1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2012
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "diagnostic-core.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "langhooks.h"
40
41 /*************************************************************************
42 Simple Loop Peeling Utilities
43
44 Utilities to support loop peeling for vectorization purposes.
45 *************************************************************************/
46
47
48 /* Renames the use *OP_P. */
49
50 static void
rename_use_op(use_operand_p op_p)51 rename_use_op (use_operand_p op_p)
52 {
53 tree new_name;
54
55 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
56 return;
57
58 new_name = get_current_def (USE_FROM_PTR (op_p));
59
60 /* Something defined outside of the loop. */
61 if (!new_name)
62 return;
63
64 /* An ordinary ssa name defined in the loop. */
65
66 SET_USE (op_p, new_name);
67 }
68
69
70 /* Renames the variables in basic block BB. */
71
72 void
rename_variables_in_bb(basic_block bb)73 rename_variables_in_bb (basic_block bb)
74 {
75 gimple_stmt_iterator gsi;
76 gimple stmt;
77 use_operand_p use_p;
78 ssa_op_iter iter;
79 edge e;
80 edge_iterator ei;
81 struct loop *loop = bb->loop_father;
82
83 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
84 {
85 stmt = gsi_stmt (gsi);
86 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
87 rename_use_op (use_p);
88 }
89
90 FOR_EACH_EDGE (e, ei, bb->succs)
91 {
92 if (!flow_bb_inside_loop_p (loop, e->dest))
93 continue;
94 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
95 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
96 }
97 }
98
99
100 /* Renames variables in new generated LOOP. */
101
102 void
rename_variables_in_loop(struct loop * loop)103 rename_variables_in_loop (struct loop *loop)
104 {
105 unsigned i;
106 basic_block *bbs;
107
108 bbs = get_loop_body (loop);
109
110 for (i = 0; i < loop->num_nodes; i++)
111 rename_variables_in_bb (bbs[i]);
112
113 free (bbs);
114 }
115
116 typedef struct
117 {
118 tree from, to;
119 basic_block bb;
120 } adjust_info;
121
122 DEF_VEC_O(adjust_info);
123 DEF_VEC_ALLOC_O_STACK(adjust_info);
124 #define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
125
126 /* A stack of values to be adjusted in debug stmts. We have to
127 process them LIFO, so that the closest substitution applies. If we
128 processed them FIFO, without the stack, we might substitute uses
129 with a PHI DEF that would soon become non-dominant, and when we got
130 to the suitable one, it wouldn't have anything to substitute any
131 more. */
VEC(adjust_info,stack)132 static VEC(adjust_info, stack) *adjust_vec;
133
134 /* Adjust any debug stmts that referenced AI->from values to use the
135 loop-closed AI->to, if the references are dominated by AI->bb and
136 not by the definition of AI->from. */
137
138 static void
139 adjust_debug_stmts_now (adjust_info *ai)
140 {
141 basic_block bbphi = ai->bb;
142 tree orig_def = ai->from;
143 tree new_def = ai->to;
144 imm_use_iterator imm_iter;
145 gimple stmt;
146 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
147
148 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
149
150 /* Adjust any debug stmts that held onto non-loop-closed
151 references. */
152 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
153 {
154 use_operand_p use_p;
155 basic_block bbuse;
156
157 if (!is_gimple_debug (stmt))
158 continue;
159
160 gcc_assert (gimple_debug_bind_p (stmt));
161
162 bbuse = gimple_bb (stmt);
163
164 if ((bbuse == bbphi
165 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
166 && !(bbuse == bbdef
167 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
168 {
169 if (new_def)
170 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
171 SET_USE (use_p, new_def);
172 else
173 {
174 gimple_debug_bind_reset_value (stmt);
175 update_stmt (stmt);
176 }
177 }
178 }
179 }
180
181 /* Adjust debug stmts as scheduled before. */
182
183 static void
adjust_vec_debug_stmts(void)184 adjust_vec_debug_stmts (void)
185 {
186 if (!MAY_HAVE_DEBUG_STMTS)
187 return;
188
189 gcc_assert (adjust_vec);
190
191 while (!VEC_empty (adjust_info, adjust_vec))
192 {
193 adjust_debug_stmts_now (VEC_last (adjust_info, adjust_vec));
194 VEC_pop (adjust_info, adjust_vec);
195 }
196
197 VEC_free (adjust_info, stack, adjust_vec);
198 }
199
200 /* Adjust any debug stmts that referenced FROM values to use the
201 loop-closed TO, if the references are dominated by BB and not by
202 the definition of FROM. If adjust_vec is non-NULL, adjustments
203 will be postponed until adjust_vec_debug_stmts is called. */
204
205 static void
adjust_debug_stmts(tree from,tree to,basic_block bb)206 adjust_debug_stmts (tree from, tree to, basic_block bb)
207 {
208 adjust_info ai;
209
210 if (MAY_HAVE_DEBUG_STMTS && TREE_CODE (from) == SSA_NAME
211 && SSA_NAME_VAR (from) != gimple_vop (cfun))
212 {
213 ai.from = from;
214 ai.to = to;
215 ai.bb = bb;
216
217 if (adjust_vec)
218 VEC_safe_push (adjust_info, stack, adjust_vec, &ai);
219 else
220 adjust_debug_stmts_now (&ai);
221 }
222 }
223
224 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
225 to adjust any debug stmts that referenced the old phi arg,
226 presumably non-loop-closed references left over from other
227 transformations. */
228
229 static void
adjust_phi_and_debug_stmts(gimple update_phi,edge e,tree new_def)230 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
231 {
232 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
233
234 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
235
236 if (MAY_HAVE_DEBUG_STMTS)
237 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
238 gimple_bb (update_phi));
239 }
240
241
242 /* Update the PHI nodes of NEW_LOOP.
243
244 NEW_LOOP is a duplicate of ORIG_LOOP.
245 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
246 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
247 executes before it. */
248
249 static void
slpeel_update_phis_for_duplicate_loop(struct loop * orig_loop,struct loop * new_loop,bool after)250 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
251 struct loop *new_loop, bool after)
252 {
253 tree new_ssa_name;
254 gimple phi_new, phi_orig;
255 tree def;
256 edge orig_loop_latch = loop_latch_edge (orig_loop);
257 edge orig_entry_e = loop_preheader_edge (orig_loop);
258 edge new_loop_exit_e = single_exit (new_loop);
259 edge new_loop_entry_e = loop_preheader_edge (new_loop);
260 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
261 gimple_stmt_iterator gsi_new, gsi_orig;
262
263 /*
264 step 1. For each loop-header-phi:
265 Add the first phi argument for the phi in NEW_LOOP
266 (the one associated with the entry of NEW_LOOP)
267
268 step 2. For each loop-header-phi:
269 Add the second phi argument for the phi in NEW_LOOP
270 (the one associated with the latch of NEW_LOOP)
271
272 step 3. Update the phis in the successor block of NEW_LOOP.
273
274 case 1: NEW_LOOP was placed before ORIG_LOOP:
275 The successor block of NEW_LOOP is the header of ORIG_LOOP.
276 Updating the phis in the successor block can therefore be done
277 along with the scanning of the loop header phis, because the
278 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
279 phi nodes, organized in the same order.
280
281 case 2: NEW_LOOP was placed after ORIG_LOOP:
282 The successor block of NEW_LOOP is the original exit block of
283 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
284 We postpone updating these phis to a later stage (when
285 loop guards are added).
286 */
287
288
289 /* Scan the phis in the headers of the old and new loops
290 (they are organized in exactly the same order). */
291
292 for (gsi_new = gsi_start_phis (new_loop->header),
293 gsi_orig = gsi_start_phis (orig_loop->header);
294 !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
295 gsi_next (&gsi_new), gsi_next (&gsi_orig))
296 {
297 source_location locus;
298 phi_new = gsi_stmt (gsi_new);
299 phi_orig = gsi_stmt (gsi_orig);
300
301 /* step 1. */
302 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
303 locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
304 add_phi_arg (phi_new, def, new_loop_entry_e, locus);
305
306 /* step 2. */
307 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
308 locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
309 if (TREE_CODE (def) != SSA_NAME)
310 continue;
311
312 new_ssa_name = get_current_def (def);
313 if (!new_ssa_name)
314 {
315 /* This only happens if there are no definitions
316 inside the loop. use the phi_result in this case. */
317 new_ssa_name = PHI_RESULT (phi_new);
318 }
319
320 /* An ordinary ssa name defined in the loop. */
321 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
322
323 /* Drop any debug references outside the loop, if they would
324 become ill-formed SSA. */
325 adjust_debug_stmts (def, NULL, single_exit (orig_loop)->dest);
326
327 /* step 3 (case 1). */
328 if (!after)
329 {
330 gcc_assert (new_loop_exit_e == orig_entry_e);
331 adjust_phi_and_debug_stmts (phi_orig, new_loop_exit_e, new_ssa_name);
332 }
333 }
334 }
335
336
337 /* Update PHI nodes for a guard of the LOOP.
338
339 Input:
340 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
341 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
342 originates from the guard-bb, skips LOOP and reaches the (unique) exit
343 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
344 We denote this bb NEW_MERGE_BB because before the guard code was added
345 it had a single predecessor (the LOOP header), and now it became a merge
346 point of two paths - the path that ends with the LOOP exit-edge, and
347 the path that ends with GUARD_EDGE.
348 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
349 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
350
351 ===> The CFG before the guard-code was added:
352 LOOP_header_bb:
353 loop_body
354 if (exit_loop) goto update_bb
355 else goto LOOP_header_bb
356 update_bb:
357
358 ==> The CFG after the guard-code was added:
359 guard_bb:
360 if (LOOP_guard_condition) goto new_merge_bb
361 else goto LOOP_header_bb
362 LOOP_header_bb:
363 loop_body
364 if (exit_loop_condition) goto new_merge_bb
365 else goto LOOP_header_bb
366 new_merge_bb:
367 goto update_bb
368 update_bb:
369
370 ==> The CFG after this function:
371 guard_bb:
372 if (LOOP_guard_condition) goto new_merge_bb
373 else goto LOOP_header_bb
374 LOOP_header_bb:
375 loop_body
376 if (exit_loop_condition) goto new_exit_bb
377 else goto LOOP_header_bb
378 new_exit_bb:
379 new_merge_bb:
380 goto update_bb
381 update_bb:
382
383 This function:
384 1. creates and updates the relevant phi nodes to account for the new
385 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
386 1.1. Create phi nodes at NEW_MERGE_BB.
