721 }
722
723 if (cpu->accel->guest_debug_enabled) {
724 /* Handle debug registers */
725 switch (hvf_sreg_match[i].reg) {
726 case HV_SYS_REG_DBGBVR0_EL1:
727 case HV_SYS_REG_DBGBCR0_EL1:
728 case HV_SYS_REG_DBGWVR0_EL1:
729 case HV_SYS_REG_DBGWCR0_EL1:
730 case HV_SYS_REG_DBGBVR1_EL1:
731 case HV_SYS_REG_DBGBCR1_EL1:
732 case HV_SYS_REG_DBGWVR1_EL1:
733 case HV_SYS_REG_DBGWCR1_EL1:
734 case HV_SYS_REG_DBGBVR2_EL1:
735 case HV_SYS_REG_DBGBCR2_EL1:
736 case HV_SYS_REG_DBGWVR2_EL1:
737 case HV_SYS_REG_DBGWCR2_EL1:
738 case HV_SYS_REG_DBGBVR3_EL1:
739 case HV_SYS_REG_DBGBCR3_EL1:
740 case HV_SYS_REG_DBGWVR3_EL1:
741 case HV_SYS_REG_DBGWCR3_EL1:
742 case HV_SYS_REG_DBGBVR4_EL1:
743 case HV_SYS_REG_DBGBCR4_EL1:
744 case HV_SYS_REG_DBGWVR4_EL1:
745 case HV_SYS_REG_DBGWCR4_EL1:
746 case HV_SYS_REG_DBGBVR5_EL1:
747 case HV_SYS_REG_DBGBCR5_EL1:
748 case HV_SYS_REG_DBGWVR5_EL1:
749 case HV_SYS_REG_DBGWCR5_EL1:
750 case HV_SYS_REG_DBGBVR6_EL1:
751 case HV_SYS_REG_DBGBCR6_EL1:
752 case HV_SYS_REG_DBGWVR6_EL1:
753 case HV_SYS_REG_DBGWCR6_EL1:
754 case HV_SYS_REG_DBGBVR7_EL1:
755 case HV_SYS_REG_DBGBCR7_EL1:
756 case HV_SYS_REG_DBGWVR7_EL1:
757 case HV_SYS_REG_DBGWCR7_EL1:
758 case HV_SYS_REG_DBGBVR8_EL1:
759 case HV_SYS_REG_DBGBCR8_EL1:
760 case HV_SYS_REG_DBGWVR8_EL1:
761 case HV_SYS_REG_DBGWCR8_EL1:
762 case HV_SYS_REG_DBGBVR9_EL1:
763 case HV_SYS_REG_DBGBCR9_EL1:
764 case HV_SYS_REG_DBGWVR9_EL1:
765 case HV_SYS_REG_DBGWCR9_EL1:
766 case HV_SYS_REG_DBGBVR10_EL1:
767 case HV_SYS_REG_DBGBCR10_EL1:
768 case HV_SYS_REG_DBGWVR10_EL1:
769 case HV_SYS_REG_DBGWCR10_EL1:
770 case HV_SYS_REG_DBGBVR11_EL1:
771 case HV_SYS_REG_DBGBCR11_EL1:
772 case HV_SYS_REG_DBGWVR11_EL1:
773 case HV_SYS_REG_DBGWCR11_EL1:
774 case HV_SYS_REG_DBGBVR12_EL1:
775 case HV_SYS_REG_DBGBCR12_EL1:
776 case HV_SYS_REG_DBGWVR12_EL1:
777 case HV_SYS_REG_DBGWCR12_EL1:
778 case HV_SYS_REG_DBGBVR13_EL1:
779 case HV_SYS_REG_DBGBCR13_EL1:
780 case HV_SYS_REG_DBGWVR13_EL1:
781 case HV_SYS_REG_DBGWCR13_EL1:
782 case HV_SYS_REG_DBGBVR14_EL1:
783 case HV_SYS_REG_DBGBCR14_EL1:
784 case HV_SYS_REG_DBGWVR14_EL1:
785 case HV_SYS_REG_DBGWCR14_EL1:
786 case HV_SYS_REG_DBGBVR15_EL1:
787 case HV_SYS_REG_DBGBCR15_EL1:
788 case HV_SYS_REG_DBGWVR15_EL1:
789 case HV_SYS_REG_DBGWCR15_EL1:
790 /*
791 * If the guest is being debugged, the vCPU's debug registers
792 * are already holding the gdbstub's view of the registers (set
793 * in hvf_arch_update_guest_debug()).
794 */
795 continue;
796 }
797 }
798
799 val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
800 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
801 assert_hvf_ok(ret);
802 }
803
804 ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
805 assert_hvf_ok(ret);
806
807 return 0;
808 }
809
flush_cpu_state(CPUState * cpu)810 static void flush_cpu_state(CPUState *cpu)
811 {
812 if (cpu->accel->dirty) {
813 hvf_put_registers(cpu);
814 cpu->accel->dirty = false;
815 }
816 }
817
hvf_set_reg(CPUState * cpu,int rt,uint64_t val)818 static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
819 {
820 hv_return_t r;
821
822 flush_cpu_state(cpu);
823
824 if (rt < 31) {
825 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
826 assert_hvf_ok(r);
827 }
828 }
829
hvf_get_reg(CPUState * cpu,int rt)830 static uint64_t hvf_get_reg(CPUState *cpu, int rt)
831 {
832 uint64_t val = 0;
833 hv_return_t r;
834
835 flush_cpu_state(cpu);
836
837 if (rt < 31) {
838 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
839 assert_hvf_ok(r);
840 }
841
842 return val;
843 }
844
clamp_id_aa64mmfr0_parange_to_ipa_size(uint64_t * id_aa64mmfr0)845 static void clamp_id_aa64mmfr0_parange_to_ipa_size(uint64_t *id_aa64mmfr0)
846 {
847 uint32_t ipa_size = chosen_ipa_bit_size ?
848 chosen_ipa_bit_size : hvf_arm_get_max_ipa_bit_size();
849
850 /* Clamp down the PARange to the IPA size the kernel supports. */
851 uint8_t index = round_down_to_parange_index(ipa_size);
852 *id_aa64mmfr0 = (*id_aa64mmfr0 & ~R_ID_AA64MMFR0_PARANGE_MASK) | index;
853 }
854
hvf_arm_get_host_cpu_features(ARMHostCPUFeatures * ahcf)855 static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
856 {
857 ARMISARegisters host_isar = {};
858 const struct isar_regs {
859 int reg;
860 uint64_t *val;
861 } regs[] = {
862 { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
863 { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
864 { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
865 { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
866 { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
867 { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
868 /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
869 { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
870 { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
871 { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
872 /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
873 };
874 hv_vcpu_t fd;
875 hv_return_t r = HV_SUCCESS;
876 hv_vcpu_exit_t *exit;
877 int i;
878
879 ahcf->dtb_compatible = "arm,arm-v8";
880 ahcf->features = (1ULL << ARM_FEATURE_V8) |
881 (1ULL << ARM_FEATURE_NEON) |
882 (1ULL << ARM_FEATURE_AARCH64) |
883 (1ULL << ARM_FEATURE_PMU) |
884 (1ULL << ARM_FEATURE_GENERIC_TIMER);
885
886 /* We set up a small vcpu to extract host registers */
887
888 if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
889 return false;
890 }
891
892 for (i = 0; i < ARRAY_SIZE(regs); i++) {
893 r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
894 }
895 r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
896 r |= hv_vcpu_destroy(fd);
897
898 clamp_id_aa64mmfr0_parange_to_ipa_size(&host_isar.id_aa64mmfr0);
899
900 ahcf->isar = host_isar;
901
902 /*
903 * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
904 * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
905 */
906 ahcf->reset_sctlr = 0x30100180;
907 /*
908 * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
909 * let's disable it on boot and then allow guest software to turn it on by
910 * setting it to 0.
911 */
912 ahcf->reset_sctlr |= 0x00800000;
913
914 /* Make sure we don't advertise AArch32 support for EL0/EL1 */
915 if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
916 return false;
917 }
918
919 return r == HV_SUCCESS;
920 }
921
hvf_arm_get_default_ipa_bit_size(void)922 uint32_t hvf_arm_get_default_ipa_bit_size(void)
923 {
924 uint32_t default_ipa_size;
925 hv_return_t ret = hv_vm_config_get_default_ipa_size(&default_ipa_size);
926 assert_hvf_ok(ret);
927
928 return default_ipa_size;
929 }
930
hvf_arm_get_max_ipa_bit_size(void)931 uint32_t hvf_arm_get_max_ipa_bit_size(void)
932 {
933 uint32_t max_ipa_size;
934 hv_return_t ret = hv_vm_config_get_max_ipa_size(&max_ipa_size);
935 assert_hvf_ok(ret);
936
937 /*
938 * We clamp any IPA size we want to back the VM with to a valid PARange
939 * value so the guest doesn't try and map memory outside of the valid range.
940 * This logic just clamps the passed in IPA bit size to the first valid
941 * PARange value <= to it.
942 */
943 return round_down_to_parange_bit_size(max_ipa_size);
944 }
945
hvf_arm_set_cpu_features_from_host(ARMCPU * cpu)946 void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
947 {
948 if (!arm_host_cpu_features.dtb_compatible) {
949 if (!hvf_enabled() ||
950 !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
951 /*
952 * We can't report this error yet, so flag that we need to
953 * in arm_cpu_realizefn().
954 */
955 cpu->host_cpu_probe_failed = true;
956 return;
957 }
958 }
959
960 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
961 cpu->isar = arm_host_cpu_features.isar;
962 cpu->env.features = arm_host_cpu_features.features;
963 cpu->midr = arm_host_cpu_features.midr;
964 cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
965 }
966
hvf_arch_vcpu_destroy(CPUState * cpu)967 void hvf_arch_vcpu_destroy(CPUState *cpu)
968 {
969 }
970
hvf_arch_vm_create(MachineState * ms,uint32_t pa_range)971 hv_return_t hvf_arch_vm_create(MachineState *ms, uint32_t pa_range)
972 {
973 hv_return_t ret;
974 hv_vm_config_t config = hv_vm_config_create();
975
976 ret = hv_vm_config_set_ipa_size(config, pa_range);
977 if (ret != HV_SUCCESS) {
978 goto cleanup;
979 }
980 chosen_ipa_bit_size = pa_range;
981
982 ret = hv_vm_create(config);
983
984 cleanup:
985 os_release(config);
986
987 return ret;
988 }
989
hvf_arch_init_vcpu(CPUState * cpu)990 int hvf_arch_init_vcpu(CPUState *cpu)
991 {
992 ARMCPU *arm_cpu = ARM_CPU(cpu);
993 CPUARMState *env = &arm_cpu->env;
994 uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
995 uint32_t sregs_cnt = 0;
996 uint64_t pfr;
997 hv_return_t ret;
998 int i;
999
1000 env->aarch64 = true;
1001 asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));
1002
1003 /* Allocate enough space for our sysreg sync */
1004 arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
1005 sregs_match_len);
1006 arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
1007 sregs_match_len);
1008 arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
1009 arm_cpu->cpreg_vmstate_indexes,
1010 sregs_match_len);
1011 arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
1012 arm_cpu->cpreg_vmstate_values,
1013 sregs_match_len);
1014
1015 memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
1016
1017 /* Populate cp list for all known sysregs */
1018 for (i = 0; i < sregs_match_len; i++) {
1019 const ARMCPRegInfo *ri;
1020 uint32_t key = hvf_sreg_match[i].key;
1021
1022 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
1023 if (ri) {
1024 assert(!(ri->type & ARM_CP_NO_RAW));
1025 hvf_sreg_match[i].cp_idx = sregs_cnt;
1026 arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
1027 } else {
1028 hvf_sreg_match[i].cp_idx = -1;
1029 }
1030 }
1031 arm_cpu->cpreg_array_len = sregs_cnt;
1032 arm_cpu->cpreg_vmstate_array_len = sregs_cnt;
1033
1034 assert(write_cpustate_to_list(arm_cpu, false));
1035
1036 /* Set CP_NO_RAW system registers on init */
1037 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
1038 arm_cpu->midr);
1039 assert_hvf_ok(ret);
1040
1041 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
1042 arm_cpu->mp_affinity);
1043 assert_hvf_ok(ret);
1044
1045 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
1046 assert_hvf_ok(ret);
1047 pfr |= env->gicv3state ? (1 << 24) : 0;
1048 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
1049 assert_hvf_ok(ret);
1050
1051 /* We're limited to underlying hardware caps, override internal versions */
1052 ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
1053 &arm_cpu->isar.id_aa64mmfr0);
1054 assert_hvf_ok(ret);
1055
1056 clamp_id_aa64mmfr0_parange_to_ipa_size(&arm_cpu->isar.id_aa64mmfr0);
1057 ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
1058 arm_cpu->isar.id_aa64mmfr0);
1059 assert_hvf_ok(ret);
1060
1061 return 0;
1062 }
1063
hvf_kick_vcpu_thread(CPUState * cpu)1064 void hvf_kick_vcpu_thread(CPUState *cpu)
1065 {
1066 cpus_kick_thread(cpu);
1067 hv_vcpus_exit(&cpu->accel->fd, 1);
1068 }
1069
hvf_raise_exception(CPUState * cpu,uint32_t excp,uint32_t syndrome)1070 static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
1071 uint32_t syndrome)
1072 {
1073 ARMCPU *arm_cpu = ARM_CPU(cpu);
1074 CPUARMState *env = &arm_cpu->env;
1075
1076 cpu->exception_index = excp;
1077 env->exception.target_el = 1;
1078 env->exception.syndrome = syndrome;
1079
1080 arm_cpu_do_interrupt(cpu);
1081 }
1082
hvf_psci_cpu_off(ARMCPU * arm_cpu)1083 static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
1084 {
1085 int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
1086 assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
1087 }
1088
1089 /*
1090 * Handle a PSCI call.