387 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
388 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
389 2. preserves loop-closed-ssa-form by creating the required phi nodes
390 at the exit of LOOP (i.e, in NEW_EXIT_BB).
391
392 There are two flavors to this function:
393
394 slpeel_update_phi_nodes_for_guard1:
395 Here the guard controls whether we enter or skip LOOP, where LOOP is a
396 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
397 for variables that have phis in the loop header.
398
399 slpeel_update_phi_nodes_for_guard2:
400 Here the guard controls whether we enter or skip LOOP, where LOOP is an
401 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
402 for variables that have phis in the loop exit.
403
404 I.E., the overall structure is:
405
406 loop1_preheader_bb:
407 guard1 (goto loop1/merge1_bb)
408 loop1
409 loop1_exit_bb:
410 guard2 (goto merge1_bb/merge2_bb)
411 merge1_bb
412 loop2
413 loop2_exit_bb
414 merge2_bb
415 next_bb
416
417 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
418 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
419 that have phis in loop1->header).
420
421 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
422 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
423 that have phis in next_bb). It also adds some of these phis to
424 loop1_exit_bb.
425
426 slpeel_update_phi_nodes_for_guard1 is always called before
427 slpeel_update_phi_nodes_for_guard2. They are both needed in order
428 to create correct data-flow and loop-closed-ssa-form.
429
430 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
431 that change between iterations of a loop (and therefore have a phi-node
432 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
433 phis for variables that are used out of the loop (and therefore have
434 loop-closed exit phis). Some variables may be both updated between
435 iterations and used after the loop. This is why in loop1_exit_bb we
436 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
437 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
438
439 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
440 an original loop. i.e., we have:
441
442 orig_loop
443 guard_bb (goto LOOP/new_merge)
444 new_loop <-- LOOP
445 new_exit
446 new_merge
447 next_bb
448
449 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
450 have:
451
452 new_loop
453 guard_bb (goto LOOP/new_merge)
454 orig_loop <-- LOOP
455 new_exit
456 new_merge
457 next_bb
458
459 The SSA names defined in the original loop have a current
460 reaching definition that that records the corresponding new
461 ssa-name used in the new duplicated loop copy.
462 */
463
464 /* Function slpeel_update_phi_nodes_for_guard1
465
466 Input:
467 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
468 - DEFS - a bitmap of ssa names to mark new names for which we recorded
469 information.
470
471 In the context of the overall structure, we have:
472
473 loop1_preheader_bb:
474 guard1 (goto loop1/merge1_bb)
475 LOOP-> loop1
476 loop1_exit_bb:
477 guard2 (goto merge1_bb/merge2_bb)
478 merge1_bb
479 loop2
480 loop2_exit_bb
481 merge2_bb
482 next_bb
483
484 For each name updated between loop iterations (i.e - for each name that has
485 an entry (loop-header) phi in LOOP) we create a new phi in:
486 1. merge1_bb (to account for the edge from guard1)
487 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
488 */
489
490 static void
slpeel_update_phi_nodes_for_guard1(edge guard_edge,struct loop * loop,bool is_new_loop,basic_block * new_exit_bb,bitmap * defs)491 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
492 bool is_new_loop, basic_block *new_exit_bb,
493 bitmap *defs)
494 {
495 gimple orig_phi, new_phi;
496 gimple update_phi, update_phi2;
497 tree guard_arg, loop_arg;
498 basic_block new_merge_bb = guard_edge->dest;
499 edge e = EDGE_SUCC (new_merge_bb, 0);
500 basic_block update_bb = e->dest;
501 basic_block orig_bb = loop->header;
502 edge new_exit_e;
503 tree current_new_name;
504 gimple_stmt_iterator gsi_orig, gsi_update;
505
506 /* Create new bb between loop and new_merge_bb. */
507 *new_exit_bb = split_edge (single_exit (loop));
508
509 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
510
511 for (gsi_orig = gsi_start_phis (orig_bb),
512 gsi_update = gsi_start_phis (update_bb);
513 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
514 gsi_next (&gsi_orig), gsi_next (&gsi_update))
515 {
516 source_location loop_locus, guard_locus;
517 orig_phi = gsi_stmt (gsi_orig);
518 update_phi = gsi_stmt (gsi_update);
519
520 /** 1. Handle new-merge-point phis **/
521
522 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
523 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
524 new_merge_bb);
525
526 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
527 of LOOP. Set the two phi args in NEW_PHI for these edges: */
528 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
529 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
530 EDGE_SUCC (loop->latch,
531 0));
532 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
533 guard_locus
534 = gimple_phi_arg_location_from_edge (orig_phi,
535 loop_preheader_edge (loop));
536
537 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
538 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
539
540 /* 1.3. Update phi in successor block. */
541 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
542 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
543 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
544 update_phi2 = new_phi;
545
546
547 /** 2. Handle loop-closed-ssa-form phis **/
548
549 if (!is_gimple_reg (PHI_RESULT (orig_phi)))
550 continue;
551
552 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
553 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
554 *new_exit_bb);
555
556 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
557 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
558
559 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
560 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
561 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
562 PHI_RESULT (new_phi));
563
564 /* 2.4. Record the newly created name with set_current_def.
565 We want to find a name such that
566 name = get_current_def (orig_loop_name)
567 and to set its current definition as follows:
568 set_current_def (name, new_phi_name)
569
570 If LOOP is a new loop then loop_arg is already the name we're
571 looking for. If LOOP is the original loop, then loop_arg is
572 the orig_loop_name and the relevant name is recorded in its
573 current reaching definition. */
574 if (is_new_loop)
575 current_new_name = loop_arg;
576 else
577 {
578 current_new_name = get_current_def (loop_arg);
579 /* current_def is not available only if the variable does not
580 change inside the loop, in which case we also don't care
581 about recording a current_def for it because we won't be
582 trying to create loop-exit-phis for it. */
583 if (!current_new_name)
584 continue;
585 }
586 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
587
588 set_current_def (current_new_name, PHI_RESULT (new_phi));
589 bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
590 }
591 }
592
593
594 /* Function slpeel_update_phi_nodes_for_guard2
595
596 Input:
597 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
598
599 In the context of the overall structure, we have:
600
601 loop1_preheader_bb:
602 guard1 (goto loop1/merge1_bb)
603 loop1
604 loop1_exit_bb:
605 guard2 (goto merge1_bb/merge2_bb)
606 merge1_bb
607 LOOP-> loop2
608 loop2_exit_bb
609 merge2_bb
610 next_bb
611
612 For each name used out side the loop (i.e - for each name that has an exit
613 phi in next_bb) we create a new phi in:
614 1. merge2_bb (to account for the edge from guard_bb)
615 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
616 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
617 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
618 */
619
620 static void
slpeel_update_phi_nodes_for_guard2(edge guard_edge,struct loop * loop,bool is_new_loop,basic_block * new_exit_bb)621 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
622 bool is_new_loop, basic_block *new_exit_bb)
623 {
624 gimple orig_phi, new_phi;
625 gimple update_phi, update_phi2;
626 tree guard_arg, loop_arg;
627 basic_block new_merge_bb = guard_edge->dest;
628 edge e = EDGE_SUCC (new_merge_bb, 0);
629 basic_block update_bb = e->dest;
630 edge new_exit_e;
631 tree orig_def, orig_def_new_name;
632 tree new_name, new_name2;
633 tree arg;
634 gimple_stmt_iterator gsi;
635
636 /* Create new bb between loop and new_merge_bb. */
637 *new_exit_bb = split_edge (single_exit (loop));
638
639 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
640
641 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
642 {
643 update_phi = gsi_stmt (gsi);
644 orig_phi = update_phi;
645 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
646 /* This loop-closed-phi actually doesn't represent a use
647 out of the loop - the phi arg is a constant. */
648 if (TREE_CODE (orig_def) != SSA_NAME)
649 continue;
650 orig_def_new_name = get_current_def (orig_def);
651 arg = NULL_TREE;
652
653 /** 1. Handle new-merge-point phis **/
654
655 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
656 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
657 new_merge_bb);
658
659 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
660 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
661 new_name = orig_def;
662 new_name2 = NULL_TREE;
663 if (orig_def_new_name)
664 {
665 new_name = orig_def_new_name;
666 /* Some variables have both loop-entry-phis and loop-exit-phis.
667 Such variables were given yet newer names by phis placed in
668 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
669 new_name2 = get_current_def (get_current_def (orig_name)). */
670 new_name2 = get_current_def (new_name);
671 }
672
673 if (is_new_loop)
674 {
675 guard_arg = orig_def;
676 loop_arg = new_name;
677 }
678 else
679 {
680 guard_arg = new_name;
681 loop_arg = orig_def;
682 }
683 if (new_name2)
684 guard_arg = new_name2;
685
686 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
687 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
688
689 /* 1.3. Update phi in successor block. */
690 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
691 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
692 update_phi2 = new_phi;
693
694
695 /** 2. Handle loop-closed-ssa-form phis **/
696
697 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
698 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
699 *new_exit_bb);
700
701 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
702 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
703
704 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
705 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
706 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
707 PHI_RESULT (new_phi));
708
709
710 /** 3. Handle loop-closed-ssa-form phis for first loop **/
711
712 /* 3.1. Find the relevant names that need an exit-phi in
713 GUARD_BB, i.e. names for which
714 slpeel_update_phi_nodes_for_guard1 had not already created a
715 phi node. This is the case for names that are used outside
716 the loop (and therefore need an exit phi) but are not updated
717 across loop iterations (and therefore don't have a
718 loop-header-phi).