1091 *
1092 * Returns 0 on success
1093 * -1 when the PSCI call is unknown,
1094 */
hvf_handle_psci_call(CPUState * cpu)1095 static bool hvf_handle_psci_call(CPUState *cpu)
1096 {
1097 ARMCPU *arm_cpu = ARM_CPU(cpu);
1098 CPUARMState *env = &arm_cpu->env;
1099 uint64_t param[4] = {
1100 env->xregs[0],
1101 env->xregs[1],
1102 env->xregs[2],
1103 env->xregs[3]
1104 };
1105 uint64_t context_id, mpidr;
1106 bool target_aarch64 = true;
1107 CPUState *target_cpu_state;
1108 ARMCPU *target_cpu;
1109 target_ulong entry;
1110 int target_el = 1;
1111 int32_t ret = 0;
1112
1113 trace_hvf_psci_call(param[0], param[1], param[2], param[3],
1114 arm_cpu_mp_affinity(arm_cpu));
1115
1116 switch (param[0]) {
1117 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1118 ret = QEMU_PSCI_VERSION_1_1;
1119 break;
1120 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1121 ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
1122 break;
1123 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1124 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1125 mpidr = param[1];
1126
1127 switch (param[2]) {
1128 case 0:
1129 target_cpu_state = arm_get_cpu_by_id(mpidr);
1130 if (!target_cpu_state) {
1131 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1132 break;
1133 }
1134 target_cpu = ARM_CPU(target_cpu_state);
1135
1136 ret = target_cpu->power_state;
1137 break;
1138 default:
1139 /* Everything above affinity level 0 is always on. */
1140 ret = 0;
1141 }
1142 break;
1143 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1144 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1145 /*
1146 * QEMU reset and shutdown are async requests, but PSCI
1147 * mandates that we never return from the reset/shutdown
1148 * call, so power the CPU off now so it doesn't execute
1149 * anything further.
1150 */
1151 hvf_psci_cpu_off(arm_cpu);
1152 break;
1153 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1154 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1155 hvf_psci_cpu_off(arm_cpu);
1156 break;
1157 case QEMU_PSCI_0_1_FN_CPU_ON:
1158 case QEMU_PSCI_0_2_FN_CPU_ON:
1159 case QEMU_PSCI_0_2_FN64_CPU_ON:
1160 mpidr = param[1];
1161 entry = param[2];
1162 context_id = param[3];
1163 ret = arm_set_cpu_on(mpidr, entry, context_id,
1164 target_el, target_aarch64);
1165 break;
1166 case QEMU_PSCI_0_1_FN_CPU_OFF:
1167 case QEMU_PSCI_0_2_FN_CPU_OFF:
1168 hvf_psci_cpu_off(arm_cpu);
1169 break;
1170 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1171 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1172 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1173 /* Affinity levels are not supported in QEMU */
1174 if (param[1] & 0xfffe0000) {
1175 ret = QEMU_PSCI_RET_INVALID_PARAMS;
1176 break;
1177 }
1178 /* Powerdown is not supported, we always go into WFI */
1179 env->xregs[0] = 0;
1180 hvf_wfi(cpu);
1181 break;
1182 case QEMU_PSCI_0_1_FN_MIGRATE:
1183 case QEMU_PSCI_0_2_FN_MIGRATE:
1184 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1185 break;
1186 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1187 switch (param[1]) {
1188 case QEMU_PSCI_0_2_FN_PSCI_VERSION:
1189 case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
1190 case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
1191 case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
1192 case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
1193 case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
1194 case QEMU_PSCI_0_1_FN_CPU_ON:
1195 case QEMU_PSCI_0_2_FN_CPU_ON:
1196 case QEMU_PSCI_0_2_FN64_CPU_ON:
1197 case QEMU_PSCI_0_1_FN_CPU_OFF:
1198 case QEMU_PSCI_0_2_FN_CPU_OFF:
1199 case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
1200 case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
1201 case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
1202 case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
1203 ret = 0;
1204 break;
1205 case QEMU_PSCI_0_1_FN_MIGRATE:
1206 case QEMU_PSCI_0_2_FN_MIGRATE:
1207 default:
1208 ret = QEMU_PSCI_RET_NOT_SUPPORTED;
1209 }
1210 break;
1211 default:
1212 return false;
1213 }
1214
1215 env->xregs[0] = ret;
1216 return true;
1217 }
1218
is_id_sysreg(uint32_t reg)1219 static bool is_id_sysreg(uint32_t reg)
1220 {
1221 return SYSREG_OP0(reg) == 3 &&
1222 SYSREG_OP1(reg) == 0 &&
1223 SYSREG_CRN(reg) == 0 &&
1224 SYSREG_CRM(reg) >= 1 &&
1225 SYSREG_CRM(reg) < 8;
1226 }
1227
hvf_reg2cp_reg(uint32_t reg)1228 static uint32_t hvf_reg2cp_reg(uint32_t reg)
1229 {
1230 return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1231 (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
1232 (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
1233 (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
1234 (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
1235 (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
1236 }
1237
hvf_sysreg_read_cp(CPUState * cpu,uint32_t reg,uint64_t * val)1238 static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
1239 {
1240 ARMCPU *arm_cpu = ARM_CPU(cpu);
1241 CPUARMState *env = &arm_cpu->env;
1242 const ARMCPRegInfo *ri;
1243
1244 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1245 if (ri) {
1246 if (ri->accessfn) {
1247 if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
1248 return false;
1249 }
1250 }
1251 if (ri->type & ARM_CP_CONST) {
1252 *val = ri->resetvalue;
1253 } else if (ri->readfn) {
1254 *val = ri->readfn(env, ri);
1255 } else {
1256 *val = CPREG_FIELD64(env, ri);
1257 }
1258 trace_hvf_vgic_read(ri->name, *val);
1259 return true;
1260 }
1261
1262 return false;
1263 }
1264
hvf_sysreg_read(CPUState * cpu,uint32_t reg,uint64_t * val)1265 static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint64_t *val)
1266 {
1267 ARMCPU *arm_cpu = ARM_CPU(cpu);
1268 CPUARMState *env = &arm_cpu->env;
1269
1270 if (arm_feature(env, ARM_FEATURE_PMU)) {
1271 switch (reg) {
1272 case SYSREG_PMCR_EL0:
1273 *val = env->cp15.c9_pmcr;
1274 return 0;
1275 case SYSREG_PMCCNTR_EL0:
1276 pmu_op_start(env);
1277 *val = env->cp15.c15_ccnt;
1278 pmu_op_finish(env);
1279 return 0;
1280 case SYSREG_PMCNTENCLR_EL0:
1281 *val = env->cp15.c9_pmcnten;
1282 return 0;
1283 case SYSREG_PMOVSCLR_EL0:
1284 *val = env->cp15.c9_pmovsr;
1285 return 0;
1286 case SYSREG_PMSELR_EL0:
1287 *val = env->cp15.c9_pmselr;
1288 return 0;
1289 case SYSREG_PMINTENCLR_EL1:
1290 *val = env->cp15.c9_pminten;
1291 return 0;
1292 case SYSREG_PMCCFILTR_EL0:
1293 *val = env->cp15.pmccfiltr_el0;
1294 return 0;
1295 case SYSREG_PMCNTENSET_EL0:
1296 *val = env->cp15.c9_pmcnten;
1297 return 0;
1298 case SYSREG_PMUSERENR_EL0:
1299 *val = env->cp15.c9_pmuserenr;
1300 return 0;
1301 case SYSREG_PMCEID0_EL0:
1302 case SYSREG_PMCEID1_EL0:
1303 /* We can't really count anything yet, declare all events invalid */
1304 *val = 0;
1305 return 0;
1306 }
1307 }
1308
1309 switch (reg) {
1310 case SYSREG_CNTPCT_EL0:
1311 *val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
1312 gt_cntfrq_period_ns(arm_cpu);
1313 return 0;
1314 case SYSREG_OSLSR_EL1:
1315 *val = env->cp15.oslsr_el1;
1316 return 0;
1317 case SYSREG_OSDLR_EL1:
1318 /* Dummy register */
1319 return 0;
1320 case SYSREG_ICC_AP0R0_EL1:
1321 case SYSREG_ICC_AP0R1_EL1:
1322 case SYSREG_ICC_AP0R2_EL1:
1323 case SYSREG_ICC_AP0R3_EL1:
1324 case SYSREG_ICC_AP1R0_EL1:
1325 case SYSREG_ICC_AP1R1_EL1:
1326 case SYSREG_ICC_AP1R2_EL1:
1327 case SYSREG_ICC_AP1R3_EL1:
1328 case SYSREG_ICC_ASGI1R_EL1:
1329 case SYSREG_ICC_BPR0_EL1:
1330 case SYSREG_ICC_BPR1_EL1:
1331 case SYSREG_ICC_DIR_EL1:
1332 case SYSREG_ICC_EOIR0_EL1:
1333 case SYSREG_ICC_EOIR1_EL1:
1334 case SYSREG_ICC_HPPIR0_EL1:
1335 case SYSREG_ICC_HPPIR1_EL1:
1336 case SYSREG_ICC_IAR0_EL1:
1337 case SYSREG_ICC_IAR1_EL1:
1338 case SYSREG_ICC_IGRPEN0_EL1:
1339 case SYSREG_ICC_IGRPEN1_EL1:
1340 case SYSREG_ICC_PMR_EL1:
1341 case SYSREG_ICC_SGI0R_EL1:
1342 case SYSREG_ICC_SGI1R_EL1:
1343 case SYSREG_ICC_SRE_EL1:
1344 case SYSREG_ICC_CTLR_EL1:
1345 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1346 if (hvf_sysreg_read_cp(cpu, reg, val)) {
1347 return 0;
1348 }
1349 break;
1350 case SYSREG_DBGBVR0_EL1:
1351 case SYSREG_DBGBVR1_EL1:
1352 case SYSREG_DBGBVR2_EL1:
1353 case SYSREG_DBGBVR3_EL1:
1354 case SYSREG_DBGBVR4_EL1:
1355 case SYSREG_DBGBVR5_EL1:
1356 case SYSREG_DBGBVR6_EL1:
1357 case SYSREG_DBGBVR7_EL1:
1358 case SYSREG_DBGBVR8_EL1:
1359 case SYSREG_DBGBVR9_EL1:
1360 case SYSREG_DBGBVR10_EL1:
1361 case SYSREG_DBGBVR11_EL1:
1362 case SYSREG_DBGBVR12_EL1:
1363 case SYSREG_DBGBVR13_EL1:
1364 case SYSREG_DBGBVR14_EL1:
1365 case SYSREG_DBGBVR15_EL1:
1366 *val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
1367 return 0;
1368 case SYSREG_DBGBCR0_EL1:
1369 case SYSREG_DBGBCR1_EL1:
1370 case SYSREG_DBGBCR2_EL1:
1371 case SYSREG_DBGBCR3_EL1:
1372 case SYSREG_DBGBCR4_EL1:
1373 case SYSREG_DBGBCR5_EL1:
1374 case SYSREG_DBGBCR6_EL1:
1375 case SYSREG_DBGBCR7_EL1:
1376 case SYSREG_DBGBCR8_EL1:
1377 case SYSREG_DBGBCR9_EL1:
1378 case SYSREG_DBGBCR10_EL1:
1379 case SYSREG_DBGBCR11_EL1:
1380 case SYSREG_DBGBCR12_EL1:
1381 case SYSREG_DBGBCR13_EL1:
1382 case SYSREG_DBGBCR14_EL1:
1383 case SYSREG_DBGBCR15_EL1:
1384 *val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
1385 return 0;
1386 case SYSREG_DBGWVR0_EL1:
1387 case SYSREG_DBGWVR1_EL1:
1388 case SYSREG_DBGWVR2_EL1:
1389 case SYSREG_DBGWVR3_EL1:
1390 case SYSREG_DBGWVR4_EL1:
1391 case SYSREG_DBGWVR5_EL1:
1392 case SYSREG_DBGWVR6_EL1:
1393 case SYSREG_DBGWVR7_EL1:
1394 case SYSREG_DBGWVR8_EL1:
1395 case SYSREG_DBGWVR9_EL1:
1396 case SYSREG_DBGWVR10_EL1:
1397 case SYSREG_DBGWVR11_EL1:
1398 case SYSREG_DBGWVR12_EL1:
1399 case SYSREG_DBGWVR13_EL1:
1400 case SYSREG_DBGWVR14_EL1:
1401 case SYSREG_DBGWVR15_EL1:
1402 *val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
1403 return 0;
1404 case SYSREG_DBGWCR0_EL1:
1405 case SYSREG_DBGWCR1_EL1:
1406 case SYSREG_DBGWCR2_EL1:
1407 case SYSREG_DBGWCR3_EL1:
1408 case SYSREG_DBGWCR4_EL1:
1409 case SYSREG_DBGWCR5_EL1:
1410 case SYSREG_DBGWCR6_EL1:
1411 case SYSREG_DBGWCR7_EL1:
1412 case SYSREG_DBGWCR8_EL1:
1413 case SYSREG_DBGWCR9_EL1:
1414 case SYSREG_DBGWCR10_EL1:
1415 case SYSREG_DBGWCR11_EL1:
1416 case SYSREG_DBGWCR12_EL1:
1417 case SYSREG_DBGWCR13_EL1:
1418 case SYSREG_DBGWCR14_EL1:
1419 case SYSREG_DBGWCR15_EL1:
1420 *val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
1421 return 0;
1422 default:
1423 if (is_id_sysreg(reg)) {
1424 /* ID system registers read as RES0 */
1425 *val = 0;
1426 return 0;
1427 }
1428 }
1429
1430 cpu_synchronize_state(cpu);
1431 trace_hvf_unhandled_sysreg_read(env->pc, reg,
1432 SYSREG_OP0(reg),
1433 SYSREG_OP1(reg),
1434 SYSREG_CRN(reg),
1435 SYSREG_CRM(reg),
1436 SYSREG_OP2(reg));
1437 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1438 return 1;
1439 }
1440
pmu_update_irq(CPUARMState * env)1441 static void pmu_update_irq(CPUARMState *env)
1442 {
1443 ARMCPU *cpu = env_archcpu(env);
1444 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1445 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1446 }
1447
pmu_event_supported(uint16_t number)1448 static bool pmu_event_supported(uint16_t number)
1449 {
1450 return false;
1451 }
1452
1453 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1454 * the current EL, security state, and register configuration.