719
720 slpeel_update_phi_nodes_for_guard1 is responsible for
721 creating loop-exit phis in GUARD_BB for names that have a
722 loop-header-phi. When such a phi is created we also record
723 the new name in its current definition. If this new name
724 exists, then guard_arg was set to this new name (see 1.2
725 above). Therefore, if guard_arg is not this new name, this
726 is an indication that an exit-phi in GUARD_BB was not yet
727 created, so we take care of it here. */
728 if (guard_arg == new_name2)
729 continue;
730 arg = guard_arg;
731
732 /* 3.2. Generate new phi node in GUARD_BB: */
733 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
734 guard_edge->src);
735
736 /* 3.3. GUARD_BB has one incoming edge: */
737 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
738 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
739 UNKNOWN_LOCATION);
740
741 /* 3.4. Update phi in successor of GUARD_BB: */
742 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
743 == guard_arg);
744 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
745 PHI_RESULT (new_phi));
746 }
747 }
748
749
750 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
751 that starts at zero, increases by one and its limit is NITERS.
752
753 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
754
755 void
slpeel_make_loop_iterate_ntimes(struct loop * loop,tree niters)756 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
757 {
758 tree indx_before_incr, indx_after_incr;
759 gimple cond_stmt;
760 gimple orig_cond;
761 edge exit_edge = single_exit (loop);
762 gimple_stmt_iterator loop_cond_gsi;
763 gimple_stmt_iterator incr_gsi;
764 bool insert_after;
765 tree init = build_int_cst (TREE_TYPE (niters), 0);
766 tree step = build_int_cst (TREE_TYPE (niters), 1);
767 LOC loop_loc;
768 enum tree_code code;
769
770 orig_cond = get_loop_exit_condition (loop);
771 gcc_assert (orig_cond);
772 loop_cond_gsi = gsi_for_stmt (orig_cond);
773
774 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
775 create_iv (init, step, NULL_TREE, loop,
776 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
777
778 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
779 true, NULL_TREE, true,
780 GSI_SAME_STMT);
781 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
782 true, GSI_SAME_STMT);
783
784 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
785 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
786 NULL_TREE);
787
788 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
789
790 /* Remove old loop exit test: */
791 gsi_remove (&loop_cond_gsi, true);
792
793 loop_loc = find_loop_location (loop);
794 if (dump_file && (dump_flags & TDF_DETAILS))
795 {
796 if (loop_loc != UNKNOWN_LOC)
797 fprintf (dump_file, "\nloop at %s:%d: ",
798 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
799 print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
800 }
801
802 loop->nb_iterations = niters;
803 }
804
805
806 /* Given LOOP this function generates a new copy of it and puts it
807 on E which is either the entry or exit of LOOP. */
808
809 struct loop *
slpeel_tree_duplicate_loop_to_edge_cfg(struct loop * loop,edge e)810 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
811 {
812 struct loop *new_loop;
813 basic_block *new_bbs, *bbs;
814 bool at_exit;
815 bool was_imm_dom;
816 basic_block exit_dest;
817 gimple phi;
818 tree phi_arg;
819 edge exit, new_exit;
820 gimple_stmt_iterator gsi;
821
822 at_exit = (e == single_exit (loop));
823 if (!at_exit && e != loop_preheader_edge (loop))
824 return NULL;
825
826 bbs = get_loop_body (loop);
827
828 /* Check whether duplication is possible. */
829 if (!can_copy_bbs_p (bbs, loop->num_nodes))
830 {
831 free (bbs);
832 return NULL;
833 }
834
835 /* Generate new loop structure. */
836 new_loop = duplicate_loop (loop, loop_outer (loop));
837 if (!new_loop)
838 {
839 free (bbs);
840 return NULL;
841 }
842
843 exit_dest = single_exit (loop)->dest;
844 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
845 exit_dest) == loop->header ?
846 true : false);
847
848 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
849
850 exit = single_exit (loop);
851 copy_bbs (bbs, loop->num_nodes, new_bbs,
852 &exit, 1, &new_exit, NULL,
853 e->src);
854
855 /* Duplicating phi args at exit bbs as coming
856 also from exit of duplicated loop. */
857 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
858 {
859 phi = gsi_stmt (gsi);
860 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
861 if (phi_arg)
862 {
863 edge new_loop_exit_edge;
864 source_location locus;
865
866 locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
867 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
868 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
869 else
870 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
871
872 add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
873 }
874 }
875
876 if (at_exit) /* Add the loop copy at exit. */
877 {
878 redirect_edge_and_branch_force (e, new_loop->header);
879 PENDING_STMT (e) = NULL;
880 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
881 if (was_imm_dom)
882 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
883 }
884 else /* Add the copy at entry. */
885 {
886 edge new_exit_e;
887 edge entry_e = loop_preheader_edge (loop);
888 basic_block preheader = entry_e->src;
889
890 if (!flow_bb_inside_loop_p (new_loop,
891 EDGE_SUCC (new_loop->header, 0)->dest))
892 new_exit_e = EDGE_SUCC (new_loop->header, 0);
893 else
894 new_exit_e = EDGE_SUCC (new_loop->header, 1);
895
896 redirect_edge_and_branch_force (new_exit_e, loop->header);
897 PENDING_STMT (new_exit_e) = NULL;
898 set_immediate_dominator (CDI_DOMINATORS, loop->header,
899 new_exit_e->src);
900
901 /* We have to add phi args to the loop->header here as coming
902 from new_exit_e edge. */
903 for (gsi = gsi_start_phis (loop->header);
904 !gsi_end_p (gsi);
905 gsi_next (&gsi))
906 {
907 phi = gsi_stmt (gsi);
908 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
909 if (phi_arg)
910 add_phi_arg (phi, phi_arg, new_exit_e,
911 gimple_phi_arg_location_from_edge (phi, entry_e));
912 }
913
914 redirect_edge_and_branch_force (entry_e, new_loop->header);
915 PENDING_STMT (entry_e) = NULL;
916 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
917 }
918
919 free (new_bbs);
920 free (bbs);
921
922 return new_loop;
923 }
924
925
926 /* Given the condition statement COND, put it as the last statement
927 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
928 Assumes that this is the single exit of the guarded loop.
929 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
930
931 static edge
slpeel_add_loop_guard(basic_block guard_bb,tree cond,gimple_seq cond_expr_stmt_list,basic_block exit_bb,basic_block dom_bb)932 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
933 gimple_seq cond_expr_stmt_list,
934 basic_block exit_bb, basic_block dom_bb)
935 {
936 gimple_stmt_iterator gsi;
937 edge new_e, enter_e;
938 gimple cond_stmt;
939 gimple_seq gimplify_stmt_list = NULL;
940
941 enter_e = EDGE_SUCC (guard_bb, 0);
942 enter_e->flags &= ~EDGE_FALLTHRU;
943 enter_e->flags |= EDGE_FALSE_VALUE;
944 gsi = gsi_last_bb (guard_bb);
945
946 cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
947 if (gimplify_stmt_list)
948 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
949 cond_stmt = gimple_build_cond (NE_EXPR,
950 cond, build_int_cst (TREE_TYPE (cond), 0),
951 NULL_TREE, NULL_TREE);
952 if (cond_expr_stmt_list)
953 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
954
955 gsi = gsi_last_bb (guard_bb);
956 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
957
958 /* Add new edge to connect guard block to the merge/loop-exit block. */
959 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
960 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
961 return new_e;
962 }
963
964
965 /* This function verifies that the following restrictions apply to LOOP:
966 (1) it is innermost
967 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
968 (3) it is single entry, single exit
969 (4) its exit condition is the last stmt in the header
970 (5) E is the entry/exit edge of LOOP.
971 */
972
973 bool
slpeel_can_duplicate_loop_p(const struct loop * loop,const_edge e)974 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
975 {
976 edge exit_e = single_exit (loop);
977 edge entry_e = loop_preheader_edge (loop);
978 gimple orig_cond = get_loop_exit_condition (loop);
979 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
980
981 if (need_ssa_update_p (cfun))
982 return false;
983
984 if (loop->inner
985 /* All loops have an outer scope; the only case loop->outer is NULL is for
986 the function itself. */
987 || !loop_outer (loop)
988 || loop->num_nodes != 2
989 || !empty_block_p (loop->latch)
990 || !single_exit (loop)
991 /* Verify that new loop exit condition can be trivially modified. */
992 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
993 || (e != exit_e && e != entry_e))
994 return false;
995
996 return true;
997 }
998
999 #ifdef ENABLE_CHECKING
1000 static void
slpeel_verify_cfg_after_peeling(struct loop * first_loop,struct loop * second_loop)1001 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1002 struct loop *second_loop)
1003 {
1004 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1005 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1006 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1007
1008 /* A guard that controls whether the second_loop is to be executed or skipped
1009 is placed in first_loop->exit. first_loop->exit therefore has two
1010 successors - one is the preheader of second_loop, and the other is a bb
1011 after second_loop.