1455 */
pmu_counter_enabled(CPUARMState * env,uint8_t counter)1456 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1457 {
1458 uint64_t filter;
1459 bool enabled, filtered = true;
1460 int el = arm_current_el(env);
1461
1462 enabled = (env->cp15.c9_pmcr & PMCRE) &&
1463 (env->cp15.c9_pmcnten & (1 << counter));
1464
1465 if (counter == 31) {
1466 filter = env->cp15.pmccfiltr_el0;
1467 } else {
1468 filter = env->cp15.c14_pmevtyper[counter];
1469 }
1470
1471 if (el == 0) {
1472 filtered = filter & PMXEVTYPER_U;
1473 } else if (el == 1) {
1474 filtered = filter & PMXEVTYPER_P;
1475 }
1476
1477 if (counter != 31) {
1478 /*
1479 * If not checking PMCCNTR, ensure the counter is setup to an event we
1480 * support
1481 */
1482 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1483 if (!pmu_event_supported(event)) {
1484 return false;
1485 }
1486 }
1487
1488 return enabled && !filtered;
1489 }
1490
pmswinc_write(CPUARMState * env,uint64_t value)1491 static void pmswinc_write(CPUARMState *env, uint64_t value)
1492 {
1493 unsigned int i;
1494 for (i = 0; i < pmu_num_counters(env); i++) {
1495 /* Increment a counter's count iff: */
1496 if ((value & (1 << i)) && /* counter's bit is set */
1497 /* counter is enabled and not filtered */
1498 pmu_counter_enabled(env, i) &&
1499 /* counter is SW_INCR */
1500 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1501 /*
1502 * Detect if this write causes an overflow since we can't predict
1503 * PMSWINC overflows like we can for other events
1504 */
1505 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1506
1507 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1508 env->cp15.c9_pmovsr |= (1 << i);
1509 pmu_update_irq(env);
1510 }
1511
1512 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1513 }
1514 }
1515 }
1516
hvf_sysreg_write_cp(CPUState * cpu,uint32_t reg,uint64_t val)1517 static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
1518 {
1519 ARMCPU *arm_cpu = ARM_CPU(cpu);
1520 CPUARMState *env = &arm_cpu->env;
1521 const ARMCPRegInfo *ri;
1522
1523 ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
1524
1525 if (ri) {
1526 if (ri->accessfn) {
1527 if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
1528 return false;
1529 }
1530 }
1531 if (ri->writefn) {
1532 ri->writefn(env, ri, val);
1533 } else {
1534 CPREG_FIELD64(env, ri) = val;
1535 }
1536
1537 trace_hvf_vgic_write(ri->name, val);
1538 return true;
1539 }
1540
1541 return false;
1542 }
1543
hvf_sysreg_write(CPUState * cpu,uint32_t reg,uint64_t val)1544 static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
1545 {
1546 ARMCPU *arm_cpu = ARM_CPU(cpu);
1547 CPUARMState *env = &arm_cpu->env;
1548
1549 trace_hvf_sysreg_write(reg,
1550 SYSREG_OP0(reg),
1551 SYSREG_OP1(reg),
1552 SYSREG_CRN(reg),
1553 SYSREG_CRM(reg),
1554 SYSREG_OP2(reg),
1555 val);
1556
1557 if (arm_feature(env, ARM_FEATURE_PMU)) {
1558 switch (reg) {
1559 case SYSREG_PMCCNTR_EL0:
1560 pmu_op_start(env);
1561 env->cp15.c15_ccnt = val;
1562 pmu_op_finish(env);
1563 return 0;
1564 case SYSREG_PMCR_EL0:
1565 pmu_op_start(env);
1566
1567 if (val & PMCRC) {
1568 /* The counter has been reset */
1569 env->cp15.c15_ccnt = 0;
1570 }
1571
1572 if (val & PMCRP) {
1573 unsigned int i;
1574 for (i = 0; i < pmu_num_counters(env); i++) {
1575 env->cp15.c14_pmevcntr[i] = 0;
1576 }
1577 }
1578
1579 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1580 env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);
1581
1582 pmu_op_finish(env);
1583 return 0;
1584 case SYSREG_PMUSERENR_EL0:
1585 env->cp15.c9_pmuserenr = val & 0xf;
1586 return 0;
1587 case SYSREG_PMCNTENSET_EL0:
1588 env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
1589 return 0;
1590 case SYSREG_PMCNTENCLR_EL0:
1591 env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
1592 return 0;
1593 case SYSREG_PMINTENCLR_EL1:
1594 pmu_op_start(env);
1595 env->cp15.c9_pminten |= val;
1596 pmu_op_finish(env);
1597 return 0;
1598 case SYSREG_PMOVSCLR_EL0:
1599 pmu_op_start(env);
1600 env->cp15.c9_pmovsr &= ~val;
1601 pmu_op_finish(env);
1602 return 0;
1603 case SYSREG_PMSWINC_EL0:
1604 pmu_op_start(env);
1605 pmswinc_write(env, val);
1606 pmu_op_finish(env);
1607 return 0;
1608 case SYSREG_PMSELR_EL0:
1609 env->cp15.c9_pmselr = val & 0x1f;
1610 return 0;
1611 case SYSREG_PMCCFILTR_EL0:
1612 pmu_op_start(env);
1613 env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
1614 pmu_op_finish(env);
1615 return 0;
1616 }
1617 }
1618
1619 switch (reg) {
1620 case SYSREG_OSLAR_EL1:
1621 env->cp15.oslsr_el1 = val & 1;
1622 return 0;
1623 case SYSREG_OSDLR_EL1:
1624 /* Dummy register */
1625 return 0;
1626 case SYSREG_ICC_AP0R0_EL1:
1627 case SYSREG_ICC_AP0R1_EL1:
1628 case SYSREG_ICC_AP0R2_EL1:
1629 case SYSREG_ICC_AP0R3_EL1:
1630 case SYSREG_ICC_AP1R0_EL1:
1631 case SYSREG_ICC_AP1R1_EL1:
1632 case SYSREG_ICC_AP1R2_EL1:
1633 case SYSREG_ICC_AP1R3_EL1:
1634 case SYSREG_ICC_ASGI1R_EL1:
1635 case SYSREG_ICC_BPR0_EL1:
1636 case SYSREG_ICC_BPR1_EL1:
1637 case SYSREG_ICC_CTLR_EL1:
1638 case SYSREG_ICC_DIR_EL1:
1639 case SYSREG_ICC_EOIR0_EL1:
1640 case SYSREG_ICC_EOIR1_EL1:
1641 case SYSREG_ICC_HPPIR0_EL1:
1642 case SYSREG_ICC_HPPIR1_EL1:
1643 case SYSREG_ICC_IAR0_EL1:
1644 case SYSREG_ICC_IAR1_EL1:
1645 case SYSREG_ICC_IGRPEN0_EL1:
1646 case SYSREG_ICC_IGRPEN1_EL1:
1647 case SYSREG_ICC_PMR_EL1:
1648 case SYSREG_ICC_SGI0R_EL1:
1649 case SYSREG_ICC_SGI1R_EL1:
1650 case SYSREG_ICC_SRE_EL1:
1651 /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
1652 if (hvf_sysreg_write_cp(cpu, reg, val)) {
1653 return 0;
1654 }
1655 break;
1656 case SYSREG_MDSCR_EL1:
1657 env->cp15.mdscr_el1 = val;
1658 return 0;
1659 case SYSREG_DBGBVR0_EL1:
1660 case SYSREG_DBGBVR1_EL1:
1661 case SYSREG_DBGBVR2_EL1:
1662 case SYSREG_DBGBVR3_EL1:
1663 case SYSREG_DBGBVR4_EL1:
1664 case SYSREG_DBGBVR5_EL1:
1665 case SYSREG_DBGBVR6_EL1:
1666 case SYSREG_DBGBVR7_EL1:
1667 case SYSREG_DBGBVR8_EL1:
1668 case SYSREG_DBGBVR9_EL1:
1669 case SYSREG_DBGBVR10_EL1:
1670 case SYSREG_DBGBVR11_EL1:
1671 case SYSREG_DBGBVR12_EL1:
1672 case SYSREG_DBGBVR13_EL1:
1673 case SYSREG_DBGBVR14_EL1:
1674 case SYSREG_DBGBVR15_EL1:
1675 env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
1676 return 0;
1677 case SYSREG_DBGBCR0_EL1:
1678 case SYSREG_DBGBCR1_EL1:
1679 case SYSREG_DBGBCR2_EL1:
1680 case SYSREG_DBGBCR3_EL1:
1681 case SYSREG_DBGBCR4_EL1:
1682 case SYSREG_DBGBCR5_EL1:
1683 case SYSREG_DBGBCR6_EL1:
1684 case SYSREG_DBGBCR7_EL1:
1685 case SYSREG_DBGBCR8_EL1:
1686 case SYSREG_DBGBCR9_EL1:
1687 case SYSREG_DBGBCR10_EL1:
1688 case SYSREG_DBGBCR11_EL1:
1689 case SYSREG_DBGBCR12_EL1:
1690 case SYSREG_DBGBCR13_EL1:
1691 case SYSREG_DBGBCR14_EL1:
1692 case SYSREG_DBGBCR15_EL1:
1693 env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
1694 return 0;
1695 case SYSREG_DBGWVR0_EL1:
1696 case SYSREG_DBGWVR1_EL1:
1697 case SYSREG_DBGWVR2_EL1:
1698 case SYSREG_DBGWVR3_EL1:
1699 case SYSREG_DBGWVR4_EL1:
1700 case SYSREG_DBGWVR5_EL1:
1701 case SYSREG_DBGWVR6_EL1:
1702 case SYSREG_DBGWVR7_EL1:
1703 case SYSREG_DBGWVR8_EL1:
1704 case SYSREG_DBGWVR9_EL1:
1705 case SYSREG_DBGWVR10_EL1:
1706 case SYSREG_DBGWVR11_EL1:
1707 case SYSREG_DBGWVR12_EL1:
1708 case SYSREG_DBGWVR13_EL1:
1709 case SYSREG_DBGWVR14_EL1:
1710 case SYSREG_DBGWVR15_EL1:
1711 env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
1712 return 0;
1713 case SYSREG_DBGWCR0_EL1:
1714 case SYSREG_DBGWCR1_EL1:
1715 case SYSREG_DBGWCR2_EL1:
1716 case SYSREG_DBGWCR3_EL1:
1717 case SYSREG_DBGWCR4_EL1:
1718 case SYSREG_DBGWCR5_EL1:
1719 case SYSREG_DBGWCR6_EL1:
1720 case SYSREG_DBGWCR7_EL1:
1721 case SYSREG_DBGWCR8_EL1:
1722 case SYSREG_DBGWCR9_EL1:
1723 case SYSREG_DBGWCR10_EL1:
1724 case SYSREG_DBGWCR11_EL1:
1725 case SYSREG_DBGWCR12_EL1:
1726 case SYSREG_DBGWCR13_EL1:
1727 case SYSREG_DBGWCR14_EL1:
1728 case SYSREG_DBGWCR15_EL1:
1729 env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
1730 return 0;
1731 }
1732
1733 cpu_synchronize_state(cpu);
1734 trace_hvf_unhandled_sysreg_write(env->pc, reg,
1735 SYSREG_OP0(reg),
1736 SYSREG_OP1(reg),
1737 SYSREG_CRN(reg),
1738 SYSREG_CRM(reg),
1739 SYSREG_OP2(reg));
1740 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
1741 return 1;
1742 }
1743
hvf_inject_interrupts(CPUState * cpu)1744 static int hvf_inject_interrupts(CPUState *cpu)
1745 {
1746 if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
1747 trace_hvf_inject_fiq();
1748 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
1749 true);
1750 }
1751
1752 if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
1753 trace_hvf_inject_irq();
1754 hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
1755 true);
1756 }
1757
1758 return 0;
1759 }
1760
hvf_vtimer_val_raw(void)1761 static uint64_t hvf_vtimer_val_raw(void)
1762 {
1763 /*
1764 * mach_absolute_time() returns the vtimer value without the VM
1765 * offset that we define. Add our own offset on top.
1766 */
1767 return mach_absolute_time() - hvf_state->vtimer_offset;
1768 }
1769
hvf_vtimer_val(void)1770 static uint64_t hvf_vtimer_val(void)
1771 {
1772 if (!runstate_is_running()) {
1773 /* VM is paused, the vtimer value is in vtimer.vtimer_val */
1774 return vtimer.vtimer_val;
1775 }
1776
1777 return hvf_vtimer_val_raw();
1778 }
1779
hvf_wait_for_ipi(CPUState * cpu,struct timespec * ts)1780 static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
1781 {
1782 /*
1783 * Use pselect to sleep so that other threads can IPI us while we're
1784 * sleeping.
1785 */
1786 qatomic_set_mb(&cpu->thread_kicked, false);
1787 bql_unlock();
1788 pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
1789 bql_lock();
1790 }
1791
hvf_wfi(CPUState * cpu)1792 static void hvf_wfi(CPUState *cpu)
1793 {
1794 ARMCPU *arm_cpu = ARM_CPU(cpu);
1795 struct timespec ts;
1796 hv_return_t r;
1797 uint64_t ctl;
1798 uint64_t cval;
1799 int64_t ticks_to_sleep;
1800 uint64_t seconds;
1801 uint64_t nanos;
1802 uint32_t cntfrq;
1803
1804 if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
1805 /* Interrupt pending, no need to wait */
1806 return;
1807 }
1808
1809 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1810 assert_hvf_ok(r);
1811
1812 if (!(ctl & 1) || (ctl & 2)) {
1813 /* Timer disabled or masked, just wait for an IPI. */
1814 hvf_wait_for_ipi(cpu, NULL);
1815 return;
1816 }
1817
1818 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
1819 assert_hvf_ok(r);
1820
1821 ticks_to_sleep = cval - hvf_vtimer_val();
1822 if (ticks_to_sleep < 0) {
1823 return;
1824 }
1825
1826 cntfrq = gt_cntfrq_period_ns(arm_cpu);
1827 seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
1828 ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
1829 nanos = ticks_to_sleep * cntfrq;
1830
1831 /*
1832 * Don't sleep for less than the time a context switch would take,
1833 * so that we can satisfy fast timer requests on the same CPU.
1834 * Measurements on M1 show the sweet spot to be ~2ms.