1012 */
1013 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1014
1015 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1016 of second_loop. */
1017
1018 /* The preheader of new_loop is expected to have two predecessors:
1019 first_loop->exit and the block that precedes first_loop. */
1020
1021 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1022 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1023 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1024 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1025 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1026
1027 /* Verify that the other successor of first_loop->exit is after the
1028 second_loop. */
1029 /* TODO */
1030 }
1031 #endif
1032
1033 /* If the run time cost model check determines that vectorization is
1034 not profitable and hence scalar loop should be generated then set
1035 FIRST_NITERS to prologue peeled iterations. This will allow all the
1036 iterations to be executed in the prologue peeled scalar loop. */
1037
1038 static void
set_prologue_iterations(basic_block bb_before_first_loop,tree * first_niters,struct loop * loop,unsigned int th)1039 set_prologue_iterations (basic_block bb_before_first_loop,
1040 tree *first_niters,
1041 struct loop *loop,
1042 unsigned int th)
1043 {
1044 edge e;
1045 basic_block cond_bb, then_bb;
1046 tree var, prologue_after_cost_adjust_name;
1047 gimple_stmt_iterator gsi;
1048 gimple newphi;
1049 edge e_true, e_false, e_fallthru;
1050 gimple cond_stmt;
1051 gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
1052 tree cost_pre_condition = NULL_TREE;
1053 tree scalar_loop_iters =
1054 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1055
1056 e = single_pred_edge (bb_before_first_loop);
1057 cond_bb = split_edge(e);
1058
1059 e = single_pred_edge (bb_before_first_loop);
1060 then_bb = split_edge(e);
1061 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1062
1063 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1064 EDGE_FALSE_VALUE);
1065 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1066
1067 e_true = EDGE_PRED (then_bb, 0);
1068 e_true->flags &= ~EDGE_FALLTHRU;
1069 e_true->flags |= EDGE_TRUE_VALUE;
1070
1071 e_fallthru = EDGE_SUCC (then_bb, 0);
1072
1073 cost_pre_condition =
1074 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1075 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1076 cost_pre_condition =
1077 force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
1078 true, NULL_TREE);
1079 cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
1080 build_int_cst (TREE_TYPE (cost_pre_condition),
1081 0), NULL_TREE, NULL_TREE);
1082
1083 gsi = gsi_last_bb (cond_bb);
1084 if (gimplify_stmt_list)
1085 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1086
1087 gsi = gsi_last_bb (cond_bb);
1088 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1089
1090 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1091 "prologue_after_cost_adjust");
1092 add_referenced_var (var);
1093 prologue_after_cost_adjust_name =
1094 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1095
1096 gsi = gsi_last_bb (then_bb);
1097 if (stmts)
1098 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1099
1100 newphi = create_phi_node (var, bb_before_first_loop);
1101 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1102 UNKNOWN_LOCATION);
1103 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
1104
1105 *first_niters = PHI_RESULT (newphi);
1106 }
1107
1108 /* Function slpeel_tree_peel_loop_to_edge.
1109
1110 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1111 that is placed on the entry (exit) edge E of LOOP. After this transformation
1112 we have two loops one after the other - first-loop iterates FIRST_NITERS
1113 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1114 If the cost model indicates that it is profitable to emit a scalar
1115 loop instead of the vector one, then the prolog (epilog) loop will iterate
1116 for the entire unchanged scalar iterations of the loop.
1117
1118 Input:
1119 - LOOP: the loop to be peeled.
1120 - E: the exit or entry edge of LOOP.
1121 If it is the entry edge, we peel the first iterations of LOOP. In this
1122 case first-loop is LOOP, and second-loop is the newly created loop.
1123 If it is the exit edge, we peel the last iterations of LOOP. In this
1124 case, first-loop is the newly created loop, and second-loop is LOOP.
1125 - NITERS: the number of iterations that LOOP iterates.
1126 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1127 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1128 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1129 is false, the caller of this function may want to take care of this
1130 (this can be useful if we don't want new stmts added to first-loop).
1131 - TH: cost model profitability threshold of iterations for vectorization.
1132 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1133 during versioning and hence needs to occur during
1134 prologue generation or whether cost model check
1135 has not occurred during prologue generation and hence
1136 needs to occur during epilogue generation.
1137
1138
1139 Output:
1140 The function returns a pointer to the new loop-copy, or NULL if it failed
1141 to perform the transformation.
1142
1143 The function generates two if-then-else guards: one before the first loop,
1144 and the other before the second loop:
1145 The first guard is:
1146 if (FIRST_NITERS == 0) then skip the first loop,
1147 and go directly to the second loop.
1148 The second guard is:
1149 if (FIRST_NITERS == NITERS) then skip the second loop.
1150
1151 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1152 then the generated condition is combined with COND_EXPR and the
1153 statements in COND_EXPR_STMT_LIST are emitted together with it.
1154
1155 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1156 FORNOW the resulting code will not be in loop-closed-ssa form.
1157 */
1158
1159 static struct loop*
slpeel_tree_peel_loop_to_edge(struct loop * loop,edge e,tree * first_niters,tree niters,bool update_first_loop_count,unsigned int th,bool check_profitability,tree cond_expr,gimple_seq cond_expr_stmt_list)1160 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1161 edge e, tree *first_niters,
1162 tree niters, bool update_first_loop_count,
1163 unsigned int th, bool check_profitability,
1164 tree cond_expr, gimple_seq cond_expr_stmt_list)
1165 {
1166 struct loop *new_loop = NULL, *first_loop, *second_loop;
1167 edge skip_e;
1168 tree pre_condition = NULL_TREE;
1169 bitmap definitions;
1170 basic_block bb_before_second_loop, bb_after_second_loop;
1171 basic_block bb_before_first_loop;
1172 basic_block bb_between_loops;
1173 basic_block new_exit_bb;
1174 gimple_stmt_iterator gsi;
1175 edge exit_e = single_exit (loop);
1176 LOC loop_loc;
1177 tree cost_pre_condition = NULL_TREE;
1178
1179 if (!slpeel_can_duplicate_loop_p (loop, e))
1180 return NULL;
1181
1182 /* We have to initialize cfg_hooks. Then, when calling
1183 cfg_hooks->split_edge, the function tree_split_edge
1184 is actually called and, when calling cfg_hooks->duplicate_block,
1185 the function tree_duplicate_bb is called. */
1186 gimple_register_cfg_hooks ();
1187
1188 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1189 in the exit bb and rename all the uses after the loop. This simplifies
1190 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1191 (but normally loop closed SSA form doesn't require virtual PHIs to be
1192 in the same form). Doing this early simplifies the checking what
1193 uses should be renamed. */
1194 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1195 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1196 {
1197 gimple phi = gsi_stmt (gsi);
1198 for (gsi = gsi_start_phis (exit_e->dest);
1199 !gsi_end_p (gsi); gsi_next (&gsi))
1200 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1201 break;
1202 if (gsi_end_p (gsi))
1203 {
1204 gimple new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (phi)),
1205 exit_e->dest);
1206 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1207 imm_use_iterator imm_iter;
1208 gimple stmt;
1209 tree new_vop = make_ssa_name (SSA_NAME_VAR (PHI_RESULT (phi)),
1210 new_phi);
1211 use_operand_p use_p;
1212
1213 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1214 gimple_phi_set_result (new_phi, new_vop);
1215 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1216 if (stmt != new_phi && gimple_bb (stmt) != loop->header)
1217 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1218 SET_USE (use_p, new_vop);
1219 }
1220 break;
1221 }
1222
1223 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1224 Resulting CFG would be:
1225
1226 first_loop:
1227 do {
1228 } while ...
1229
1230 second_loop:
1231 do {
1232 } while ...
1233
1234 orig_exit_bb:
1235 */
1236
1237 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1238 {
1239 loop_loc = find_loop_location (loop);
1240 if (dump_file && (dump_flags & TDF_DETAILS))
1241 {
1242 if (loop_loc != UNKNOWN_LOC)
1243 fprintf (dump_file, "\n%s:%d: note: ",
1244 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1245 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1246 }
1247 return NULL;
1248 }
1249
1250 if (MAY_HAVE_DEBUG_STMTS)
1251 {
1252 gcc_assert (!adjust_vec);
1253 adjust_vec = VEC_alloc (adjust_info, stack, 32);
1254 }
1255
1256 if (e == exit_e)
1257 {
1258 /* NEW_LOOP was placed after LOOP. */
1259 first_loop = loop;
1260 second_loop = new_loop;
1261 }
1262 else
1263 {
1264 /* NEW_LOOP was placed before LOOP. */
1265 first_loop = new_loop;
1266 second_loop = loop;
1267 }
1268
1269 definitions = ssa_names_to_replace ();
1270 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1271 rename_variables_in_loop (new_loop);
1272
1273
1274 /* 2. Add the guard code in one of the following ways:
1275
1276 2.a Add the guard that controls whether the first loop is executed.
1277 This occurs when this function is invoked for prologue or epilogue
1278 generation and when the cost model check can be done at compile time.
1279
1280 Resulting CFG would be:
1281
1282 bb_before_first_loop:
1283 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1284 GOTO first-loop
1285
1286 first_loop:
1287 do {
1288 } while ...
1289
1290 bb_before_second_loop:
1291
1292 second_loop:
1293 do {
1294 } while ...
1295
1296 orig_exit_bb:
1297
1298 2.b Add the cost model check that allows the prologue
1299 to iterate for the entire unchanged scalar
1300 iterations of the loop in the event that the cost
1301 model indicates that the scalar loop is more
1302 profitable than the vector one. This occurs when
1303 this function is invoked for prologue generation
1304 and the cost model check needs to be done at run
1305 time.
1306
1307 Resulting CFG after prologue peeling would be:
1308
1309 if (scalar_loop_iterations <= th)
1310 FIRST_NITERS = scalar_loop_iterations
1311
1312 bb_before_first_loop:
1313 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1314 GOTO first-loop
1315
1316 first_loop:
1317 do {
1318 } while ...
1319
1320 bb_before_second_loop:
1321
1322 second_loop:
1323 do {
1324 } while ...
1325
1326 orig_exit_bb:
1327
1328 2.c Add the cost model check that allows the epilogue
1329 to iterate for the entire unchanged scalar
1330 iterations of the loop in the event that the cost
1331 model indicates that the scalar loop is more
1332 profitable than the vector one. This occurs when
1333 this function is invoked for epilogue generation
1334 and the cost model check needs to be done at run
1335 time. This check is combined with any pre-existing
1336 check in COND_EXPR to avoid versioning.
1337
1338 Resulting CFG after prologue peeling would be:
1339
1340 bb_before_first_loop:
1341 if ((scalar_loop_iterations <= th)
1342 ||
1343 FIRST_NITERS == 0) GOTO bb_before_second_loop
1344 GOTO first-loop
1345
1346 first_loop:
1347 do {
1348 } while ...
1349
1350 bb_before_second_loop:
1351
1352 second_loop:
1353 do {
1354 } while ...