1835 */
1836 if (!seconds && nanos < (2 * SCALE_MS)) {
1837 return;
1838 }
1839
1840 ts = (struct timespec) { seconds, nanos };
1841 hvf_wait_for_ipi(cpu, &ts);
1842 }
1843
hvf_sync_vtimer(CPUState * cpu)1844 static void hvf_sync_vtimer(CPUState *cpu)
1845 {
1846 ARMCPU *arm_cpu = ARM_CPU(cpu);
1847 hv_return_t r;
1848 uint64_t ctl;
1849 bool irq_state;
1850
1851 if (!cpu->accel->vtimer_masked) {
1852 /* We will get notified on vtimer changes by hvf, nothing to do */
1853 return;
1854 }
1855
1856 r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
1857 assert_hvf_ok(r);
1858
1859 irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
1860 (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
1861 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);
1862
1863 if (!irq_state) {
1864 /* Timer no longer asserting, we can unmask it */
1865 hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
1866 cpu->accel->vtimer_masked = false;
1867 }
1868 }
1869
hvf_vcpu_exec(CPUState * cpu)1870 int hvf_vcpu_exec(CPUState *cpu)
1871 {
1872 ARMCPU *arm_cpu = ARM_CPU(cpu);
1873 CPUARMState *env = &arm_cpu->env;
1874 int ret;
1875 hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
1876 hv_return_t r;
1877 bool advance_pc = false;
1878
1879 if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
1880 hvf_inject_interrupts(cpu)) {
1881 return EXCP_INTERRUPT;
1882 }
1883
1884 if (cpu->halted) {
1885 return EXCP_HLT;
1886 }
1887
1888 flush_cpu_state(cpu);
1889
1890 bql_unlock();
1891 assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));
1892
1893 /* handle VMEXIT */
1894 uint64_t exit_reason = hvf_exit->reason;
1895 uint64_t syndrome = hvf_exit->exception.syndrome;
1896 uint32_t ec = syn_get_ec(syndrome);
1897
1898 ret = 0;
1899 bql_lock();
1900 switch (exit_reason) {
1901 case HV_EXIT_REASON_EXCEPTION:
1902 /* This is the main one, handle below. */
1903 break;
1904 case HV_EXIT_REASON_VTIMER_ACTIVATED:
1905 qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
1906 cpu->accel->vtimer_masked = true;
1907 return 0;
1908 case HV_EXIT_REASON_CANCELED:
1909 /* we got kicked, no exit to process */
1910 return 0;
1911 default:
1912 g_assert_not_reached();
1913 }
1914
1915 hvf_sync_vtimer(cpu);
1916
1917 switch (ec) {
1918 case EC_SOFTWARESTEP: {
1919 ret = EXCP_DEBUG;
1920
1921 if (!cpu->singlestep_enabled) {
1922 error_report("EC_SOFTWARESTEP but single-stepping not enabled");
1923 }
1924 break;
1925 }
1926 case EC_AA64_BKPT: {
1927 ret = EXCP_DEBUG;
1928
1929 cpu_synchronize_state(cpu);
1930
1931 if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
1932 /* Re-inject into the guest */
1933 ret = 0;
1934 hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
1935 }
1936 break;
1937 }
1938 case EC_BREAKPOINT: {
1939 ret = EXCP_DEBUG;
1940
1941 cpu_synchronize_state(cpu);
1942
1943 if (!find_hw_breakpoint(cpu, env->pc)) {
1944 error_report("EC_BREAKPOINT but unknown hw breakpoint");
1945 }
1946 break;
1947 }
1948 case EC_WATCHPOINT: {
1949 ret = EXCP_DEBUG;
1950
1951 cpu_synchronize_state(cpu);
1952
1953 CPUWatchpoint *wp =
1954 find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
1955 if (!wp) {
1956 error_report("EXCP_DEBUG but unknown hw watchpoint");
1957 }
1958 cpu->watchpoint_hit = wp;
1959 break;
1960 }
1961 case EC_DATAABORT: {
1962 bool isv = syndrome & ARM_EL_ISV;
1963 bool iswrite = (syndrome >> 6) & 1;
1964 bool s1ptw = (syndrome >> 7) & 1;
1965 uint32_t sas = (syndrome >> 22) & 3;
1966 uint32_t len = 1 << sas;
1967 uint32_t srt = (syndrome >> 16) & 0x1f;
1968 uint32_t cm = (syndrome >> 8) & 0x1;
1969 uint64_t val = 0;
1970
1971 trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
1972 hvf_exit->exception.physical_address, isv,
1973 iswrite, s1ptw, len, srt);
1974
1975 if (cm) {
1976 /* We don't cache MMIO regions */
1977 advance_pc = true;
1978 break;
1979 }
1980
1981 assert(isv);
1982
1983 if (iswrite) {
1984 val = hvf_get_reg(cpu, srt);
1985 address_space_write(&address_space_memory,
1986 hvf_exit->exception.physical_address,
1987 MEMTXATTRS_UNSPECIFIED, &val, len);
1988 } else {
1989 address_space_read(&address_space_memory,
1990 hvf_exit->exception.physical_address,
1991 MEMTXATTRS_UNSPECIFIED, &val, len);
1992 hvf_set_reg(cpu, srt, val);
1993 }
1994
1995 advance_pc = true;
1996 break;
1997 }
1998 case EC_SYSTEMREGISTERTRAP: {
1999 bool isread = (syndrome >> 0) & 1;
2000 uint32_t rt = (syndrome >> 5) & 0x1f;
2001 uint32_t reg = syndrome & SYSREG_MASK;
2002 uint64_t val;
2003 int sysreg_ret = 0;
2004
2005 if (isread) {
2006 sysreg_ret = hvf_sysreg_read(cpu, reg, &val);
2007 if (!sysreg_ret) {
2008 trace_hvf_sysreg_read(reg,
2009 SYSREG_OP0(reg),
2010 SYSREG_OP1(reg),
2011 SYSREG_CRN(reg),
2012 SYSREG_CRM(reg),
2013 SYSREG_OP2(reg),
2014 val);
2015 hvf_set_reg(cpu, rt, val);
2016 }
2017 } else {
2018 val = hvf_get_reg(cpu, rt);
2019 sysreg_ret = hvf_sysreg_write(cpu, reg, val);
2020 }
2021
2022 advance_pc = !sysreg_ret;
2023 break;
2024 }
2025 case EC_WFX_TRAP:
2026 advance_pc = true;
2027 if (!(syndrome & WFX_IS_WFE)) {
2028 hvf_wfi(cpu);
2029 }
2030 break;
2031 case EC_AA64_HVC:
2032 cpu_synchronize_state(cpu);
2033 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
2034 if (!hvf_handle_psci_call(cpu)) {
2035 trace_hvf_unknown_hvc(env->xregs[0]);
2036 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
2037 env->xregs[0] = -1;
2038 }
2039 } else {
2040 trace_hvf_unknown_hvc(env->xregs[0]);
2041 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
2042 }
2043 break;
2044 case EC_AA64_SMC:
2045 cpu_synchronize_state(cpu);
2046 if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
2047 advance_pc = true;
2048
2049 if (!hvf_handle_psci_call(cpu)) {
2050 trace_hvf_unknown_smc(env->xregs[0]);
2051 /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
2052 env->xregs[0] = -1;
2053 }
2054 } else {
2055 trace_hvf_unknown_smc(env->xregs[0]);
2056 hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
2057 }
2058 break;
2059 default:
2060 cpu_synchronize_state(cpu);
2061 trace_hvf_exit(syndrome, ec, env->pc);
2062 error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
2063 }
2064
2065 if (advance_pc) {
2066 uint64_t pc;
2067
2068 flush_cpu_state(cpu);
2069
2070 r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
2071 assert_hvf_ok(r);
2072 pc += 4;
2073 r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
2074 assert_hvf_ok(r);
2075
2076 /* Handle single-stepping over instructions which trigger a VM exit */
2077 if (cpu->singlestep_enabled) {
2078 ret = EXCP_DEBUG;
2079 }
2080 }
2081
2082 return ret;
2083 }
2084
2085 static const VMStateDescription vmstate_hvf_vtimer = {
2086 .name = "hvf-vtimer",
2087 .version_id = 1,
2088 .minimum_version_id = 1,
2089 .fields = (const VMStateField[]) {
2090 VMSTATE_UINT64(vtimer_val, HVFVTimer),
2091 VMSTATE_END_OF_LIST()
2092 },
2093 };
2094
hvf_vm_state_change(void * opaque,bool running,RunState state)2095 static void hvf_vm_state_change(void *opaque, bool running, RunState state)
2096 {
2097 HVFVTimer *s = opaque;
2098
2099 if (running) {
2100 /* Update vtimer offset on all CPUs */
2101 hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
2102 cpu_synchronize_all_states();
2103 } else {
2104 /* Remember vtimer value on every pause */
2105 s->vtimer_val = hvf_vtimer_val_raw();
2106 }
2107 }
2108
hvf_arch_init(void)2109 int hvf_arch_init(void)
2110 {
2111 hvf_state->vtimer_offset = mach_absolute_time();
2112 vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
2113 qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);
2114
2115 hvf_arm_init_debug();
2116
2117 return 0;
2118 }
2119
2120 static const uint32_t brk_insn = 0xd4200000;
2121
hvf_arch_insert_sw_breakpoint(CPUState * cpu,struct hvf_sw_breakpoint * bp)2122 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2123 {
2124 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2125 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2126 return -EINVAL;
2127 }
2128 return 0;
2129 }
2130
hvf_arch_remove_sw_breakpoint(CPUState * cpu,struct hvf_sw_breakpoint * bp)2131 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
2132 {
2133 static uint32_t brk;
2134
2135 if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
2136 brk != brk_insn ||
2137 cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2138 return -EINVAL;
2139 }
2140 return 0;
2141 }
2142
hvf_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)2143 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2144 {
2145 switch (type) {
2146 case GDB_BREAKPOINT_HW:
2147 return insert_hw_breakpoint(addr);
2148 case GDB_WATCHPOINT_READ:
2149 case GDB_WATCHPOINT_WRITE:
2150 case GDB_WATCHPOINT_ACCESS:
2151 return insert_hw_watchpoint(addr, len, type);
2152 default:
2153 return -ENOSYS;
2154 }
2155 }
2156
hvf_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)2157 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2158 {
2159 switch (type) {
2160 case GDB_BREAKPOINT_HW:
2161 return delete_hw_breakpoint(addr);
2162 case GDB_WATCHPOINT_READ:
2163 case GDB_WATCHPOINT_WRITE:
2164 case GDB_WATCHPOINT_ACCESS:
2165 return delete_hw_watchpoint(addr, len, type);
2166 default:
2167 return -ENOSYS;
2168 }
2169 }
2170
hvf_arch_remove_all_hw_breakpoints(void)2171 void hvf_arch_remove_all_hw_breakpoints(void)
2172 {
2173 if (cur_hw_wps > 0) {
2174 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
2175 }
2176 if (cur_hw_bps > 0) {
2177 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
2178 }
2179 }
2180
2181 /*
2182 * Update the vCPU with the gdbstub's view of debug registers. This view
2183 * consists of all hardware breakpoints and watchpoints inserted so far while
2184 * debugging the guest.
2185 */
hvf_put_gdbstub_debug_registers(CPUState * cpu)2186 static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
2187 {
2188 hv_return_t r = HV_SUCCESS;
2189 int i;
2190
2191 for (i = 0; i < cur_hw_bps; i++) {
2192 HWBreakpoint *bp = get_hw_bp(i);
2193 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
2194 assert_hvf_ok(r);
2195 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
2196 assert_hvf_ok(r);
2197 }
2198 for (i = cur_hw_bps; i < max_hw_bps; i++) {
2199 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
2200 assert_hvf_ok(r);
2201 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
2202 assert_hvf_ok(r);
2203 }
2204
2205 for (i = 0; i < cur_hw_wps; i++) {
2206 HWWatchpoint *wp = get_hw_wp(i);
2207 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
2208 assert_hvf_ok(r);
2209 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
2210 assert_hvf_ok(r);
2211 }
2212 for (i = cur_hw_wps; i < max_hw_wps; i++) {
2213 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
2214 assert_hvf_ok(r);
2215 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
2216 assert_hvf_ok(r);
2217 }
2218 }
2219
2220 /*
2221 * Update the vCPU with the guest's view of debug registers. This view is kept
2222 * in the environment at all times.
2223 */
hvf_put_guest_debug_registers(CPUState * cpu)2224 static void hvf_put_guest_debug_registers(CPUState *cpu)
2225 {
2226 ARMCPU *arm_cpu = ARM_CPU(cpu);
2227 CPUARMState *env = &arm_cpu->env;
2228 hv_return_t r = HV_SUCCESS;
2229 int i;
2230
2231 for (i = 0; i < max_hw_bps; i++) {
2232 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
2233 env->cp15.dbgbcr[i]);
2234 assert_hvf_ok(r);
2235 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
2236 env->cp15.dbgbvr[i]);
2237 assert_hvf_ok(r);
2238 }
2239
2240 for (i = 0; i < max_hw_wps; i++) {
2241 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
2242 env->cp15.dbgwcr[i]);
2243 assert_hvf_ok(r);
2244 r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
2245 env->cp15.dbgwvr[i]);
2246 assert_hvf_ok(r);
2247 }
2248 }
2249
hvf_arm_hw_debug_active(CPUState * cpu)2250 static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
2251 {
2252 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
2253 }
2254
hvf_arch_set_traps(void)2255 static void hvf_arch_set_traps(void)
2256 {
2257 CPUState *cpu;
2258 bool should_enable_traps = false;
2259 hv_return_t r = HV_SUCCESS;
2260
2261 /* Check whether guest debugging is enabled for at least one vCPU; if it
2262 * is, enable exiting the guest on all vCPUs */
2263 CPU_FOREACH(cpu) {
2264 should_enable_traps |= cpu->accel->guest_debug_enabled;
2265 }
2266 CPU_FOREACH(cpu) {
2267 /* Set whether debug exceptions exit the guest */
2268 r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
2269 should_enable_traps);
2270 assert_hvf_ok(r);
2271
2272 /* Set whether accesses to debug registers exit the guest */
2273 r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
2274 should_enable_traps);
2275 assert_hvf_ok(r);
2276 }
2277 }
2278
hvf_arch_update_guest_debug(CPUState * cpu)2279 void hvf_arch_update_guest_debug(CPUState *cpu)
2280 {
2281 ARMCPU *arm_cpu = ARM_CPU(cpu);
2282 CPUARMState *env = &arm_cpu->env;
2283
2284 /* Check whether guest debugging is enabled */
2285 cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
2286 hvf_sw_breakpoints_active(cpu) ||
2287 hvf_arm_hw_debug_active(cpu);
2288
2289 /* Update debug registers */
2290 if (cpu->accel->guest_debug_enabled) {
2291 hvf_put_gdbstub_debug_registers(cpu);
2292 } else {
2293 hvf_put_guest_debug_registers(cpu);
2294 }
2295
2296 cpu_synchronize_state(cpu);
2297
2298 /* Enable/disable single-stepping */
2299 if (cpu->singlestep_enabled) {
2300 env->cp15.mdscr_el1 =
2301 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
2302 pstate_write(env, pstate_read(env) | PSTATE_SS);
2303 } else {
2304 env->cp15.mdscr_el1 =
2305 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
2306 }
2307
2308 /* Enable/disable Breakpoint exceptions */
2309 if (hvf_arm_hw_debug_active(cpu)) {
2310 env->cp15.mdscr_el1 =
2311 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
2312 } else {
2313 env->cp15.mdscr_el1 =
2314 deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
2315 }
2316
2317 hvf_arch_set_traps();
2318 }
2319
hvf_arch_supports_guest_debug(void)2320 bool hvf_arch_supports_guest_debug(void)
2321 {
2322 return true;
2323 }
2324