1355
1356 orig_exit_bb:
1357 */
1358
1359 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1360 bb_before_second_loop = split_edge (single_exit (first_loop));
1361
1362 /* Epilogue peeling. */
1363 if (!update_first_loop_count)
1364 {
1365 pre_condition =
1366 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1367 build_int_cst (TREE_TYPE (*first_niters), 0));
1368 if (check_profitability)
1369 {
1370 tree scalar_loop_iters
1371 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1372 (loop_vec_info_for_loop (loop)));
1373 cost_pre_condition =
1374 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1375 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1376
1377 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1378 cost_pre_condition, pre_condition);
1379 }
1380 if (cond_expr)
1381 {
1382 pre_condition =
1383 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1384 pre_condition,
1385 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1386 cond_expr));
1387 }
1388 }
1389
1390 /* Prologue peeling. */
1391 else
1392 {
1393 if (check_profitability)
1394 set_prologue_iterations (bb_before_first_loop, first_niters,
1395 loop, th);
1396
1397 pre_condition =
1398 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1399 build_int_cst (TREE_TYPE (*first_niters), 0));
1400 }
1401
1402 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1403 cond_expr_stmt_list,
1404 bb_before_second_loop, bb_before_first_loop);
1405 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1406 first_loop == new_loop,
1407 &new_exit_bb, &definitions);
1408
1409
1410 /* 3. Add the guard that controls whether the second loop is executed.
1411 Resulting CFG would be:
1412
1413 bb_before_first_loop:
1414 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1415 GOTO first-loop
1416
1417 first_loop:
1418 do {
1419 } while ...
1420
1421 bb_between_loops:
1422 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1423 GOTO bb_before_second_loop
1424
1425 bb_before_second_loop:
1426
1427 second_loop:
1428 do {
1429 } while ...
1430
1431 bb_after_second_loop:
1432
1433 orig_exit_bb:
1434 */
1435
1436 bb_between_loops = new_exit_bb;
1437 bb_after_second_loop = split_edge (single_exit (second_loop));
1438
1439 pre_condition =
1440 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1441 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1442 bb_after_second_loop, bb_before_first_loop);
1443 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1444 second_loop == new_loop, &new_exit_bb);
1445
1446 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1447 */
1448 if (update_first_loop_count)
1449 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1450
1451 BITMAP_FREE (definitions);
1452 delete_update_ssa ();
1453
1454 adjust_vec_debug_stmts ();
1455
1456 return new_loop;
1457 }
1458
1459 /* Function vect_get_loop_location.
1460
1461 Extract the location of the loop in the source code.
1462 If the loop is not well formed for vectorization, an estimated
1463 location is calculated.
1464 Return the loop location if succeed and NULL if not. */
1465
1466 LOC
find_loop_location(struct loop * loop)1467 find_loop_location (struct loop *loop)
1468 {
1469 gimple stmt = NULL;
1470 basic_block bb;
1471 gimple_stmt_iterator si;
1472
1473 if (!loop)
1474 return UNKNOWN_LOC;
1475
1476 stmt = get_loop_exit_condition (loop);
1477
1478 if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
1479 return gimple_location (stmt);
1480
1481 /* If we got here the loop is probably not "well formed",
1482 try to estimate the loop location */
1483
1484 if (!loop->header)
1485 return UNKNOWN_LOC;
1486
1487 bb = loop->header;
1488
1489 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1490 {
1491 stmt = gsi_stmt (si);
1492 if (gimple_location (stmt) != UNKNOWN_LOC)
1493 return gimple_location (stmt);
1494 }
1495
1496 return UNKNOWN_LOC;
1497 }
1498
1499
1500 /* This function builds ni_name = number of iterations loop executes
1501 on the loop preheader. If SEQ is given the stmt is instead emitted
1502 there. */
1503
1504 static tree
vect_build_loop_niters(loop_vec_info loop_vinfo,gimple_seq seq)1505 vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
1506 {
1507 tree ni_name, var;
1508 gimple_seq stmts = NULL;
1509 edge pe;
1510 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1511 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1512
1513 var = create_tmp_var (TREE_TYPE (ni), "niters");
1514 add_referenced_var (var);
1515 ni_name = force_gimple_operand (ni, &stmts, false, var);
1516
1517 pe = loop_preheader_edge (loop);
1518 if (stmts)
1519 {
1520 if (seq)
1521 gimple_seq_add_seq (&seq, stmts);
1522 else
1523 {
1524 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1525 gcc_assert (!new_bb);
1526 }
1527 }
1528
1529 return ni_name;
1530 }
1531
1532
1533 /* This function generates the following statements:
1534
1535 ni_name = number of iterations loop executes
1536 ratio = ni_name / vf
1537 ratio_mult_vf_name = ratio * vf
1538
1539 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1540 if that is non-NULL. */
1541
1542 static void
vect_generate_tmps_on_preheader(loop_vec_info loop_vinfo,tree * ni_name_ptr,tree * ratio_mult_vf_name_ptr,tree * ratio_name_ptr,gimple_seq cond_expr_stmt_list)1543 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
1544 tree *ni_name_ptr,
1545 tree *ratio_mult_vf_name_ptr,
1546 tree *ratio_name_ptr,
1547 gimple_seq cond_expr_stmt_list)
1548 {
1549
1550 edge pe;
1551 basic_block new_bb;
1552 gimple_seq stmts;
1553 tree ni_name, ni_minus_gap_name;
1554 tree var;
1555 tree ratio_name;
1556 tree ratio_mult_vf_name;
1557 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1558 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1559 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1560 tree log_vf;
1561
1562 pe = loop_preheader_edge (loop);
1563
1564 /* Generate temporary variable that contains
1565 number of iterations loop executes. */
1566
1567 ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
1568 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1569
1570 /* If epilogue loop is required because of data accesses with gaps, we
1571 subtract one iteration from the total number of iterations here for
1572 correct calculation of RATIO. */
1573 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1574 {
1575 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
1576 ni_name,
1577 build_one_cst (TREE_TYPE (ni_name)));
1578 if (!is_gimple_val (ni_minus_gap_name))
1579 {
1580 var = create_tmp_var (TREE_TYPE (ni), "ni_gap");
1581 add_referenced_var (var);
1582
1583 stmts = NULL;
1584 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
1585 true, var);
1586 if (cond_expr_stmt_list)
1587 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1588 else
1589 {
1590 pe = loop_preheader_edge (loop);
1591 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1592 gcc_assert (!new_bb);
1593 }
1594 }
1595 }
1596 else
1597 ni_minus_gap_name = ni_name;
1598
1599 /* Create: ratio = ni >> log2(vf) */
1600
1601 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
1602 ni_minus_gap_name, log_vf);
1603 if (!is_gimple_val (ratio_name))
1604 {
1605 var = create_tmp_var (TREE_TYPE (ni), "bnd");
1606 add_referenced_var (var);
1607
1608 stmts = NULL;
1609 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
1610 if (cond_expr_stmt_list)
1611 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1612 else
1613 {
1614 pe = loop_preheader_edge (loop);
1615 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1616 gcc_assert (!new_bb);
1617 }
1618 }
1619
1620 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1621
1622 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1623 ratio_name, log_vf);
1624 if (!is_gimple_val (ratio_mult_vf_name))
1625 {
1626 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1627 add_referenced_var (var);
1628
1629 stmts = NULL;
1630 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1631 true, var);
1632 if (cond_expr_stmt_list)
1633 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1634 else
1635 {
1636 pe = loop_preheader_edge (loop);
1637 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1638 gcc_assert (!new_bb);
1639 }
1640 }
1641
1642 *ni_name_ptr = ni_name;
1643 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1644 *ratio_name_ptr = ratio_name;
1645
1646 return;
1647 }
1648
1649 /* Function vect_can_advance_ivs_p
1650
1651 In case the number of iterations that LOOP iterates is unknown at compile
1652 time, an epilog loop will be generated, and the loop induction variables
1653 (IVs) will be "advanced" to the value they are supposed to take just before
1654 the epilog loop. Here we check that the access function of the loop IVs
1655 and the expression that represents the loop bound are simple enough.
1656 These restrictions will be relaxed in the future. */
1657
1658 bool
vect_can_advance_ivs_p(loop_vec_info loop_vinfo)1659 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1660 {
1661 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1662 basic_block bb = loop->header;
1663 gimple phi;
1664 gimple_stmt_iterator gsi;
1665
1666 /* Analyze phi functions of the loop header. */
1667
1668 if (vect_print_dump_info (REPORT_DETAILS))
1669 fprintf (vect_dump, "vect_can_advance_ivs_p:");
1670
1671 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1672 {
1673 tree access_fn = NULL;
1674 tree evolution_part;
1675
1676 phi = gsi_stmt (gsi);
1677 if (vect_print_dump_info (REPORT_DETAILS))
1678 {
1679 fprintf (vect_dump, "Analyze phi: ");
1680 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1681 }
1682
1683 /* Skip virtual phi's. The data dependences that are associated with
1684 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1685
1686 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1687 {
1688 if (vect_print_dump_info (REPORT_DETAILS))
1689 fprintf (vect_dump, "virtual phi. skip.");
1690 continue;
1691 }
1692
1693 /* Skip reduction phis. */
1694
1695 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1696 {
1697 if (vect_print_dump_info (REPORT_DETAILS))
1698 fprintf (vect_dump, "reduc phi. skip.");
1699 continue;
1700 }
1701
1702 /* Analyze the evolution function. */
1703
1704 access_fn = instantiate_parameters
1705 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1706
1707 if (!access_fn)
1708 {
1709 if (vect_print_dump_info (REPORT_DETAILS))
1710 fprintf (vect_dump, "No Access function.");
1711 return false;
1712 }
1713
1714 if (vect_print_dump_info (REPORT_DETAILS))
1715 {
1716 fprintf (vect_dump, "Access function of PHI: ");
1717 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
1718 }
1719
1720 evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
1721
1722 if (evolution_part == NULL_TREE)
1723 {
1724 if (vect_print_dump_info (REPORT_DETAILS))
1725 fprintf (vect_dump, "No evolution.");
1726 return false;
1727 }
1728
1729 /* FORNOW: We do not transform initial conditions of IVs
1730 which evolution functions are a polynomial of degree >= 2. */
1731
1732 if (tree_is_chrec (evolution_part))
1733 return false;
1734 }
1735
1736 return true;
1737 }
1738
1739
1740 /* Function vect_update_ivs_after_vectorizer.
1741
1742 "Advance" the induction variables of LOOP to the value they should take
1743 after the execution of LOOP. This is currently necessary because the
1744 vectorizer does not handle induction variables that are used after the
1745 loop. Such a situation occurs when the last iterations of LOOP are
1746 peeled, because:
1747 1. We introduced new uses after LOOP for IVs that were not originally used
1748 after LOOP: the IVs of LOOP are now used by an epilog loop.
1749 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1750 times, whereas the loop IVs should be bumped N times.
1751
1752 Input:
1753 - LOOP - a loop that is going to be vectorized. The last few iterations
1754 of LOOP were peeled.
1755 - NITERS - the number of iterations that LOOP executes (before it is
1756 vectorized). i.e, the number of times the ivs should be bumped.
1757 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1758 coming out from LOOP on which there are uses of the LOOP ivs
1759 (this is the path from LOOP->exit to epilog_loop->preheader).
1760
1761 The new definitions of the ivs are placed in LOOP->exit.
1762 The phi args associated with the edge UPDATE_E in the bb
1763 UPDATE_E->dest are updated accordingly.
1764
1765 Assumption 1: Like the rest of the vectorizer, this function assumes
1766 a single loop exit that has a single predecessor.
1767
1768 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1769 organized in the same order.
1770
1771 Assumption 3: The access function of the ivs is simple enough (see
1772 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1773
1774 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1775 coming out of LOOP on which the ivs of LOOP are used (this is the path
1776 that leads to the epilog loop; other paths skip the epilog loop). This
1777 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1778 needs to have its phis updated.
1779 */
1780
1781 static void
vect_update_ivs_after_vectorizer(loop_vec_info loop_vinfo,tree niters,edge update_e)1782 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1783 edge update_e)
1784 {
1785 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1786 basic_block exit_bb = single_exit (loop)->dest;
1787 gimple phi, phi1;
1788 gimple_stmt_iterator gsi, gsi1;
1789 basic_block update_bb = update_e->dest;
1790
1791 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1792
1793 /* Make sure there exists a single-predecessor exit bb: */
1794 gcc_assert (single_pred_p (exit_bb));
1795
1796 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1797 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1798 gsi_next (&gsi), gsi_next (&gsi1))
1799 {
1800 tree init_expr;
1801 tree step_expr, off;
1802 tree type;
1803 tree var, ni, ni_name;
1804 gimple_stmt_iterator last_gsi;
1805 stmt_vec_info stmt_info;
1806
1807 phi = gsi_stmt (gsi);
1808 phi1 = gsi_stmt (gsi1);
1809 if (vect_print_dump_info (REPORT_DETAILS))
1810 {
1811 fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
1812 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1813 }
1814
1815 /* Skip virtual phi's. */
1816 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1817 {
1818 if (vect_print_dump_info (REPORT_DETAILS))
1819 fprintf (vect_dump, "virtual phi. skip.");
1820 continue;
1821 }
1822
1823 /* Skip reduction phis. */
1824 stmt_info = vinfo_for_stmt (phi);
1825 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
1826 {
1827 if (vect_print_dump_info (REPORT_DETAILS))
1828 fprintf (vect_dump, "reduc phi. skip.");
1829 continue;
1830 }
1831
1832 type = TREE_TYPE (gimple_phi_result (phi));
1833 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1834 step_expr = unshare_expr (step_expr);
1835
1836 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1837 of degree >= 2 or exponential. */
1838 gcc_assert (!tree_is_chrec (step_expr));
1839
1840 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1841
1842 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1843 fold_convert (TREE_TYPE (step_expr), niters),
1844 step_expr);
1845 if (POINTER_TYPE_P (type))
1846 ni = fold_build_pointer_plus (init_expr, off);
1847 else
1848 ni = fold_build2 (PLUS_EXPR, type,
1849 init_expr, fold_convert (type, off));
1850
1851 var = create_tmp_var (type, "tmp");
1852 add_referenced_var (var);
1853
1854 last_gsi = gsi_last_bb (exit_bb);
1855 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1856 true, GSI_SAME_STMT);
1857
1858 /* Fix phi expressions in the successor bb. */
1859 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1860 }
1861 }
1862
1863 /* Return the more conservative threshold between the
1864 min_profitable_iters returned by the cost model and the user
1865 specified threshold, if provided. */
1866
1867 static unsigned int
conservative_cost_threshold(loop_vec_info loop_vinfo,int min_profitable_iters)1868 conservative_cost_threshold (loop_vec_info loop_vinfo,
1869 int min_profitable_iters)
1870 {
1871 unsigned int th;
1872 int min_scalar_loop_bound;
1873
1874 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1875 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
1876
1877 /* Use the cost model only if it is more conservative than user specified
1878 threshold. */
1879 th = (unsigned) min_scalar_loop_bound;
1880 if (min_profitable_iters
1881 && (!min_scalar_loop_bound
1882 || min_profitable_iters > min_scalar_loop_bound))
1883 th = (unsigned) min_profitable_iters;
1884
1885 if (th && vect_print_dump_info (REPORT_COST))
1886 fprintf (vect_dump, "Profitability threshold is %u loop iterations.", th);
1887
1888 return th;
1889 }
1890
1891 /* Function vect_do_peeling_for_loop_bound
1892
1893 Peel the last iterations of the loop represented by LOOP_VINFO.
1894 The peeled iterations form a new epilog loop. Given that the loop now
1895 iterates NITERS times, the new epilog loop iterates
1896 NITERS % VECTORIZATION_FACTOR times.
1897
1898 The original loop will later be made to iterate
1899 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1900
1901 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1902 test. */
1903
1904 void
vect_do_peeling_for_loop_bound(loop_vec_info loop_vinfo,tree * ratio,tree cond_expr,gimple_seq cond_expr_stmt_list)1905 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1906 tree cond_expr, gimple_seq cond_expr_stmt_list)
1907 {
1908 tree ni_name, ratio_mult_vf_name;
1909 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1910 struct loop *new_loop;
1911 edge update_e;
1912 basic_block preheader;
1913 int loop_num;
1914 bool check_profitability = false;
1915 unsigned int th = 0;
1916 int min_profitable_iters;
1917
1918 if (vect_print_dump_info (REPORT_DETAILS))
1919 fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
1920
1921 initialize_original_copy_tables ();
1922
1923 /* Generate the following variables on the preheader of original loop:
1924
1925 ni_name = number of iteration the original loop executes
1926 ratio = ni_name / vf
1927 ratio_mult_vf_name = ratio * vf */
1928 vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
1929 &ratio_mult_vf_name, ratio,
1930 cond_expr_stmt_list);
1931
1932 loop_num = loop->num;
1933
1934 /* If cost model check not done during versioning and
1935 peeling for alignment. */
1936 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
1937 && !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
1938 && !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo)
1939 && !cond_expr)
1940 {
1941 check_profitability = true;
1942
1943 /* Get profitability threshold for vectorized loop. */
1944 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
1945
1946 th = conservative_cost_threshold (loop_vinfo,
1947 min_profitable_iters);
1948 }
1949
1950 new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
1951 &ratio_mult_vf_name, ni_name, false,
1952 th, check_profitability,
1953 cond_expr, cond_expr_stmt_list);
1954 gcc_assert (new_loop);
1955 gcc_assert (loop_num == loop->num);
1956 #ifdef ENABLE_CHECKING
1957 slpeel_verify_cfg_after_peeling (loop, new_loop);
1958 #endif
1959
1960 /* A guard that controls whether the new_loop is to be executed or skipped
1961 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1962 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1963 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1964 is on the path where the LOOP IVs are used and need to be updated. */
1965
1966 preheader = loop_preheader_edge (new_loop)->src;
1967 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1968 update_e = EDGE_PRED (preheader, 0);
1969 else
1970 update_e = EDGE_PRED (preheader, 1);
1971
1972 /* Update IVs of original loop as if they were advanced
1973 by ratio_mult_vf_name steps. */
1974 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1975
1976 /* After peeling we have to reset scalar evolution analyzer. */
1977 scev_reset ();
1978
1979 free_original_copy_tables ();
1980 }
1981
1982
1983 /* Function vect_gen_niters_for_prolog_loop
1984
1985 Set the number of iterations for the loop represented by LOOP_VINFO
1986 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1987 and the misalignment of DR - the data reference recorded in
1988 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1989 this loop, the data reference DR will refer to an aligned location.
1990
1991 The following computation is generated:
1992
1993 If the misalignment of DR is known at compile time:
1994 addr_mis = int mis = DR_MISALIGNMENT (dr);
1995 Else, compute address misalignment in bytes:
1996 addr_mis = addr & (vectype_align - 1)
1997
1998 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1999
2000 (elem_size = element type size; an element is the scalar element whose type
2001 is the inner type of the vectype)
2002
2003 When the step of the data-ref in the loop is not 1 (as in interleaved data
2004 and SLP), the number of iterations of the prolog must be divided by the step
2005 (which is equal to the size of interleaved group).
2006
2007 The above formulas assume that VF == number of elements in the vector. This
2008 may not hold when there are multiple-types in the loop.
2009 In this case, for some data-references in the loop the VF does not represent
2010 the number of elements that fit in the vector. Therefore, instead of VF we
2011 use TYPE_VECTOR_SUBPARTS. */
2012
2013 static tree
vect_gen_niters_for_prolog_loop(loop_vec_info loop_vinfo,tree loop_niters)2014 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
2015 {
2016 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2017 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2018 tree var;
2019 gimple_seq stmts;
2020 tree iters, iters_name;
2021 edge pe;
2022 basic_block new_bb;
2023 gimple dr_stmt = DR_STMT (dr);
2024 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
2025 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2026 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
2027 tree niters_type = TREE_TYPE (loop_niters);
2028 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
2029
2030 pe = loop_preheader_edge (loop);
2031
2032 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2033 {
2034 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2035
2036 if (vect_print_dump_info (REPORT_DETAILS))
2037 fprintf (vect_dump, "known peeling = %d.", npeel);
2038
2039 iters = build_int_cst (niters_type, npeel);
2040 }
2041 else
2042 {
2043 gimple_seq new_stmts = NULL;
2044 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
2045 tree offset = negative
2046 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2047 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
2048 &new_stmts, offset, loop);
2049 tree ptr_type = TREE_TYPE (start_addr);
2050 tree size = TYPE_SIZE (ptr_type);
2051 tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
2052 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
2053 HOST_WIDE_INT elem_size =
2054 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
2055 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
2056 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
2057 tree nelements_tree = build_int_cst (type, nelements);
2058 tree byte_misalign;
2059 tree elem_misalign;
2060
2061 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
2062 gcc_assert (!new_bb);
2063
2064 /* Create: byte_misalign = addr & (vectype_align - 1) */
2065 byte_misalign =
2066 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
2067 vectype_align_minus_1);
2068
2069 /* Create: elem_misalign = byte_misalign / element_size */
2070 elem_misalign =
2071 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
2072
2073 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
2074 if (negative)
2075 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
2076 else
2077 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
2078 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
2079 iters = fold_convert (niters_type, iters);
2080 }
2081
2082 /* Create: prolog_loop_niters = min (iters, loop_niters) */
2083 /* If the loop bound is known at compile time we already verified that it is
2084 greater than vf; since the misalignment ('iters') is at most vf, there's
2085 no need to generate the MIN_EXPR in this case. */
2086 if (TREE_CODE (loop_niters) != INTEGER_CST)
2087 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
2088
2089 if (vect_print_dump_info (REPORT_DETAILS))
2090 {
2091 fprintf (vect_dump, "niters for prolog loop: ");
2092 print_generic_expr (vect_dump, iters, TDF_SLIM);
2093 }
2094
2095 var = create_tmp_var (niters_type, "prolog_loop_niters");
2096 add_referenced_var (var);
2097 stmts = NULL;
2098 iters_name = force_gimple_operand (iters, &stmts, false, var);
2099
2100 /* Insert stmt on loop preheader edge. */
2101 if (stmts)
2102 {
2103 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2104 gcc_assert (!new_bb);
2105 }
2106
2107 return iters_name;
2108 }
2109
2110
2111 /* Function vect_update_init_of_dr
2112
2113 NITERS iterations were peeled from LOOP. DR represents a data reference
2114 in LOOP. This function updates the information recorded in DR to
2115 account for the fact that the first NITERS iterations had already been
2116 executed. Specifically, it updates the OFFSET field of DR. */
2117
2118 static void
vect_update_init_of_dr(struct data_reference * dr,tree niters)2119 vect_update_init_of_dr (struct data_reference *dr, tree niters)
2120 {
2121 tree offset = DR_OFFSET (dr);
2122
2123 niters = fold_build2 (MULT_EXPR, sizetype,
2124 fold_convert (sizetype, niters),
2125 fold_convert (sizetype, DR_STEP (dr)));
2126 offset = fold_build2 (PLUS_EXPR, sizetype,
2127 fold_convert (sizetype, offset), niters);
2128 DR_OFFSET (dr) = offset;
2129 }
2130
2131
2132 /* Function vect_update_inits_of_drs
2133
2134 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
2135 This function updates the information recorded for the data references in
2136 the loop to account for the fact that the first NITERS iterations had
2137 already been executed. Specifically, it updates the initial_condition of
2138 the access_function of all the data_references in the loop. */
2139
2140 static void
vect_update_inits_of_drs(loop_vec_info loop_vinfo,tree niters)2141 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
2142 {
2143 unsigned int i;
2144 VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2145 struct data_reference *dr;
2146
2147 if (vect_print_dump_info (REPORT_DETAILS))
2148 fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
2149
2150 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
2151 vect_update_init_of_dr (dr, niters);
2152 }
2153
2154
2155 /* Function vect_do_peeling_for_alignment
2156
2157 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2158 'niters' is set to the misalignment of one of the data references in the
2159 loop, thereby forcing it to refer to an aligned location at the beginning
2160 of the execution of this loop. The data reference for which we are
2161 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2162
2163 void
vect_do_peeling_for_alignment(loop_vec_info loop_vinfo)2164 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
2165 {
2166 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2167 tree niters_of_prolog_loop, ni_name;
2168 tree n_iters;
2169 tree wide_prolog_niters;
2170 struct loop *new_loop;
2171 unsigned int th = 0;
2172 int min_profitable_iters;
2173
2174 if (vect_print_dump_info (REPORT_DETAILS))
2175 fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
2176
2177 initialize_original_copy_tables ();
2178
2179 ni_name = vect_build_loop_niters (loop_vinfo, NULL);
2180 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2181 ni_name);
2182
2183 /* Get profitability threshold for vectorized loop. */
2184 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2185 th = conservative_cost_threshold (loop_vinfo,
2186 min_profitable_iters);
2187
2188 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2189 new_loop =
2190 slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
2191 &niters_of_prolog_loop, ni_name, true,
2192 th, true, NULL_TREE, NULL);
2193
2194 gcc_assert (new_loop);
2195 #ifdef ENABLE_CHECKING
2196 slpeel_verify_cfg_after_peeling (new_loop, loop);
2197 #endif
2198
2199 /* Update number of times loop executes. */
2200 n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2201 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2202 TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2203
2204 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2205 wide_prolog_niters = niters_of_prolog_loop;
2206 else
2207 {
2208 gimple_seq seq = NULL;
2209 edge pe = loop_preheader_edge (loop);
2210 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2211 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2212 add_referenced_var (var);
2213 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2214 var);
2215 if (seq)
2216 {
2217 /* Insert stmt on loop preheader edge. */
2218 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2219 gcc_assert (!new_bb);
2220 }
2221 }
2222
2223 /* Update the init conditions of the access functions of all data refs. */
2224 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2225
2226 /* After peeling we have to reset scalar evolution analyzer. */
2227 scev_reset ();
2228
2229 free_original_copy_tables ();
2230 }
2231
2232
2233 /* Function vect_create_cond_for_align_checks.
2234
2235 Create a conditional expression that represents the alignment checks for
2236 all of data references (array element references) whose alignment must be
2237 checked at runtime.
2238
2239 Input:
2240 COND_EXPR - input conditional expression. New conditions will be chained
2241 with logical AND operation.
2242 LOOP_VINFO - two fields of the loop information are used.
2243 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2244 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2245
2246 Output:
2247 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2248 expression.
2249 The returned value is the conditional expression to be used in the if
2250 statement that controls which version of the loop gets executed at runtime.
2251
2252 The algorithm makes two assumptions:
2253 1) The number of bytes "n" in a vector is a power of 2.
2254 2) An address "a" is aligned if a%n is zero and that this
2255 test can be done as a&(n-1) == 0. For example, for 16
2256 byte vectors the test is a&0xf == 0. */
2257
2258 static void
vect_create_cond_for_align_checks(loop_vec_info loop_vinfo,tree * cond_expr,gimple_seq * cond_expr_stmt_list)2259 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2260 tree *cond_expr,
2261 gimple_seq *cond_expr_stmt_list)
2262 {
2263 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2264 VEC(gimple,heap) *may_misalign_stmts
2265 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2266 gimple ref_stmt;
2267 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2268 tree mask_cst;
2269 unsigned int i;
2270 tree psize;
2271 tree int_ptrsize_type;
2272 char tmp_name[20];
2273 tree or_tmp_name = NULL_TREE;
2274 tree and_tmp, and_tmp_name;
2275 gimple and_stmt;
2276 tree ptrsize_zero;
2277 tree part_cond_expr;
2278
2279 /* Check that mask is one less than a power of 2, i.e., mask is
2280 all zeros followed by all ones. */
2281 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2282
2283 /* CHECKME: what is the best integer or unsigned type to use to hold a
2284 cast from a pointer value? */
2285 psize = TYPE_SIZE (ptr_type_node);
2286 int_ptrsize_type
2287 = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
2288
2289 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2290 of the first vector of the i'th data reference. */
2291
2292 FOR_EACH_VEC_ELT (gimple, may_misalign_stmts, i, ref_stmt)
2293 {
2294 gimple_seq new_stmt_list = NULL;
2295 tree addr_base;
2296 tree addr_tmp, addr_tmp_name;
2297 tree or_tmp, new_or_tmp_name;
2298 gimple addr_stmt, or_stmt;
2299 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2300 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2301 bool negative = tree_int_cst_compare
2302 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2303 tree offset = negative
2304 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2305
2306 /* create: addr_tmp = (int)(address_of_first_vector) */
2307 addr_base =
2308 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2309 offset, loop);
2310 if (new_stmt_list != NULL)
2311 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2312
2313 sprintf (tmp_name, "%s%d", "addr2int", i);
2314 addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2315 add_referenced_var (addr_tmp);
2316 addr_tmp_name = make_ssa_name (addr_tmp, NULL);
2317 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2318 addr_base, NULL_TREE);
2319 SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
2320 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2321
2322 /* The addresses are OR together. */
2323
2324 if (or_tmp_name != NULL_TREE)
2325 {
2326 /* create: or_tmp = or_tmp | addr_tmp */
2327 sprintf (tmp_name, "%s%d", "orptrs", i);
2328 or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2329 add_referenced_var (or_tmp);
2330 new_or_tmp_name = make_ssa_name (or_tmp, NULL);
2331 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2332 new_or_tmp_name,
2333 or_tmp_name, addr_tmp_name);
2334 SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
2335 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2336 or_tmp_name = new_or_tmp_name;
2337 }
2338 else
2339 or_tmp_name = addr_tmp_name;
2340
2341 } /* end for i */
2342
2343 mask_cst = build_int_cst (int_ptrsize_type, mask);
2344
2345 /* create: and_tmp = or_tmp & mask */
2346 and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
2347 add_referenced_var (and_tmp);
2348 and_tmp_name = make_ssa_name (and_tmp, NULL);
2349
2350 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2351 or_tmp_name, mask_cst);
2352 SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
2353 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2354
2355 /* Make and_tmp the left operand of the conditional test against zero.
2356 if and_tmp has a nonzero bit then some address is unaligned. */
2357 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2358 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2359 and_tmp_name, ptrsize_zero);
2360 if (*cond_expr)
2361 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2362 *cond_expr, part_cond_expr);
2363 else
2364 *cond_expr = part_cond_expr;
2365 }
2366
2367
2368 /* Function vect_vfa_segment_size.
2369
2370 Create an expression that computes the size of segment
2371 that will be accessed for a data reference. The functions takes into
2372 account that realignment loads may access one more vector.
2373
2374 Input:
2375 DR: The data reference.
2376 LENGTH_FACTOR: segment length to consider.
2377
2378 Return an expression whose value is the size of segment which will be
2379 accessed by DR. */
2380
2381 static tree
vect_vfa_segment_size(struct data_reference * dr,tree length_factor)2382 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2383 {
2384 tree segment_length;
2385
2386 if (!compare_tree_int (DR_STEP (dr), 0))
2387 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2388 else
2389 segment_length = size_binop (MULT_EXPR,
2390 fold_convert (sizetype, DR_STEP (dr)),
2391 fold_convert (sizetype, length_factor));
2392
2393 if (vect_supportable_dr_alignment (dr, false)
2394 == dr_explicit_realign_optimized)
2395 {
2396 tree vector_size = TYPE_SIZE_UNIT
2397 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2398
2399 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2400 }
2401 return segment_length;
2402 }
2403
2404
2405 /* Function vect_create_cond_for_alias_checks.
2406
2407 Create a conditional expression that represents the run-time checks for
2408 overlapping of address ranges represented by a list of data references
2409 relations passed as input.
2410
2411 Input:
2412 COND_EXPR - input conditional expression. New conditions will be chained
2413 with logical AND operation.
2414 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2415 to be checked.
2416
2417 Output:
2418 COND_EXPR - conditional expression.
2419 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2420 expression.
2421
2422
2423 The returned value is the conditional expression to be used in the if
2424 statement that controls which version of the loop gets executed at runtime.
2425 */
2426
2427 static void
vect_create_cond_for_alias_checks(loop_vec_info loop_vinfo,tree * cond_expr,gimple_seq * cond_expr_stmt_list)2428 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
2429 tree * cond_expr,
2430 gimple_seq * cond_expr_stmt_list)
2431 {
2432 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2433 VEC (ddr_p, heap) * may_alias_ddrs =
2434 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2435 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2436 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2437
2438 ddr_p ddr;
2439 unsigned int i;
2440 tree part_cond_expr, length_factor;
2441
2442 /* Create expression
2443 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2444 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2445 &&
2446 ...
2447 &&
2448 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2449 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2450
2451 if (VEC_empty (ddr_p, may_alias_ddrs))
2452 return;
2453
2454 FOR_EACH_VEC_ELT (ddr_p, may_alias_ddrs, i, ddr)
2455 {
2456 struct data_reference *dr_a, *dr_b;
2457 gimple dr_group_first_a, dr_group_first_b;
2458 tree addr_base_a, addr_base_b;
2459 tree segment_length_a, segment_length_b;
2460 gimple stmt_a, stmt_b;
2461 tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
2462
2463 dr_a = DDR_A (ddr);
2464 stmt_a = DR_STMT (DDR_A (ddr));
2465 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2466 if (dr_group_first_a)
2467 {
2468 stmt_a = dr_group_first_a;
2469 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2470 }
2471
2472 dr_b = DDR_B (ddr);
2473 stmt_b = DR_STMT (DDR_B (ddr));
2474 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2475 if (dr_group_first_b)
2476 {
2477 stmt_b = dr_group_first_b;
2478 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2479 }
2480
2481 addr_base_a =
2482 vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
2483 NULL_TREE, loop);
2484 addr_base_b =
2485 vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
2486 NULL_TREE, loop);
2487
2488 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2489 length_factor = scalar_loop_iters;
2490 else
2491 length_factor = size_int (vect_factor);
2492 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2493 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2494
2495 if (vect_print_dump_info (REPORT_DR_DETAILS))
2496 {
2497 fprintf (vect_dump,
2498 "create runtime check for data references ");
2499 print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
2500 fprintf (vect_dump, " and ");
2501 print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
2502 }
2503
2504 seg_a_min = addr_base_a;
2505 seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2506 if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
2507 seg_a_min = seg_a_max, seg_a_max = addr_base_a;
2508
2509 seg_b_min = addr_base_b;
2510 seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2511 if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
2512 seg_b_min = seg_b_max, seg_b_max = addr_base_b;
2513
2514 part_cond_expr =
2515 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2516 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2517 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2518
2519 if (*cond_expr)
2520 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2521 *cond_expr, part_cond_expr);
2522 else
2523 *cond_expr = part_cond_expr;
2524 }
2525
2526 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
2527 fprintf (vect_dump, "created %u versioning for alias checks.\n",
2528 VEC_length (ddr_p, may_alias_ddrs));
2529 }
2530
2531
2532 /* Function vect_loop_versioning.
2533
2534 If the loop has data references that may or may not be aligned or/and
2535 has data reference relations whose independence was not proven then
2536 two versions of the loop need to be generated, one which is vectorized
2537 and one which isn't. A test is then generated to control which of the
2538 loops is executed. The test checks for the alignment of all of the
2539 data references that may or may not be aligned. An additional
2540 sequence of runtime tests is generated for each pairs of DDRs whose
2541 independence was not proven. The vectorized version of loop is
2542 executed only if both alias and alignment tests are passed.
2543
2544 The test generated to check which version of loop is executed
2545 is modified to also check for profitability as indicated by the
2546 cost model initially.
2547
2548 The versioning precondition(s) are placed in *COND_EXPR and
2549 *COND_EXPR_STMT_LIST. If DO_VERSIONING is true versioning is
2550 also performed, otherwise only the conditions are generated. */
2551
2552 void
vect_loop_versioning(loop_vec_info loop_vinfo,bool do_versioning,tree * cond_expr,gimple_seq * cond_expr_stmt_list)2553 vect_loop_versioning (loop_vec_info loop_vinfo, bool do_versioning,
2554 tree *cond_expr, gimple_seq *cond_expr_stmt_list)
2555 {
2556 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2557 basic_block condition_bb;
2558 gimple_stmt_iterator gsi, cond_exp_gsi;
2559 basic_block merge_bb;
2560 basic_block new_exit_bb;
2561 edge new_exit_e, e;
2562 gimple orig_phi, new_phi;
2563 tree arg;
2564 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2565 gimple_seq gimplify_stmt_list = NULL;
2566 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2567 int min_profitable_iters = 0;
2568 unsigned int th;
2569
2570 /* Get profitability threshold for vectorized loop. */
2571 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2572
2573 th = conservative_cost_threshold (loop_vinfo,
2574 min_profitable_iters);
2575
2576 *cond_expr =
2577 fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2578 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2579
2580 *cond_expr = force_gimple_operand (*cond_expr, cond_expr_stmt_list,
2581 false, NULL_TREE);
2582
2583 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2584 vect_create_cond_for_align_checks (loop_vinfo, cond_expr,
2585 cond_expr_stmt_list);
2586
2587 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2588 vect_create_cond_for_alias_checks (loop_vinfo, cond_expr,
2589 cond_expr_stmt_list);
2590
2591 *cond_expr =
2592 fold_build2 (NE_EXPR, boolean_type_node, *cond_expr, integer_zero_node);
2593 *cond_expr =
2594 force_gimple_operand (*cond_expr, &gimplify_stmt_list, true, NULL_TREE);
2595 gimple_seq_add_seq (cond_expr_stmt_list, gimplify_stmt_list);
2596
2597 /* If we only needed the extra conditions and a new loop copy
2598 bail out here. */
2599 if (!do_versioning)
2600 return;
2601
2602 initialize_original_copy_tables ();
2603 loop_version (loop, *cond_expr, &condition_bb,
2604 prob, prob, REG_BR_PROB_BASE - prob, true);
2605 free_original_copy_tables();
2606
2607 /* Loop versioning violates an assumption we try to maintain during
2608 vectorization - that the loop exit block has a single predecessor.
2609 After versioning, the exit block of both loop versions is the same
2610 basic block (i.e. it has two predecessors). Just in order to simplify
2611 following transformations in the vectorizer, we fix this situation
2612 here by adding a new (empty) block on the exit-edge of the loop,
2613 with the proper loop-exit phis to maintain loop-closed-form. */
2614
2615 merge_bb = single_exit (loop)->dest;
2616 gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2617 new_exit_bb = split_edge (single_exit (loop));
2618 new_exit_e = single_exit (loop);
2619 e = EDGE_SUCC (new_exit_bb, 0);
2620
2621 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2622 {
2623 orig_phi = gsi_stmt (gsi);
2624 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
2625 new_exit_bb);
2626 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2627 add_phi_arg (new_phi, arg, new_exit_e,
2628 gimple_phi_arg_location_from_edge (orig_phi, e));
2629 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2630 }
2631
2632 /* End loop-exit-fixes after versioning. */
2633
2634 update_ssa (TODO_update_ssa);
2635 if (*cond_expr_stmt_list)
2636 {
2637 cond_exp_gsi = gsi_last_bb (condition_bb);
2638 gsi_insert_seq_before (&cond_exp_gsi, *cond_expr_stmt_list,
2639 GSI_SAME_STMT);
2640 *cond_expr_stmt_list = NULL;
2641 }
2642 *cond_expr = NULL_TREE;
2643 }
2644
2645